JP2002346382A - Visible light-responsive photocatalyst - Google Patents

Visible light-responsive photocatalyst

Info

Publication number
JP2002346382A
JP2002346382A JP2001153005A JP2001153005A JP2002346382A JP 2002346382 A JP2002346382 A JP 2002346382A JP 2001153005 A JP2001153005 A JP 2001153005A JP 2001153005 A JP2001153005 A JP 2001153005A JP 2002346382 A JP2002346382 A JP 2002346382A
Authority
JP
Japan
Prior art keywords
titanium oxide
visible light
liters
ion
exchanged water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001153005A
Other languages
Japanese (ja)
Inventor
Yuuki Kanai
勇樹 金井
Kisao Uekusa
吉幸男 植草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001153005A priority Critical patent/JP2002346382A/en
Publication of JP2002346382A publication Critical patent/JP2002346382A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a visible light-responsive photocatalyst capable of being manufactured even if an expensive apparatus like an ion injection apparatus is not used. SOLUTION: The visible light-responsive photocatalyst is prepared by adding at least one of 2-12 wt.% of alumina, 4-15 wt.% of gallium oxide and 0.5-10 wt.% of silica to titanium oxide crystal particles. This photocatalyst can develop strong photocatalytic activity not only in an ultraviolet region but also in a visible light region. Titanium fine particles capable of developing strong photocatalytic activity can be obtained in simple equipment by simple work. Even if light containing visible light is used, this photocatalyst can reduce the concentration of a harmful substance such as toluene or the like contained in air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、紫外光領域と可視
光領域において光触媒活性を発現する光触媒材料に関す
る。
The present invention relates to a photocatalytic material which exhibits photocatalytic activity in an ultraviolet light region and a visible light region.

【0002】[0002]

【従来の技術】光触媒は、そのバンドギャップエネルギ
ー以上の光を吸収すると、価電子帯の電子が伝導帯に励
起され、価電子帯には正孔が生成する。そしてそれら電
子と正孔が酸化チタン表面の酸化作用を誘起する。現
在、光触媒の光源としては、紫外光が主として使用され
ており、その用途は、臭気成分、VOC等の分解除去を
はじめとして、抗菌、防汚、水の分解、太陽電池等、様
々な分野での活用が期待されている。しかし、酸化チタ
ンは約380nmよりも短い波長の紫外領域の光を照射
しないと光触媒活性が発現せず、太陽光や蛍光灯に多く
含まれている可視領域の光を有効に利用することができ
なかった。この問題を解決するため、特開平9−262
482号公報には、金属イオンを30keV以上の高エ
ネルギーを付与して加速した状態で酸化チタンに照射
し、金属イオンを酸化チタンに注人した光触媒が開示さ
れている。この光触媒は可視領域でも有効に作用すると
いう特徴を有する。しかしながら、イオン注入装置のよ
うな高価な装置を使用して光触媒を製造する方法は、膨
大な設備投資を必要とするので実用化が困難となる。
2. Description of the Related Art When a photocatalyst absorbs light having a band gap energy or more, electrons in a valence band are excited to a conduction band, and holes are generated in the valence band. The electrons and holes induce an oxidizing action on the surface of the titanium oxide. At present, ultraviolet light is mainly used as a light source for photocatalysts, and its use is in various fields such as antibacterial, antifouling, decomposing water, and solar cells, including decomposition and removal of odor components and VOCs. It is expected to be used. However, titanium oxide does not exhibit photocatalytic activity unless it is irradiated with light in the ultraviolet region having a wavelength shorter than about 380 nm, and can effectively utilize light in the visible region, which is often contained in sunlight and fluorescent lamps. Did not. To solve this problem, Japanese Patent Application Laid-Open No. 9-262
No. 482 discloses a photocatalyst in which metal ions are irradiated to titanium oxide in a state where the ions are accelerated by applying high energy of 30 keV or more, and the metal ions are injected into titanium oxide. This photocatalyst is characterized in that it works effectively even in the visible region. However, a method of manufacturing a photocatalyst using an expensive apparatus such as an ion implantation apparatus requires a huge capital investment, and is difficult to be put into practical use.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記した問
題点にかんがみなされたもので、イオン注入装置のよう
な高価な装置を使用しなくても製造可能な可視光応答性
光触媒を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a visible light responsive photocatalyst which can be manufactured without using an expensive apparatus such as an ion implantation apparatus. The purpose is to:

【0004】[0004]

【課題を解決するための手段】本発明に係る可視光応答
性光触媒は、酸化チタン結品粒子の中に、2〜12重量
%のアルミナ、4〜15重量%の酸化ガリウム、0.5
〜10重量%のシリカの少なくとも一つを含有し、か
つ、その比表面積が50m/g以上350m/g以
下であることを特徴とするものである。また、アルミ
ナ、酸化ガリウム、シリカの結晶構造がそれぞれ非晶質
であることを特徴とし、さらに、酸化チタン結晶粒子の
構造が主としてアナターゼ型であり、かつその結晶子径
が3〜50nmであることを特徴とする。
The visible light responsive photocatalyst according to the present invention comprises 2-12% by weight of alumina, 4-15% by weight of gallium oxide, 0.5%
10 contains at least one percent by weight of silica, and is characterized in that the specific surface area is less than 50 m 2 / g or more 350m 2 / g. Further, the crystal structures of alumina, gallium oxide and silica are each amorphous, and the structure of titanium oxide crystal particles is mainly anatase type, and the crystallite diameter is 3 to 50 nm. It is characterized by.

【0005】本発明において、アルミナ、酸化ガリウ
ム、シリカの少なくとも一つを酸化チタンに添加するこ
とにより可視光応答性が発現する理由は、これらの成分
が酸化チタンの電子状態に影響を与えているものと推測
される。また、これらの成分の含有量をそれぞれ2〜1
2重量%、4〜15重量%、0.5〜10重量%と限定
したのは、以下に記載する理由による。アルミナ、酸化
ガリウム、シリカは、それぞれ酸化チタン結品粒子の間
に閉じ込められた状態で存在するが、アルミナ、酸化ガ
リウム、シリカの含有量がそれぞれ2重量%、4重量
%、0.5重量%未満では、可視光線領域での光触媒活
性が弱く、他方、アルミナ、酸化ガリウム、シリカの含
有量がそれぞれ12重量%、15重量%、10重量%を
超えると、可視光線領域のみならず紫外線領域での光触
媒活性が極端に低下するためである。また、これらの比
表面積を50m/g以上350m/g以下と限定し
たのは、50m/g未満では光触媒活性が低くなるた
めであり、他方、350m/gを超えると、酸化チタ
ンの結晶粒子の状態が不安定になり、光触媒活性の劣化
が起こりやすくなるためである。さらに、酸化チタン結
晶粒子の結晶構造を主としてアナターゼ型としたのは、
以下に記載する理由による。酸化チタンの結晶構造に
は、アナターゼ型の他にルチル型と非晶質があるが、ル
チル型のバンドキャップは3.0eV、アナターゼ型の
バンドギャップは3.2eVである。これらのバンドギ
ャップに相当するエネルギーを光エネルギーに換算する
と、それぞれ413nmと387nmとなる。このこと
は、ルチル型が、アナターゼ型よりも長波長の光を利用
できること、すなわち、可視光線領域における光触媒活
性が強いことを示している。しかし、ルチル型酸化チタ
ンは、アナターゼ型酸化チタンよりも、比表面積が小さ
い分だけ光触媒活性も低い。バンドギャップが低い分だ
け光触媒反応により誘起する酸化作用も低い。それゆえ
にルチル型酸化チタンの含有量が多くなると、全体の光
触媒活性が低下する。したがって、酸化チタンの主たる
結晶構造は、アナターゼ型、特に高結晶性のアナターゼ
型が好ましく、ルチル型は含まれてもよいが少量である
のが好ましい。また、非晶質酸化チタンは光触媒活性を
有しないため含まないのが好ましい。さらに、チタン以
外の金属とチタンとの複合酸化物を用いることも可能で
ある。なお、酸化チタン結晶粒子は、一般に小さい方が
表面積が増大し、高い光触媒活性を与えるが、小さくな
りすぎると本質的な光触媒性能が低下するので好ましく
ない。このため酸化チタン結晶粒子の平均粒子径は5〜
50nmとしたのである。
In the present invention, the reason that visible light response is exhibited by adding at least one of alumina, gallium oxide and silica to titanium oxide is that these components affect the electronic state of titanium oxide. It is supposed to be. Further, the content of each of these components is 2 to 1 respectively.
The reason for limiting to 2% by weight, 4 to 15% by weight, and 0.5 to 10% by weight is as follows. Alumina, gallium oxide, and silica exist in a state of being confined between the titanium oxide particles, respectively, but the contents of alumina, gallium oxide, and silica are 2% by weight, 4% by weight, and 0.5% by weight, respectively. When the content is less than 10, the photocatalytic activity in the visible light region is weak. On the other hand, when the content of alumina, gallium oxide, and silica exceeds 12% by weight, 15% by weight, and 10% by weight, respectively, not only in the visible light region but also in the ultraviolet region. This is because the photocatalytic activity of the compound is extremely reduced. Further, the these specific surface area is limited and 50 m 2 / g or more 350 meters 2 / g or less is because the photocatalytic activity is lowered less than 50 m 2 / g, while when it exceeds 350 meters 2 / g, titanium oxide This is because the state of the crystal particles becomes unstable and the photocatalytic activity tends to deteriorate. Furthermore, the crystal structure of the titanium oxide crystal particles is mainly anatase type,
The reason is described below. Titanium oxide has a rutile structure and an amorphous structure in addition to the anatase structure. The rutile band cap has a band gap of 3.0 eV and the anatase structure has a band gap of 3.2 eV. When the energy corresponding to these band gaps is converted into light energy, they are 413 nm and 387 nm, respectively. This indicates that the rutile type can use light having a longer wavelength than the anatase type, that is, that the photocatalytic activity in the visible light region is stronger. However, rutile-type titanium oxide has lower photocatalytic activity than anatase-type titanium oxide because of its smaller specific surface area. The oxidizing action induced by the photocatalytic reaction is lower due to the lower band gap. Therefore, when the content of the rutile-type titanium oxide increases, the overall photocatalytic activity decreases. Therefore, the main crystal structure of titanium oxide is preferably an anatase type, particularly an anatase type having high crystallinity, and a rutile type may be contained, but a small amount is preferable. In addition, amorphous titanium oxide does not have photocatalytic activity and is preferably not included. Furthermore, a composite oxide of titanium and a metal other than titanium can be used. In general, the smaller the titanium oxide crystal particles, the higher the surface area and a high photocatalytic activity are provided. Therefore, the average particle size of the titanium oxide crystal particles is 5 to
It was 50 nm.

【0006】また、本発明の可視光応答性光触媒は、製
造方法について特に限定されるものではなく、ゾルーゲ
ル法、共沈法、熱分解法など種々の方法で製造が可能で
ある。さらに、この可視光応答性光触媒は、基材上の薄
膜としても使用が可能である。薄膜の製造方法として
は、上記光触媒を単独あるいは有機系や無機系のバイン
ダーと混合して溶剤に分散させたものを基材表面にコー
ティングする方法、転写による方法、粉体塗装による方
法などが挙げられる。コーティングを行う基材として
は、例えば、建築物の外壁面、屋根外面屋上面、窓ガラ
ス外面若しくは窓ガラス内面、部屋の壁面、床面若しく
は天井面、ブラインド、カーテン、道路の防護壁、トン
ネルの内壁、照明灯の外面若しくは反射面、車両の内装
面、ミラー面、窓ガラス外面若しくは窓ガラス内面が拳
げられる。なお、本発明において、可視光を含む光は、
太陽光線または人工光線を用いることが可能である。人
工光線源は、可視光を含む光を供給できるものであれば
よく、例えば、蛍光灯、白熱灯、ハロゲンランプからの
光線である。
The method for producing the visible light responsive photocatalyst of the present invention is not particularly limited, and it can be produced by various methods such as a sol-gel method, a coprecipitation method and a thermal decomposition method. Furthermore, this visible light responsive photocatalyst can also be used as a thin film on a substrate. As a method for producing a thin film, a method in which the photocatalyst alone or mixed with an organic or inorganic binder and dispersed in a solvent is coated on a substrate surface, a method by transfer, a method by powder coating, and the like. Can be As the base material for coating, for example, the outer wall of a building, the outer surface of a roof outer surface, the outer surface of a window glass or the inner surface of a window glass, the wall surface of a room, the floor or ceiling, blinds, curtains, road protective walls, and tunnels The inner wall, the outer surface or reflecting surface of the lighting, the interior surface of the vehicle, the mirror surface, the outer surface of the window glass or the inner surface of the window glass are fisted. In the present invention, light including visible light is
It is possible to use sunlight or artificial light. The artificial light source may be any light source that can supply light including visible light, and is, for example, light from a fluorescent lamp, an incandescent lamp, or a halogen lamp.

【0007】[0007]

【実施例】以下、実施例によって本発明を更に詳しく説
明するが、本発明はこれら実施例によってなんら制限さ
れるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention.

【0008】実施例1 硝酸アルミニウム9水和物451gを24%硫酸チタン
水溶液11.77kgに溶解させ、さらにイオン交換水
を添加して全量を10リットルとしたものをA液とし、
一方、水酸化ナトリウム2.24kgにイオン交換水を
加えて全量を10リットルとしたものをB液とした。つ
いで60℃に保持したイオン交換水4リットルを容器内
に張っておき、それに前記A液とB液を強い攪拌下、定
速度(毎分100ミリリットル)で添加しながら水和物
沈殿を生成させた。その後、この沈殿物を十分に水洗い
した後、110℃で12時間乾燥し、続いて500℃で
3時間焼成して6重量%のアルミナを含有する酸化チタ
ン粉末を調製した。なお、得られた酸化チタン粉末の比
表面積は101m/gであった。
Example 1 451 g of aluminum nitrate nonahydrate was dissolved in 11.77 kg of a 24% aqueous solution of titanium sulfate, and ion-exchanged water was added to make a total volume of 10 liters.
On the other hand, a solution B was prepared by adding ion-exchanged water to 2.24 kg of sodium hydroxide to make the total amount 10 liters. Then, 4 liters of ion-exchanged water kept at 60 ° C. was placed in the vessel, and the above-mentioned solution A and solution B were added thereto at a constant rate (100 ml / min) under vigorous stirring to form a hydrate precipitate. Was. Thereafter, the precipitate was sufficiently washed with water, dried at 110 ° C. for 12 hours, and subsequently calcined at 500 ° C. for 3 hours to prepare a titanium oxide powder containing 6% by weight of alumina. The specific surface area of the obtained titanium oxide powder was 101 m 2 / g.

【0009】実施例2 硝峻アルミニウム9水和物901gを24%硫酸チタン
水溶液11.02kgに溶解させ、さらにイオン交換水
を添加して全量を10リットルとしたものをA液とし、
一方、水酸化ナトリウム2.26kgにイオン交換水を
加えて全量を10リットルとしたものをB液とした。つ
いで60℃に保持したイオン交換水4リットルを容器内
に張っておき、それに前記A液とB液を強い攪拌下、定
速度(毎分100ミリリットル)で添加しながら水和物
沈殿を生成させた。その後、この沈殿物を十分に水洗い
した後、110℃で12時間乾燥し、続いて500℃で
3時間焼成して12重量%のアルミナを含有する酸化チ
タン粉末を調製した。なお、得られた酸化チタン粉末の
比表面積は148m/gであった。
Example 2 901 g of nitrous aluminum nonahydrate was dissolved in 11.02 kg of a 24% aqueous solution of titanium sulfate, and ion-exchanged water was added to make a total volume of 10 liters.
On the other hand, a liquid B was prepared by adding ion-exchanged water to 2.26 kg of sodium hydroxide to make the total amount 10 liters. Then, 4 liters of ion-exchanged water kept at 60 ° C. was filled in the vessel, and the above-mentioned solution A and solution B were added thereto at a constant rate (100 ml / min) under vigorous stirring to form a hydrate precipitate. Was. Thereafter, the precipitate was sufficiently washed with water, dried at 110 ° C. for 12 hours, and subsequently calcined at 500 ° C. for 3 hours to prepare a titanium oxide powder containing 12% by weight of alumina. The specific surface area of the obtained titanium oxide powder was 148 m 2 / g.

【0010】実施例3 硝酸アルミニウム9水和物150gを24%硫酸チタン
水溶液12.27kgに溶解させ、さらにイオン交換水
を添加して全量を10リットルとしたものをA液とし、
一方、水酸化ナトリウム2.22kgにイオン交換水を
加えて全量を10リットルとしたものをB液とした。つ
いで60℃に保持したイオン交換水4リットルを容器内
に張っておき、それに前記A液とB液を強い攪拌下、定
速度(毎分100ミリリットル)で添加しながら水和物
沈殿を生成させた。その後、この沈殿物を十分に水洗い
した後、110℃で12時間乾燥し、続いて500℃で
3時間焼成して2重量%のアルミナを含有する酸化チタ
ン粉末を調製した。なお、得られた酸化チタン粉末の比
表面積は64m/gであった。
EXAMPLE 3 150 g of aluminum nitrate nonahydrate was dissolved in 12.27 kg of a 24% aqueous solution of titanium sulfate, and ion-exchanged water was added to make a total volume of 10 liters.
On the other hand, a solution B was prepared by adding ion-exchanged water to 2.22 kg of sodium hydroxide to make the total amount 10 liters. Then, 4 liters of ion-exchanged water kept at 60 ° C. was filled in the vessel, and the above-mentioned solution A and solution B were added thereto at a constant rate (100 ml / min) under vigorous stirring to form a hydrate precipitate. Was. Thereafter, the precipitate was sufficiently washed with water, dried at 110 ° C. for 12 hours, and subsequently calcined at 500 ° C. for 3 hours to prepare a titanium oxide powder containing 2% by weight of alumina. The specific surface area of the obtained titanium oxide powder was 64 m 2 / g.

【0011】比較例1 硝酸アルミニウム9水和物1502gを24%硫酸チタ
ン水溶液10.02kgに溶解させ、さらにイオン交換
水を添加して全量を10リットルとしたものをA液と
し、一方、水酸化ナトリウム2.30kgにイオン交換
水を加えて全量を10リットルとしたものをB液とし
た。ついで60℃に保持したイオン交換水4リットルを
容器内に張っておき、それに前記A液とB液を強い攪拌
下、定速度(毎分100ミリリットル)で添加しながら
水和物沈殿を生成させた。その後、この沈殿物を十分に
水洗いした後、110℃で12時間乾燥し、続いて50
0℃で3時間焼成して20重量%のアルミナを含有する
酸化チタン粉末を調製した。なお、得られた酸化チタン
粉末の比表面積は137m/gであった。
Comparative Example 1 1502 g of aluminum nitrate nonahydrate was dissolved in 10.02 kg of a 24% aqueous solution of titanium sulfate, and ion-exchanged water was added to make a total volume of 10 liters. Liquid B was prepared by adding ion-exchanged water to 2.30 kg of sodium to make the total amount 10 liters. Then, 4 liters of ion-exchanged water kept at 60 ° C. was placed in the vessel, and the above-mentioned solution A and solution B were added thereto at a constant rate (100 ml / min) under vigorous stirring to form a hydrate precipitate. Was. Thereafter, the precipitate was thoroughly washed with water and dried at 110 ° C. for 12 hours.
The mixture was calcined at 0 ° C. for 3 hours to prepare a titanium oxide powder containing 20% by weight of alumina. The specific surface area of the obtained titanium oxide powder was 137 m 2 / g.

【0012】比較例2 硝酸アルミニウム9水和物75gを24%硫酸チタン水
溶液12.40kgに溶解させ、さらにイオン交換水を
添加して全量を10リットルとしたものをA液とし、一
方、水酸化ナトリウム2.22kgにイオン交換水を加
えて全量を10リットルとしたものをB液とした。つい
で60℃に保持したイオン交換水4リットルを容器内に
張っておき、それに前記A液とB液を強い攪拌下、定速
度(毎分100ミリリットル)で添加しながら水和物沈
殿を生成させた。その後、この沈殿物を十分に水洗いし
た後、110℃で12時間乾燥し、続いて500℃で3
時間焼成して1重量%のアルミナを含有する酸化チタン
粉末を調製した。なお、得られた酸化チタン粉末の比表
面積は48m/gであった。
Comparative Example 2 75 g of aluminum nitrate nonahydrate was dissolved in 12.40 kg of a 24% aqueous solution of titanium sulfate, and ion-exchanged water was added to make a total volume of 10 liters. Liquid B was prepared by adding ion-exchanged water to 2.22 kg of sodium to a total volume of 10 liters. Then, 4 liters of ion-exchanged water kept at 60 ° C. was placed in the vessel, and the above-mentioned solution A and solution B were added thereto at a constant rate (100 ml / min) under vigorous stirring to form a hydrate precipitate. Was. Thereafter, the precipitate was thoroughly washed with water, dried at 110 ° C. for 12 hours, and subsequently dried at 500 ° C. for 3 hours.
Calcination was performed for a period of time to prepare a titanium oxide powder containing 1% by weight of alumina. The specific surface area of the obtained titanium oxide powder was 48 m 2 / g.

【0013】実施例1〜3、および比較例1、2で得た
サンプルの光触媒活性は、汚染空気の浄化活性により評
価した。汚染空気原料としては50ppmのトルエンを
含有する空気を使用し、固定床流通系反応装置により反
応を行った。反応装置は、パイレックス(登録商標)ガ
ラス製の内管(外径=20mm)および石英ガラス製の
外管(内径=24mm)の2重管構造であり、内管の表
面に光触媒サンプルをコーティング(コート面積=15
0cm)した。汚染空気は内管と外管の隙間を毎分3
リットルの流速で流通させた。光照射は20Wブラック
ライト4本、または20W白色蛍光ランプ4本により反
応管を囲むように配置した。生成物の定量はメタナイザ
ーを設置したガスクロマトグラフ(FID検出器)で分
析した。汚染空気の浄化処理試験は10時間行い、1時
間毎に出口ガス中のトルエン濃度の分析を行い、トルエ
ンの除去率を求めた。反応開始10時間後における、汚
染空気中のトルエンの除去率を百分率(%)で表し、表
1に示した。なお、出口ガス中には未反応のトルエンの
外に炭酸ガスが検出され、一酸化炭素その他の副生成物
は全く生成していなかった。
The photocatalytic activities of the samples obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were evaluated based on the activity of purifying contaminated air. As a contaminated air raw material, air containing 50 ppm of toluene was used, and the reaction was carried out by a fixed bed flow system reactor. The reactor has a double tube structure of an inner tube (outer diameter = 20 mm) made of Pyrex (registered trademark) glass and an outer tube (inner diameter = 24 mm) made of quartz glass, and the surface of the inner tube is coated with a photocatalyst sample ( Court area = 15
0 cm 2 ). The contaminated air flows through the gap between the inner and outer pipes at 3 minutes per minute.
Flowed at a flow rate of 1 liter. Light irradiation was arranged so as to surround the reaction tube with four 20W black lights or four 20W white fluorescent lamps. The quantification of the product was analyzed by a gas chromatograph (FID detector) equipped with a metanizer. The cleaning test of the contaminated air was performed for 10 hours, and the concentration of toluene in the outlet gas was analyzed every hour to determine the toluene removal rate. Ten hours after the start of the reaction, the removal rate of toluene in the contaminated air was expressed in percentage (%) and is shown in Table 1. In the outlet gas, carbon dioxide was detected in addition to unreacted toluene, and no carbon monoxide or other by-products were generated.

【0014】表1より、アルミナを2〜12重量%含有
する酸化チタン光触媒は、ブラックライトはもちろん白
色蛍光ランプでもトルエンの分解除去効果が発現してお
り、本発明の光触媒材料は、紫外光のみならず可視光で
も光触媒効果を示すことが明らかである。
From Table 1, it can be seen that the titanium oxide photocatalyst containing 2 to 12% by weight of alumina has the effect of decomposing and removing toluene not only in black light but also in white fluorescent lamps. However, it is clear that the photocatalytic effect is exhibited even with visible light.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例4 硝酸ガリウム水和物(分子量=255.7)30gを2
4%硫酸チタン水溶液11.52kgに溶解させ、さら
にイオン交換水を添加して全量を10リットルとしたも
のをA液とし、一方、水酸化ナトリウム2.25kgに
イオン交換水を加えて全量を10リットルとしたものを
B液とした。ついで60℃に保持したイオン交換水4リ
ットルを容器内に張っておき、それに前記A液とB液を
強い攪拌下、定速度(毎分100ミリリットル)で添加
しながら水和物沈殿を生成させた。その後、この沈殿物
を十分に水洗いした後、110℃で12時間乾燥し、続
いて500℃で3時間焼成して8重量%の酸化ガリウム
を含有する酸化チタン粉末を調製した。なお、得られた
酸化チタン粉末の比表面積は145m/gであった。
Example 4 30 g of gallium nitrate hydrate (molecular weight = 255.7)
Dissolved in 11.52 kg of a 4% titanium sulfate aqueous solution and further added ion-exchanged water to make the total amount 10 liters, and used as solution A. On the other hand, ion-exchanged water was added to 2.25 kg of sodium hydroxide and the total amount was 10 liters. The liter was defined as a liquid B. Then, 4 liters of ion-exchanged water kept at 60 ° C. was placed in the vessel, and the above-mentioned solution A and solution B were added thereto at a constant rate (100 ml / min) under vigorous stirring to form a hydrate precipitate. Was. Thereafter, the precipitate was sufficiently washed with water, dried at 110 ° C. for 12 hours, and subsequently calcined at 500 ° C. for 3 hours to prepare a titanium oxide powder containing 8% by weight of gallium oxide. The specific surface area of the obtained titanium oxide powder was 145 m 2 / g.

【0017】実施例5 硝酸ガリウム水和物(分子量=255.7)15gを2
4%硫酸チタン水溶液12.02kgに溶解させ、さら
にイオン交換水を添加して全量を10リットルとしたも
のをA液とし、一方、水酸化ナトリウム2.23kgに
イオン交換水を加えて全量を10リットルとしたものを
B液とした。ついで60℃に保持したイオン交換水4リ
ットルを容器内に張っておき、それに前記A液とB液を
強い攪拌下、定速度(毎分100ミリリットル)で添加
しながら水和物沈殿を生成させた。その後、この沈殿物
を十分に水洗いした後、110℃で12時間乾燥し、続
いて500℃で3時間焼成して4重量%の酸化ガリウム
を含有する酸化チタン粉末を調製した。なお、得られた
酸化チタン粉末の比表面積は139m/gであった。
Example 5 15 g of gallium nitrate hydrate (molecular weight = 255.7)
Dissolved in 12.02 kg of a 4% aqueous solution of titanium sulfate and further added with ion-exchanged water to make the total amount 10 liters, and used as solution A. On the other hand, ion-exchanged water was added to 2.23 kg of sodium hydroxide to make a total amount of 10 liters. The liter was defined as a liquid B. Then, 4 liters of ion-exchanged water kept at 60 ° C. was placed in the vessel, and the above-mentioned solution A and solution B were added thereto at a constant rate (100 ml / min) under vigorous stirring to form a hydrate precipitate. Was. Thereafter, the precipitate was sufficiently washed with water, dried at 110 ° C. for 12 hours, and subsequently calcined at 500 ° C. for 3 hours to prepare a titanium oxide powder containing 4% by weight of gallium oxide. The specific surface area of the obtained titanium oxide powder was 139 m 2 / g.

【0018】実施例6 硝酸ガリウム水和物(分子量=255.7)55gを2
4%硫酸チタン水溶液10.64kgに溶解させ、さら
にイオン交換水を添加して全量を10リットルとしたも
のをA液とし、一方、水酸化ナトリウム2.27kgに
イオン交換水を加えて全量を10リットルとしたものを
B液とした。ついで60℃に保持したイオン交換水4リ
ットルを容器内に張っておき、それに前記A液とB液を
強い攪拌下、定速度(毎分100ミリリットル)で添加
しながら水和物沈殿を生成させた。その後、この沈殿物
を十分に水洗いした後、110℃で12時間乾燥し、続
いて500℃で3時間焼成して15重量%の酸化ガリウ
ムを含有する酸化チタン粉末を調製した。なお、得られ
た酸化チタン粉末の比表面積は176m/gであっ
た。
EXAMPLE 6 55 g of gallium nitrate hydrate (molecular weight = 255.7)
Dissolved in 10.64 kg of a 4% aqueous solution of titanium sulfate and further added with ion-exchanged water to make the total amount 10 liters, and used as solution A. On the other hand, ion-exchanged water was added to 2.27 kg of sodium hydroxide to make the total amount 10 The liter was defined as a liquid B. Then, 4 liters of ion-exchanged water kept at 60 ° C. was placed in the vessel, and the above-mentioned solution A and solution B were added thereto at a constant rate (100 ml / min) under vigorous stirring to form a hydrate precipitate. Was. Thereafter, the precipitate was sufficiently washed with water, dried at 110 ° C. for 12 hours, and subsequently calcined at 500 ° C. for 3 hours to prepare a titanium oxide powder containing 15% by weight of gallium oxide. The specific surface area of the obtained titanium oxide powder was 176 m 2 / g.

【0019】比較例3 硝酸ガリウム水和物(分子量=255.7)73gを2
4%硫酸チタン水溶液10.02kgに溶解させ、さら
にイオン交換水を添加して全量を10リットルとしたも
のをA液とし、一方、水酸化ナトリウム2.29kgに
イオン交換水を加えて全量を10リットルとしたものを
B液とした。ついで60℃に保持したイオン交換水4リ
ットルを容器内に張っておき、それに前記A液とB液を
強い攪拌下、定速度(毎分100ミリリットル)で添加
しながら水和物沈殿を生成させた。その後、この沈殿物
を十分に水洗いした後、110℃で12時間乾燥し、続
いて500℃で3時間焼成して20重量%の酸化ガリウ
ムを含有する酸化チタン粉末を調製した。なお、得られ
た酸化チタン粉末の比表面積は155m/gであっ
た。
Comparative Example 3 73 g of gallium nitrate hydrate (molecular weight = 255.7)
A solution was dissolved in 10.02 kg of a 4% titanium sulfate aqueous solution, and ion-exchanged water was added to make a total amount of 10 liters. Solution A, while 2.29 kg of sodium hydroxide was added with ion-exchanged water to make a total amount of 10 liters. The liter was defined as a liquid B. Then, 4 liters of ion-exchanged water kept at 60 ° C. was filled in the vessel, and the above-mentioned solution A and solution B were added thereto at a constant rate (100 ml / min) under vigorous stirring to form a hydrate precipitate. Was. Thereafter, the precipitate was sufficiently washed with water, dried at 110 ° C. for 12 hours, and subsequently calcined at 500 ° C. for 3 hours to prepare a titanium oxide powder containing 20% by weight of gallium oxide. The specific surface area of the obtained titanium oxide powder was 155 m 2 / g.

【0020】比較例4 硝酸ガリウム水和物(分子量=255.7)7gを24
%硫酸チタン水溶液12.27kgに溶解させ、さらに
イオン交換水を添加して全量を10リットルとしたもの
をA液とし、一方、水酸化ナトリウム2.22kgにイ
オン交換水を加えて全量を10リットルとしたものをB
液とした。ついで60℃に保持したイオン交換水4リッ
トルを容器内に張っておき、それに前記A液とB液を強
い攪拌下、定速度(毎分100ミリリットル)で添加し
ながら水和物沈殿を生成させた。その後、ついでこの沈
殿物を十分に水洗いした後、110℃で12時間乾燥
し、続いて500℃で3時間焼成して2重量%の酸化ガ
リウムを含有する酸化チタン粉末を調製した。なお、得
られた酸化チタン粉末の比表面積は45m/gであっ
た。
Comparative Example 4 7 g of gallium nitrate hydrate (molecular weight = 255.7) was added to 24
Dissolved in 12.27 kg of a 12% aqueous solution of titanium sulfate and further added with ion-exchanged water to make the total amount 10 liters, which was designated as solution A. On the other hand, ion-exchanged water was added to 2.22 kg of sodium hydroxide and the total amount was 10 liters. What is B
Liquid. Then, 4 liters of ion-exchanged water kept at 60 ° C. was filled in the vessel, and the above-mentioned solution A and solution B were added thereto at a constant rate (100 ml / min) under vigorous stirring to form a hydrate precipitate. Was. Thereafter, the precipitate was sufficiently washed with water, dried at 110 ° C. for 12 hours, and calcined at 500 ° C. for 3 hours to prepare a titanium oxide powder containing 2% by weight of gallium oxide. The specific surface area of the obtained titanium oxide powder was 45 m 2 / g.

【0021】実施例4〜6、および比較例3、4で得た
サンプルの光触媒活性は、前記実施例1〜3、および比
較例3、4と同様の方法で調べ、その結果を表2に示
す。なお、本実施例においても、出口ガス中には未反応
のトルエンの外に炭酸ガスが検出され、一酸化炭素その
他の副生成物は全く生成していなかった。
The photocatalytic activities of the samples obtained in Examples 4 to 6 and Comparative Examples 3 and 4 were examined in the same manner as in Examples 1 to 3 and Comparative Examples 3 and 4. The results are shown in Table 2. Show. In this example also, carbon dioxide was detected in the outlet gas in addition to unreacted toluene, and no carbon monoxide or other by-product was generated at all.

【0022】表2より、酸化ガリウムを4〜15重量%
含有する酸化チタン光触媒は、ブラックライトはもちろ
ん白色蛍光ランプでもトルエンの分解除去効果が発現し
ており、本発明の光触媒材料は、紫外光のみならず可視
光でも光触媒効果を示すことが明らかである。
According to Table 2, 4 to 15% by weight of gallium oxide was added.
The titanium oxide photocatalyst contained exhibits the effect of decomposing and removing toluene not only in black light but also in white fluorescent lamps, and it is clear that the photocatalytic material of the present invention exhibits a photocatalytic effect not only in ultraviolet light but also in visible light. .

【0023】[0023]

【表2】 [Table 2]

【0024】実施例7 24%硫酸チタン水溶液11.89kgにイオン交換水
を添加して全量を10リットルとしたものをA液とし、
一方、水酸化ナトリウム2.18kgと3号水ガラス1
77gにイオン交換水を加えて全量を10リットルとし
たものをB液とした。ついで60℃に保持したイオン交
換水4リットルを容器内に張っておき、それに前記A液
とB液を強い攪拌下、定速度(毎分100ミリリット
ル)で添加しながら水和物沈殿を生成させた。その後、
この沈殿物を十分に水洗いした後、110℃で12時間
乾燥し、続いて500℃で3時間焼成して5重量%のシ
リカを含有する酸化チタン粉末を調製した。なお、得ら
れた酸化チタン粉末の比表面積は142m/gであっ
た。
Example 7 Liquid A was prepared by adding ion-exchanged water to 11.89 kg of a 24% aqueous solution of titanium sulfate to make a total volume of 10 liters.
On the other hand, sodium hydroxide 2.18 kg and No. 3 water glass 1
Liquid B was prepared by adding ion-exchanged water to 77 g to make the total amount 10 liters. Then, 4 liters of ion-exchanged water kept at 60 ° C. was placed in the vessel, and the above-mentioned solution A and solution B were added thereto at a constant rate (100 ml / min) under vigorous stirring to form a hydrate precipitate. Was. afterwards,
The precipitate was sufficiently washed with water, dried at 110 ° C. for 12 hours, and subsequently calcined at 500 ° C. for 3 hours to prepare a titanium oxide powder containing 5% by weight of silica. The specific surface area of the obtained titanium oxide powder was 142 m 2 / g.

【0025】実施例8 24%硫酸チタン水溶液12.46kgにイオン交換水
を添加して全量を10リットルとしたものをA液とし、
一方、水酸化ナトリウム2.31kgと3号水ガラス1
8gにイオン交換水を加えて全量を10リットルとした
ものをB液とした。ついで60℃に保持したイオン交換
水4リットルを容器内に張っておき、それに前記A液と
B液を強い攪拌下、定速度(毎分100ミリリットル)
で添加しながら水和物沈殿を生成させた。その後、この
沈殿物を十分に水洗いした後、110℃で12時間乾燥
し、続いて500℃で3時間焼成して0.5重量%のシ
リカを含有する酸化チタン粉末を調製した。なお、得ら
れた酸化チタン粉末の比表面積は68m/gであっ
た。
Example 8 Liquid A was prepared by adding ion-exchanged water to 12.46 kg of a 24% aqueous solution of titanium sulfate to make a total volume of 10 liters.
On the other hand, 2.31 kg of sodium hydroxide and No. 3 water glass 1
Liquid B was prepared by adding ion-exchanged water to 8 g to make the total amount 10 liters. Then, 4 liters of ion-exchanged water kept at 60 ° C. is put in the container, and the above-mentioned solution A and solution B are stirred at a constant speed (100 ml / min) under strong stirring.
A hydrate precipitate formed during the addition. Thereafter, the precipitate was sufficiently washed with water, dried at 110 ° C. for 12 hours, and subsequently calcined at 500 ° C. for 3 hours to prepare a titanium oxide powder containing 0.5% by weight of silica. The specific surface area of the obtained titanium oxide powder was 68 m 2 / g.

【0026】実施例9 24%硫酸チタン水溶液11.27kgにイオン交換水
を添加して全量を10リットルとしたものをA液とし、
一方、水酸化ナトリウム2.04kgと3号水ガラス3
54gにイオン交換水を加えて全量を10リットルとし
たものをB液とした。ついで60℃に保持したイオン交
換水4リットルを容器内に張っておき、それに前記A液
とB液を強い攪拌下、定速度(毎分100ミリリット
ル)で添加しながら水和物沈殿を生成させた。その後、
この沈殿物を十分に水洗いした後、110℃で12時間
乾燥し、続いて500℃で3時間焼成して10重量%の
シリカを含有する酸化チタン粉末を調製した。なお、得
られた酸化チタン粉末の比表面積は247m/gであ
った。
Example 9 A solution was prepared by adding ion-exchanged water to 11.27 kg of a 24% aqueous solution of titanium sulfate to make a total volume of 10 liters.
On the other hand, 2.04 kg of sodium hydroxide and No. 3 water glass 3
Liquid B was prepared by adding ion-exchanged water to 54 g to make the total amount 10 liters. Then, 4 liters of ion-exchanged water kept at 60 ° C. was placed in the vessel, and the above-mentioned solution A and solution B were added thereto at a constant rate (100 ml / min) under vigorous stirring to form a hydrate precipitate. Was. afterwards,
The precipitate was sufficiently washed with water, dried at 110 ° C. for 12 hours, and subsequently calcined at 500 ° C. for 3 hours to prepare a titanium oxide powder containing 10% by weight of silica. The specific surface area of the obtained titanium oxide powder was 247 m 2 / g.

【0027】比較例5 24%硫酸チタン水溶液10.64kgにイオン交換水
を添加して全量を10リットルとしたものをA液とし、
一方、水酸化ナトリウム1.90kgと3号水ガラス5
31gにイオン交換水を加えて全量を10リットルとし
たものをB液とした。ついで60℃に保持したイオン交
換水4リットルを容器内に張っておき、それに前記A液
とB液を強い攪拌下、定速度(毎分100ミリリット
ル)で添加しながら水和物沈殿を生成させた。その後、
この沈殿物を十分に水洗いした後、110℃で12時間
乾燥し、続いて500℃で3時間焼成して15重量%の
シリカを含有する酸化チタン粉末を調製した。なお、得
られた酸化チタン粉末の比表面積は273m/gであ
った。
Comparative Example 5 A solution was prepared by adding ion-exchanged water to 10.64 kg of a 24% aqueous solution of titanium sulfate to make the total amount 10 liters.
On the other hand, 1.90 kg of sodium hydroxide and No. 3 water glass 5
Liquid B was prepared by adding ion-exchanged water to 31 g to make the total amount 10 liters. Then, 4 liters of ion-exchanged water kept at 60 ° C. was filled in the vessel, and the above-mentioned solution A and solution B were added thereto at a constant rate (100 ml / min) under vigorous stirring to form a hydrate precipitate. Was. afterwards,
The precipitate was sufficiently washed with water, dried at 110 ° C. for 12 hours, and subsequently calcined at 500 ° C. for 3 hours to prepare a titanium oxide powder containing 15% by weight of silica. The specific surface area of the obtained titanium oxide powder was 273 m 2 / g.

【0028】比較例6 24%硫酸チタン水溶液12.48kgにイオン交換水
を添加して全量を10リットルとしたものをA液とし、
一方、水酸化ナトリウム2.32kgと3号水ガラス1
1gにイオン交換水を加えて全量を10リットルとした
ものをB液とした。ついで60℃に保持したイオン交換
水2リットルを容器内に張っておき、それに前記A液と
B液を強い攪拌下、定速度(毎分30ミリリットル)で
添加しながら水和物沈殿を生成させた。その後、この沈
殿物を十分に水洗いした後、110℃で12時間乾燥
し、続いて500℃で3時間焼成して0.3重量%のシ
リカを含有する酸化チタン粉末を調製した。なお、得ら
れた酸化チタン粉末の比表面積は38m/gであっ
た。
Comparative Example 6 Liquid A was prepared by adding ion-exchanged water to 12.48 kg of a 24% aqueous solution of titanium sulfate to make the total amount 10 liters.
On the other hand, 2.32 kg of sodium hydroxide and No. 3 water glass 1
Liquid B was prepared by adding ion-exchanged water to 1 g to make the total amount 10 liters. Then, 2 liters of ion-exchanged water kept at 60 ° C. was placed in the vessel, and the above-mentioned solution A and solution B were added thereto at a constant rate (30 ml / min) under vigorous stirring to form a hydrate precipitate. Was. Thereafter, the precipitate was sufficiently washed with water, dried at 110 ° C. for 12 hours, and subsequently calcined at 500 ° C. for 3 hours to prepare a titanium oxide powder containing 0.3% by weight of silica. The specific surface area of the obtained titanium oxide powder was 38 m 2 / g.

【0029】実施例7〜9、及び比較例5、6で製造し
たサンプルの光触媒活性は、前記実施例1〜3、および
比較例3、4と同様の方法で調べ、その結果を表3に示
す。なお、本実施例においても、出口ガス中には未反応
のトルエン以外に炭酸ガスが検出され、一酸化炭素その
他の副生成物は全く生成していなかった。
The photocatalytic activities of the samples prepared in Examples 7 to 9 and Comparative Examples 5 and 6 were examined in the same manner as in Examples 1 to 3 and Comparative Examples 3 and 4. The results are shown in Table 3. Show. Also in this example, carbon dioxide gas was detected in the outlet gas in addition to unreacted toluene, and carbon monoxide and other by-products were not generated at all.

【0030】表3より、シリカを0.5〜10重量%含
有する酸化チタン光触媒は、ブラックライトはもちろん
白色蛍光ランプでもトルエンの分解除去効果が発現して
おり、本発明の光触媒材料は、紫外光のみならず可視光
でも光触媒効果を示すことが明らかである。
From Table 3, it can be seen that the titanium oxide photocatalyst containing 0.5 to 10% by weight of silica has the effect of decomposing and removing toluene not only in black light but also in white fluorescent lamps. It is clear that not only light but also visible light shows a photocatalytic effect.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【発明の効果】以上説明したごとく、本発明の可視光応
答性光触媒は、紫外線領域のみならず、可視光線領域に
おいても、強い光触媒活性を発揮でき、また、強い光触
媒活性を発褌できるチタン微粒子を、簡素な設備でかつ
簡単な作業で得ることができ、さらに、本発明の可視光
応答性光触媒を用いることで、可視光線を含む光を用い
ても空気中に含まれるトルエン等の有害物質の濃度を低
減することができるという優れた効果を奏する。
As described above, the visible light responsive photocatalyst of the present invention can exhibit strong photocatalytic activity not only in the ultraviolet region but also in the visible light region, and can exhibit strong photocatalytic activity. Can be obtained with simple equipment and simple work, and further, by using the visible light responsive photocatalyst of the present invention, even when using light including visible light, harmful substances such as toluene contained in the air even when using light including visible light. Has an excellent effect that the concentration of the compound can be reduced.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 35/10 301 B01J 35/10 301J Fターム(参考) 4G069 AA02 BA01A BA01B BA02A BA02B BA04A BA04B BA20A BA48A BB06A BB06B BC17A BC17B BC20B EB19 EC02X EC02Y EC03X EC03Y EC22X EC22Y EC26 FC08 Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat II (Reference) B01J 35/10 301 B01J 35/10 301J F-term (Reference) 4G069 AA02 BA01A BA01B BA02A BA02B BA04A BA04B BA20A BA48A BB06A BB06B BC17A BC17B BC20B EB19 EC02X EC02Y EC03X EC03Y EC22X EC22Y EC26 FC08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化チタン結晶粒子の中に、2〜12重
量%のアルミナ、4〜15重量%の酸化ガリウム、0.
5〜10重量%のシリカの少なくとも一つを含有し、か
つ、その比表面積が50m/g以上350m/g以
下であることを特徴とする可視光応答性光触媒。
1. A titanium oxide crystal particle comprising 2 to 12% by weight of alumina, 4 to 15% by weight of gallium oxide, 0.
5-10 containing at least one percent by weight of silica, and a visible light responsive photocatalyst, characterized in that its specific surface area is less than 50 m 2 / g or more 350m 2 / g.
【請求項2】 アルミナ、酸化ガリウム、シリカの結晶
構造がそれぞれ非晶質であることを特徴とする請求項1
記載の可視光応答性光触媒。
2. The method according to claim 1, wherein the crystal structures of alumina, gallium oxide and silica are each amorphous.
The visible light responsive photocatalyst according to the above.
【請求項3】 酸化チタン結晶粒子の構造が主としてア
ナターゼ型であり、かつその結晶子径が3〜50nmで
ある請求項1または2記載の可視光応答性光触媒。
3. The visible light responsive photocatalyst according to claim 1, wherein the structure of the titanium oxide crystal particles is mainly anatase type and the crystallite diameter is 3 to 50 nm.
JP2001153005A 2001-05-22 2001-05-22 Visible light-responsive photocatalyst Pending JP2002346382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001153005A JP2002346382A (en) 2001-05-22 2001-05-22 Visible light-responsive photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001153005A JP2002346382A (en) 2001-05-22 2001-05-22 Visible light-responsive photocatalyst

Publications (1)

Publication Number Publication Date
JP2002346382A true JP2002346382A (en) 2002-12-03

Family

ID=18997593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001153005A Pending JP2002346382A (en) 2001-05-22 2001-05-22 Visible light-responsive photocatalyst

Country Status (1)

Country Link
JP (1) JP2002346382A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153808B2 (en) 2004-07-07 2006-12-26 Kyoto University Ultraviolet and visible-light-sensitive titania-based photocatalyst
CN114108119A (en) * 2020-08-25 2022-03-01 立肯诺(上海)新材料科技有限公司 Antiviral pearl fiber and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153808B2 (en) 2004-07-07 2006-12-26 Kyoto University Ultraviolet and visible-light-sensitive titania-based photocatalyst
CN114108119A (en) * 2020-08-25 2022-03-01 立肯诺(上海)新材料科技有限公司 Antiviral pearl fiber and preparation method thereof
CN114108119B (en) * 2020-08-25 2024-05-31 立肯诺(上海)新材料科技有限公司 Antiviral pearl fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4695700B2 (en) Photocatalyst and method for producing the same
CN102471088B (en) Photocatalytic materials and process for producing the same
CN107456983B (en) Ag/AgCl/TiO2Composite photocatalytic material and preparation method and application thereof
JP3949374B2 (en) Titanium oxide, photocatalyst and photocatalyst coating using the same
JP2001072419A (en) Titanium oxide, photo-catalyst produced by using the oxide and photo-catalytic coating agent
JP4883912B2 (en) Visible light responsive photocatalyst and method for producing the same
KR20020041604A (en) Novel titania photocatalyst and its manufacturing method
JP4053911B2 (en) Photocatalyst and method for producing photocatalyst
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
KR20010107542A (en) Titanium hydroxide, photocatalyst produced from the same and photocatalytic coating agent
JP3976851B2 (en) Method for producing titanium dioxide fine particles, method for producing photocatalyst powder for NOX purification, method for producing paint, method for producing building material
CA2668324A1 (en) Zirconium oxalate sol
JP2011079713A (en) Copper ion-modified titanium oxide, method for producing the same, and photocatalyst
US20030162658A1 (en) Titanium oxide, and photocatalyst and photocatalyst coating composition using the same
JP5313051B2 (en) Zirconium oxalate sol
JP2002346382A (en) Visible light-responsive photocatalyst
JP2001190953A (en) Titanium oxide, photocatalyst body formed by using it, and photocatalyst body coating agent
JP2003055841A (en) Titanium oxide fiber and photocatalyst body using the same
JP4103324B2 (en) Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same
JP4316064B2 (en) Method for producing titanium oxide photocatalyst fine particles
JP2004344863A (en) Photocatalyst support porous gel and manufacturing method therefor
JP2008062237A (en) Photocatalytic body, method for producing the same and photocatalytic body coating agent produced by using the same
JP3952238B2 (en) Removal method of harmful substances by photocatalyst
JP4019679B2 (en) Method for producing photocatalyst body
JP4347925B2 (en) Photocatalyst and method for producing the same