JP2002345948A - Bone substitute material - Google Patents

Bone substitute material

Info

Publication number
JP2002345948A
JP2002345948A JP2001154060A JP2001154060A JP2002345948A JP 2002345948 A JP2002345948 A JP 2002345948A JP 2001154060 A JP2001154060 A JP 2001154060A JP 2001154060 A JP2001154060 A JP 2001154060A JP 2002345948 A JP2002345948 A JP 2002345948A
Authority
JP
Japan
Prior art keywords
bone
titanium
coating
alkali metal
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001154060A
Other languages
Japanese (ja)
Other versions
JP4804648B2 (en
Inventor
Jun Suzuki
順 鈴木
Yoshio Sasaki
佳男 佐々木
Tomiharu Matsushita
富春 松下
Tadashi Kokubo
正 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ION KOGAKU SHINKO ZAIDAN
Kobe Steel Ltd
Japan Science and Technology Agency
Original Assignee
ION KOGAKU SHINKO ZAIDAN
Kobe Steel Ltd
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ION KOGAKU SHINKO ZAIDAN, Kobe Steel Ltd, Japan Science and Technology Corp filed Critical ION KOGAKU SHINKO ZAIDAN
Priority to JP2001154060A priority Critical patent/JP4804648B2/en
Publication of JP2002345948A publication Critical patent/JP2002345948A/en
Application granted granted Critical
Publication of JP4804648B2 publication Critical patent/JP4804648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a bone substitute material consisting of Ti or a Ti alloy as a main component, obtained by a conventional simple method, that is, an alkaline treatment and heat treatment method (heat treating the main component after treating with an aqueous alkaline solution), less deteriorating required properties as a bone than those of the bone substitute material obtained by the conventional method in storage and having excellent long-term stability. SOLUTION: This bone substitute material consists of Ti or the Ti alloy is formed with a coating containing titanium and oxygen and further alkaline metal on the surface by the aqueous alkaline treatment, a cleaning treatment, and then the heat treatment. The concentration of the alkaline metal on at least the front surface of the film is 0 to 5.5 atm.% (inclusive of 0 atm.%).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、骨代替材料に関す
る技術分野に属し、より詳細には、骨親和性の被膜が表
面に形成されたチタン又はチタン合金よりなる骨代替材
料に関する技術分野に属し、特には、骨親和性を長期間
安定に維持するための技術に関する技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of a bone substitute material, and more particularly, to a technical field of a bone substitute material composed of titanium or a titanium alloy having an osteophilic coating formed on a surface thereof. In particular, the present invention belongs to a technical field related to a technique for maintaining bone affinity stably for a long period of time.

【0002】[0002]

【従来の技術】チタン及びチタン合金は機械的特性に優
れ、体液に対する耐食性を有し、また生体に対する毒性
が極めて低いことから、骨代替材料用金属としてチタン
及びチタン合金が用いられるようになっている。ところ
が、チタン及びチタン合金には生体骨との親和性(骨親
和性)が低いという問題点がある。即ち、骨代替材料に
は生体骨と直接結合する骨親和性が要求されるが、チタ
ン及びチタン合金は生体骨との親和性が低く、生体骨と
の結合に長時間を要するという問題点がある。
2. Description of the Related Art Since titanium and titanium alloys have excellent mechanical properties, corrosion resistance to body fluids, and extremely low toxicity to living bodies, titanium and titanium alloys have been used as metals for bone substitute materials. I have. However, titanium and titanium alloys have a problem in that they have low affinity for living bone (bone affinity). In other words, bone substitute materials are required to have bone affinity for directly bonding with living bone, but titanium and titanium alloys have low affinity for living bone and require a long time to bond with living bone. is there.

【0003】チタン及びチタン合金が生体骨との親和性
を示す条件は、体液中で表面に骨の主成分であるヒドロ
キシアパタイト(以降、HAPという)層を形成するこ
とである。生体骨との親和性に対してHAPの果たす役
割は本質的である。即ち、HAPは骨親和性に優れ、生
体骨と直接結合するという性質を有している。
[0003] The condition for titanium and titanium alloy to exhibit affinity for living bone is to form a hydroxyapatite (hereinafter referred to as HAP) layer, which is a main component of bone, on the surface in a body fluid. The role played by HAP on the affinity for living bone is essential. That is, HAP has excellent bone affinity and has the property of directly binding to living bone.

【0004】かかるHAPの特性を利用した技術とし
て、HAPを含む骨親和性を有する材料でチタン又はチ
タン合金をコーティングし、それにより生体骨との親和
性を付与する技術(以降、骨親和性材料コーティング法
という)が提案されている。
As a technique utilizing the properties of HAP, a technique of coating titanium or a titanium alloy with a bone-compatible material including HAP, thereby imparting affinity to living bone (hereinafter referred to as a bone-compatible material) Coating method) has been proposed.

【0005】しかし、かかる骨親和性材料コーティング
法では、コーティング層と下地金属との接合強度を高く
することが難しい。また、信頼性の高いコーティング層
を形成するためには処理プロセスが複雑になり、高価な
装置が必要となるため、製造コストが高くなるという問
題点がある。
[0005] However, it is difficult to increase the bonding strength between the coating layer and the underlying metal by such an osteophilic material coating method. Further, there is a problem in that a processing process becomes complicated and an expensive apparatus is required to form a highly reliable coating layer, so that the manufacturing cost is increased.

【0006】かかる問題を解決することを目的として検
討がなされ、その結果、チタン又はチタン合金よりなる
基体の表面をアルカリ水溶液にて処理した後、加熱処理
をするという簡便な方法(以降、アルカリ処理・加熱処
理法という)により、骨親和性を付与できることが見出
され、文献「Kim ら,J. Biomed. Mater. Res., vol.3
2, P409〜417 (1996 年)」や、特許第2775523 号公報
に記載されている。
Studies have been made for the purpose of solving such a problem. As a result, a simple method of treating the surface of a substrate made of titanium or a titanium alloy with an aqueous alkali solution and then performing a heat treatment (hereinafter referred to as an alkali treatment).・ The heat treatment method) was found to be able to impart bone affinity, and it was found in the literature “Kim et al., J. Biomed. Mater. Res., Vol. 3
2, P409-417 (1996) "and Japanese Patent No. 2775523.

【0007】[0007]

【発明が解決しようとする課題】前記文献や特許第2775
523 号公報に記載されている方法(アルカリ処理・加熱
処理法)は、確かに、前記骨親和性材料コーティング法
に比べて、簡便に骨親和性を付与し得る。しかしなが
ら、本発明者らは、このアルカリ処理・加熱処理法を人
工関節等の骨代替材料に適応すべく開発研究を進めてい
たところ、このアルカリ処理・加熱処理法により得られ
る骨代替材料は、高温・高湿状況下で保管すると、その
骨親和性が比較的短時間で著しく劣化することを見出し
た。このように骨代替材料の保管の雰囲気や期間によっ
て骨親和性が劣化することは、重大な問題であり、骨親
和性を付加価値とする製品としては致命的である。
The above-mentioned reference and Patent No. 2775
The method described in Japanese Patent No. 523 (alkaline treatment / heat treatment method) can certainly impart bone affinity more easily than the above-mentioned bone affinity material coating method. However, the present inventors have been conducting research and development to adapt this alkali treatment / heat treatment method to bone substitute materials such as artificial joints.Bone substitute materials obtained by this alkali treatment / heat treatment method are: When stored under high temperature and high humidity conditions, the bone affinity was found to be significantly deteriorated in a relatively short time. Degradation of the bone affinity depending on the atmosphere and period of storage of the bone substitute material as described above is a serious problem, and is fatal as a product having the added value of the bone affinity.

【0008】本発明はこの様な事情に着目してなされた
ものであって、その目的は、前記アルカリ処理・加熱処
理法の場合と同程度に簡便に、前記アルカリ処理・加熱
処理法の場合よりも長期安定性に優れた骨親和性をチタ
ン又はチタン合金よりなる基体に付与し得るようにしよ
うとするものである。即ち、チタン又はチタン合金を構
成材料の基体とする骨代替材料であって、前記アルカリ
処理・加熱処理法の場合と同程度に簡便な方法により得
ることができ、しかも保管に際して前記アルカリ処理・
加熱処理法で得られる骨代替材料よりも骨親和性の劣化
が生じ難く、骨親和性の長期安定性に優れた骨代替材料
を提供しようとするものである。
The present invention has been made in view of such circumstances, and its object is to make it as simple and easy as in the case of the alkali treatment / heat treatment method. An object of the present invention is to provide a substrate made of titanium or a titanium alloy with a bone affinity superior to long-term stability. That is, it is a bone substitute material using titanium or a titanium alloy as a base material, and can be obtained by a method as simple as the alkali treatment / heat treatment method.
An object of the present invention is to provide a bone substitute material that is less likely to deteriorate in bone affinity than a bone substitute material obtained by a heat treatment method and has excellent long-term stability of bone affinity.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る骨代替材料は、請求項1〜2記載の
骨代替材料としており、それは次のような構成としたも
のである。
Means for Solving the Problems To achieve the above object, a bone substitute material according to the present invention is a bone substitute material according to claims 1 and 2, which has the following structure. is there.

【0010】即ち、本発明に係る骨代替材料は、アルカ
リ金属イオン(Na+ やK+ など)を含有するアルカリ水
溶液に接触させるアルカリ処理、次に洗浄処理、その後
に加熱処理がされることによって、チタンと酸素あるい
は更にアルカリ金属を含有する骨親和性の被膜が表面に
形成されたチタン又はチタン合金よりなる骨代替材料で
あって、前記被膜の少なくとも表面でのアルカリ金属の
濃度が0〜5.5原子%(0原子%を含む)であること
を特徴とする骨代替材料である(第1発明)。
[0010] That is, the bone substitute material according to the present invention is subjected to an alkali treatment in which it is brought into contact with an alkali aqueous solution containing an alkali metal ion (such as Na + or K + ), followed by a washing treatment, followed by a heat treatment. A bone substitute material comprising a titanium or titanium alloy having a bone-affinitive coating containing titanium and oxygen or an alkali metal formed on the surface thereof, wherein at least the surface of the coating has an alkali metal concentration of 0 to 5; It is a bone substitute material characterized by being 0.5 atomic% (including 0 atomic%) (first invention).

【0011】また、上記骨代替材料での洗浄処理時の温
度が30℃以下であることとした骨代替材料である(第
2発明)。
[0011] Further, the present invention is a bone substitute material in which the temperature at the time of the washing treatment with the bone substitute material is 30 ° C or less (second invention).

【0012】[0012]

【発明の実施の形態】本発明は、例えば次のような形態
で実施される。所要形状寸法のチタン又はチタン合金よ
りなる基体を洗浄し乾燥した後、アルカリ金属イオン
(Na+ やK+ など)を含有するアルカリ水溶液に接触さ
せるアルカリ処理をする。例えば、60℃に保持された
5M(モル濃度)の水酸化ナトリウム水溶液に24時間
浸漬する。そうすると、基体の表面にチタンと酸素とア
ルカリ金属からなる層(被膜)、即ち、非晶質のアルカ
リチタン酸塩層が形成される。例えば、チタンと酸素と
ナトリウムからなる層、即ち、非晶質チタン酸ナトリウ
ム層が形成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is embodied, for example, in the following modes. After washing and drying a substrate made of titanium or a titanium alloy having a required shape and size, an alkali treatment is performed by bringing the substrate into contact with an aqueous alkali solution containing an alkali metal ion (such as Na + or K + ). For example, it is immersed in a 5 M (molar concentration) aqueous sodium hydroxide solution maintained at 60 ° C. for 24 hours. Then, a layer (coating) composed of titanium, oxygen, and an alkali metal, that is, an amorphous alkali titanate layer is formed on the surface of the base. For example, a layer composed of titanium, oxygen and sodium, that is, an amorphous sodium titanate layer is formed.

【0013】次に、上記アルカリ処理後のものを洗浄処
理する。この洗浄処理は純水中での超音波洗浄や流水洗
浄等により行う。このとき、水の温度や量を調整するこ
とによって基体表面の被膜の少なくとも表面でのアルカ
リ金属の濃度が0〜5.5原子%となるように調整す
る。例えば、試料の基材が幅10mm、長さ10mm、
厚み1mmの純チタン板よりなる場合、水酸化ナトリウ
ム水溶液に浸漬後の試料を超音波洗浄により予備洗浄
し、続いて25mlの新たな純水に浸漬し25℃で5時
間保温して加温洗浄する。
Next, the substrate after the alkali treatment is washed. This cleaning process is performed by ultrasonic cleaning or running water cleaning in pure water. At this time, by adjusting the temperature and the amount of water, the concentration of the alkali metal on at least the surface of the coating on the substrate surface is adjusted to be 0 to 5.5 atomic%. For example, the base material of the sample is 10 mm in width, 10 mm in length,
In the case of a pure titanium plate having a thickness of 1 mm, the sample after immersion in an aqueous solution of sodium hydroxide is preliminarily cleaned by ultrasonic cleaning, and then immersed in 25 ml of new pure water and kept warm at 25 ° C. for 5 hours for warm cleaning. I do.

【0014】次に、上記洗浄処理後のものを室温にて乾
燥させた後、加熱処理をする。例えば、600〜650
℃で1時間加熱する。そうすると、チタンと酸素とを含
有すると共に被膜の少なくとも表面でのアルカリ金属濃
度が0〜5.5原子%(0原子%を含む)である骨親和
性の被膜が基体(チタンまたはチタン合金)の表面に形
成されてなる骨代替材料が得られる。即ち、本発明に係
る骨代替材料が得られる。ここで、被膜の表面あるいは
更に内部でのアルカリ金属の濃度が0原子%の場合、そ
の部分(被膜の表面あるいは更に内部)は酸化チタンか
らなる。被膜の表面あるいは更に内部でのアルカリ金属
濃度が0原子%超5.5原子%の場合、その部分は主に
酸化チタンからなるが、それ以外に若干の非晶質のアル
カリチタン酸塩も有していると考えられる。
Next, after the above-mentioned cleaning treatment is dried at room temperature, a heating treatment is performed. For example, 600-650
Heat at 0 ° C. for 1 hour. Then, an osteophilic coating containing titanium and oxygen and having an alkali metal concentration of at least 0 to 5.5 at.% (Including 0 at.%) On at least the surface of the coating forms a substrate (titanium or titanium alloy). A bone substitute material formed on the surface is obtained. That is, the bone substitute material according to the present invention is obtained. Here, when the concentration of the alkali metal on the surface of the coating or further inside is 0 atomic%, the portion (the surface or further inside of the coating) is made of titanium oxide. When the alkali metal concentration on the surface or further inside of the coating is more than 0 atomic% and 5.5 atomic%, the part mainly consists of titanium oxide, but there is also some amorphous alkali titanate. it seems to do.

【0015】このような形態で本発明に係る骨代替材料
が得られる。
In such a form, the bone substitute material according to the present invention is obtained.

【0016】以下、本発明について主にその作用効果を
説明する。
Hereinafter, the function and effect of the present invention will be mainly described.

【0017】チタン又はチタン合金よりなる基体に、ア
ルカリ金属イオン(Na+ やK+ 等)を含有するアルカリ
水溶液に接触させるアルカリ処理をし、次に洗浄処理を
した後、加熱処理をすると、基体の表面にチタンと酸素
とアルカリ金属(例えばナトリウム)とを含有する被膜
(層)が形成される。X線回折による分析の結果、この
被膜は非晶質のアルカリチタン酸塩(例えば非晶質チタ
ン酸ナトリウム)と酸化チタンとからなることがわか
る。原理的には未解明な部分が多いものの、この非晶質
アルカリチタン酸塩及び酸化チタンはそれぞれ骨親和性
を有することがわかっている。尚、上記処理の条件、特
に洗浄処理の条件によっては被膜の表面あるいは更に内
部がアルカリ金属を含有しないこともあり、この場合に
は、その部分(被膜の表面あるいは更に内部)は酸化チ
タンからなる。
When a substrate made of titanium or a titanium alloy is subjected to an alkali treatment in which it is brought into contact with an aqueous alkali solution containing an alkali metal ion (such as Na + or K + ), and then subjected to a washing treatment and then to a heating treatment, A film (layer) containing titanium, oxygen, and an alkali metal (eg, sodium) is formed on the surface of the substrate. X-ray diffraction analysis shows that the coating consists of amorphous alkali titanate (eg, amorphous sodium titanate) and titanium oxide. Although many parts remain unclear in principle, it has been found that this amorphous alkali titanate and titanium oxide each have bone affinity. The surface or further inside of the coating may not contain an alkali metal depending on the conditions of the above treatment, especially the conditions of the washing treatment. In this case, the portion (the surface or further inside of the coating) is made of titanium oxide. .

【0018】上記の如くアルカリ処理、洗浄処理、加熱
処理をして被膜が表面に形成されたチタン又はチタン合
金(以下、被膜形成材という)の表面を走査型電子顕微
鏡/エネルギー分散型分析装置(以降、SEM/EDX
という)により調べると、各元素の濃度(原子%)を測
定することができる。また、上記洗浄処理の条件を変化
させると、得られる被膜形成材の表面のアルカリ金属の
濃度を変化させることができる。
As described above, the surface of titanium or a titanium alloy (hereinafter, referred to as a film forming material) having a film formed on the surface by the alkali treatment, the cleaning treatment, and the heat treatment is scanned with a scanning electron microscope / energy dispersive analyzer ( Hereafter, SEM / EDX
), The concentration (atomic%) of each element can be measured. Further, by changing the conditions of the above-mentioned cleaning treatment, the concentration of the alkali metal on the surface of the obtained film forming material can be changed.

【0019】そこで、上記洗浄処理の条件を種々変化さ
せて得られた被膜形成材について、SEM/EDXを用
いて表面のアルカリ金属濃度を測定し、また、高温・高
湿下保管後の骨親和性を調べた。この結果、被膜形成材
の表面のアルカリ金属濃度と骨親和性の安定性との間に
相関関係があることを見出すことができた。そして、被
膜の少なくとも表面でのアルカリ金属濃度が0〜5.5
原子%(0原子%を含む)である場合に骨親和性の劣化
が生じ難く、骨親和性の長期安定性に優れていることが
わかった。この詳細を以下説明する。
Therefore, for the film-forming material obtained by changing the conditions of the above-mentioned washing treatment, the alkali metal concentration on the surface was measured using SEM / EDX, and the bone affinity after storage under high temperature and high humidity was measured. The sex was examined. As a result, it was found that there was a correlation between the alkali metal concentration on the surface of the film-forming material and the stability of bone affinity. And the alkali metal concentration on at least the surface of the film is 0 to 5.5.
It was found that when the content was at atomic% (including 0 at%), deterioration of the bone affinity was unlikely to occur, and the long-term stability of the bone affinity was excellent. The details will be described below.

【0020】SEM/EDXによる分析の結果、被膜形
成材の表面のアルカリ金属の濃度が5.5原子%を超え
る場合、被膜は非晶質アルカリチタン酸塩(例えば非晶
質チタン酸ナトリウム)と酸化チタンとからなる。例え
ば、アルカリ金属がナトリウムであって被膜形成材の表
面のナトリウム濃度が7.5原子%の場合、X線回折に
よる分析の結果は図1に示すとおりであり、この図1か
らわかる如く被膜は非晶質チタン酸ナトリウムと酸化チ
タンとからなる。この非晶質アルカリチタン酸塩(例え
ば非晶質チタン酸ナトリウム)と酸化チタンの中、非晶
質アルカリチタン酸塩は不安定な物質であるため、高湿
下で長期間保管している間に空気中の水分、酸素、二酸
化炭素等と反応して骨親和性を示さない他の物質へと変
化する可能性がある。このため、保管する時間とともに
本来有している骨親和性を失ってしまうと考えられる。
As a result of analysis by SEM / EDX, when the concentration of alkali metal on the surface of the film-forming material exceeds 5.5 atomic%, the film becomes amorphous alkali titanate (eg, amorphous sodium titanate). It consists of titanium oxide. For example, when the alkali metal is sodium and the sodium concentration on the surface of the film forming material is 7.5 atomic%, the result of analysis by X-ray diffraction is as shown in FIG. 1, and as can be seen from FIG. It consists of amorphous sodium titanate and titanium oxide. Among the amorphous alkali titanate (eg, amorphous sodium titanate) and titanium oxide, the amorphous alkali titanate is an unstable substance, and therefore, is stored for a long time under high humidity. In addition, it may react with moisture, oxygen, carbon dioxide and the like in the air to change to other substances that do not exhibit bone affinity. Therefore, it is considered that the bone affinity originally possessed is lost with the storage time.

【0021】一方、被膜形成材の表面のアルカリ金属濃
度が0〜5.5原子%(0原子%を含む)の場合、被膜
形成材の表面には酸化チタンが多く存在し、被膜の少な
くとも表面は主に酸化チタンからなる。例えば、アルカ
リ金属がナトリウムであって被膜形成材の表面のナトリ
ウム濃度が0.8原子%の場合、X線回折による分析の
結果は図2に示すとおりであり、この図2からわかる如
く被膜は酸化チタンからなる。この酸化チタンは極めて
安定な物質であり、空気中の水分、酸素、二酸化炭素等
と反応しないため、高温・高湿下で保管した場合におい
ても物質変化は起こらない。このため、酸化チタンの骨
親和性は長期間維持される。従って、被膜形成材の表面
のアルカリ金属濃度が0〜5.5原子%の場合、保管に
際して骨親和性の劣化が極めて生じ難く、骨親和性の長
期安定性に著しく優れていることがわかった。
On the other hand, when the alkali metal concentration on the surface of the film forming material is 0 to 5.5 at% (including 0 at%), a large amount of titanium oxide is present on the surface of the film forming material, and at least the surface of the film is formed. Consists mainly of titanium oxide. For example, when the alkali metal is sodium and the concentration of sodium on the surface of the film forming material is 0.8 atomic%, the result of analysis by X-ray diffraction is as shown in FIG. 2, and as can be seen from FIG. It consists of titanium oxide. This titanium oxide is an extremely stable substance and does not react with moisture, oxygen, carbon dioxide, etc. in the air, so that no change occurs in the substance even when stored under high temperature and high humidity. Therefore, the bone affinity of titanium oxide is maintained for a long time. Therefore, it was found that when the alkali metal concentration on the surface of the film-forming material was 0 to 5.5 atomic%, deterioration of the bone affinity during storage was extremely unlikely to occur, and the long-term stability of the bone affinity was extremely excellent. .

【0022】前記アルカリ処理・加熱処理法で得られる
骨代替材料は、表面のアルカリ金属濃度が5.5原子%
を超える場合の被膜形成材に属するものである。従っ
て、被膜形成材の表面のアルカリ金属濃度が0〜5.5
原子%である場合、保管に際して前記アルカリ処理・加
熱処理法で得られる骨代替材料よりも骨親和性の劣化が
極めて生じ難く、骨親和性の長期安定性に著しく優れて
いることがわかった。
The bone substitute material obtained by the above-mentioned alkali treatment / heat treatment method has an alkali metal concentration of 5.5 atomic% on the surface.
It belongs to the film forming material in the case of exceeding. Therefore, the alkali metal concentration on the surface of the film forming material is 0 to 5.5.
In the case of atomic%, it was found that deterioration of bone affinity was extremely unlikely to occur during storage compared with the bone substitute material obtained by the alkali treatment / heat treatment method, and the long term stability of bone affinity was remarkably excellent.

【0023】このとき、被膜の厚み方向全体においてア
ルカリ金属濃度が0〜5.5原子%であってもよいが、
その必要性は必ずしもなく、被膜の表面でのアルカリ金
属濃度が0〜5.5原子%である場合でもよく、この場
合においても、被膜の少なくとも表面は主に酸化チタン
からなり、骨親和性の劣化が極めて生じ難く、骨親和性
の長期安定性に著しく優れている。従って、被膜の少な
くとも表面でのアルカリ金属濃度が0〜5.5原子%
(0原子%を含む)であればよく、この場合、被膜の少
なくとも表面は主に酸化チタンからなり、骨親和性の劣
化が極めて生じ難く、骨親和性の長期安定性に著しく優
れていることがわかった。尚、被膜の少なくとも表面で
のアルカリ金属濃度が0原子%の場合、その部分(被膜
の少なくとも表面)は酸化チタンからなる。被膜の少な
くとも表面でのアルカリ金属の濃度が0原子%超5.5
原子%以下の場合、その部分は主に酸化チタンからなる
が、それ以外に若干の非晶質アルカリチタン酸塩(例え
ば、非晶質チタン酸ナトリウム)も有していると考えら
れる。
At this time, the alkali metal concentration in the whole thickness direction of the coating may be 0 to 5.5 atomic%,
There is no necessity, and the alkali metal concentration on the surface of the coating may be 0 to 5.5 atomic%. Even in this case, at least the surface of the coating is mainly composed of titanium oxide, Deterioration is extremely unlikely to occur, and the long-term stability of bone affinity is remarkably excellent. Therefore, the concentration of alkali metal on at least the surface of the coating is 0 to 5.5 atomic%.
(Including 0 atomic%). In this case, at least the surface of the coating film is mainly composed of titanium oxide, the bone affinity is extremely unlikely to deteriorate, and the long-term stability of the bone affinity is extremely excellent. I understood. When the alkali metal concentration on at least the surface of the coating is 0 atomic%, the portion (at least the surface of the coating) is made of titanium oxide. The concentration of alkali metal on at least the surface of the coating is greater than 0 at.
When the content is at most atomic%, the portion is mainly composed of titanium oxide, but it is considered that the portion also contains some amorphous alkali titanate (for example, amorphous sodium titanate).

【0024】本発明は以上の如き知見に基づきなされた
ものであり、本発明に係る骨代替材料は、アルカリ金属
イオン(Na+ やK+ など)を含有するアルカリ水溶液に
接触させるアルカリ処理、次に洗浄処理、その後に加熱
処理がされることによって、チタンと酸素あるいは更に
アルカリ金属を含有する骨親和性の被膜が表面に形成さ
れたチタン又はチタン合金よりなる骨代替材料であっ
て、前記被膜の少なくとも表面でのアルカリ金属の濃度
が0〜5.5原子%(0原子%を含む)であることを特
徴とする骨代替材料であることとしている。かかる骨代
替材料は、前記知見からわかる如く、被膜の少なくとも
表面は主に酸化チタンからなり、保管に際して前記アル
カリ処理・加熱処理法で得られる骨代替材料よりも骨親
和性の劣化が極めて生じ難く、骨親和性の長期安定性に
著しく優れている。
The present invention has been made based on the above findings. The bone substitute material according to the present invention comprises an alkali treatment in which the bone substitute material is brought into contact with an aqueous alkali solution containing alkali metal ions (such as Na + and K + ). A bone substitute material consisting of titanium or a titanium alloy having a bone-affinitive coating containing titanium and oxygen or an alkali metal formed thereon by being subjected to a washing treatment and a heat treatment thereafter, wherein the coating Is a bone substitute material characterized in that the concentration of alkali metal on at least the surface is 0 to 5.5 atomic% (including 0 atomic%). As can be seen from the above findings, at least the surface of the coating is mainly composed of titanium oxide, and the bone replacement material is extremely unlikely to deteriorate in bone affinity during storage, as compared with the bone replacement material obtained by the alkali treatment / heat treatment method. Excellent in long-term stability of bone affinity.

【0025】ここで、チタンと酸素あるいは更にアルカ
リ金属を含有する被膜とは、チタンと酸素を含有する被
膜(但しアルカリ金属を含有しない)、又は、チタンと
酸素とアルカリ金属を含有する被膜のことである。チタ
ンと酸素を含有する被膜は、主に酸化チタンからなる被
膜であるといえる。チタンと酸素とアルカリ金属を含有
する被膜は、主に酸化チタンと非晶質アルカリチタン酸
塩からなる被膜であるといえる。
Here, the coating containing titanium and oxygen or an alkali metal is a coating containing titanium and oxygen (but not containing an alkali metal) or a coating containing titanium, oxygen and an alkali metal. It is. It can be said that the film containing titanium and oxygen is a film mainly composed of titanium oxide. It can be said that the film containing titanium, oxygen and alkali metal is a film mainly composed of titanium oxide and amorphous alkali titanate.

【0026】チタンと酸素を含有する被膜では、被膜中
のアルカリ金属濃度は厚み方向全体において0原子%で
あり、被膜表面でも0原子%である。チタンと酸素とア
ルカリ金属を含有する被膜では、チタン及び酸素の他に
アルカリ金属を含有するが、被膜の少なくとも表面での
アルカリ金属の濃度は0〜5.5原子%であり、0原子
%の場合もある。
In the film containing titanium and oxygen, the concentration of alkali metal in the film is 0 atomic% in the entire thickness direction and is 0 atomic% even on the surface of the film. In a film containing titanium, oxygen and an alkali metal, the film contains an alkali metal in addition to titanium and oxygen. The concentration of the alkali metal on at least the surface of the film is 0 to 5.5 atomic%, and 0 atomic%. In some cases.

【0027】被膜の少なくとも表面でのアルカリ金属の
濃度が0〜5.5原子%であることとは、被膜の表面あ
るいは更に内部(一部あるいは全部)でのアルカリ金属
濃度が0〜5.5原子%であることである。従って、被
膜の表面でのアルカリ金属濃度は必ず0〜5.5原子%
であるが、その被膜の内部でのアルカリ金属濃度が同時
に0〜5.5原子%であることを要するものではない。
即ち、被膜の表面のアルカリ金属濃度が0〜5.5原子
%であると共に被膜の内部でのアルカリ金属濃度が0〜
5.5原子%である場合も、被膜の表面でのアルカリ金
属の濃度が0〜5.5原子%であると共に被膜の内部で
のアルカリ金属の濃度が5.5原子%超である場合もあ
る。尚、アルカリ金属濃度が0〜5.5原子%であるこ
とには、アルカリ金属濃度が0原子%であることも含ま
れる。
The fact that the concentration of the alkali metal on at least the surface of the coating is 0 to 5.5 atomic% means that the concentration of the alkali metal on the surface or further inside (partly or entirely) of the coating is 0 to 5.5. Atomic percent. Therefore, the alkali metal concentration on the surface of the coating must be 0 to 5.5 atomic%.
However, it is not necessary that the alkali metal concentration inside the coating be 0 to 5.5 atomic% at the same time.
That is, the alkali metal concentration on the surface of the coating is 0 to 5.5 atomic% and the alkali metal concentration inside the coating is 0 to 5.5 atomic%.
In some cases, the concentration of the alkali metal on the surface of the coating is 0 to 5.5 atomic%, and the concentration of the alkali metal in the coating is more than 5.5 atomic%. is there. The fact that the alkali metal concentration is 0 to 5.5 atomic% includes that the alkali metal concentration is 0 atomic%.

【0028】本発明に係る骨代替材料は、チタン又はチ
タン合金をアルカリ金属イオンを含有するアルカリ水溶
液に接触させるアルカリ処理をし、次に洗浄処理をし、
その後に加熱処理をすることによって得られる。従っ
て、前記アルカリ処理・加熱処理法の場合と同程度に簡
便な方法により得ることができる。
The bone substitute material according to the present invention is subjected to an alkali treatment in which titanium or a titanium alloy is brought into contact with an alkali aqueous solution containing an alkali metal ion, followed by a washing treatment,
Thereafter, it is obtained by performing a heat treatment. Therefore, it can be obtained by a method as simple as the alkali treatment / heat treatment method.

【0029】以上よりわかるように、本発明に係る骨代
替材料は、チタン又はチタン合金を構成材料の基体とす
る骨代替材料であって、前記アルカリ処理・加熱処理法
の場合と同程度に簡便な方法により得ることができ、し
かも保管に際して前記アルカリ処理・加熱処理法で得ら
れる骨代替材料よりも骨親和性の劣化が極めて生じ難
く、骨親和性の長期安定性に著しく優れている。
As can be seen from the above description, the bone substitute material according to the present invention is a bone substitute material using titanium or a titanium alloy as a base material, and is as simple as the above-mentioned alkali treatment and heat treatment method. In addition, during storage, deterioration of bone affinity is extremely unlikely to occur compared to the bone substitute material obtained by the alkali treatment / heat treatment method, and the bone affinity is extremely excellent in long-term stability.

【0030】本発明に係る骨代替材料において、被膜の
少なくとも表面でのアルカリ金属の濃度が0〜5.5原
子%(0原子%を含む)であることとしているのは、被
膜表面でのアルカリ金属の濃度が5.5原子%超である
と、骨親和性の長期安定性が低下して不充分となるから
である。
In the bone substitute material according to the present invention, the concentration of the alkali metal on at least the surface of the coating is set to be 0 to 5.5 atomic% (including 0 atomic%), If the concentration of the metal is more than 5.5 atomic%, the long-term stability of the bone affinity is reduced and becomes insufficient.

【0031】被膜の少なくとも表面でのアルカリ金属の
濃度は0〜5.5原子%(0原子%を含む)の範囲にお
いて低い方が好ましい。アルカリ金属の濃度が低いほ
ど、酸化チタンと非晶質アルカリチタン酸塩の量的関係
は、酸化チタン≫非晶質アルカリチタン酸塩となり(酸
化チタン量が非晶質アルカリチタン酸塩量より極めて多
くなり)、このため、骨親和性の長期安定性がより向上
し、確実に高水準の長期安定性を確保し得るようになる
からである。かかる点から、アルカリ金属の濃度は0〜
3.5原子%であることが望ましい。更には、製造上の
点や保管後の骨親和性の点等を考慮すると、1.0〜
3.5原子%であることが望ましい。
The concentration of the alkali metal on at least the surface of the coating is preferably as low as 0 to 5.5 atomic% (including 0 atomic%). As the concentration of alkali metal is lower, the quantitative relationship between titanium oxide and amorphous alkali titanate is as follows: titanium oxide ア ル カ リ amorphous alkali titanate (the amount of titanium oxide is much higher than the amount of amorphous alkali titanate). This increases the long-term stability of osteophilicity, thereby ensuring a high level of long-term stability. From this point, the concentration of the alkali metal is 0 to
It is desirably 3.5 atomic%. Furthermore, considering the point of manufacture and bone compatibility after storage, etc., 1.0 to 1.0
It is desirably 3.5 atomic%.

【0032】骨親和性の被膜の厚みについては、特には
限定されるものではなく、例えば、約0.3 μm 〜5μm
から選択される厚みや、それ以上あるいは以下の厚みを
採用することができる。
The thickness of the osteophilic coating is not particularly limited, and is, for example, about 0.3 μm to 5 μm.
And a thickness greater than or less than the thickness selected from the above.

【0033】本発明に係る骨代替材料は、前述の如く、
チタン又はチタン合金をアルカリ金属イオン(Na+ やK
+ など)を含有するアルカリ水溶液に接触させるアルカ
リ処理をし、次に洗浄処理をし、その後に加熱処理をす
ることによって得られる。このとき、表面に形成される
被膜はチタンと酸素あるいは更にアルカリ金属を含有
し、少なくとも表面でのアルカリ金属濃度が0〜5.5
原子%となる必要があるが、そのようになる限りにおい
て前記アルカリ処理、洗浄処理、加熱処理の各条件は特
には限定されるものではなく、また、これら以外の処理
を適宜行うことができ、例えばアルカリ処理前に研磨処
理や脱脂処理、洗浄処理後に乾燥処理を適宜行うことが
できる。
The bone substitute material according to the present invention is, as described above,
Titanium or titanium alloys are converted to alkali metal ions (Na + or K
+ ) Is subjected to an alkali treatment in which it is brought into contact with an aqueous alkali solution containing, followed by a washing treatment, followed by a heat treatment. At this time, the film formed on the surface contains titanium and oxygen or further an alkali metal, and at least the alkali metal concentration on the surface is 0 to 5.5.
Atomic% is required, but as long as such conditions are satisfied, the conditions of the alkali treatment, the cleaning treatment, and the heat treatment are not particularly limited, and other treatments can be appropriately performed. For example, a polishing treatment, a degreasing treatment, and a drying treatment can be appropriately performed after the alkali treatment.

【0034】前記洗浄処理の際の温度については、30
℃以下にすることが望ましい(第2発明)。そうする
と、骨親和性の被膜の強度が高く維持され、生体骨と強
く固着することができる骨代替材料が得られる。この詳
細を以下説明する。
The temperature at the time of the cleaning treatment is 30
It is desirable that the temperature be lower than or equal to ° C (second invention). Then, a bone substitute material is obtained in which the strength of the osteophilic coating is maintained at a high level and can be strongly fixed to living bone. The details will be described below.

【0035】アルカリ処理・加熱処理法においてアルカ
リ処理後等の洗浄を加温水で行った場合、得られる骨代
替材料は骨代替材料は生体骨と早期に結合するものの、
生体骨との結合強度は高まらず、容易に剥離すること
が、文献「藤林ら,日本バイオマテリアル学会シンポジ
ウム2000予稿集, P36, (2000年)」に報告されている。
When the washing after the alkali treatment or the like is performed with warm water in the alkali treatment / heating treatment method, the obtained bone substitute material binds to the living bone at an early stage.
It is reported in the literature "Fujibayashi et al., Proceedings of the Symposium 2000 of the Biomaterials Society of Japan, P36, (2000)" that the bond strength with living bone does not increase and that it easily peels off.

【0036】アルカリ金属イオンを含有するアルカリ水
溶液によるアルカリ処理によって形成された被膜は網目
状の微細構造をとっている。この後、30℃を超える純
水中で洗浄すると、被膜のごく表層の網目が構造変化を
起こすことを確認している。一方、30℃以下の温度の
純水中で洗浄する場合は、上記のような網目の構造変化
は起こり難く、被膜の強度は高く維持され、生体内に埋
植した際に生体骨と強く固着することとなる。かかる点
から、洗浄処理の際の温度については、30℃以下にす
ることが望ましく、この場合に得られる骨代替材料は、
骨親和性の被膜の強度が高く維持され、生体骨と強く固
着することができるものとなる。
The coating formed by the alkali treatment with an aqueous alkali solution containing an alkali metal ion has a network-like fine structure. After that, it has been confirmed that when washed in pure water exceeding 30 ° C., the network of the very surface layer of the coating undergoes a structural change. On the other hand, when washing in pure water at a temperature of 30 ° C. or less, the above-mentioned structural change of the network is unlikely to occur, the strength of the coating is maintained at a high level, and strongly adheres to the living bone when implanted in a living body. Will be done. From such a point, it is desirable that the temperature at the time of the cleaning treatment is 30 ° C. or less, and the bone substitute material obtained in this case is
The strength of the osteophilic coating is maintained at a high level, and the osteophilic coating can strongly adhere to the living bone.

【0037】本発明に係る骨代替材料において、その表
面形状は平滑であってもよいし、ビーズ埋め込み、メッ
シュ溶接、粉末溶射等による凹凸形状あるいは多孔形状
であってもよい。例えば、100〜300μm 程度の口
径の開口部を有する多孔形状であれば、孔内部への骨の
侵入によるアンカー効果が期待されるため、被膜の骨親
和性とあいまってより強く固着することとなる。
In the bone substitute material according to the present invention, the surface shape may be smooth, or may be uneven or porous by embedding beads, mesh welding, powder spraying or the like. For example, in the case of a porous shape having an opening having a diameter of about 100 to 300 μm, an anchor effect is expected due to penetration of bone into the inside of the hole. .

【0038】本発明において、チタンは純チタンのこと
である。チタン合金としては特には限定されず、例えば
合金元素としてAl、V、Mo、Zr、Nb、Ta等を含有するチ
タン合金を用いることができる。
In the present invention, titanium refers to pure titanium. The titanium alloy is not particularly limited, and for example, a titanium alloy containing Al, V, Mo, Zr, Nb, Ta, or the like as an alloy element can be used.

【0039】[0039]

【実施例】本発明の実施例を以下説明するが、本発明は
この実施例に限定されるものではない。尚、この実施例
においては、評価を簡便且つ正確に行い得るようにする
ため、基体のチタンとしては骨代替材料として用いる場
合の形状及び寸法ものではなく、板形状で且つ小さい寸
法の試験片を用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments. In this example, in order to make the evaluation simple and accurate, a titanium-based test piece having a plate-shaped and small size was used instead of the shape and size when used as a bone substitute material. Using.

【0040】(実施例1)幅10mm、長さ10mm、
厚み1mmの純チタン板を#400 の研磨紙を用いて研磨
し、アセトンにより洗浄し純水により洗浄し、乾燥させ
た後、60℃の5M(モル濃度)の水酸化ナトリウム水
溶液に24時間浸漬してアルカリ処理をした。これによ
り、純チタン板の表面にチタンと酸素とナトリウムから
なる層(被膜)、即ち、非晶質のチタン酸ナトリウム層
が形成される。
(Example 1) 10 mm in width, 10 mm in length,
A pure titanium plate having a thickness of 1 mm is polished using # 400 abrasive paper, washed with acetone, washed with pure water, dried, and then immersed in a 5 M (molar concentration) sodium hydroxide aqueous solution at 60 ° C. for 24 hours. Then, alkali treatment was performed. Thereby, a layer (coating) composed of titanium, oxygen and sodium, that is, an amorphous sodium titanate layer is formed on the surface of the pure titanium plate.

【0041】次に、上記アルカリ処理後のものを純水中
で超音波洗浄した後、表面のナトリウム濃度を調整する
ため、種々の温度の純水、種々の攪拌手法にて洗浄処理
を行った。このとき、純水の温度、水量、攪拌手法、洗
浄時間等を変化させた。これにより、表面のナトリウム
濃度が減少して種々の濃度に調整される。
Next, after the above alkali treatment, the substrate was subjected to ultrasonic cleaning in pure water, and then subjected to cleaning treatment with pure water at various temperatures and various stirring techniques to adjust the surface sodium concentration. . At this time, the temperature of pure water, the amount of water, the stirring method, the cleaning time, etc. were changed. Thereby, the sodium concentration on the surface is reduced and adjusted to various concentrations.

【0042】次に、上記洗浄処理後のものを室温にて乾
燥させた後、焼成炉内で600℃で1時間加熱する加熱
処理をした。これにより、純チタン板の表面にチタンと
酸素とを含有すると共にナトリウム濃度が表1に示す如
く0〜7.5原子%である被膜が形成されてなる試料
(被膜形成材)が得られた。この被膜形成材の被膜は、
ナトリウム濃度:0原子%の場合を除き、酸化チタンと
非晶質チタン酸ナトリウムからなり、ナトリウム濃度:
0原子%の場合は酸化チタンからなる。尚、被膜の厚み
は、0.8〜1.5μm であった。
Next, after the above-mentioned cleaning treatment was dried at room temperature, a heating treatment was performed in a firing furnace at 600 ° C. for 1 hour. As a result, a sample (film forming material) was obtained in which a film containing titanium and oxygen and having a sodium concentration of 0 to 7.5 atomic% as shown in Table 1 was formed on the surface of the pure titanium plate. . The film of this film forming material is
Sodium concentration: Except in the case of 0 atomic%, it is composed of titanium oxide and amorphous sodium titanate.
In the case of 0 atomic%, it is made of titanium oxide. The thickness of the coating was 0.8 to 1.5 μm.

【0043】ここで、各被膜形成材の被膜のナトリウム
濃度は、表1に示す通りであるが、この濃度値はSEM
/EDXにより、倍率:100倍、加速電圧:10k
V、測定距離:39mmという測定条件で測定して得ら
れた値である。この測定で得られるナトリウム濃度値は
被膜中のナトリウム濃度の平均値的な値であるが、本実
施例の場合においては各被膜形成材の被膜の厚みは薄
く、被膜中のナトリウム濃度は被膜の厚み方向において
も均一であるので、表1に示すナトリウム濃度は被膜中
のナトリウム濃度の平均値的な値であると共に、被膜の
表面でのナトリウム濃度でもある。
Here, the sodium concentration of the film of each film forming material is as shown in Table 1.
By / EDX, magnification: 100 times, acceleration voltage: 10k
V, measurement distance: a value obtained by measurement under the measurement condition of 39 mm. The sodium concentration value obtained by this measurement is an average value of the sodium concentration in the film, but in the case of this embodiment, the thickness of the film of each film forming material is thin, and the sodium concentration in the film is Since the sodium concentration is uniform in the thickness direction, the sodium concentration shown in Table 1 is an average value of the sodium concentration in the coating and is also the sodium concentration on the surface of the coating.

【0044】上記被膜形成材(試料)について、その製
作直後の骨親和性と高温・高湿下保管後の骨親和性を調
査し、保管の際の骨親和性の長期安定性を評価した。
With respect to the above film-forming material (sample), the bone affinity immediately after its production and the bone affinity after storage under high temperature and high humidity were investigated, and the long-term stability of the bone affinity during storage was evaluated.

【0045】この骨親和性の調査は、擬似体液中でのH
AP(ヒドロキシアパタイト)の形成能を調査すること
により行い、このHAP形成能を骨親和性の指標とし
た。即ち、擬似体液とは、人の体液とほぼ等しい無機イ
オン組成を有するように調整したpH7.40の水溶液
である。骨親和性を有する材料を37℃に保温した擬似
体液に浸漬すると、本材料は擬似体液中のカルシウムイ
オンとリン酸イオンにより数日中に本材料の表面にHA
Pが形成する。ここでは、擬似体液中に3日間浸漬後の
HAP形成状況を光学顕微鏡にて調べ、試料表面積に対
するHAP形成面積(HAPが形成されている個所の面
積)の割合にて骨親和性を評価した。そして、この評価
の結果は、HAPが形成していないものを×、試料表面
積に対するHAP形成面積の割合が約30%以下である
ものを△、かかるHAP形成面積の割合が30〜60%
であるものを○、HAP形成面積の割合が60〜100
%であるものを◎で表1のHAP形成状況の欄に表示し
た。
The examination of the bone affinity was carried out by examining H in a simulated body fluid.
It was performed by investigating the ability to form AP (hydroxyapatite), and the ability to form HAP was used as an index of bone affinity. That is, the simulated body fluid is an aqueous solution having a pH of 7.40 adjusted to have an inorganic ion composition substantially equal to that of a human body fluid. When a material having bone affinity is immersed in a simulated body fluid kept at 37 ° C., the material is exposed to HA in a few days by calcium ions and phosphate ions in the simulated body fluid.
P forms. Here, the state of HAP formation after immersion in the simulated body fluid for 3 days was examined with an optical microscope, and the bone affinity was evaluated based on the ratio of the HAP formation area to the sample surface area (the area where the HAP was formed). The results of this evaluation were as follows: × when no HAP was formed, Δ when the ratio of the HAP formation area to the sample surface area was about 30% or less, and 30 to 60% for the HAP formation area.
Is ○, the ratio of the HAP formation area is 60 to 100
% Is shown in the column of HAP formation status in Table 1 with ◎.

【0046】上記被膜形成材(試料)の高温・高湿下保
管は、温度40℃、相対湿度90%という加速試験条件
の雰囲気下で行った。保管期間は12週間とした。そし
て、この高温・高湿下保管後の試料の骨親和性を調査
し、保管の際の骨親和性の長期安定性を評価した。
The film-forming material (sample) was stored under high temperature and high humidity conditions under an atmosphere of accelerated test conditions of a temperature of 40 ° C. and a relative humidity of 90%. The storage period was 12 weeks. Then, the bone affinity of the sample after storage under the high temperature and high humidity was investigated, and the long-term stability of the bone affinity during storage was evaluated.

【0047】表1に上記各被膜形成材(試料)の表面で
のナトリウム濃度と共に上記調査の結果を示す。上記調
査の結果としては、各被膜形成材(試料)の製作直後お
よび高温・高湿下12週間保管後の骨親和性(HAP形
成状況)、並びに、保管の際の骨親和性の長期安定性を
示した。尚、表1に示すナトリウム濃度は、前述の如
く、被膜中の平均的なナトリウム濃度であるが、被膜表
面でのナトリウム濃度でもあり、この被膜表面でのナト
リウム濃度に等しい。
Table 1 shows the results of the above investigation together with the sodium concentration on the surface of each of the above film forming materials (samples). As a result of the above investigation, the bone affinity (HAP formation status) immediately after the production of each film-forming material (sample) and after storage for 12 weeks under high temperature and high humidity, and the long-term stability of the bone affinity during storage showed that. The sodium concentration shown in Table 1 is the average sodium concentration in the coating as described above, but is also the sodium concentration on the coating surface, and is equal to the sodium concentration on the coating surface.

【0048】表1からわかるように、試料7〜9のもの
(即ち、比較例に係る被膜形成材)の場合には、表面の
ナトリウム濃度が5.9〜7.5原子%であり、製作直
後では骨親和性は良好(◎又は○の水準)であるもの
の、高温・高湿下で12週間保管後は骨親和性が著しく
劣化(◎の水準から△の水準に劣化あるいは○の水準か
ら×の水準に劣化)して骨親和性が良好でなく、不充分
(×又は△の水準)となっており、保管の際の骨親和性
が不安定であって、骨親和性の長期安定性が良好でな
い。また、このとき、表面のナトリウム濃度が高いもの
ほど、保管後の骨親和性が低くなっている。
As can be seen from Table 1, in the case of samples 7 to 9 (that is, the film forming material according to the comparative example), the sodium concentration on the surface was 5.9 to 7.5 atomic%, and Immediately after, the bone affinity is good (◎ or ○ level), but after 12 weeks storage under high temperature and high humidity, the bone affinity deteriorates remarkably (from the level of ○ to the level of △ or from the level of ○) The bone affinity is not good and the bone affinity is not enough (x or △ level), the bone affinity during storage is unstable, and the bone affinity is long-term stable Not good. At this time, the higher the surface sodium concentration, the lower the bone affinity after storage.

【0049】これに対し、試料1〜6のもの(即ち、本
発明例に係る試料)の場合には、表面のナトリウム濃度
が0〜5.4原子%であり、製作直後において骨親和性
が良好(いずれも◎の水準)であり、高温・高湿下で1
2週間保管後においても骨親和性がそのまま維持される
か、少し低下(◎の水準から○の水準に低下)するだけ
であって、骨親和性が充分に良好(◎又は○の水準)で
あり、保管の際の骨親和性が安定であって、骨親和性の
長期安定性に優れている。
On the other hand, in the case of the samples 1 to 6 (that is, the sample according to the present invention), the sodium concentration on the surface is 0 to 5.4 atomic%, and the bone affinity immediately after fabrication is low. Good (both ◎ level), 1 under high temperature and high humidity
Even after storage for 2 weeks, the bone affinity is maintained as it is or only slightly decreases (from the level of ◎ to the level of ○), and the bone affinity is sufficiently good (the level of ◎ or ○) Yes, the bone affinity at the time of storage is stable, and the long-term stability of the bone affinity is excellent.

【0050】(実施例2)前記実施例1における洗浄処
理の際の純水の温度を変えて数種の試料(被膜形成材)
を作製した。このとき、表面のナトリウム濃度を0〜
5.5原子%となるように液量及び処理時間を適宜調整
した。例えば、洗浄処理時の温度が25℃のとき、液量
を25mlとし5時間洗浄処理を行った。洗浄処理に続
いて行なう加熱処理の終了後、試料を擬似体液に3日間
浸漬して表面にHAPを形成させ、試料を擬似体液中よ
り取り出し、洗浄、乾燥後、セロハンテープを用いた被
膜強度評価を行った。
(Example 2) Several kinds of samples (film forming materials) were prepared by changing the temperature of pure water during the cleaning treatment in Example 1 above.
Was prepared. At this time, the sodium concentration on the surface is 0 to
The amount of the liquid and the processing time were appropriately adjusted so as to be 5.5 atomic%. For example, when the temperature during the washing process was 25 ° C., the washing amount was set to 25 ml and the washing process was performed for 5 hours. After the completion of the heat treatment following the washing treatment, the sample is immersed in the simulated body fluid for 3 days to form HAP on the surface, the sample is taken out from the simulated body fluid, washed, dried, and then evaluated for the coating strength using a cellophane tape. Was done.

【0051】上記被膜強度評価の方法を以下説明する。
被膜の強度を直接的に評価するのは困難であるため、被
膜上にHAPを形成させた後、HAPを引き剥がし、そ
の剥離のしやすさを指標として被膜の強度を間接的に評
価した。
The method for evaluating the coating strength will be described below.
Since it is difficult to directly evaluate the strength of the coating, after forming HAP on the coating, the HAP was peeled off, and the strength of the coating was indirectly evaluated using the ease of peeling as an index.

【0052】引き剥がし試験は、JIS K5400に
記載されている塗膜の付着強度評価方法を応用して行っ
た。即ち、HAPを一面に形成させた試料表面にセロハ
ンテープを貼り付け、表面を消しゴムを用いて圧着させ
る。1〜2分後、セロハンテープを垂直方向に瞬時に引
き上げて表層を剥がし、試料面に残存するHAPを光学
顕微鏡にて観察した。このとき、倍率200倍で観察
し、そして、1視野中でHAPが残存している領域の割
合を指標として被膜強度を評価した。
The peeling test was conducted by applying the method for evaluating the adhesion strength of a coating film described in JIS K5400. That is, a cellophane tape is adhered to the surface of the sample on which HAP is formed on one side, and the surface is erased and pressed with a rubber. After 1-2 minutes, the cellophane tape was instantaneously pulled up in the vertical direction, the surface layer was peeled off, and HAP remaining on the sample surface was observed with an optical microscope. At this time, observation was performed at a magnification of 200 times, and the film strength was evaluated using the ratio of the region where HAP remained in one visual field as an index.

【0053】表2に各試料(被膜形成材)の洗浄温度、
表面でのナトリウム濃度と共に上記調査の結果を示す。
尚、上記調査の結果としては、HAP剥離評価結果(H
AP残存状況)を示した。HAP残存領域が70%以下
の場合を被膜強度低下と判断した。
Table 2 shows the cleaning temperature of each sample (coating material),
The results of the above investigation are shown together with the sodium concentration at the surface.
In addition, as a result of the above investigation, the HAP peeling evaluation result (H
AP remaining situation). When the HAP remaining area was 70% or less, it was determined that the film strength had decreased.

【0054】表2からわかるように、洗浄処理の際の温
度が30℃を超える場合は、HAP引き剥がし試験後の
HAP残存領域は70%以下となったことから、被膜強
度は低下したと判断される。一方、洗浄処理時の温度が
30℃以下の場合は、HAP引き剥がし試験後のHAP
残存領域は80%以上となったことから、被膜強度は高
く維持されていると判断される。また、これらの試料表
面のナトリウム濃度は0〜5.5原子%の範囲内である
ことから骨親和性の長期安定性も優れている。
As can be seen from Table 2, when the temperature at the time of the cleaning treatment exceeded 30 ° C., the remaining area of the HAP after the HAP peeling test was 70% or less, so it was judged that the film strength had decreased. Is done. On the other hand, when the temperature at the time of the cleaning treatment is 30 ° C. or less, the HAP after the HAP peeling test is used.
Since the remaining area is 80% or more, it is determined that the film strength is maintained high. Further, since the sodium concentration on the surface of these samples is in the range of 0 to 5.5 atomic%, the long-term stability of bone affinity is also excellent.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【発明の効果】本発明に係る骨代替材料は、以上のよう
な構成を有し作用をなすものであり、チタン又はチタン
合金を構成材料の基体とする骨代替材料であって、アル
カリ処理・加熱処理法(特許第2775523 号公報等に記載
されている方法、即ち、チタン又はチタン合金よりなる
基体の表面をアルカリ水溶液で処理した後、加熱処理す
るという方法)の場合と同程度に簡便な方法により得る
ことができ、しかも保管に際して前記アルカリ処理・加
熱処理法で得られる骨代替材料よりも骨親和性の劣化が
極めて生じ難く、骨親和性の長期安定性に著しく優れて
おり、従って、保管に際して骨親和性という品質を極め
て長期に安定して維持することができるという顕著な効
果を奏する。即ち、本発明によれば、前記アルカリ処理
・加熱処理法の場合と同程度に簡便に、前記アルカリ処
理・加熱処理法の場合よりも長期安定性に極めて優れた
骨親和性をチタン又はチタン合金よりなる基体に付与し
得るようになる。
The bone substitute material according to the present invention has the above-mentioned structure and functions, and is a bone substitute material having titanium or a titanium alloy as a base material. The heat treatment method (a method described in Japanese Patent No. 2775523, etc., that is, a method in which the surface of a substrate made of titanium or a titanium alloy is treated with an aqueous alkali solution and then heat-treated) is as simple as the case of the heat treatment method. It can be obtained by the method, and further, during storage, deterioration of bone affinity is extremely unlikely to occur than the bone substitute material obtained by the alkali treatment / heat treatment method, and the bone affinity is extremely excellent in long-term stability. When stored, there is a remarkable effect that the quality of bone affinity can be stably maintained for an extremely long time. That is, according to the present invention, as easily as in the case of the alkali treatment and heat treatment method, the bone affinity extremely excellent in long-term stability than in the case of the alkali treatment and heat treatment method of titanium or titanium alloy It can be applied to a substrate composed of:

【図面の簡単な説明】[Brief description of the drawings]

【図1】 被膜形成材(表面のナトリウム濃度:7.5
原子%)のX線回折による分析の結果を示す図である。
FIG. 1 Film-forming material (sodium concentration on the surface: 7.5)
FIG. 4 is a diagram showing the result of analysis by X-ray diffraction of (atomic%).

【図2】 被膜形成材(表面のナトリウム濃度:0.8
原子%)のX線回折による分析の結果を示す図である。
FIG. 2 Coating material (surface sodium concentration: 0.8
FIG. 4 is a diagram showing the result of analysis by X-ray diffraction of (atomic%).

フロントページの続き (71)出願人 591268508 財団法人イオン工学振興財団 京都府京都市左京区吉田河原町14 近畿地 方発明センター内 (72)発明者 鈴木 順 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 佐々木 佳男 兵庫県神戸市中央区脇浜町1丁目3番18号 株式会社神戸製鋼所神戸本社内 (72)発明者 松下 富春 兵庫県神戸市中央区脇浜町1丁目3番18号 株式会社神戸製鋼所神戸本社内 (72)発明者 小久保 正 京都府長岡京市梅が丘2丁目50番地 Fターム(参考) 4C081 AB03 BB08 CG02 CG03 DA03 EA04 EA06 Continuation of the front page (71) Applicant 591268508 Ion Engineering Promotion Foundation 14 Yoshida Kawaramachi, Sakyo-ku, Kyoto, Kyoto Prefecture Inside the Kinki District Invention Center (72) Inventor Jun Suzuki 1-5-5 Takatsukadai, Nishi-ku, Kobe, Hyogo Prefecture No.Kobe Steel, Ltd.Kobe Research Institute (72) Inventor Yoshio Sasaki 1-3-18 Wakihama-cho, Chuo-ku, Kobe City, Hyogo Prefecture Kobe Steel Ltd.Kobe Main Office (72) Inventor Tomiharu Matsushita Hyogo Prefecture 1-318 Wakihama-cho, Chuo-ku, Kobe Kobe Steel, Ltd. Kobe Head Office (72) Inventor Tadashi Kokubo 2-50 Umegaoka, Nagaokakyo-shi, Kyoto F term (reference) 4C081 AB03 BB08 CG02 CG03 DA03 EA04 EA06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属イオン(Na+ やK+ など)
を含有するアルカリ水溶液に接触させるアルカリ処理、
次に洗浄処理、その後に加熱処理がされることによっ
て、チタンと酸素あるいは更にアルカリ金属を含有する
骨親和性の被膜が表面に形成されたチタン又はチタン合
金よりなる骨代替材料であって、前記被膜の少なくとも
表面でのアルカリ金属の濃度が0〜5.5原子%(0原
子%を含む)であることを特徴とする骨代替材料。
1. An alkali metal ion (such as Na + or K + )
Alkaline treatment of contacting with an aqueous alkali solution containing
Next, a washing treatment, followed by a heat treatment, a bone substitute material comprising titanium or a titanium alloy formed on the surface with a bone-friendly coating containing titanium and oxygen or further an alkali metal, A bone substitute material, characterized in that the concentration of alkali metal on at least the surface of the coating is 0 to 5.5 atomic% (including 0 atomic%).
【請求項2】 洗浄処理時の温度が30℃以下である請
求項1記載の骨代替材料。
2. The bone substitute material according to claim 1, wherein the temperature at the time of the washing treatment is 30 ° C. or less.
JP2001154060A 2001-05-23 2001-05-23 Bone substitute material Expired - Lifetime JP4804648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001154060A JP4804648B2 (en) 2001-05-23 2001-05-23 Bone substitute material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001154060A JP4804648B2 (en) 2001-05-23 2001-05-23 Bone substitute material

Publications (2)

Publication Number Publication Date
JP2002345948A true JP2002345948A (en) 2002-12-03
JP4804648B2 JP4804648B2 (en) 2011-11-02

Family

ID=18998474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001154060A Expired - Lifetime JP4804648B2 (en) 2001-05-23 2001-05-23 Bone substitute material

Country Status (1)

Country Link
JP (1) JP4804648B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147819A1 (en) * 2008-06-03 2009-12-10 学校法人中部大学 Bone-repairing material and method for producing the same
JP2010172449A (en) * 2009-01-29 2010-08-12 Japan Medical Materials Corp Method of manufacturing alternative material for solid body tissue, and treatment solution used in the manufacturing method
WO2013161963A1 (en) * 2012-04-27 2013-10-31 京セラメディカル株式会社 Method for producing biological implant material
WO2014136567A1 (en) * 2013-03-07 2014-09-12 国立大学法人東北大学 Biological implant and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6422938B2 (en) 2014-02-21 2018-11-14 有限会社ITDN—Tokyo Implant body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013100A1 (en) * 1993-11-09 1995-05-18 The Foundation For The Promotion Of Ion Engineering Bone substitute material and process for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013100A1 (en) * 1993-11-09 1995-05-18 The Foundation For The Promotion Of Ion Engineering Bone substitute material and process for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147819A1 (en) * 2008-06-03 2009-12-10 学校法人中部大学 Bone-repairing material and method for producing the same
US8470387B2 (en) 2008-06-03 2013-06-25 Advanced Medix Inc. Bone repair material and method for producing the same
JP5499347B2 (en) * 2008-06-03 2014-05-21 アドバンスド・メディックス株式会社 Bone repair material and manufacturing method thereof
US9034051B2 (en) 2008-06-03 2015-05-19 Advanced Medix Inc. Bone repair material and method for producing the same
JP2010172449A (en) * 2009-01-29 2010-08-12 Japan Medical Materials Corp Method of manufacturing alternative material for solid body tissue, and treatment solution used in the manufacturing method
WO2013161963A1 (en) * 2012-04-27 2013-10-31 京セラメディカル株式会社 Method for producing biological implant material
JP2013230197A (en) * 2012-04-27 2013-11-14 Kyocera Medical Corp Method for producing biological implant material
CN104254349A (en) * 2012-04-27 2014-12-31 京瓷医疗株式会社 Method for producing biological implant material
WO2014136567A1 (en) * 2013-03-07 2014-09-12 国立大学法人東北大学 Biological implant and method for producing same
JPWO2014136567A1 (en) * 2013-03-07 2017-02-09 国立大学法人東北大学 Biological implant and method for producing the same

Also Published As

Publication number Publication date
JP4804648B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
Liu et al. Sol–gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement
Shabalovskaya et al. Critical overview of Nitinol surfaces and their modifications for medical applications
Geng et al. The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium
US8696759B2 (en) Methods and devices for implants with calcium phosphate
US8382823B2 (en) Biodegradable stent and method for manufacturing the same
Obadele et al. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating
Türkan et al. Metal ion release from TiN coated CoCrMo orthopedic implant material
Spriano et al. Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments
Su et al. Nanostructured Ti6Al4V alloy fabricated using modified alkali-heat treatment: characterization and cell adhesion
WO1995013100A1 (en) Bone substitute material and process for producing the same
Say et al. Effect of hydroxyapatite/SiO2 hybride coatings on surface morphology and corrosion resistance of REX-734 alloy
SE464415B (en) PROCEDURE FOR THE PREPARATION OF A COMPOSITION MATERIAL COATED WITH CALCIUM PHOSPHATE SOCIETY, AS USEFUL AS AN IMPLANT
Cotrut et al. Evaluation of surface modification techniques on the ability of apatite formation and corrosion behavior in synthetic body fluid: An in vitro study
Rahman et al. Microroughness induced biomimetic coating for biodegradation control of magnesium
Vladescu et al. Influence of Ti, Zr or Nb carbide adhesion layers on the adhesion, corrosion resistance and cell proliferation of titania doped hydroxyapatite to the Ti6Al4V alloy substrate, utilizable for orthopaedic implants
Sattar et al. Improved in vitro bioactivity and electrochemical behavior of hydroxyapatite-coated NiTi shape memory alloy
Escada et al. Surface characterization of Ti–7.5 Mo alloy modified by biomimetic method
Tanaka et al. In vitro short-term platelet adhesion on various metals
Shanaghi et al. Corrosion resistance, nano-mechanical properties, and biocompatibility of Mg-plasma-implanted and plasma-etched Ta/TaN hierarchical multilayered coatings on the nitrided AZ91 Mg alloy
Rajan et al. In vitro assessment of corrosion resistance and biocompatibility of tantalum-niobium oxide surface-functionalized Mg alloy
JP2002345948A (en) Bone substitute material
US11938244B2 (en) Methods for improving mechanical property and biological stability of magnesium alloy and manufacturing material and applications
Krupa et al. Effect of calcium and phosphorus ion implantation on the corrosion resistance and biocompatibility of titanium
Spriano et al. Characterization of surface modified Ti-6Al-7Nb alloy
JP2775523B2 (en) Bone substitute material and its manufacturing method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090409

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Ref document number: 4804648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term