JP2002338319A - Short fiber reinforced cement type extrusion forming material - Google Patents

Short fiber reinforced cement type extrusion forming material

Info

Publication number
JP2002338319A
JP2002338319A JP2001150809A JP2001150809A JP2002338319A JP 2002338319 A JP2002338319 A JP 2002338319A JP 2001150809 A JP2001150809 A JP 2001150809A JP 2001150809 A JP2001150809 A JP 2001150809A JP 2002338319 A JP2002338319 A JP 2002338319A
Authority
JP
Japan
Prior art keywords
cement
weight
parts
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001150809A
Other languages
Japanese (ja)
Other versions
JP3875041B2 (en
Inventor
Toshiyuki Hashida
俊之 橋田
Seiki Miyasoto
清貴 宮外
Hiroyuki Takashima
博之 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2001150809A priority Critical patent/JP3875041B2/en
Publication of JP2002338319A publication Critical patent/JP2002338319A/en
Application granted granted Critical
Publication of JP3875041B2 publication Critical patent/JP3875041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00129Extrudable mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tough fiber reinforced cement type extrusion material which exhibits a fracture mechanism due to multiple cracking. SOLUTION: This polypropylene short fiber reinforced cement type extrusion forming material generates multiple cracking and is fractured by tension. This cement type extrusion forming material is made by compounding polypropylene short fiber of fiber length 3-15 mm, fiber diameter 5-20 μm and aspect ratio 150-1000 to hydraulic cement matrix by 3-10% in volume ratio of incorporation. Further, in this cement type extrusion forming material, the matrix is made by compounding silica raw material of 40-100 wt.%, pulp of 1-40 wt.% and water soluble cellulose of 0.1-10 wt.% with respect to the hydraulic cement of 100 wt.%. In this cement type extrusion forming material, the matrix, furthermore, contains mineral fiber of 1-40 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリプロピレン短
繊維補強セメント系押出成形材料に関する。詳しくは、
多重亀裂を生成して引張破断する高靭性のポリプロピレ
ン短繊維補強セメント系押出成形材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polypropylene short fiber reinforced cement-based extruded material. For more information,
The present invention relates to a high-toughness polypropylene short fiber reinforced cement-based extruded material which generates multiple cracks and causes tensile fracture.

【0002】[0002]

【従来の技術】従来から、石綿を初めとして、またこれ
に代わる合成繊維を混合してセメント硬化体の性能を向
上する試みが広く行われてきた。しかし、これらの繊維
補強による従来の改良は、脆性材料であるセメント硬化
体の比例変形内での破断強度および弾性率を向上するこ
とに向けられてきたものであり、比例変形を超えてセメ
ント硬化体の物性を改良しようという思想もなければ、
その手段も知られていなかった。
2. Description of the Related Art Conventionally, attempts have been made to improve the performance of hardened cement by mixing asbestos and synthetic fibers instead of asbestos. However, the conventional improvement by these fiber reinforcements has been directed to improving the breaking strength and the elastic modulus within the proportional deformation of the hardened cementitious material, which is a brittle material. If there is no idea to improve the physical properties of the body,
The means were not known.

【0003】最近、セメントに最初の亀裂が生じた時、
セメントに補強材として配合された短繊維によって亀裂
に橋架けを生じさせて応力を分担させることにより、最
初の亀裂発生後も直ちに破断に至らず、多重亀裂を発生
させることによって応力を分散して、大きい変形と破断
応力を付与することによって高い靭性を持たせる技術が
研究されつつある。この技術はマトリックスと補強繊維
との接着力を調整することによって、セメントに最初の
亀裂が生じたときに、亀裂部に存在する補強繊維が同時
に破断するのを防止することによって、最初の亀裂発生
後にも繊維によって応力を分担させ、硬化体が直ちに破
断するのを防止するものである。
Recently, when the first cracks occurred in cement,
Short fibers incorporated in cement as a reinforcing material create a bridge in the crack and share the stress, so that it does not immediately break even after the first crack occurs, dispersing the stress by generating multiple cracks Techniques for imparting high toughness by applying large deformation and breaking stress are being studied. This technology adjusts the adhesion between the matrix and the reinforcing fibers to prevent the first fiber from cracking at the same time as the first crack in the cement, thereby preventing the first fibers from cracking. Even after that, the stress is shared by the fibers to prevent the cured body from breaking immediately.

【0004】このために使用されている補強用繊維とし
ては、高強度高弾性ポリエチレン繊維、ビニロン繊維し
か見られなかった。その理由は、ビニロンが十分に高い
弾性率および強度を有すること、およびセメントマトリ
ックスとの適度の接着性を有することにある。ポリプロ
ピレン繊維のようなセメントとの親和性が低く且つ引張
弾性率の低いポリオレフィン短繊維を補強材として用い
た靭性の改良された短繊維補強セメント複合材料は得ら
れていない。
As the reinforcing fibers used for this purpose, only high-strength high-elasticity polyethylene fibers and vinylon fibers have been found. The reason is that vinylon has a sufficiently high modulus and strength and has a moderate adhesion to the cement matrix. A short fiber reinforced cement composite material having improved toughness using a polyolefin short fiber having a low affinity for cement such as polypropylene fiber and a low tensile modulus as a reinforcing material has not been obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、引張
弾性率が特別高くなく且つセメントとの親和性も低いた
め、従来高靭性セメント系複合材料用に適切な補強繊維
とはみなされて来なかったポリプロピレン短繊維を補強
材として、靭性に優れた繊維補強セメント系押出成形材
料を提供することである。特に多重亀裂を生成する破断
機構を呈する高靭性の繊維補強セメント系押出成形材料
を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a reinforcing fiber suitable for a high-toughness cementitious composite material because the tensile modulus is not particularly high and the affinity for cement is low. An object of the present invention is to provide a fiber-reinforced cement-based extruded material having excellent toughness by using a polypropylene short fiber that has not come as a reinforcing material. In particular, it is an object of the present invention to provide a high-toughness fiber-reinforced cementitious extruded material exhibiting a fracture mechanism that generates multiple cracks.

【0006】[0006]

【課題を解決するための手段】本発明は、多重亀裂を生
成して引張破断するポリプロピレン短繊維補強セメント
系押出成形材料に関する。また、本発明は、水硬性セメ
ントと補強用繊維との界面での繊維の界面剪断強度が
0.2MPa〜1.4MPaであるようにポリプロピレン
短繊維で補強されたセメント系押出成形材料に関する。
詳しくは、本発明は、水硬性セメントマトリックス中
に、繊維長3〜15mm、繊維径5〜20μm、アスペ
クト比150〜1000のポリプロピレン短繊維が、硬
化後の成形体における体積混入率3〜10%となるよう
に配合されてなる上記いずれかに記載のセメント系押出
成形材料に関する。より詳しくは、本発明は、水硬性セ
メントマトリックスが、水硬性セメント100重量部に
対して、シリカ質原料40〜100重量部、パルプ1〜
40重量部、水溶性セルロース0.1〜10重量部配合
されてなる上記のセメント系押出成形材料に関する。更
にまた、本発明は、水硬性セメントマトリックスが、水
硬性セメント100重量部に対して、鉱物繊維を1〜4
0重量部を更に含有する上記のセメント系押出成形材料
に関する。更に詳しくは、本発明は、水硬性セメント1
00重量部、シリカ質原料40〜100重量部、パルプ
1〜40重量部、鉱物繊維1〜40重量部、水溶性セル
ロース0.1〜10重量部および水40〜90重量部を
含んでなるマトリックス成分に、繊維長3〜15mm、
繊維径5〜20μm、アスペクト比150〜1000の
ポリプロピレン短繊維を硬化後の成形体における体積混
入率3〜10%となるように配合されてなる水硬性セメ
ント組成物を押出成形したのち硬化してなる上記いずれ
かに記載のセメント系押出成形材料に関する。
SUMMARY OF THE INVENTION The present invention relates to a polypropylene short fiber reinforced cementitious extruded material which forms multiple cracks and breaks in tension. The present invention also relates to a cement-based extruded material reinforced with short polypropylene fibers such that the interfacial shear strength of the fibers at the interface between the hydraulic cement and the reinforcing fibers is from 0.2 MPa to 1.4 MPa.
Specifically, the present invention relates to a hydraulic cement matrix in which polypropylene short fibers having a fiber length of 3 to 15 mm, a fiber diameter of 5 to 20 μm, and an aspect ratio of 150 to 1000 are mixed at a volume ratio of 3 to 10% in a molded product after curing. The present invention relates to the cement-based extruded material according to any one of the above, which is blended so as to be: More specifically, the present invention relates to a hydraulic cement matrix comprising 100 to 100 parts by weight of hydraulic cement, 40 to 100 parts by weight of a siliceous raw material,
The present invention relates to the above-mentioned cement-based extruded material, which comprises 40 parts by weight and 0.1 to 10 parts by weight of water-soluble cellulose. Still further, in the present invention, the hydraulic cement matrix may contain 1 to 4 mineral fibers per 100 parts by weight of hydraulic cement.
The present invention relates to the above-mentioned cement-based extruded material further containing 0 parts by weight. More specifically, the present invention relates to a hydraulic cement 1
A matrix comprising 00 parts by weight, 40 to 100 parts by weight of a siliceous raw material, 1 to 40 parts by weight of pulp, 1 to 40 parts by weight of mineral fibers, 0.1 to 10 parts by weight of water-soluble cellulose, and 40 to 90 parts by weight of water. Ingredients, fiber length 3-15mm,
Extrusion molding of a hydraulic cement composition in which polypropylene short fibers having a fiber diameter of 5 to 20 μm and an aspect ratio of 150 to 1000 are blended so as to have a volumetric mixing ratio of 3 to 10% in the molded article after curing, followed by curing. The present invention relates to a cement-based extruded material according to any one of the above.

【0007】本発明において、「多重亀裂」とは次のこ
とを意味する。引張応力が印加されてセメント硬化体に
最初の亀裂が入った段階で、その亀裂部に応力が集中し
て、通常のセメント硬化体ではそのまま破断に至る。す
なわち応力−歪曲線が直線となる弾性変形の段階で破断
に至る。そのためエネルギー吸収能が低く脆性破壊を呈
する。これに対して最初の亀裂が入ったのちも、直ちに
材料全体の破断に至らず、最初の亀裂に続いて複数の亀
裂が発生する現象が存在する。これを多重亀裂という。
多重亀裂が発生すると、応力が分散されるため、最初の
亀裂発生後も増加する荷重に耐えて大きな歪に至るまで
破壊せず、高いエネルギー吸収能と高い靭性を示す。
In the present invention, “multiple cracks” means the following. At the stage where the first crack is formed in the hardened cement body by the application of the tensile stress, the stress is concentrated on the crack portion, and the normal hardened cement body is directly broken. That is, fracture occurs at the stage of elastic deformation where the stress-strain curve becomes a straight line. Therefore, it has low energy absorption capacity and exhibits brittle fracture. On the other hand, even after the first crack is formed, there is a phenomenon that the whole material is not immediately broken, and a plurality of cracks are generated following the first crack. This is called a multiple crack.
When multiple cracks are generated, the stress is dispersed, so that even after the initial crack generation, the structure does not break down to a large strain withstanding an increased load, and exhibits high energy absorption capacity and high toughness.

【0008】本発明において、繊維の界面剪断強度と
は、セメントマトリックス中に補強材として存在する繊
維がセメントマトリックスとの界面でせん断的に破断す
る強度を意味し、繊維のパラメータ(V、d、L
を介して次式(1)
In the present invention, the interfacial shear strength of a fiber means a strength at which a fiber existing as a reinforcing material in a cement matrix breaks at an interface with the cement matrix in a shearing manner, and the fiber parameters (V f , d) f , Lf )
Via the following equation (1)

【数1】 によって、押出成形体のセメントマトリックスから繊維
が引き抜けるのに必要な破壊エネルギーGと関係付け
られる値である。式中、τは繊維の界面剪断強度、V
は繊維の体積混入率、dは繊維径、Lは繊維長であ
る。界面剪断強度τが大きいことはセメントマトリック
スと繊維との親和性が高いことを意味する。
(Equation 1) By a value to be associated with fracture energy G b required for fibers pulled out from the cement matrix of the extrudate. Where τ is the interfacial shear strength of the fiber, V f
Volume mixing ratio of the fibers, is d f fiber diameter, the L f is the fiber length. A large interfacial shear strength τ means that the affinity between the cement matrix and the fiber is high.

【0009】本発明において、ポリプロピレン短繊維の
「アスペクト比」とは、繊維長を繊維断面積の面積と同
面積を有する相当円の直径で除した値である。
In the present invention, the "aspect ratio" of the polypropylene short fiber is a value obtained by dividing the fiber length by the diameter of an equivalent circle having the same area as the area of the fiber cross-sectional area.

【0010】また、本発明において、「セメント系押出
成形材料」および「水硬性セメントマトリックス」とい
う場合、これらは硬化体を意味し、一方「水硬性セメン
ト組成物」という場合は、各種原料を配合したセメント
組成物に水を混合した未硬化状態のものを意味する。
In the present invention, the terms "cement-based extruded material" and "hydraulic cement matrix" mean hardened materials, while "hydraulic cement composition" refers to a mixture of various raw materials. Means an uncured state in which water is mixed with the obtained cement composition.

【0011】また、本発明で規定する水硬性セメントマ
トリックスに対するポリプロポレン短繊維の「体積混入
率」とは、セメント硬化体を押出方向に対して直角方向
に裁断し、その裁断面を走査電子顕微鏡を用いて、加速
電圧25kVで反射電子像を観察した。セメント硬化体
中の繊維混入率Vは、顕微鏡の視野にある観察面のポ
リプロピレン繊維の断面積の合計を、電子顕微鏡の視野
の面積で除した値として求めた。繊維混入率Vは、試
験片の裁断面中の異なる3つの視野について測定した値
の平均値を採用した。
The "volume mixing ratio" of polypropylene short fibers with respect to the hydraulic cement matrix as defined in the present invention means that the cured cement is cut in a direction perpendicular to the extrusion direction, and the cut surface is measured with a scanning electron microscope. A reflected electron image was observed at an acceleration voltage of 25 kV. The fiber mixing ratio Vf in the cured cement body was determined as a value obtained by dividing the total cross-sectional area of the polypropylene fibers on the observation surface in the visual field of the microscope by the area of the visual field of the electron microscope. As the fiber mixing ratio Vf , an average value of values measured for three different visual fields in a cut surface of the test piece was adopted.

【0012】[0012]

【発明の実施の形態】本発明は、ポリプロピレン短繊維
補強で補強したことを特徴とする、多重亀裂を生成して
引張破断するポリプロピレン短繊維補強セメント系押出
成形材料を提供するものである。また、本発明は、水硬
性セメントと補強用繊維との界面での繊維の界面剪断強
度が0.2MPa〜1.4MPaであるようにポリプロピ
レン短繊維で補強されたセメント系押出成形材料を提供
する。界面剪断強度τが0.2MPaより小さい場合
は、繊維が亀裂に架橋しても容易に引き抜けるため、十
分な補強効果が得られず、1.4MPaより大きい場合
は繊維の引き抜け時にマトリックス/繊維界面にかかる
摩擦力が繊維の引張破断強度を越えるため、繊維は破断
して亀裂に架橋せず、繊維補強効果は得られない。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a polypropylene short fiber reinforced cementitious extrusion material which is reinforced with polypropylene short fiber reinforcement and generates multiple cracks and breaks in tension. The present invention also provides a cement-based extruded material reinforced with short polypropylene fibers such that the interfacial shear strength of the fibers at the interface between the hydraulic cement and the reinforcing fibers is from 0.2 MPa to 1.4 MPa. . When the interfacial shear strength τ is less than 0.2 MPa, the fiber is easily pulled out even if cross-linked to a crack. Therefore, a sufficient reinforcing effect cannot be obtained. Since the frictional force applied to the interface exceeds the tensile breaking strength of the fiber, the fiber breaks and does not crosslink into cracks, and the fiber reinforcing effect cannot be obtained.

【0013】上記の特性を有する本発明のセメント系押
出成形材料は、繊維長3〜15mm、繊維径5〜20μ
m、アスペクト比150〜1000のポリプロピレン短
繊維を、水硬性セメントマトリックスに対して体積混入
率3〜10%で配合することによって製造することが可
能となった。本発明で使用するポリプロピレン短繊維
は、上記繊維長、繊維径およびアスペクト比に該当すれ
ば特に制限はなく、現状使用されるセメント補強用繊維
としてのポリプロピレン繊維が使用できる。例えば、特
許第2521101号の特許公報に記載されているよう
なポリプロピレン繊維が例示できる。
The extruded cementitious material of the present invention having the above characteristics has a fiber length of 3 to 15 mm and a fiber diameter of 5 to 20 μm.
m, polypropylene short fibers having an aspect ratio of 150 to 1000 can be produced by blending with a hydraulic cement matrix at a volume mixing ratio of 3 to 10%. The polypropylene short fiber used in the present invention is not particularly limited as long as it corresponds to the above fiber length, fiber diameter and aspect ratio, and a polypropylene fiber as a cement reinforcing fiber currently used can be used. For example, a polypropylene fiber as described in Japanese Patent No. 2521101 can be exemplified.

【0014】本発明のポリプロピレン短繊維に求められ
る要件に対して、繊維長がより短い、繊維径がより大き
い、またはアスペクト比がより小さい場合は、引張応力
が負荷された状態において、最初に亀裂が生じたとき
に、繊維が架橋しても応力を負担することができず、す
ぐに引き抜け、多重亀裂を発生する前に破壊してしま
う。一方、本発明のポリプロピレン短繊維に求められる
要件に対して、繊維長がより長い、繊維径がより小さ
い、またはアスペクト比がより大きい場合は、引張応力
が負荷された状態において、繊維の引き抜けよりも先
に、繊維自体が破断してしまうために多重亀裂が発生し
ない。
If the fiber length is shorter, the fiber diameter is larger, or the aspect ratio is smaller than the requirements required for the polypropylene short fiber of the present invention, cracks are initially formed under tensile stress. When the fibers are cross-linked, the fibers cannot bear the stress even if they are cross-linked, and are quickly pulled out and broken before generating multiple cracks. On the other hand, if the fiber length is longer, the fiber diameter is smaller, or the aspect ratio is larger than the requirements required for the polypropylene short fiber of the present invention, the fiber is pulled out under a tensile stress. Prior to this, multiple cracks do not occur because the fibers themselves break.

【0015】ポリプロピレン短繊維の体積混入率が3%
より小さいと亀裂が入ったときにそこに集中する応力を
支えることができず架橋作用を発揮できず、また10%
より大きいと繊維同士の接触部分が増加してセメントと
の一体化を妨害するため十分な補強効果が得られなくな
る。
[0015] The volume mixing ratio of polypropylene short fiber is 3%
If it is smaller, it cannot support the stress concentrated in the crack when it is cracked, cannot exert a crosslinking effect, and has a 10%
If it is larger, the contact portion between the fibers increases, and the integration with the cement is hindered, so that a sufficient reinforcing effect cannot be obtained.

【0016】本発明において、「水硬性セメント」とは
水との反応により硬化体を形成することのできるセメン
トまたはこのようなセメントが硬化した硬化体をいう。
本発明で使用する水硬性セメントは特に限定されず、各
種ポルトランドセメント、高炉セメント、フライアッシ
ュセメント、アルミナセメント、シリカセメント、マグ
ネシアセメント、硫酸塩セメント等をすべて含む。
In the present invention, the term "hydraulic cement" refers to a cement capable of forming a hardened body by reaction with water or a hardened body obtained by hardening such a cement.
The hydraulic cement used in the present invention is not particularly limited, and includes all kinds of Portland cement, blast furnace cement, fly ash cement, alumina cement, silica cement, magnesia cement, sulfate cement and the like.

【0017】本発明のセメント系押出成形材料に用いる
ことのできるシリカ質原料としては、珪石粉、高炉スラ
グ、珪砂、フライアッシュ、珪藻土、シリカヒューム、
非晶質シリカ等を使用することができる。好ましくは、
成形体の強度向上および寸法安定性に寄与する点から、
珪石粉、珪砂である。これらのシリカ質原料として好ま
しくは比表面積(JIS R 5201に記載の方法によ
る)が3000〜15000cm/gのものを使用す
る。シリカ質原料は水硬性セメント100重量部に対し
て40〜100重量部、好ましくは50〜80重量部の
割合で配合される。シリカ質原料が40重量部より少な
いと成形体の強度が低下する上に、エフロレッセンスが
発生し易くなり、100重量部より多くても成形体の強
度が低下する。より好ましくは50〜80重量部であ
る。
The siliceous raw material that can be used for the cement-based extrusion molding material of the present invention includes silica powder, blast furnace slag, silica sand, fly ash, diatomaceous earth, silica fume,
Amorphous silica or the like can be used. Preferably,
From the point of improving the strength of the molded body and contributing to dimensional stability,
Silica powder and silica sand. As these siliceous raw materials, those having a specific surface area (according to the method described in JIS R5201) of preferably 3000 to 15000 cm 2 / g are used. The siliceous raw material is blended in an amount of 40 to 100 parts by weight, preferably 50 to 80 parts by weight, based on 100 parts by weight of the hydraulic cement. If the amount of the siliceous raw material is less than 40 parts by weight, the strength of the molded body is reduced, and efflorescence tends to occur. If the amount is more than 100 parts by weight, the strength of the molded body is reduced. More preferably, it is 50 to 80 parts by weight.

【0018】本発明で配合されるパルプは、綿パルプま
たは木材パルプ等の天然パルプが好ましい。天然パルプ
であれば特に限定されず、バージンパルプのみならず古
紙からの再生パルプも使用できる。また木材パルプの場
合、木材の組織からリグニンを化学的に取り除いた化学
パルプ、木材を機械的に処理した機械パルプのいずれも
使用できる。パルプは繊維長が0.05〜10mmのも
のが好ましい。パルプは水硬性セメント100重量部に
対して1〜40重量部、好ましくは2〜30重量部の割
合で配合される。1重量部より少ないと補強効果を発揮
できず、また40重量部より多いと分散不良となり、成
形体の表面平滑性が悪化したりする。
The pulp blended in the present invention is preferably a natural pulp such as cotton pulp or wood pulp. It is not particularly limited as long as it is a natural pulp, and not only virgin pulp but also recycled pulp from waste paper can be used. In the case of wood pulp, either chemical pulp obtained by chemically removing lignin from wood tissue or mechanical pulp obtained by mechanically treating wood can be used. The pulp preferably has a fiber length of 0.05 to 10 mm. The pulp is blended at a ratio of 1 to 40 parts by weight, preferably 2 to 30 parts by weight, based on 100 parts by weight of the hydraulic cement. If the amount is less than 1 part by weight, the reinforcing effect cannot be exerted. If the amount is more than 40 parts by weight, dispersion becomes poor, and the surface smoothness of the molded article is deteriorated.

【0019】本発明で配合される水溶性セルロースとし
ては、メチルセルロース、エチルセルロース等のアルキ
ルセルロース、ヒドロキシエチルセルロース、ヒドロキ
シエシルメチルセルロース、ヒドロキシプロピルメチル
セルロース、ヒドロキシエチルセルロース等のヒドロキ
シアルキルセルロース、ヒドロキシアルキルアルキルセ
ルロース、カルボキシメチルセルロース等を例示するこ
とができる。水溶性セルロースは押出組成物の各成分を
混合、押出成形する場合に、混練物に粘性を付与し、成
形性を向上させるものである。水溶性セルロースは水硬
性セメント100重量部に対して0.1〜10重量部、
好ましくは2〜7重量部の割合で配合される。0.1重
量部より少ないと可塑性がなく成形できない。一方10
重量部より多い場合にはコストの上昇を招くだけであ
り、これ以上の効果の向上は期待できない。
Examples of the water-soluble cellulose compounded in the present invention include alkyl cellulose such as methyl cellulose and ethyl cellulose, hydroxyalkyl cellulose such as hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose and hydroxyethyl cellulose, hydroxyalkyl alkyl cellulose, and carboxymethyl cellulose. And the like. The water-soluble cellulose imparts viscosity to the kneaded product and improves moldability when mixing and extruding the components of the extrusion composition. Water-soluble cellulose is 0.1 to 10 parts by weight based on 100 parts by weight of hydraulic cement,
Preferably, it is blended at a ratio of 2 to 7 parts by weight. If the amount is less than 0.1 part by weight, there is no plasticity and molding cannot be performed. On the other hand 10
When the amount is more than the weight part, the cost only increases, and no further improvement in the effect can be expected.

【0020】本発明で配合される鉱物繊維としては、セ
ピオライト、ウォラストナイト、タルク、アタパルジャ
イト、ロックウール等を例示することができる。鉱物繊
維は水硬性セメント100重量部に対して1〜40重量
部、好ましくは3〜25重量部の割合で配合される。1
重量部より少ないと流動性に寄与せず、一方40重量部
より多いと成形体の強度が低下する。
Examples of the mineral fibers blended in the present invention include sepiolite, wollastonite, talc, attapulgite, rock wool and the like. The mineral fibers are blended in a proportion of 1 to 40 parts by weight, preferably 3 to 25 parts by weight, based on 100 parts by weight of the hydraulic cement. 1
If it is less than 10 parts by weight, it does not contribute to fluidity, while if it is more than 40 parts by weight, the strength of the molded article is reduced.

【0021】本発明のセメント系押出成形材料には、上
記以外の添加剤として、必要に応じて、マイカ、アルミ
ナ、炭酸カルシウム等のシリカ以外の無機質材料、パー
ライト等の軽量骨材、ビニロン繊維、ポリエチレン繊
維、炭素繊維等の他の補強繊維、減水剤、界面活性剤、
増粘剤等を配合することもできる。
The cement-based extruded molding material of the present invention may further contain, as necessary, additives other than the above, such as inorganic materials other than silica such as mica, alumina and calcium carbonate, lightweight aggregates such as pearlite, vinylon fiber, Other reinforcing fibers such as polyethylene fiber and carbon fiber, water reducing agent, surfactant,
Thickeners and the like may be added.

【0022】本発明の複合材料は押出成形によって形成
することが特に好ましい。押出成形することにより、一
般により緻密な硬化体が得られ、更に補強繊維が押出方
向により支配的に配向するため、押出方向に対する引張
応力、または押出方向に直角な方向からの曲げ応力に対
して繊維の架橋作用による補強硬化をより効果的に発揮
することができる。
It is particularly preferred that the composite material of the present invention is formed by extrusion. By extrusion molding, a denser cured product is generally obtained, and the reinforcing fibers are more dominantly oriented in the extrusion direction, so that tensile stress in the extrusion direction or bending stress in the direction perpendicular to the extrusion direction is reduced. Reinforcement hardening by the cross-linking action of the fibers can be more effectively exerted.

【0023】本発明のポリプロピレン短繊維補強セメン
ト系押出成形材料を押出成形によって製造するための水
硬性セメント組成物の好ましい配合例は、水硬性セメン
ト100重量部、シリカ質原料40〜100重量部、パ
ルプ1〜40重量部、鉱物繊維1〜40重量部、水溶性
セルロース0.1〜10重量部および水40〜90重量
部を含んでなるマトリックス成分に、繊維長3〜15m
m、繊維径5〜20μm、アスペクト比150〜100
0のポリプロピレン短繊維を硬化後の成形体における体
積混入率3〜10%で含有するものである。
Preferred examples of the hydraulic cement composition for producing the polypropylene short fiber reinforced cement-based extrusion molding material of the present invention by extrusion molding include 100 parts by weight of hydraulic cement, 40 to 100 parts by weight of siliceous raw material, A matrix component comprising 1 to 40 parts by weight of pulp, 1 to 40 parts by weight of mineral fibers, 0.1 to 10 parts by weight of water-soluble cellulose and 40 to 90 parts by weight of water has a fiber length of 3 to 15 m.
m, fiber diameter 5-20 μm, aspect ratio 150-100
No. 0 polypropylene short fiber is contained at a volume mixing ratio of 3 to 10% in the molded article after curing.

【0024】[0024]

【実施例】以下、実施例により本発明をより具体的、且
つより詳細に説明する。実施例 1 普通ポルトランドセメント100重量部に、長さ6m
m、繊維径18μm、比重0.91、ヤング率3.7GP
a、引張強度295MPaのポリプロピレン短繊維9.
0重量部、珪石粉(比表面積4000cm/g)64
重量部、パルプ(広葉樹系パルプ)5重量部、セピオラ
イト5重量部および水溶性セルロース(信越化学工業社
製)6重量部を加えて、ミキサーにより3分間粉体混合
した。粉体混合を続けながらこれに水77重量部(水比
42重量%)を少しずつ加えつつ2分間混合したのちニ
ーダーに移して3分間混練してセメントペーストを練り
上げた。得られたセメントペーストをシリンダー式真空
押出成形機から金型を通して押出成形した。金型の吐出
口寸法は幅80mm、高さ15mmの長方形のものを用
いた。金型から吐出された押出物はトレーに受けた。押
出成形体はトレーごとプラスチックフィルムで包み、恒
温恒湿器中で蒸気養生した。蒸気養生は、湿度98%の
条件下で、70℃で5時間保持した。
EXAMPLES The present invention will be described below more specifically and in detail with reference to examples. Example 1 100 m parts of ordinary Portland cement, 6 m in length
m, fiber diameter 18 μm, specific gravity 0.91 and Young's modulus 3.7 GP
a, polypropylene short fiber having a tensile strength of 295 MPa 9.
0 parts by weight, silica powder (specific surface area: 4000 cm 2 / g) 64
Then, 5 parts by weight of pulp (hardwood pulp), 5 parts by weight of sepiolite, and 6 parts by weight of water-soluble cellulose (manufactured by Shin-Etsu Chemical Co., Ltd.) were added and powder-mixed with a mixer for 3 minutes. While continuing powder mixing, 77 parts by weight of water (42% by weight of water) was added little by little and mixed for 2 minutes, then transferred to a kneader and kneaded for 3 minutes to knead the cement paste. The obtained cement paste was extruded from a cylindrical vacuum extruder through a mold. The discharge port size of the mold used was a rectangular shape having a width of 80 mm and a height of 15 mm. The extrudate discharged from the mold was received in a tray. The extruded body was wrapped with a plastic film together with the tray, and was steam-cured in a thermo-hygrostat. The steam curing was maintained at 70 ° C. for 5 hours under a condition of a humidity of 98%.

【0025】得られたポリプロピレン短繊維補強セメン
ト硬化体(セメント系押出成形材料)の引張特性、曲げ
特性、繊維の界面剪断強度およびポリプロピレン繊維の
体積混入率を次のようにして評価した。 (1)引張特性の評価法 幅約80mm、厚さ約15mmのセメント硬化体から幅
40mm、長さ230mm、厚さ15mmの試験体を切
り出した。これをクロスヘッド速度0.2mm/min
で引張試験を行い、変位は標点間距離50mmの差動ト
ランス式標点間伸び計を使用して測定した。チャック部
は、試験片に幅40mm、長さ60mm、厚さ2mmの
アルミ板をエポキシ樹脂で接着し補強した。測定した荷
重Pをもとに、下記式(2)により引張応力σを評価し
た: σ=P/bt (2) 式中、bは試験片の幅、tは試験片の厚さを表す。図1
に引張試験の状況を示した。
The tensile properties, bending properties, interfacial shear strength of the fibers and the volumetric mixing ratio of the polypropylene fibers of the obtained cured polypropylene short fiber reinforced cement (cement-based extruded material) were evaluated as follows. (1) Method of evaluating tensile properties A test specimen having a width of 40 mm, a length of 230 mm, and a thickness of 15 mm was cut out from a hardened cement body having a width of about 80 mm and a thickness of about 15 mm. The crosshead speed is 0.2 mm / min.
, And the displacement was measured using a differential transformer-type intergage extensometer with a 50 mm intergap distance. The chuck portion was reinforced by bonding an aluminum plate having a width of 40 mm, a length of 60 mm, and a thickness of 2 mm to the test piece with an epoxy resin. Based on the measured load P, the tensile stress σ was evaluated by the following equation (2): σ = P / bt (2) In the equation, b represents the width of the test piece and t represents the thickness of the test piece. FIG.
Shows the state of the tensile test.

【0026】(2)曲げ特性の評価法 幅約80mm、厚さ約15mmのセメント硬化体から幅
40mm、長さ200mm、厚さ15mmの2点載荷単
純曲げ試験用の試験体を切り出した。載荷点間距離は5
0mm、支点間距離は150mm、クロスヘッド速度は
0.2mm/minで行った。測定した荷重Pをもと
に、下記式(3)により曲げ応力σを評価した: σ=PL/bt (3) 式中、bは試験片の幅、tは試験片の厚さ、Lは支点間
距離を表す。図2に2点載荷単純曲げ試験の状況を示し
た。
(2) Evaluation Method of Bending Characteristics From a hardened cement material having a width of about 80 mm and a thickness of about 15 mm, a test specimen for a two-point simple bending test having a width of 40 mm, a length of 200 mm and a thickness of 15 mm was cut out. Loading point distance is 5
The measurement was performed at 0 mm, the distance between fulcrums was 150 mm, and the crosshead speed was 0.2 mm / min. Based on the measured load P, the bending stress σ b was evaluated by the following equation (3): σ b = PL / bt 2 (3) where b is the width of the test piece and t is the thickness of the test piece. , L represent the distance between fulcrums. FIG. 2 shows the situation of the two-point loading simple bending test.

【0027】(3)ポリプロピレン繊維の体積混入率の
測定 セメント硬化体を、押出方向に対して直角方向に裁断
し、その裁断面を走査電子顕微鏡を用いて、加速電圧2
5kVで反射電子像を観察した。セメント硬化体中の繊
維混入率Vは、顕微鏡の視野にある観察面のポリプロ
ピレン繊維の断面積の合計を、電子顕微鏡の視野の面積
で除した値として求めた。繊維混入率V は、試験片の
裁断面中の異なる3つの視野について測定した値の平均
値を採用した。
(3) Volumetric mixing ratio of polypropylene fiber
Measurement Cut the hardened cement in the direction perpendicular to the extrusion direction
Then, the cut surface was subjected to an acceleration voltage of 2 using a scanning electron microscope.
The reflected electron image was observed at 5 kV. Fiber in hardened cement
Fiber mixing rate VfIs the protocol of the observation surface in the field of the microscope.
The total cross-sectional area of the pyrene fiber is calculated as the area of the field of view of the electron microscope.
It was calculated as the value divided by. Fiber mixing rate V fOf the specimen
Average of the values measured for three different fields of view in the cut plane
The value was adopted.

【0028】(4)発生した亀裂数の測定 引張試験により発生した亀裂の数は、引張破断後の試験
片について目視により計数した。亀裂数は3個の試験体
の平均値で表した。
(4) Measurement of the number of cracks generated The number of cracks generated by the tensile test was visually counted for the test piece after the tensile fracture. The number of cracks was represented by the average value of three specimens.

【0029】(5)ポリプロピレン短繊維の界面剪断強
度τの算定 引張試験での応力−歪み曲線からのようにして破壊エネ
ルギーGを求め、これを前記の式(1)に代入してポ
リプロピレン短繊維の界面剪断強度τを算出した:図3
(a)は引張試験による試験体の多重亀裂を伴う破壊で
の荷重(縦軸)−変位(横軸)関係を示し、図中、A−
B−C−Dは一般的な荷重−変位曲線を模式的に示して
いる。この図において、荷重最大点Cから、弾性変形部
を意味する直線部分であるABに平行な直線を引き横軸
との交点をA'とする。図からA'CDA'で囲まれた面
積Sを算出し、式 G=S/bt (4) (式中、bおよびtは式(3)におけると同義である)
の関係からGを計算することができる。図3(b)に
は、比較として単一亀裂で破壊する場合の荷重−変位関
係を模式的に示した。本実施例で得られたポリプロピレ
ン短繊維補強セメント硬化体について測定した曲げ特性
(最大応力、ピーク時撓み、亀裂数)、引張特性(最大
応力、ピーク時歪み、亀裂数、界面剪断強度)およびポ
リプロピレン繊維の体積混入率を表1に示した。
(5) Calculation of interfacial shear strength τ of polypropylene short fiber The fracture energy Gb was determined from the stress-strain curve in the tensile test, and this was substituted into the above equation (1) to obtain a polypropylene short fiber. The interfacial shear strength τ of the fiber was calculated: FIG.
(A) shows the load (vertical axis) -displacement (horizontal axis) relationship at the time of fracture with multiple cracks of the test specimen in the tensile test.
BCD schematically shows a general load-displacement curve. In this figure, a straight line parallel to AB, which is a straight line portion indicating an elastic deformation portion, is drawn from the maximum load point C, and the intersection with the horizontal axis is A '. Calculating the enclosed area S in A'CDA 'from the figure, the equation G b = S / bt (4 ) ( wherein, b and t has the same meaning as in the formula (3))
Gb can be calculated from the relationship FIG. 3B schematically shows a load-displacement relationship in the case of breaking with a single crack as a comparison. Flexural properties (maximum stress, peak deflection, number of cracks), tensile properties (maximum stress, peak strain, number of cracks, interfacial shear strength) and polypropylene measured for the cured polypropylene short fiber reinforced cement obtained in this example Table 1 shows the volume mixing ratio of the fibers.

【0030】実施例 2〜5、比較例 1〜4 ポリプロピレン短繊維の混入量を表1に示すように変更
した以外は実施例1と同様にして実施例2〜5および比
較例1〜4のセメント硬化体(セメント系押出成形材
料)を作製し、引張特性、曲げ特性、ポリプロピレン繊
維の体積混入率および発生亀裂数を測定した。測定結果
を表1に示した。また、図4には実施例1、2および比
較例2の引張試験の応力−歪み曲線を、また図5には比
較例1の応力−歪み曲線を示した。
[0030] Examples 2-5, Examples 2-5 and Comparative Examples 1 to 4 the mixing amount of Comparative Examples 1 to 4 Polypropylene staple fibers in the same manner except for changing as shown in Table 1 as in Example 1 A hardened cement body (cement-based extruded material) was prepared, and the tensile properties, bending properties, volume mixing ratio of polypropylene fibers, and the number of generated cracks were measured. Table 1 shows the measurement results. FIG. 4 shows the stress-strain curves of the tensile tests of Examples 1 and 2 and Comparative Example 2, and FIG. 5 shows the stress-strain curves of Comparative Example 1.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】特定の形態を有するポリプロピレン短繊
維をセメントマトリックスに対して特定の範囲の体積混
入率で配合した本発明のセメント系押出成形材料は、引
張応力が加わった場合に多重亀裂を生成して引張破断
し、高い破壊エネルギーを発現することができる。
The cement-based extruded material of the present invention in which polypropylene short fibers having a specific form are blended with a cement matrix in a specific range of a volume mixing ratio generates multiple cracks when tensile stress is applied. As a result, it is possible to exhibit high breaking energy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 セメント硬化体の引張試験状況を示す説明
図。
FIG. 1 is an explanatory view showing a tensile test state of a hardened cement body.

【図2】 セメント硬化体の2点載荷単純曲げ試験状況
を示す説明図。
FIG. 2 is an explanatory view showing a two-point loading simple bending test situation of a hardened cement body.

【図3】 破壊エネルギーGを算出するために曲げ荷
重−変位模式図: (a)多重亀裂で破壊する場合の荷重−変位模式図、
(b)単一亀裂で破壊する場合の荷重−変位模式図。
[Figure 3] bending load for calculating the fracture energy G b - displacement schematic view: (a) a load in the case of breaking a multiple Crack - displacement schematic,
(B) Schematic diagram of load-displacement in the case of breaking with a single crack.

【図4】 実施例1、2および比較例2のセメント硬化
体の引張応力−歪み関係図。
FIG. 4 is a view showing a relation between tensile stress and strain of the cement hardened bodies of Examples 1 and 2 and Comparative Example 2.

【図5】 比較例1のセメント硬化体の引張応力−歪み
関係図。
FIG. 5 is a diagram showing a relationship between tensile stress and strain of a cured cement body of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1:実施例1 2:実施例2 3:比較例1 4:比較例2 11:セメント硬化体 12:歪みゲージ 13:把握部分のアルミニウム板 14:支点 15:載荷点。 1: Example 1 2: Example 2 3: Comparative example 14 4: Comparative example 2 11: Cement hardened body 12: Strain gauge 13: Aluminum plate of grasping part 14: Support point 15: Loading point.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 16:06 C04B 16:02 A 16:02 14:04 Z 14:04 14:38 C 14:38 24:38 B 24:38) 111:12 111:12 111:20 111:20 Fターム(参考) 4G012 PA03 PA04 PA15 PA18 PA22 PA24 PA27 PA29 PB04 PB40 PC01 PC08 PC12 PC14 PE04 4G054 AA01 AA15 AC04 BD00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 16:06 C04B 16:02 A 16:02 14:04 Z 14:04 14:38 C 14:38 24 : 38 B 24:38) 111: 12 111: 12 111: 20 111: 20 F term (reference) 4G012 PA03 PA04 PA15 PA18 PA22 PA24 PA27 PA29 PB04 PB40 PC01 PC08 PC12 PC14 PE04 4G054 AA01 AA15 AC04 BD00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 多重亀裂を生成して引張破断するポリプ
ロピレン短繊維補強セメント系押出成形材料。
An extruded polypropylene short fiber reinforced cementitious material which generates multiple cracks and breaks in tension.
【請求項2】 水硬性セメントと補強用繊維との界面で
の繊維の界面剪断強度が0.2MPa〜1.4MPaであ
るようにポリプロピレン短繊維で補強されたセメント系
押出成形材料。
2. A cement-based extruded material reinforced with polypropylene short fibers such that the interfacial shear strength of the fibers at the interface between the hydraulic cement and the reinforcing fibers is from 0.2 MPa to 1.4 MPa.
【請求項3】 水硬性セメントマトリックス中に、繊維
長3〜15mm、繊維径5〜20μm、アスペクト比1
50〜1000のポリプロピレン短繊維が、硬化後の成
形体における体積混入率3〜10%となるように配合さ
れてなる請求項1または2に記載のセメント系押出成形
材料。
3. A hydraulic cement matrix having a fiber length of 3 to 15 mm, a fiber diameter of 5 to 20 μm, and an aspect ratio of 1.
The cement-based extruded material according to claim 1 or 2, wherein 50 to 1000 polypropylene short fibers are blended so as to have a volumetric mixing ratio of 3 to 10% in the cured product.
【請求項4】 水硬性セメントマトリックスが、水硬性
セメント100重量部に対して、シリカ質原料40〜1
00重量部、パルプ1〜40重量部、水溶性セルロース
0.1〜10重量部配合されてなる請求項3に記載のセ
メント系押出成形材料。
4. A hydraulic cement matrix comprising 100 to 100 parts by weight of hydraulic cement and 40 to 1 of siliceous raw material.
The cement-based extruded material according to claim 3, wherein the cement-based extrusion molding material is mixed with 00 parts by weight, 1 to 40 parts by weight of pulp, and 0.1 to 10 parts by weight of water-soluble cellulose.
【請求項5】 水硬性セメントマトリックスが、水硬性
セメント100重量部に対して、鉱物繊維を1〜40重
量部を更に含有する請求項4に記載のセメント系押出成
形材料。
5. The cement-based extruded material according to claim 4, wherein the hydraulic cement matrix further contains 1 to 40 parts by weight of mineral fibers based on 100 parts by weight of hydraulic cement.
【請求項6】 水硬性セメント100重量部、シリカ質
原料40〜100重量部、パルプ1〜40重量部、鉱物
繊維1〜40重量部、水溶性セルロース0.1〜10重
量部および水40〜90重量部を含んでなるマトリック
ス成分に、繊維長3〜15mm、繊維径5〜20μm、
アスペクト比150〜1000のポリプロピレン短繊維
を硬化後の成形体における体積混入率3〜10%となる
ように配合されてなる水硬性セメント組成物を押出成形
したのち硬化してなる請求項1〜5のいずれかに記載の
セメント系押出成形材料。
6. Hydraulic cement 100 parts by weight, siliceous raw material 40 to 100 parts by weight, pulp 1 to 40 parts by weight, mineral fiber 1 to 40 parts by weight, water-soluble cellulose 0.1 to 10 parts by weight and water 40 to 100 parts by weight. A matrix component comprising 90 parts by weight has a fiber length of 3 to 15 mm, a fiber diameter of 5 to 20 μm,
An extrusion molding of a hydraulic cement composition comprising polypropylene short fibers having an aspect ratio of 150 to 1000 blended so as to have a volumetric mixing ratio of 3 to 10% in a molded article after curing, followed by curing. The cement-based extruded material according to any one of the above.
JP2001150809A 2001-05-21 2001-05-21 Short fiber reinforced cement-based extrusion molding material Expired - Lifetime JP3875041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001150809A JP3875041B2 (en) 2001-05-21 2001-05-21 Short fiber reinforced cement-based extrusion molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001150809A JP3875041B2 (en) 2001-05-21 2001-05-21 Short fiber reinforced cement-based extrusion molding material

Publications (2)

Publication Number Publication Date
JP2002338319A true JP2002338319A (en) 2002-11-27
JP3875041B2 JP3875041B2 (en) 2007-01-31

Family

ID=18995766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001150809A Expired - Lifetime JP3875041B2 (en) 2001-05-21 2001-05-21 Short fiber reinforced cement-based extrusion molding material

Country Status (1)

Country Link
JP (1) JP3875041B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292667A (en) * 2008-06-03 2009-12-17 Ohbayashi Corp Fiber reinforced cement composite material and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292667A (en) * 2008-06-03 2009-12-17 Ohbayashi Corp Fiber reinforced cement composite material and production method thereof

Also Published As

Publication number Publication date
JP3875041B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
Nematollahi et al. Microscale investigation of fiber-matrix interface properties of strain-hardening geopolymer composite
RU2396379C2 (en) Synthetic fibre for three-dimensional reinforcement of cement product and method of preparing said fibre (versions), cement product containing dispersed synthetic fibre and method of preparing said cement product
Kwon et al. Effect of wollastonite microfiber on ultra-high-performance fiber-reinforced cement-based composites based on application of multi-scale fiber-reinforcement system
WO2017070748A1 (en) Geopolymer composite and geopolymer matrix composition
US11634361B2 (en) Polymer fibers for reinforcement of cement-based composites
Ahmed et al. Ductile behavior of polyethylene fibre reinforced geopolymer composite
CZ385796A3 (en) Cement mixture mdf (without macroscopic defects) with enhanced impact strength
CN114920502A (en) High-ductility high-strength polyformaldehyde fiber reinforced cement-based composite material and preparation method thereof
JP4372379B2 (en) Short fiber reinforced cement-based extrusion molding material
JP2003104766A (en) Fiber reinforced hydraulic composition and fiber reinforced hydraulic formed body obtained by using the composition
JP6302716B2 (en) Reinforcing fiber for hydraulic molded body and hydraulic material containing the same
Li et al. Static and dynamic behavior of extruded sheets with short fibers
Demura et al. Properties of artificial woods using FRP powder
JP2002338319A (en) Short fiber reinforced cement type extrusion forming material
JP5758597B2 (en) Reinforcing material and molded article containing the reinforcing material
JP2000264708A (en) High-toughness fiber reinforced cement product and its production
WO1999041440A1 (en) Reinforced composites including bone-shaped short fibers
JP2004315251A (en) High strength/high toughness cement compound material and method of manufacturing the same
Tajunnisa et al. Impact of PVA fiber as fine aggregate replacement in alkali-activated fly ash on flow rate, mechanical properties and drying shrinkage
GB1563190A (en) Cementituos compositions
JP2004137119A (en) Cement-based fiber composite material
JP5361297B2 (en) Cement staircase
Sufian The microstructural and mechanical properties of glass fiber reinforced geopolymer composites
JP2000281402A (en) Steel fiber for reinforcing high strength composition
JP2005255425A (en) High toughness cement hardened body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3875041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term