JP2002335697A - Voltage control method for induction generator using variable reactor - Google Patents

Voltage control method for induction generator using variable reactor

Info

Publication number
JP2002335697A
JP2002335697A JP2001132106A JP2001132106A JP2002335697A JP 2002335697 A JP2002335697 A JP 2002335697A JP 2001132106 A JP2001132106 A JP 2001132106A JP 2001132106 A JP2001132106 A JP 2001132106A JP 2002335697 A JP2002335697 A JP 2002335697A
Authority
JP
Japan
Prior art keywords
induction generator
variable reactor
voltage
self
voltage control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001132106A
Other languages
Japanese (ja)
Other versions
JP4789030B2 (en
Inventor
Hiroaki Miyanaga
博昭 宮長
Toshikatsu Sonoda
敏勝 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KITAKIYUUSHIYUU TECHNO CENTER KK
KITAKIYUUSHIYUU TECHNO CT KK
Kinki University
Original Assignee
KITAKIYUUSHIYUU TECHNO CENTER KK
KITAKIYUUSHIYUU TECHNO CT KK
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KITAKIYUUSHIYUU TECHNO CENTER KK, KITAKIYUUSHIYUU TECHNO CT KK, Kinki University filed Critical KITAKIYUUSHIYUU TECHNO CENTER KK
Priority to JP2001132106A priority Critical patent/JP4789030B2/en
Publication of JP2002335697A publication Critical patent/JP2002335697A/en
Application granted granted Critical
Publication of JP4789030B2 publication Critical patent/JP4789030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a voltage control method which can extend an upper limit of an operation speed range of a self-excitation induction generator to a value three times that of a conventional technology. SOLUTION: This voltage control method for a self-excitation induction generator changes an inductance by a variable reactor to change a value of an equivalent capacitive current so as to correspond to a revolution of the self-excitation induction generator and a load variation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、たとえば風力発電
に用いられる自励式誘導発電機の電圧制御方法に関す
る。
The present invention relates to a voltage control method for a self-excited induction generator used for wind power generation, for example.

【0002】[0002]

【従来の技術】従来、電力は、重油、石炭等の化石燃料
を燃焼させてその熱エネルギを電気エネルギに変換する
方法、核分裂による熱エネルギを電気エネルギに変換す
る方法、或いは水力を電気エネルギに変換する方法によ
って供給されている。わけても、その大きな割合が、前
記化石燃料の燃焼による熱エネルギに依っている。化石
燃料の燃焼による熱エネルギからの電力供給システムに
よるときは、CO2の漸増による地球環境問題を招来す
るほか、化石燃料供給能力の有限性の問題もある。
2. Description of the Related Art Conventionally, electric power is generated by burning fossil fuels such as heavy oil and coal to convert heat energy into electric energy, converting heat energy due to fission into electric energy, or converting hydraulic power into electric energy. Powered by a way to convert. In particular, a large proportion depends on the thermal energy from the combustion of the fossil fuel. In the case of using a power supply system from thermal energy generated by burning fossil fuel, there is a problem of global environmental problems due to the gradual increase of CO 2 and also a problem of finite fossil fuel supply capacity.

【0003】従って、太陽光、太陽熱、風力、潮力等ク
リーンなエネルギの利用技術の開発が強く望まれてい
る。わけても、無尽蔵である風力を電気エネルギに変換
する技術は有望であり、風力発電プラントの設置が世界
的な規模で進められている。風力エネルギを電気エネル
ギに変換するには、誘導発電機が適している。誘導機
は、構造が簡単で耐久性に富みしかも安価である。
[0003] Therefore, there is a strong demand for the development of a technology for using clean energy such as sunlight, solar heat, wind power, tidal power and the like. In particular, technologies for converting inexhaustible wind power into electric energy are promising, and installation of wind power plants is being promoted on a worldwide scale. An induction generator is suitable for converting wind energy into electrical energy. The induction machine has a simple structure, is durable and inexpensive.

【0004】[0004]

【発明が解決しようとする課題】処が、誘導発電機に
は、低速回転時の自励の問題、高速回転時の過励磁の問
題がある。この問題を解決する方法として、コンデンサ
バンクを切り換えて対応する方法があるけれども、コン
デンサ容量を誘導発電機の回転速度に対応させて連続的
に変化させることは、きわめて困難である。従来、誘導
発電機は、低速回転域では自励しない。逆に、高速回転
域では過励振となり、コンデンサ電流によって固定子巻
線が過熱する問題があった。このように、誘導発電機の
運転可能速度域は狭隘であった。
However, induction generators have a problem of self-excitation at low speed rotation and a problem of overexcitation at high speed rotation. Although there is a method of solving this problem by switching the capacitor bank, it is extremely difficult to continuously change the capacitor capacity according to the rotation speed of the induction generator. Conventionally, induction generators are not self-excited in the low speed range. Conversely, there is a problem that over-excitation occurs in the high-speed rotation range, and the stator winding is overheated by the capacitor current. Thus, the operable speed range of the induction generator was narrow.

【0005】本発明は、上記従来技術における問題を解
決し、自励式誘導発電機における運転可能速度域の上限
を、従来技術の3倍以上に拡大できる電圧制御方法を提
供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a voltage control method capable of solving the above-mentioned problems in the prior art and increasing the upper limit of the operable speed range of the self-excited induction generator to three times or more that of the prior art. .

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の請求項1に記載の発明は、自励式誘導発電機の電圧制
御方法であって、可変リアクトルによってインダクタン
スを変化させて等価進相電流の大きさを自励式誘導発電
機の回転数と負荷変化に対応して変化させることを特徴
とする可変リアクトルを用いた誘導発電機の電圧制御方
法である。
According to a first aspect of the present invention, there is provided a voltage control method for a self-excited induction generator, the method comprising: Is a method for controlling the voltage of an induction generator using a variable reactor, wherein the magnitude is changed according to the rotation speed and load change of the self-excited induction generator.

【0007】請求項2に記載の発明は、可変リアクトル
として、磁束制御型可変リアクトルを用いる請求項1に
記載の可変リアクトルを用いた誘導発電機の電圧制御方
法である。
According to a second aspect of the present invention, there is provided a voltage control method for an induction generator using a variable reactor according to the first aspect, wherein a variable flux type variable reactor is used as the variable reactor.

【0008】請求項3に記載の発明は、可変リアクトル
として、トロイダル状磁心の一部の磁束密度をもう1つ
の磁心を用いて制御し、リアクトル巻線のインダクタン
スを連続的に変化させるよう構成した可変リアクトルを
用いる請求項1または請求項2に記載の可変リアクトル
を用いた誘導発電機の電圧制御方法である。
According to a third aspect of the present invention, as the variable reactor, the magnetic flux density of a part of the toroidal magnetic core is controlled by using another magnetic core, and the inductance of the reactor winding is continuously changed. A voltage control method for an induction generator using a variable reactor according to claim 1 or 2, wherein a variable reactor is used.

【0009】[0009]

【発明の実施の形態】以下、本発明をその好ましい実施
形態に則して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on preferred embodiments.

【0010】誘導発電機の回転速度に対する自励範囲
は、誘導機定数と外付けコンデンサの容量によって定ま
る。即ち、回転数が小さい時には、自励しない。逆に、
回転数が大き過ぎると過励振となり、コンデンサ電流に
よる固定子巻線のジュール熱による過熱を招く。従っ
て、誘導発電機の運転可能速度の上限nG,maxは、コン
デンサ電流による固定子巻線のジュール熱による過熱を
招かない範囲内に制限された。誘導機は構造が簡単で耐
久性に富みしかも安価で、風力発電に適しているけれど
も、誘導発電機を風力発電等に実用するには、前記自励
範囲の問題を解決しなければならない。
The self-excitation range for the rotation speed of the induction generator is determined by the induction machine constant and the capacity of an external capacitor. That is, when the rotational speed is low, the self-excitation is not performed. vice versa,
If the number of rotations is too high, over-excitation occurs, which causes overheating due to Joule heat of the stator winding due to the capacitor current. Therefore, the upper limit n G, max of the operable speed of the induction generator is limited to a range that does not cause overheating due to Joule heat of the stator winding due to the capacitor current. Although the induction machine has a simple structure, is durable and inexpensive, and is suitable for wind power generation, the problem of the self-excited range must be solved in order to use the induction generator for wind power generation and the like.

【0011】発明者らは、下記に示す定数のかご形誘導
電動機を発電機として運転した。このときの回転速度n
Gに対する自励電圧VGとコンデンサ電流ICとの関係を
図1に示す。 3相 0.75(kW) 4極 200(V) 60(Hz) 50(Hz) Irate 3.2(A) 3.5(A) 1710(rpm) 1430(rpm) R1=3.1(Ω) L1+L2’=12.8(mH) M=195(mH) R2’=2.33(Ω)
The inventors operated a squirrel-cage induction motor having the following constants as a generator. The rotation speed n at this time
The relationship between the self-excitation voltage V G and the capacitor current I C for G shown in FIG. 3-phase 0.75 (kW) 4-pole 200 (V) 60 (Hz) 50 (Hz) I rate 3.2 (A) 3.5 (A) 1710 (rpm) 1430 (rpm) R 1 = 3.1 (Ω) L 1 + L 2 ′ = 12.8 (mH) M = 195 (mH) R 2 ′ = 2.33 (Ω)

【0012】図1に示すのは、誘導発電機を1800
(rpm)の一定速度で運転したときのコンデンサ容量
Cに対する自励電圧VGとコンデンサ電流ICの実測値で
ある。ここに、CO(=33μF)は、定格電圧VO(=
200V)を与えるコンデンサ容量である。図1から明
らかなように、自励電圧VGはコンデンサ容量に大きく
依存している。コンデンサ容量が0.94CO以下で
は、自励しない。
FIG. 1 shows an induction generator 1800.
Is a measured value of the self-voltage V G and the capacitor current I C for the capacitor capacitance C when operated at a constant speed of (rpm). Here, C O (= 33 μF) is the rated voltage V O (=
200V). As apparent from FIG. 1, the self-excited voltage V G is largely dependent on the capacitance of the capacitor. If the capacitor capacity is 0.94 C O or less, it will not excite itself.

【0013】図2に、誘導発電機の回転速度nGと自励
電圧VGの関係を、コンデンサ容量Cをパラメータとし
て示す。ここで、低速域でも発電できるようにすべく、
コンデンサ容量を定格電圧VO(=200V)を与える
コンデンサ容量COの2倍としたときの誘導発電機の運
転範囲について見てみる。図2から、定格電圧VO(=
200V)を与える回転数nG,Oは1387rpmであ
る。一方、自励する運転可能下限速度nG,minは130
0rpmであり、運転可能上限速度nG,maxは、誘導機
の50Hzにおける定格電流Irate(=3.5A)と等
しくなるコンデンサ電流の大きさで定めると、1600
rpmである。
[0013] FIG. 2 shows the relationship between the rotational speed n G and self-excited voltage V G of the induction generator, the capacitance C as a parameter. Here, in order to be able to generate electricity even in the low speed range,
The operating range of the induction generator when the capacitor capacity is twice the capacitor capacity C O that gives the rated voltage V O (= 200 V) will be examined. From FIG. 2, the rated voltage V O (=
The rotation speed n G, O giving 200 V) is 1387 rpm. On the other hand, the self-excited operable lower limit speed n G, min is 130
0 rpm, and the operable upper limit speed n G, max is determined by the magnitude of the capacitor current which is equal to the rated current I rate (= 3.5 A) at 50 Hz of the induction machine.
rpm.

【0014】これらから明らかなように、定格電圧VO
(=200V)を与える回転数nG,Oに対する上限n +
と下限n -の割合は、 n +={(nG,max−nG,O)/nG,O}×100=15.4(%) n -={(nG,min−nG,O)/nG,O}×100= 6.3(%) と狭い範囲となっている。さらに、自励電圧VGは、n
G,minとnG,maxの間で、160V〜270Vと大きく変
化しており、誘導発電機を風力発電に適用するには、電
圧制御を実現することの必要性が分かる。
As is apparent from these, the rated voltage V O
(= 200V), the upper limit n + for the rotation speed n G, O
The lower limit n - percentage of, n △ + = {(n G, max -n G, O) / n G, O} × 100 = 15.4 (%) n △ - = {(n G, min −n G, O ) / n G, O } × 100 = 6.3 (%). Further, the self-excited voltage V G is n
There is a large change between G, min and nG , max , between 160 V and 270 V, indicating that voltage control is necessary to apply the induction generator to wind power generation.

【0015】誘導電動機における自励電圧VGを制御す
るには、等価進相電流Ilead,eqの大きさを、回転数の
変化に対応して変化させればよい。従来、等価進相電流
lead,eqの大きさを、誘導機の回転数に対応して変化
させるために、遅相分を注入すべくリアクトルの点弧角
を制御することが行われてきた。しかしながら、この方
法によってインダクタンスを低歪で広範囲に亘って変化
させることは困難であった。
[0015] To control the self-excitation voltage V G in the induction motor, equivalent leading current I lead, the size of eq, may be changed in response to changes in rotational speed. Conventionally, in order to change the magnitude of the equivalent advance current I lead, eq corresponding to the rotation speed of the induction machine, it has been performed to control the firing angle of the reactor to inject the lag component. . However, it has been difficult to change the inductance over a wide range with low distortion by this method.

【0016】[0016]

【実施例】図3に、発明者らが開発した磁束制御型可変
リアクトルLvarの基本構成を示す。この可変リアクト
ルは、磁心の等価透磁率を変化させる方式である。この
可変リアクトルにあっては、磁路の一部を飽和させるよ
うにしている。そのために、外部から磁心MMの一部に
制御磁界を印加する。図4に、本発明において用いる可
変リアクトルにおける制御電流に対するインダクタンス
の変化の模様を示す。制御電流Iconによってインダク
タンスが30倍以上変化している。
[Embodiment] FIG. 3 shows a basic configuration of the invention developed by the flux-controlled variable reactor L var. This variable reactor is a system that changes the equivalent magnetic permeability of a magnetic core. In this variable reactor, a part of the magnetic path is saturated. Therefore, applying a control magnetic field from the outside on a part of the magnetic core M M. FIG. 4 shows how the inductance changes with respect to the control current in the variable reactor used in the present invention. The inductance changes 30 times or more by the control current I con .

【0017】図5に、本発明の、可変リアクトルを用い
た誘導電動機の電圧制御方法を実施するときの制御回路
を示す。図5において、 VG,r:自励電圧VGの目標値 KV :自励電圧VGの検出回路におけるゲイン εV :自励電圧の目標値VG,rと検出された自励電圧V
Gとの偏差 GV(s):偏差εVから制御電流の目標値Icon,rを出
力する電圧誤差増幅回路 εI :制御電流の目標値Icon,rと、制御磁界MCの制
御電流Iconとの偏差 GI(s):偏差εIから制御電流Iconを出力する電流
誤差増幅回路 KA :電流増幅器におけるゲイン である。図5に示すように、風速に応じて変化する誘導
発電機I.G.の出力電圧を電圧検出回路で検出し、こ
の検出値と自励電圧の目標値VG,rとの偏差εVを出力
し、電圧誤差増幅回路によって、偏差εVから制御電流
の目標値Icon,rを出力する。この制御電流の目標値I
con,rとその時の制御磁界の制御電流Iconとを対比しそ
の偏差εIを出力し、電流誤差増幅器GI(s)と電流増
幅器KAによって増幅して制御電流のIconを制御して可
変リアクトルのインダクタンスを変化させ、これによっ
て誘導発電機I.G.の出力電圧をその目標値あるV
G,rに一致させる。ここで、図5におけるGV(s)を下
記式に示すPI増幅器で構成すると、定常状態では、電
圧偏差εVは零となり、自励電圧VGはVG,r/KVに一致
する。 GV(s)=KP{1+1/(sτI)} (1) εV=VG,r−KVG=0 (2)
FIG. 5 shows a control circuit for implementing the voltage control method for an induction motor using a variable reactor according to the present invention. In FIG. 5, V G, r: own target value K V of excitation voltage V G: Gain epsilon V in the detection circuit of the self-excitation voltage V G: target value V G of the self-excited voltage, r and the detected self-voltage V
Deviation between G G V (s): the target value I con of the control current from the deviation epsilon V, voltage error amplifier circuit for outputting a r epsilon I: target value I con of the control current, and r, the control of the control magnetic field M C deviation between the current I con G I (s): deviation ε current error amplifier circuit for outputting a control current I con from I K a: a gain in the current amplifier. As shown in FIG. 5, an induction generator I.V. G. FIG. Detecting the output voltage by the voltage detection circuit, the target value V G of the detection value and the self-excited voltage, and outputs a deviation epsilon V with r, the voltage error amplifier circuit, the target value I of the control current from the deviation epsilon V Output con, r . The target value I of this control current
con, and comparing the control current I con of r and the control field at that time and outputs the deviation epsilon I, to control the I con control current is amplified by a current error amplifier G I (s) and current amplifier K A To change the inductance of the variable reactor, thereby changing the induction generator I.I. G. FIG. Output voltage of the target value V
Match with G, r . Here, when configuring the PI amplifier shown a G V (s) in FIG. 5 by the following formula, in the steady state, voltage deviation epsilon V becomes zero, the self-excited voltage V G corresponds to V G, r / K V . G V (s) = K P {1 + 1 / (sτ I )} (1) ε V = V G, r −K V V G = 0 (2)

【0018】図6に、VG,r/KVを180V、200
V、220Vとしたときの誘導発電機I.G.の回転数
Gの変化に対する自励電圧VGの振舞いを示す。ここ
で、GV(s)を(1)式に示すPI増幅器(KP=0.
75、τI=6.6×10-3)で構成しているため、定
常状態における電圧偏差は0.25%以下と微小であ
る。電圧制御時の誘導発電機の運転可能領域を、図2に
示す無制御時と同様に、コンデンサ容量を2COとした
場合で比較すると、定格電圧VO(=200V)を与え
る回転数nG,Oに対する上限比率n +は3倍以上に拡大
している。また、nG,Oに対する下限比率n -は、図6
に示すように、大きなコンデンサを繋げば低速回転領域
でも電圧制御が可能である。
FIG. 6 shows that V G, r / K V is 180 V, 200 V
V, 220V, induction generator I. G. FIG. Shows the behavior of the self-excitation voltage V G for the change in the rotational speed n G. Here, G V (s) is a PI amplifier (K P = 0.
75, τ I = 6.6 × 10 −3 ), so that the voltage deviation in the steady state is as small as 0.25% or less. When the operable range of the induction generator at the time of voltage control is compared with the case where the capacitor capacity is 2C O , as in the case of non-control shown in FIG. 2, the number of rotations n G giving the rated voltage V O (= 200V) , O , the upper limit ratio n + is more than tripled. Further, n G, the lower limit for the O ratio n - is 6
As shown in (1), if a large capacitor is connected, voltage control can be performed even in a low-speed rotation region.

【0019】図7に、電圧制御時の端子電圧、コンデン
サ電流とインダクタンス電流波形を示す。iL波形の歪
の小さいことが確認できる。
FIG. 7 shows terminal voltage, capacitor current and inductance current waveforms during voltage control. It can be confirmed that the distortion of the i L waveform is small.

【0020】図8に、抵抗負荷RLを繋がない無負荷状
態で、誘導発電機の回転数を変化させたときの自励電圧
Gの過渡特性を示す。無制御時には、1804rpm
から2000rpmの回転数変化に対し、自励電圧VG
は205.3Vから296.8Vへと91.5Vも変化
している。これに対し、制御時には1秒間程度の僅かな
過渡応答は認められるものの定常偏差は、0.25%以
下の定電圧に制御されている。
[0020] FIG. 8 shows a no-load state not connected the resistive load R L, the transient characteristics of the self-excitation voltage V G at the time of changing the rotation speed of the induction generator. At the time of non-control, 1804 rpm
Self-excitation voltage V G for rotation speed change from 2000 rpm to
Has changed by 91.5V from 205.3V to 296.8V. On the other hand, at the time of control, a slight transient response of about one second is recognized, but the steady-state deviation is controlled to a constant voltage of 0.25% or less.

【0021】誘導発電機の電圧を制御しない場合の上限
回転数は、コンデンサ容量C=2COとした場合、図2
から1600rpmである。これに対し、制御した場合
は、図6に示すように、2000rpm以上となる。風
力エネルギは風速の3乗に比例するから、電圧を制御す
ることによって、(2000/1600)3=1.95
倍の電力を採取できる。また、得られた電力をたとえ
ば、電力系統に送電することを考えると、無制御時には
端子電圧が160Vから270V程度に変化しているの
に対し、制御時には目標値に一致した電圧となるから、
電力系統への送電が容易になる。
The upper limit rotational speed when no control voltage of the induction generator, when the capacitance C = 2C O, 2
To 1600 rpm. On the other hand, when the control is performed, as shown in FIG. Since wind energy is proportional to the cube of wind speed, by controlling the voltage, (2000/1600) 3 = 1.95
Double power can be collected. Also, considering that the obtained electric power is transmitted to a power system, for example, the terminal voltage changes from 160 V to about 270 V during non-control, but becomes a voltage that matches the target value during control.
Power transmission to the power system becomes easier.

【0022】[0022]

【発明の効果】本発明によれば、従来、困難であった誘
導発電機における電圧制御を容易にするとともに、誘導
発電機の運転可能回転速度範囲を従来の3倍以上に拡大
し、誘導発電機の風力発電への適用を実用化できる。
According to the present invention, voltage control in an induction generator, which has been difficult in the past, can be facilitated, and the operable rotational speed range of the induction generator can be expanded to three times or more of that of the prior art. Application of the machine to wind power can be put to practical use.

【0023】請求項2に記載の発明によれば、電流歪が
きわめて小さく、インダクタンスを30倍以上に広範囲
に可変とすることができる。
According to the second aspect of the present invention, the current distortion is extremely small, and the inductance can be varied over a wide range of 30 times or more.

【0024】請求項3に記載の発明によれば、電流歪が
きわめて小さく、インダクタンスを30倍以上に広範囲
に可変とすることができるほか、可変リアクトルをきわ
めてコンパクトでシンプルな構造とすることができ安価
であるとともに、操作性に優れている。
According to the third aspect of the present invention, the current distortion is extremely small, the inductance can be varied over a wide range of 30 times or more, and the variable reactor can have an extremely compact and simple structure. It is inexpensive and has excellent operability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】定速度運転時の外付けコンデンサに対する発電
電圧を示すグラフ
FIG. 1 is a graph showing a generated voltage with respect to an external capacitor during a constant speed operation.

【図2】無制御時の誘導発電機の回転速度に対する自励
電圧VGとコンデンサ電流ICの関係を示すグラフ
2 is a graph showing the relationship between the self-excitation voltage V G and the capacitor current I C with respect to the rotational speed of the induction generator during uncontrolled

【図3】等価透磁率を変化させる本発明における可変リ
アクトルの構成を示す模式図
FIG. 3 is a schematic diagram showing a configuration of a variable reactor in the present invention that changes the equivalent magnetic permeability.

【図4】可変リアクトルにおける制御電流に対するイン
ダクタンスの変化を示すグラフ
FIG. 4 is a graph showing a change in inductance with respect to a control current in a variable reactor.

【図5】本発明の誘導電動機の電圧制御回路を示す回路
FIG. 5 is a circuit diagram showing a voltage control circuit of the induction motor of the present invention.

【図6】本発明の電圧制御時の誘導発電機の回転速度に
対する自励範囲を示すグラフ
FIG. 6 is a graph showing the self-excitation range with respect to the rotation speed of the induction generator during voltage control according to the present invention.

【図7】本発明の電圧制御時の動作波形を示すグラフFIG. 7 is a graph showing operation waveforms during voltage control according to the present invention.

【図8】誘導発電機における電圧制御の有無における過
渡特性を示すグラフ
FIG. 8 is a graph showing transient characteristics of the induction generator with and without voltage control.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 自励式誘導発電機の電圧制御方法であっ
て、可変リアクトルによってインダクタンスを変化させ
て等価進相電流の大きさを自励式誘導発電機の回転数と
負荷変化に対応して変化させることを特徴とする可変リ
アクトルを用いた誘導発電機の電圧制御方法。
1. A voltage control method for a self-excited induction generator, comprising: changing an inductance by a variable reactor to change a magnitude of an equivalent advance current according to a rotation speed and a load change of the self-excited induction generator. A voltage control method for an induction generator using a variable reactor.
【請求項2】 可変リアクトルとして、磁束制御型可変
リアクトルを用いる請求項1に記載の可変リアクトルを
用いた誘導発電機の電圧制御方法。
2. The voltage control method for an induction generator using a variable reactor according to claim 1, wherein a magnetic flux control type variable reactor is used as the variable reactor.
【請求項3】 可変リアクトルとして、トロイダル状磁
心の一部の磁束密度をもう1つの磁心を用いて制御し、
リアクトル巻線のインダクタンスを連続的に変化させる
よう構成した可変リアクトルを用いる請求項1または請
求項2に記載の可変リアクトルを用いた誘導発電機の電
圧制御方法。
3. A variable reactor, wherein the magnetic flux density of a part of the toroidal magnetic core is controlled by using another magnetic core,
3. The voltage control method for an induction generator using a variable reactor according to claim 1, wherein a variable reactor configured to continuously change the inductance of the reactor winding is used.
JP2001132106A 2001-04-27 2001-04-27 Voltage control method for induction generator using variable reactor Expired - Fee Related JP4789030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001132106A JP4789030B2 (en) 2001-04-27 2001-04-27 Voltage control method for induction generator using variable reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001132106A JP4789030B2 (en) 2001-04-27 2001-04-27 Voltage control method for induction generator using variable reactor

Publications (2)

Publication Number Publication Date
JP2002335697A true JP2002335697A (en) 2002-11-22
JP4789030B2 JP4789030B2 (en) 2011-10-05

Family

ID=18980170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001132106A Expired - Fee Related JP4789030B2 (en) 2001-04-27 2001-04-27 Voltage control method for induction generator using variable reactor

Country Status (1)

Country Link
JP (1) JP4789030B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226710B (en) * 2015-10-20 2017-09-15 国家电网公司 Generating set under-excitation ability dynamical min method based on measured data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140850A (en) * 1976-05-20 1977-11-24 Mitsubishi Electric Corp Generator output stabilizer
JPS5556608A (en) * 1978-10-20 1980-04-25 Hydro Quebec Variable inductor
JPH06284657A (en) * 1993-03-29 1994-10-07 Satake Eng Co Ltd Induction generator
JPH0865976A (en) * 1994-08-11 1996-03-08 Satake Eng Co Ltd Brushless self-excited three-phase synchronous generator
JP2001518699A (en) * 1997-09-30 2001-10-16 アーベーベー アクティエボラーグ Magnetic tap changer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140850A (en) * 1976-05-20 1977-11-24 Mitsubishi Electric Corp Generator output stabilizer
JPS5556608A (en) * 1978-10-20 1980-04-25 Hydro Quebec Variable inductor
JPH06284657A (en) * 1993-03-29 1994-10-07 Satake Eng Co Ltd Induction generator
JPH0865976A (en) * 1994-08-11 1996-03-08 Satake Eng Co Ltd Brushless self-excited three-phase synchronous generator
JP2001518699A (en) * 1997-09-30 2001-10-16 アーベーベー アクティエボラーグ Magnetic tap changer

Also Published As

Publication number Publication date
JP4789030B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
Seyoum et al. The dynamic characteristics of an isolated self-excited induction generator driven by a wind turbine
Chen et al. Modern electric machines and drives for wind power generation: A review of opportunities and challenges
Ammasaigounden et al. Wind-driven self-excited pole-changing induction generators
Mosaad Direct power control of SRG‐based WECSs using optimised fractional‐order PI controller
Salama et al. Transient and steady-state load performance of a stand-alone self-excited induction generator
Senthil Kumar et al. Modelling, analysis and control of stand‐alone self‐excited induction generator‐pulse width modulation rectifier systems feeding constant DC voltage applications
Singh et al. Comparative study on the performance of a commercially designed induction generator with induction motors operating as self excited induction generators
Vijayakumar et al. Speed sensor‐less maximum power point tracking and constant output power operation of wind‐driven wound rotor induction generators
Tripathy et al. Wind turbine driven self-excited induction generator
Ali et al. Dynamic characteristics of an isolated self-excited synchronous reluctance generator driven by a wind turbine
Guda Modeling and power managenent of a hybrid wind-microturbine power generation system
Sedky et al. Voltage and frequency control of standalone wind-driven self-excited reluctance generator using switching capacitors
Sangov et al. Three-phase Self-excited Induction Generator for Windmills Analytical Techniques and Experimental Results
Zidani et al. A numerical analytical approach for the optimal capacitor used for the self excited induction generator
JP2002335697A (en) Voltage control method for induction generator using variable reactor
CN101594113B (en) Frequency stabilization control system of permanent magnet wind-driven generator capable of adapting to changing torque
Vongmanee Emulator of wind turbine generator using dual inverter controlled squirrel cage induction motor
Gupta et al. DC-Link voltage regulation of full-power converter for WECS in weak-grid using a variable-flux dual-stator PMSG
Quispe et al. A new voltage regulator for self-excited induction generator-design, simulation, and experimental results
CN101594112B (en) Method for controlling frequency stabilization of permanent magnet wind-driven generator capable of adapting to changing torque
HUT57956A (en) Constant voltage asynchronous generator of crown coil and slot bridge
Shao et al. A comparative study on nine-and twelve-phase flux-switching permanent-magnet wind generators
Buck et al. A Phase Current Peak Prediction Technique to Increase the Output Power of Switched Reluctance Generators for Wind Turbines
Al-Manfi et al. Voltage Control of Stand-alone Single Phase Self Excited Induction Generator for Variable Speed Wind Turbine Using Bang Bang-PWM Controller
RU2225531C1 (en) Windmill-electric power plant

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees