JP2002335218A - Laser directing method for spatial optical communication - Google Patents

Laser directing method for spatial optical communication

Info

Publication number
JP2002335218A
JP2002335218A JP2001140348A JP2001140348A JP2002335218A JP 2002335218 A JP2002335218 A JP 2002335218A JP 2001140348 A JP2001140348 A JP 2001140348A JP 2001140348 A JP2001140348 A JP 2001140348A JP 2002335218 A JP2002335218 A JP 2002335218A
Authority
JP
Japan
Prior art keywords
laser
communication
artificial
star
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001140348A
Other languages
Japanese (ja)
Other versions
JP3513598B2 (en
Inventor
Masahiro Toyoda
雅宏 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Communications Research Laboratory
Original Assignee
Communications Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communications Research Laboratory filed Critical Communications Research Laboratory
Priority to JP2001140348A priority Critical patent/JP3513598B2/en
Publication of JP2002335218A publication Critical patent/JP2002335218A/en
Application granted granted Critical
Publication of JP3513598B2 publication Critical patent/JP3513598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the establishment of a laser link or stability in the maintenance of laser link by correcting a fluctuation in the directed direction of laser caused by atmospheric oscillation in spatial laser communication between the ground and an artificial satellite. SOLUTION: A laser for artificial star generation for generating an artificial star and a laser for communication are emitted in the same propagating direction, the artificial star is generated by generating a light emission by a resonance disturbance in an Na layer around the height of about 100 km, the light of this artificial star is observed by a ground optical station and a fluctuation in the position of the observed image of the artificial star is measured. Thus, the transmitting direction of the laser for communication is controlled to correct the direction fluctuation caused by the atmospheric oscillation and the laser for communication is directed to an artificial satellite S.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信機能を搭載
して大気層よりも高空にある人工衛星などの通信相手局
と、光通信機能を有する地上局との間で空間光通信を行
う際に、地上局から通信相手局へ射出したレーザーの指
向方向の大気の揺らぎによる変動を補正する空間光通信
用レーザー指向方法に関し、特に、大気の揺らぎによる
レーザーの指向方向の変動を補正することでレーザーの
指向精度を高め、レーザー通信回線の維持を容易ならし
得る技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention carries out spatial optical communication between a communication partner station, such as an artificial satellite, which has an optical communication function and is higher than the atmospheric layer and a ground station having an optical communication function. A laser pointing method for spatial optical communication that corrects the fluctuation of the pointing direction of the laser emitted from the ground station to the communication partner station due to the fluctuation of the atmosphere, especially to correct the fluctuation of the pointing direction of the laser due to the fluctuation of the atmosphere The present invention relates to a technology that can improve the pointing accuracy of a laser and facilitate maintenance of a laser communication line.

【0002】[0002]

【従来の技術】空間でのレーザー通信では、使用するレ
ーザーの強度や、通信の相手局までの伝送距離、所望の
通信速度、および、受信側の信号検出性能によって、レ
ーザーの拡がり角を狭くしたレーザーの伝送が必要とさ
れる場合がある。このような空間光通信を、人工衛星な
どの大気層よりも高層にある通信相手局と地上との間の
通信に適用した場合には、大気の揺らぎによるレーザー
ビームの方向変動の影響を避けられない。すなわち、レ
ーザーの伝送路上での高度10km程度までの大気の揺
らぎによって、レーザーの光波面の位相が乱されるた
め、レーザーの方向が僅かに変動するとともに、伝搬に
伴ってレーザービームの形状が変形する現象が発生する
ため、指向方向の補正が必要になるのである。
2. Description of the Related Art In laser communication in space, the spread angle of a laser is reduced depending on the intensity of a laser used, a transmission distance to a communication partner station, a desired communication speed, and signal detection performance on a receiving side. Laser transmission may be required. When such spatial optical communication is applied to the communication between the communication partner station, which is higher than the atmospheric layer such as a satellite, and the ground, the effects of laser beam direction fluctuations due to atmospheric fluctuations can be avoided. Absent. In other words, the phase of the laser wavefront is disturbed by the fluctuation of the atmosphere on the transmission line of the laser up to an altitude of about 10 km, so that the direction of the laser fluctuates slightly and the shape of the laser beam is deformed with propagation. Therefore, it is necessary to correct the directivity direction.

【0003】人工衛星から地上へ向けて伝送されたダウ
ンリンクレーザーについては、地上の望遠鏡の口径を大
きくすることで、大気揺らぎによって生じた望遠鏡開口
での強度分布のばらつきによる受光強度の変動を抑制す
ることができる。また、レーザーが大気揺らぎを受けた
地点から地上の受信地点までの距離(約10km程度)
が短いことから、大気揺らぎによってダウンリンクレー
ザー回線が遮断に至るような事態は生じ難い。
For a downlink laser transmitted from an artificial satellite to the ground, fluctuations in the received light intensity due to variations in the intensity distribution at the telescope aperture caused by atmospheric turbulence are suppressed by increasing the aperture of the telescope on the ground. can do. In addition, the distance from the point where the laser was affected by atmospheric turbulence to the receiving point on the ground (about 10 km)
, It is unlikely that the downlink laser line would be cut off due to atmospheric turbulence.

【0004】一方、地上から人工衛星へ向けて伝送され
たアップリンクレーザーでは、大気揺らぎを受ける地点
から衛星(高度約300km以上)までの距離が長大な
ため、揺らぎによる方向変動角がレーザー自体の拡がり
角と比べて大きい場合には、レーザーが衛星に到達でき
ない。すなわち、地上から人工衛星へのアップリンクレ
ーザーの場合には、大気揺らぎの影響を受けてから人工
衛星に到達するまでの距離が長いことから、微小な方向
変動でもアップリンクレーザー回線が遮断に至るような
事態が懸念されるのである。そのため、アップリンクレ
ーザーを人工衛星に照射するためには、地上の光通信装
置においてレーザーの指向方向の補正が大変重要となる
のである。
On the other hand, in the case of an uplink laser transmitted from the ground to an artificial satellite, the distance from a point subject to atmospheric turbulence to the satellite (at an altitude of about 300 km or more) is long, so that the directional fluctuation angle due to the fluctuation varies with the laser itself. If it is large compared to the divergence angle, the laser cannot reach the satellite. In other words, in the case of an uplink laser from the ground to an artificial satellite, the distance from the influence of atmospheric turbulence to the arrival of the artificial satellite is long, so even a small change in direction leads to interruption of the uplink laser line. Such a situation is a concern. Therefore, in order to irradiate the satellite with the uplink laser, it is very important to correct the direction of the laser in the optical communication device on the ground.

【0005】地上から人工衛星へのアップリンクレーザ
ーの指向方向の補正方法として、地上の受光望遠鏡でダ
ウンリンクレーザーを受光し、カメラ装置を用いてダウ
ンリンクレーザーの受光望遠鏡への入射方向を検出し、
この入射方向に光行差角を付加して、射出するレーザー
を衛星へ指向する方法が知られている。
As a method of correcting the pointing direction of the uplink laser from the ground to the artificial satellite, a downlink laser is received by a light receiving telescope on the ground, and the incident direction of the downlink laser to the light receiving telescope is detected by using a camera device. ,
A method is known in which an optical path difference angle is added to the incident direction, and the emitted laser is directed to a satellite.

【0006】この光行差角とは、地上と衛星との間のレ
ーザー通信のような、通信地点間の距離が長く、かつ、
相互に移動している場合に考慮すべき要素である。レー
ザーが相手側に到達するまでに相手が移動する距離を見
込んで、射出するレーザーの方向を調整する角度であ
る。レーザーを送信する側から相手側を見たときの、相
手側の移動速度ベクトルのうち、視線方向に垂直な成分
から求めることができ、地上と人工衛星との間の光通信
においては、衛星の予定軌道データを基に計算すること
ができる。
[0006] The optical path difference angle means that the distance between communication points such as laser communication between the ground and a satellite is long, and
This is a factor to consider when moving with each other. This angle adjusts the direction of the laser to be emitted in anticipation of the distance the opponent moves before the laser reaches the opponent. Of the moving speed vector of the other party when looking at the other party from the laser transmitting side, it can be obtained from the component perpendicular to the line of sight, and in optical communication between the ground and artificial satellites, It can be calculated based on the planned trajectory data.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
たような地上衛星間の光通信における、大気揺らぎによ
る方向変動を補正するためのアップリンクレーザーの指
向方法では、ダウンリンクレーザーが到来していない場
合には、地上の受光望遠鏡での方向変動の計測ができな
いため、方向変動の補正を行うことはできない。いわ
ば、この補正方法は、地上と衛星との間のレーザーリン
クが成立した後に、レーザーリンクの維持を目的とした
ものであり、レーザーリンクを成立させる過程では適用
できなかった。
However, in the above-described method of pointing an uplink laser for correcting a direction change due to atmospheric turbulence in optical communication between terrestrial satellites as described above, a case where a downlink laser does not arrive is described. Cannot measure the direction change with the light receiving telescope on the ground, and cannot correct the direction change. In other words, this correction method aims at maintaining the laser link after the laser link between the ground and the satellite is established, and cannot be applied in the process of establishing the laser link.

【0008】さらに、地上衛星間の光通信では、光行差
角は最大数十μrad程度となるため、この光行差角に
よって、アップリンクレーザーとダウンリンクレーザー
の伝搬路が僅かに異なり、この光行差角に基づく伝搬路
の差は、高度10kmでは数十cmにも相当することと
なる。このようなダウンリンクレーザーとアップリンク
レーザーとの経路のずれのために、ダウンリンクレーザ
ーを用いて計測した大気揺らぎによる方向変動は、アッ
プリンクレーザーの伝搬路における大気の揺らぎによる
方向変動と必ずしも一致せず、アップリンクレーザーの
方向変動の補正が精度良く行われないという問題もあっ
た。
Further, in optical communication between terrestrial satellites, the optical path difference angle is about several tens μrad at the maximum, and the propagation path of the uplink laser and the downlink laser is slightly different depending on the optical path difference angle. The difference between the propagation paths based on the optical path difference angle is equivalent to several tens of cm at an altitude of 10 km. Due to such a shift in the path between the downlink laser and the uplink laser, the direction fluctuation due to atmospheric fluctuation measured using the downlink laser does not always match the direction fluctuation due to atmospheric fluctuation in the propagation path of the uplink laser. Without this, there is a problem that the direction fluctuation of the uplink laser is not accurately corrected.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に係る発明は、光通信機能を搭載して大気
層よりも高層にある通信相手局と、光通信機能を有する
地上局との間で空間光通信を行う際に、地上局から通信
相手局へ射出したレーザーの指向方向の大気の揺らぎに
よる変動を補正する空間光通信用レーザー指向方法であ
って、上記地上局には、大気層と通信相手局との間に人
工星を生成するための人工星生成用レーザー光源を設
け、人工星生成用レーザーと通信用レーザーの伝搬方向
が同一となるようにしておき、人工星生成用レーザーを
通信相手局の方向へ射出し、生成された人工星を地上局
で観測し、この観測された人工星の受光位置を通信用レ
ーザーの射出方向とみなすことにより、通信用レーザー
の大気揺らぎによる方向変動を補正するようにしたこと
を特徴とする。
According to a first aspect of the present invention, there is provided a communication partner station having an optical communication function and having a higher communication layer than an atmospheric layer and a ground station having an optical communication function. When performing spatial optical communication with a station, a laser pointing method for spatial optical communication that corrects the fluctuation due to atmospheric fluctuations in the pointing direction of the laser emitted from the ground station to the communication partner station, wherein the ground station Is to provide an artificial star generation laser light source for generating artificial stars between the atmosphere layer and the communication partner station, so that the propagation direction of the artificial star generation laser and the communication laser is the same, By emitting the star-generating laser in the direction of the communication partner station, observing the generated artificial star at the ground station, and considering the observed light receiving position of the artificial star as the emission direction of the communication laser, the communication laser Due to atmospheric turbulence Characterized in that so as to correct the direction change.

【0010】従って、請求項1に係る空間光通信用レー
ザー指向方法においては、人工星を生成するための人工
星生成用レーザーを用いて大気層と通信相手局との間に
人工星を生成し、生成された人工星を観測すれば、地上
局から人工星への伝搬路における大気の揺らぎによるビ
ーム方向変動を知ることができ、また、人工星生成用レ
ーザーと同じ伝搬方向へ通信用レーザーを射出するよう
に設定しておくことで、大気の揺らぎによる変動が人工
星生成用レーザーと通信用レーザーとにほぼ等しく作用
することから、人工星の受光位置を通信用レーザーの射
出方向とみなすことにより、通信用レーザーの大気揺ら
ぎによる方向変動を補正することが可能となる。
Therefore, in the laser pointing method for space optical communication according to the first aspect, an artificial star is generated between the atmosphere layer and the communication partner station by using an artificial star generating laser for generating an artificial star. By observing the generated artificial star, it is possible to know the beam direction fluctuation due to the fluctuation of the atmosphere in the propagation path from the ground station to the artificial star, and to set the communication laser in the same propagation direction as the artificial star generating laser. By setting it to emit, the light receiving position of the artificial star is regarded as the emission direction of the communication laser because the fluctuation due to atmospheric fluctuation acts almost equally on the artificial star generation laser and the communication laser. Accordingly, it is possible to correct the direction fluctuation due to the atmospheric fluctuation of the communication laser.

【0011】また、請求項2に係る発明は、上記請求項
1において、通信相手局は、既知の軌道を回る人工衛星
とし、地上局は、観測された人工星の像に基づく通信用
レーザーの射出方向が、光行差角を見込んだ人工衛星の
目標位置に合致するようにして、通信用レーザーを射出
するようにしたことを特徴とする。
According to a second aspect of the present invention, in the first aspect, the communication partner station is an artificial satellite orbiting a known orbit, and the ground station is a communication laser based on an observed artificial star image. The communication laser is emitted so that the emission direction matches the target position of the artificial satellite in view of the optical path difference angle.

【0012】従って、請求項2に係る空間光通信用レー
ザー指向方法においては、通信相手局である人工衛星の
光行差角を見込んだ目標位置に通信用レーザーを射出す
る場合でも、通信用レーザーの伝搬路における大気揺ら
ぎによる変動を同一経路を伝搬する人工星生成用レーザ
ーにより生成した人工星の観測像に基づいて知ることが
できる。
Therefore, in the laser pointing method for spatial optical communication according to the second aspect of the present invention, even when the communication laser is emitted to a target position in which an optical path difference angle of an artificial satellite as a communication partner station is projected, the communication laser is emitted. Can be known based on the observation image of the artificial star generated by the artificial star generating laser beam propagating along the same path.

【0013】[0013]

【発明の実施の形態】次に、添付図面に基づいて、本発
明に係る空間光通信用のレーザー指向方法を地上局たる
地上光学局Eと通信相手局である光通信機搭載の人工衛
星Sとの通信に適用した実施形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the accompanying drawings, a laser pointing method for spatial optical communication according to the present invention will be described with reference to a terrestrial optical station E as a ground station and an artificial satellite S equipped with an optical communication device as a communication partner station. An embodiment applied to communication with the server will be described.

【0014】図1は、人工星を利用した地上衛星間光通
信用のレーザー指向方法についての基本原理を説明する
ための原理説明図である。図1において、地上光学局E
は光通信装置を備え、光通信機を搭載した人工衛星Sと
の間でレーザーリンクを形成するものである。衛星軌道
を航行する人工衛星Sからはダウンリンクレーザーが出
射されており、地上光学局Eの光通信装置からは通信用
レーザーと人工星生成用レーザーが光行差角を見込んで
出射されている。
FIG. 1 is a principle explanatory diagram for explaining a basic principle of a laser pointing method for optical communication between terrestrial satellites using artificial stars. In FIG. 1, a terrestrial optical station E
Has an optical communication device and forms a laser link with an artificial satellite S equipped with an optical communication device. A downlink laser is emitted from an artificial satellite S traveling in a satellite orbit, and a communication laser and an artificial star generating laser are emitted from the optical communication device of the ground optical station E in anticipation of the optical path difference angle. .

【0015】人工星生成用レーザーはNa−D線の波長
である589nmに同調されており、高度約100km
付近に存在するNa層に、人工星生成用レーザーが入射
すると、共鳴散乱が発生して発光するため、地上からは
星のように観測できる。なお、人工星(artifis
ial star)の生成方法は、この共鳴散乱を用い
たものに限らず、通信用レーザーに影響を及ぼす大気揺
らぎのある大気層よりも高層に地上で観測可能な発光点
を生成できれば良い。例えば、他の人工星生成方法とし
て、レーリー散乱を用いた方法がある。この方法は、大
気分子による散乱を利用したもので、レーザーを短パル
スで発光させて上空で散乱させ、散乱した光が地上に達
するタイミングに合うようにカメラのシャッターを僅か
に遅らせて観測するものである。しかしながら、レーリ
ー散乱による人工星は、せいぜい20km程度の上空に
しか生成できないため、人工衛星Sの追尾に用いるに
は、高度がより高い方が望ましいため、本実施形態にお
いては、Na層の共鳴散乱を用いた方法を適用した。
The artificial star generating laser is tuned to the Na-D line wavelength of 589 nm and has an altitude of about 100 km.
When an artificial star-generating laser is incident on a nearby Na layer, resonance scattering occurs and light is emitted, so that it can be observed from the ground like a star. In addition, artificial star (artifis)
The method of generating the ial star is not limited to the method using the resonance scattering, but may be any method that can generate a light emitting point that can be observed on the ground in a higher layer than an atmospheric layer having an atmospheric fluctuation that affects a communication laser. For example, as another artificial star generation method, there is a method using Rayleigh scattering. This method uses scattering by atmospheric molecules, emits a laser with a short pulse, scatters it in the sky, and observes it with the camera shutter slightly delayed so that the scattered light reaches the ground. It is. However, since an artificial star due to Rayleigh scattering can be generated only at a height of about 20 km at most, a higher altitude is desirable for tracking the artificial satellite S. Therefore, in this embodiment, the resonance scattering of the Na layer is used. Was applied.

【0016】一方、通信用レーザーは、人工星生成用レ
ーザーと異なる波長のレーザーを用いる。なお、人工星
生成用レーザーと通信用レーザーとの波長の差は、大気
揺らぎから受ける影響に顕著な差をもたらすものではな
く、両レーザーの波長の差による方向変動の違いは無視
できる。
On the other hand, the communication laser uses a laser having a different wavelength from that of the artificial star generating laser. Note that the difference in wavelength between the laser for artificial star generation and the laser for communication does not cause a noticeable difference in the influence of atmospheric turbulence, and the difference in directional fluctuation due to the difference in wavelength between the two lasers can be ignored.

【0017】また、大気揺らぎの変動速度と比べて、共
鳴散乱による発光は十分に高速に発生するために、大気
の揺らぎによる通信用レーザーの方向変動が、人工星の
位置の変動として観測できる。
Since the light emission due to the resonance scattering occurs at a sufficiently high speed as compared with the fluctuation speed of the atmospheric fluctuation, the fluctuation of the direction of the communication laser due to the fluctuation of the air can be observed as the fluctuation of the position of the artificial star.

【0018】したがって、地上局Eには、人工星生成用
レーザーを射出するための光通信装置を設けて、人工星
生成用レーザーと通信用レーザーの伝搬方向が同一とな
るようにしておき、人工星生成用レーザーを人工衛星S
の方向へ射出し、生成された人工星を地上局で観測し、
この観測された人工星の受光位置を通信用レーザーの射
出方向とみなすことにより、通信用レーザーの大気揺ら
ぎによる方向変動を補正できるのである。
Accordingly, the ground station E is provided with an optical communication device for emitting an artificial star generating laser so that the propagation direction of the artificial star generating laser and the communication laser is the same. Laser for star generation is used for artificial satellite S
In the direction of, observe the generated artificial star at the ground station,
By regarding the observed light receiving position of the artificial star as the emission direction of the communication laser, it is possible to correct the direction change due to the atmospheric fluctuation of the communication laser.

【0019】すなわち、人工星生成用レーザーを用いて
大気層と人工衛星Sとの間に生成された人工星からの光
を観測すれば、地上光学局Eから人工星への伝搬路にお
ける大気の揺らぎによる方向変動を知ることができ、ま
た、人工星生成用レーザーと同じ伝搬方向へ通信用レー
ザーを射出するように設定しておくことで、大気の揺ら
ぎによる変動が人工星生成用レーザーと通信用レーザー
とにほぼ等しく作用することから、人工星の受光位置を
通信用レーザーの射出方向とみなすことにより、通信用
レーザーの大気揺らぎによる方向変動を補正することが
可能となる。
That is, if the light from the artificial star generated between the atmospheric layer and the artificial satellite S is observed using the artificial star generating laser, the atmospheric air in the propagation path from the ground optical station E to the artificial star is observed. The direction fluctuation due to fluctuation can be known, and by setting the communication laser to be emitted in the same propagation direction as the artificial star generation laser, the fluctuation due to the atmospheric fluctuation communicates with the artificial star generation laser. Since it acts almost equally to the communication laser, the light receiving position of the artificial star is regarded as the emission direction of the communication laser, so that it is possible to correct the direction fluctuation due to the atmospheric fluctuation of the communication laser.

【0020】また、本実施形態の如く、通信相手局が既
知の軌道を回る人工衛星Sである場合には、地上光学局
Eでは、観測された人工星の像に基づく通信用レーザー
の射出方向が、光行差角を見込んだ人工衛星の目標
(S′)に合致するようにして、通信用レーザーを射出
することで、通信用レーザーの伝搬路における大気揺ら
ぎによる変動を同一経路を伝搬する人工星生成用レーザ
ーにより生成した人工星の観測像に基づいて知ることが
できる。
Further, when the communication partner station is the artificial satellite S orbiting in a known orbit as in this embodiment, the terrestrial optical station E emits the communication laser based on the observed artificial star image. However, by emitting the communication laser so as to match the target (S ′) of the artificial satellite that allows for the optical path difference angle, the fluctuation due to atmospheric fluctuation in the propagation path of the communication laser propagates along the same path. It can be known based on the observation image of the artificial star generated by the artificial star generating laser.

【0021】次に、地上光学局Eに設置した光通信装置
の概略構成は、図2に示すようなもので、レーザー送信
用の望遠鏡1、レーザー指向装置2、受光用望遠鏡3、
カメラ装置4、ジンバル機構5によって構成してある。
上記レーザー送信用の望遠鏡1からは、通信用レーザー
6と人工星生成用レーザー7が出射され、両者の伝送方
向は、ほぼ一致するように設定してある。
Next, the schematic configuration of the optical communication device installed in the terrestrial optical station E is as shown in FIG. 2, and includes a telescope 1 for laser transmission, a laser directing device 2, a telescope 3 for light reception,
The camera device 4 includes a gimbal mechanism 5.
A laser 6 for communication and a laser 7 for artificial star generation are emitted from the telescope 1 for laser transmission, and the transmission directions of both are set so as to be substantially the same.

【0022】この光通信装置においては、ジンバル機構
5を人工衛星Sの飛行予定軌道から算出した目標
(S′)の方向へ駆動することによって、カメラ装置4
の視野方向を人工衛星の方向に合わせれば、人工衛星の
追尾は完了した状態となる。すなわち、ジンバル機構5
の動作に伴って、レーザー送信用の望遠鏡1の送信方向
(通信用レーザー6と人工星生成用レーザー7の照射方
向)および受光用望遠鏡3の受光方向(人工衛星Sから
のダウンリンクレーザー6′の受光方向)も変化し、人
工衛星Sとのレーザーリンクが良好に保持されるのであ
る。
In this optical communication device, the camera device 4 is driven by driving the gimbal mechanism 5 in the direction of the target (S ') calculated from the planned flight trajectory of the artificial satellite S.
If the direction of the field of view is adjusted to the direction of the artificial satellite, tracking of the artificial satellite is completed. That is, the gimbal mechanism 5
With the operation of (1), the transmitting direction of the laser transmitting telescope 1 (the irradiation direction of the communication laser 6 and the artificial star generating laser 7) and the receiving direction of the light receiving telescope 3 (the downlink laser 6 'from the artificial satellite S). The light receiving direction) also changes, and the laser link with the artificial satellite S is maintained well.

【0023】ここで、上述した光通信装置によるレーザ
ー指向方法の具体的な動作の流れを図3に基づいて説明
する。レーザー指向装置2は、指向方向調整機構8と通
信用レーザー光源9と人工星生成用レーザー光源10、
および、レーザーの波長に依存した透過反射特性を有し
たビームスプリッタ11等を備え、ビームスプリッタ1
1によって通信用レーザーと人工星生成用レーザーの送
出方向が合わされ、指向方向調整機構8によって、レー
ザー送信用の望遠鏡1からの射出方向を微調整する。な
お、指向方向調整機構8の中には微小角度で高精度に回
転できるミラー8a,8bが配置され、このミラー8
a,8bはカメラ装置4からの駆動信号を受けて、射出
方向を微調整するように動作する。
Here, a specific operation flow of the laser pointing method by the above-described optical communication device will be described with reference to FIG. The laser pointing device 2 includes a pointing direction adjusting mechanism 8, a laser light source 9 for communication, a laser light source 10 for artificial star generation,
And a beam splitter 11 having transmission / reflection characteristics depending on the wavelength of the laser.
The transmission direction of the communication laser and the artificial star generation laser is matched by 1, and the emission direction from the laser transmission telescope 1 is finely adjusted by the directivity adjustment mechanism 8. In addition, mirrors 8a and 8b which can be rotated at a minute angle with high precision are arranged in the directivity adjusting mechanism 8, and the mirrors 8a and 8b
A and 8b receive a drive signal from the camera device 4 and operate to finely adjust the emission direction.

【0024】図4に示すのは、受光用望遠鏡3の受光画
像を処理して通信用レーザーおよび人工星生成用レーザ
ーの射出方向の微調整制御を行うカメラ装置4の出力画
面の例である。人工星は発光の高度が約100kmと高
いため、ほぼ点のような像として観測され、大気の揺ら
ぎによる人工星生成用レーザーの指向方向の変動のため
に、この点像が位置変化をする。なお、人工星の発光か
ら受光用望遠鏡3に入射する間の大気の揺らぎによる影
響は、受光用望遠鏡3の口径を大きくすることによっ
て、恒星の受光時と同様に低減できる。
FIG. 4 shows an example of an output screen of the camera device 4 which processes a light-receiving image of the light-receiving telescope 3 and performs fine adjustment control of the emission direction of the communication laser and the artificial star generating laser. The artificial star has a high light emission altitude of about 100 km, and is observed as a substantially point-like image. The point image changes its position due to a change in the pointing direction of the artificial star generating laser due to fluctuations in the atmosphere. In addition, the influence of the fluctuation of the atmosphere during the incidence from the light emission of the artificial star to the light-receiving telescope 3 can be reduced by increasing the aperture of the light-receiving telescope 3 as in the case of receiving the star.

【0025】上述した図4のようなカメラ装置出力画像
が得られている場合、ジンバル機構5の駆動によって人
工衛星Sの追尾は完了している状態にあり、出力画面の
中央がダウンリンクレーザーの受信に基づく人工衛星S
の方向に相当し、通信用レーザー6の射出方向と見なし
得る人工星の受光像は若干ずれているので、この人工星
の像が人工衛星の方向(センタ位置)と重なるように、
指向方向調整機構8によって通信用レーザー6の射出方
向を調整すれば、大気の揺らぎによる変動を高精度に補
正でき、地上光学局Eから人工衛星Sへの指向を良好に
行うことが可能となる。なお、人工星生成用レーザー7
によって生成された人工星からの光(7′)は、地上光
学局Eに到達する経路上で大気の揺らぎによる方向変動
を受けることとなるため、厳密には、人工星の観測像は
通信用レーザー6の射出方向よりもずれることとなる
が、低空(高度約10km程度)の大気層で方向変動を
受けても、それから地上光学局へ到達するまでに生ずる
伝搬方向のずれは極く軽微なものであるから、レーザー
リンクの成立過程や成立後のレーザーリンクの維持に際
して通信用レーザー6の射出方向を補正するには十分な
のである。
When the output image of the camera device as shown in FIG. 4 is obtained, the tracking of the artificial satellite S is completed by driving the gimbal mechanism 5, and the center of the output screen is the downlink laser. Satellite S based on reception
The received image of the artificial star, which can be regarded as the emission direction of the communication laser 6, is slightly shifted, so that the image of the artificial star overlaps the direction (center position) of the artificial satellite.
If the emission direction of the communication laser 6 is adjusted by the pointing direction adjusting mechanism 8, the fluctuation due to the fluctuation of the atmosphere can be corrected with high precision, and the pointing from the ground optical station E to the artificial satellite S can be performed well. . In addition, laser 7 for artificial star generation
(7 ') from the artificial star generated by the above-mentioned method is subjected to a direction change due to the fluctuation of the atmosphere on the path reaching the ground optical station E. Therefore, strictly speaking, the observation image of the artificial star is used for communication. Although it deviates from the emission direction of the laser 6, even if it undergoes a direction change in the low altitude (about 10 km altitude) atmospheric layer, the deviation in the propagation direction from when it reaches the ground optical station is extremely small. Therefore, it is sufficient to correct the emission direction of the communication laser 6 in the process of establishing the laser link and maintaining the laser link after the establishment.

【0026】また、通信相手局が周回衛星などの定位置
に止まらない人工衛星である場合には、受光用望遠鏡3
が受光するダウンリンクレーザーを衛星Sが射出した時
点より地上光学局Eから射出した通信用レーザー6が衛
星Sに到達するまでに経過する時間に応じて、衛星Sが
移動すると予測されるポイントに向けて通信用レーザー
を送信しなければならない。光行差角を算入した人工衛
星の目標(S′)は、人工衛星の飛行予定軌道から算出
することができ、光行差角の変化に伴い時々刻々と目標
の位置は変化する。なお、出力画面上における、光行差
角を算入した目標S′は、カメラ装置4における出力画
面の処理過程で付加するものである。
When the communication partner station is an artificial satellite which cannot be stopped at a fixed position such as an orbiting satellite, the light receiving telescope 3 is used.
The point at which the satellite S is predicted to move according to the time that elapses from the time when the satellite S emits the downlink laser received by the satellite S to the time when the communication laser 6 emitted from the terrestrial optical station E reaches the satellite S. A communication laser must be sent to the computer. The target (S ') of the artificial satellite in which the optical path difference is included can be calculated from the planned flight trajectory of the artificial satellite, and the position of the target changes every moment as the optical path difference changes. The target S ′ on the output screen, which includes the optical line difference angle, is added in the process of processing the output screen in the camera device 4.

【0027】このように、光行差角を算入した人工衛星
の目標(S′)と、人工星の像とが重なるように、指向
方向調整機構8へ連続して駆動信号を出力することによ
って、人工衛星Sへの通信用レーザーの伝送において、
光行差角の変化に追従するとともに、大気の揺らぎによ
る通信用レーザーの指向方向の変動を補正することがで
きる。また、Na層での共鳴散乱を利用して生成した人
工星の高度は約100kmと高いので、地上から見込ん
だ人工星の方向と実際の人工衛星Sの方向とに差があっ
ても、その差は通信用レーザーの拡がり角と比べて僅少
に止めることができる。よって、上記の指向方向調整機
構8の駆動による射出方向の微調整で、通信用レーザー
を人工衛星へ向けて良好に指向させることが可能とな
る。
As described above, the drive signal is continuously output to the pointing direction adjusting mechanism 8 so that the target (S ') of the artificial satellite in which the optical path difference angle is included and the image of the artificial star overlap. In the transmission of the communication laser to the artificial satellite S,
In addition to following the change in the optical path difference angle, it is possible to correct a change in the directivity of the communication laser due to the fluctuation of the atmosphere. Also, since the altitude of an artificial star generated using resonance scattering in the Na layer is as high as about 100 km, even if there is a difference between the direction of the artificial star viewed from the ground and the actual direction of the artificial satellite S, the The difference can be kept small compared to the spread angle of the communication laser. Therefore, by finely adjusting the emission direction by driving the above-described pointing direction adjusting mechanism 8, it becomes possible to satisfactorily direct the communication laser toward the artificial satellite.

【0028】[0028]

【発明の効果】以上説明したように、本願請求項1に係
る空間光通信用レーザー指向方法によれば、人工星を生
成するための人工星生成用レーザーを用いて大気層と通
信相手局との間に人工星を生成し、生成された人工星か
らの光を観測すれば、地上局から人工星への伝搬路にお
ける大気の揺らぎによる変動を知ることができ、また、
人工星生成用レーザーと同じ伝搬方向へ通信用レーザー
を射出するように設定しておくことで、大気の揺らぎに
よる方向変動が人工星生成用レーザーと通信用レーザー
とにほぼ等しく作用することから、人工星の受光位置を
通信用レーザーの射出方向とみなすことにより、通信用
レーザーの大気揺らぎによる方向変動を補正することが
可能となる。これにより、通信相手局とのレーザーリン
クが確立していない状態でも、大気揺らぎによる方向変
動を補正することができ、通信相手局と地上局との間の
レーザーリンクの生成過程にも適用することが出来る。
As described above, according to the laser pointing method for spatial optical communication according to the first aspect of the present invention, the atmosphere layer and the communication partner station are communicated with each other by using the artificial star generating laser for generating the artificial star. If an artificial star is generated during the observation and the light from the generated artificial star is observed, the fluctuation due to the fluctuation of the atmosphere in the propagation path from the ground station to the artificial star can be known.
By setting to emit the communication laser in the same propagation direction as the artificial star generation laser, the direction fluctuation due to atmospheric fluctuation acts almost equally on the artificial star generation laser and the communication laser, By regarding the light receiving position of the artificial star as the emission direction of the communication laser, it becomes possible to correct the direction fluctuation due to the atmospheric fluctuation of the communication laser. As a result, even when the laser link with the communication partner station is not established, it is possible to correct the direction fluctuation due to atmospheric turbulence, and to apply to the process of generating the laser link between the communication partner station and the ground station. Can be done.

【0029】加えて、従来のように、ダウンリンクレー
ザーを用いた大気の揺らぎの計測に際して、受光望遠鏡
の開口に入射した全ての光を計測していた場合とは異な
り、地上から通信相手局へ向けた通信用レーザーの伝搬
方向における大気の揺らぎの影響(指向方向の変動)を
直接的に計測することができるため、指向方向の変動を
高精度に計測することができ、通信相手局への通信用レ
ーザーの指向精度を向上させることが可能である。
In addition, unlike the conventional case where all the light incident on the aperture of the light receiving telescope is measured when measuring the fluctuation of the atmosphere using the downlink laser, the communication from the ground to the communication partner station is performed. The effect of atmospheric fluctuations in the direction of propagation of the communication laser (directional fluctuation) can be measured directly, so that the fluctuation of the directivity can be measured with high accuracy, and the It is possible to improve the pointing accuracy of the communication laser.

【0030】また、請求項2に係る空間光通信用レーザ
ー指向方法によれば、通信相手局である人工衛星の光行
差角を見込んだ目標位置に通信用レーザーを射出する場
合でも、通信用レーザーの伝搬路における大気揺らぎに
よる変動を同一経路を伝搬する人工星生成用レーザーに
より生成した人工星の観測像に基づいて知ることができ
る。これにより、通信用レーザーの大気揺らぎによる方
向変動の高精度な補正が実現可能となる。
According to the laser pointing method for spatial optical communication according to the second aspect of the present invention, even when the communication laser is emitted to a target position in which an optical path difference angle of an artificial satellite as a communication partner station is projected, the communication laser is emitted. Fluctuations due to atmospheric turbulence in the propagation path of the laser can be known based on the observation image of the artificial star generated by the artificial star generating laser propagating along the same path. As a result, highly accurate correction of direction fluctuation due to atmospheric fluctuations of the communication laser can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る空間光通信用レーザー指向方法に
ついての基本原理を説明するための原理説明図である。
FIG. 1 is a principle explanatory diagram for explaining a basic principle of a laser pointing method for spatial optical communication according to the present invention.

【図2】地上光学局に設置した光通信装置の主な構成を
示す概略斜視図である。
FIG. 2 is a schematic perspective view illustrating a main configuration of an optical communication device installed in a terrestrial optical station.

【図3】レーザー指向装置の内部構成と併せて光送受信
の概要を示した構成図である。
FIG. 3 is a configuration diagram showing an outline of optical transmission and reception together with an internal configuration of a laser directing device.

【図4】人工星を観測したときのカメラ装置の出力画面
のイメージ図である。
FIG. 4 is an image diagram of an output screen of a camera device when an artificial star is observed.

【符号の説明】[Explanation of symbols]

1 レーザー送信用の望遠鏡 2 レーザー指向装置 3 受光用望遠鏡 4 カメラ装置 5 ジンバル機構 6 通信用レーザー 6′ ダウンリンクレザー 7 人工星生成用レーザー 7′ 人工星からの光 8 指向方向調整機構 8a ミラー 8b ミラー 9 通信用レーザー光源 10 人工星生成用レーザー光源 11 ビームスプリッタ DESCRIPTION OF SYMBOLS 1 Telescope for laser transmission 2 Laser pointing device 3 Telescope for light reception 4 Camera device 5 Gimbal mechanism 6 Laser for communication 6 'Downlink leather 7 Laser for artificial star generation 7' Light from artificial star 8 Direction adjustment mechanism 8a Mirror 8b Mirror 9 Laser light source for communication 10 Laser light source for artificial star generation 11 Beam splitter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光通信機能を搭載して大気層よりも高層
にある通信相手局と、光通信機能を有する地上局との間
で光通信を行う際に、地上局から通信相手局へ射出した
レーザーの指向方向の大気の揺らぎによる変動を補正す
る空間光通信用レーザー指向方法であって、 上記地上局には、大気層と通信相手局との間に人工星を
生成するための人工星生成用レーザー光源を設け、人工
星生成用レーザーと通信用レーザーの伝搬方向が同一と
なるようにしておき、 人工星生成用レーザーを通信相手局の方向へ射出し、生
成された人工星を地上局で観測し、この観測された人工
星の受光位置を通信用レーザーの射出方向とみなすこと
により、通信用レーザーの大気揺らぎによる方向変動を
補正するようにしたことを特徴とする空間光通信用レー
ザー指向方法。
1. An optical communication function is carried out from a ground station to a communication partner station when optical communication is performed between a communication partner station having an optical communication function and located above the atmospheric layer and a ground station having an optical communication function. A laser pointing method for spatial optical communication that corrects the fluctuation of the pointing direction of the laser due to atmospheric fluctuations, wherein the ground station includes an artificial star for generating an artificial star between the atmospheric layer and a communication partner station. A laser light source for generation is provided so that the propagation direction of the artificial star generation laser and the communication laser is the same, and the artificial star generation laser is emitted in the direction of the communication partner station, and the generated artificial star is grounded. Observed by a station, and the observed position of the artificial star is regarded as the emission direction of the communication laser, so that the direction fluctuation due to atmospheric fluctuations of the communication laser is corrected. Laser finger Method.
【請求項2】 通信相手局は、既知の軌道を回る人工衛
星とし、 地上局は、観測された人工星の像に基づく通信用レーザ
ーの射出方向が、光行差角を見込んだ人工衛星の目標位
置に合致するようにして、通信用レーザーを射出するよ
うにしたことを特徴とする請求項1に記載の空間光通信
用レーザー指向方法。
2. The communication partner station is an artificial satellite orbiting in a known orbit, and the ground station is configured such that an emission direction of a communication laser based on an image of an observed artificial star is determined by an artificial satellite in which an optical path difference angle is anticipated. 2. The laser pointing method for space optical communication according to claim 1, wherein the communication laser is emitted so as to coincide with the target position.
JP2001140348A 2001-05-10 2001-05-10 Laser pointing method for spatial optical communication Expired - Lifetime JP3513598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001140348A JP3513598B2 (en) 2001-05-10 2001-05-10 Laser pointing method for spatial optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001140348A JP3513598B2 (en) 2001-05-10 2001-05-10 Laser pointing method for spatial optical communication

Publications (2)

Publication Number Publication Date
JP2002335218A true JP2002335218A (en) 2002-11-22
JP3513598B2 JP3513598B2 (en) 2004-03-31

Family

ID=18986968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001140348A Expired - Lifetime JP3513598B2 (en) 2001-05-10 2001-05-10 Laser pointing method for spatial optical communication

Country Status (1)

Country Link
JP (1) JP3513598B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178183A (en) * 2012-06-04 2012-09-13 Raitoron Kk Device, method and program for restoring deteriorated image
JP2017526287A (en) * 2014-08-20 2017-09-07 レイセオン カンパニー Apparatus and method for reducing signal fading due to atmospheric turbulence
JP2021027437A (en) * 2019-08-01 2021-02-22 国立研究開発法人宇宙航空研究開発機構 Spatial optical communication device and spatial optical communication method
JP2021027438A (en) * 2019-08-01 2021-02-22 国立研究開発法人宇宙航空研究開発機構 Spatial optical communication device
KR102384188B1 (en) * 2021-03-08 2022-04-08 엘아이지넥스원 주식회사 Apparatus for generating laser guide star and method of thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178183A (en) * 2012-06-04 2012-09-13 Raitoron Kk Device, method and program for restoring deteriorated image
JP2017526287A (en) * 2014-08-20 2017-09-07 レイセオン カンパニー Apparatus and method for reducing signal fading due to atmospheric turbulence
JP2021027437A (en) * 2019-08-01 2021-02-22 国立研究開発法人宇宙航空研究開発機構 Spatial optical communication device and spatial optical communication method
JP2021027438A (en) * 2019-08-01 2021-02-22 国立研究開発法人宇宙航空研究開発機構 Spatial optical communication device
JP7026300B2 (en) 2019-08-01 2022-02-28 国立研究開発法人宇宙航空研究開発機構 Spatial optical communication device
JP7123340B2 (en) 2019-08-01 2022-08-23 国立研究開発法人宇宙航空研究開発機構 Spatial optical communication device and spatial optical communication method
KR102384188B1 (en) * 2021-03-08 2022-04-08 엘아이지넥스원 주식회사 Apparatus for generating laser guide star and method of thereof

Also Published As

Publication number Publication date
JP3513598B2 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
US10659159B2 (en) Combined imaging and laser communication system
US9503182B2 (en) Apparatus and method for reducing signal fading due to atmospheric turbulence
WO2018139357A1 (en) Spatial optical communication device and method
US11405106B2 (en) Setup for receiving an optical data signal
US20230161172A1 (en) System and method for correcting for atmospheric jitter and high energy laser broadband interference using fast steering mirrors
US20040069927A1 (en) Method and system for wavefront compensation
US6737664B2 (en) Precision optical alignment system
JP3513598B2 (en) Laser pointing method for spatial optical communication
US20230208521A1 (en) Optical wireless communication system and optical wireless communication method
RU2541505C2 (en) Method of delivering laser radiation to moving object and apparatus therefor
JP2001203641A (en) Spatial light transmission unit
JP2001349945A (en) Optical catching method for laser communications for movable body, and optical tracking method
JP7123340B2 (en) Spatial optical communication device and spatial optical communication method
JP2005354335A (en) Multibeam laser communication apparatus
JPH1048337A (en) Laser distance measuring equipment and measuring method
JP2007150455A (en) Free space optical communication system
US11953598B2 (en) Laser tracking device
US20240088998A1 (en) Optimizing alignment in optical communication
JP2001349937A (en) On-vehicle radar device
US11513191B2 (en) System and method for predictive compensation of uplink laser beam atmospheric jitter for high energy laser weapon systems
CN111487771B (en) Sodium beacon pre-correction system based on ultra-short pulse multilayer conjugate adaptive optics
WO2018234469A1 (en) Device for determining the effectiveness of optronics systems and associated method
US20220229285A1 (en) Small angle optical beam steering using micro-electro-mechanical system (mems) micro-mirror arrays (mmas)
Korrapati et al. Design and Modeling of a PAT System for Freespace Optical Links in Quantum Key Distribution
JP2023526497A (en) Method for aligning a laser beam emitted from an optical communications transmitter with a receiving station

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3513598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term