JP2002332376A - Method for recovering fluoropolymer - Google Patents

Method for recovering fluoropolymer

Info

Publication number
JP2002332376A
JP2002332376A JP2002030881A JP2002030881A JP2002332376A JP 2002332376 A JP2002332376 A JP 2002332376A JP 2002030881 A JP2002030881 A JP 2002030881A JP 2002030881 A JP2002030881 A JP 2002030881A JP 2002332376 A JP2002332376 A JP 2002332376A
Authority
JP
Japan
Prior art keywords
polymer
solvent
ion exchange
exchange membrane
inorganic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002030881A
Other languages
Japanese (ja)
Other versions
JP4042421B2 (en
Inventor
Seisaku Kumai
清作 熊井
Takashi Fukatsu
隆 深津
Ryota Tokukura
良太 徳倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Seimi Chemical Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002030881A priority Critical patent/JP4042421B2/en
Publication of JP2002332376A publication Critical patent/JP2002332376A/en
Application granted granted Critical
Publication of JP4042421B2 publication Critical patent/JP4042421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently and simply recovering a fluoropolymer from an ion exchange resin left after being used in e.g. the electrolysis of common salt. SOLUTION: This method comprises swelling an ion exchange membrane containing a carboxyl-containing fluoropolymer (hereinbelow, referred to as polymer C) and a sulfo-containing fluoropolymer (hereinbelow, referred to as polymer S) and having adherent inorganic particles on the surface with a solvent to remove the inorganic particles therefrom; bringing the swollen polymer into contact with a solvent that acts as a good solvent for polymer S but acts as a poor solvent for polymer C to form solids mainly consisting of polymer C and a solution in which polymer S is dissolved; and subjecting the mixture to solid/liquid separation to recover the polymers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、食塩電解などに使
用された含フッ素イオン交換膜から含フッ素ポリマーを
回収する方法に関する。
The present invention relates to a method for recovering a fluorine-containing polymer from a fluorine-containing ion exchange membrane used for salt electrolysis or the like.

【0002】[0002]

【従来の技術】含フッ素イオン交換膜は、食塩電解によ
り水酸化ナトリウムを製造する場合の電解槽の隔膜とし
て広く使用されている。このような含フッ素イオン交換
膜としては、カルボン酸基を有する含フッ素ポリマーの
フィルムとスルホン酸基を有する含フッ素ポリマーのフ
ィルムを2〜4層積層した複層型のイオン交換膜、この
複層型のイオン交換膜をポリテトラフルオロエチレン
(以下、PTFE)からなる織布で補強したもの等が用
いられている。
2. Description of the Related Art Fluorine-containing ion exchange membranes are widely used as diaphragms in electrolytic cells when sodium hydroxide is produced by salt electrolysis. Examples of such a fluorine-containing ion exchange membrane include a multilayer ion exchange membrane in which two to four layers of a fluoropolymer film having a carboxylic acid group and a fluoropolymer film having a sulfonic acid group are laminated. A type of ion exchange membrane reinforced with a woven fabric made of polytetrafluoroethylene (hereinafter, PTFE) is used.

【0003】また、電解中に発生するガスが膜表面に付
着することを防止し、電解電圧を低減させる目的から、
炭化ケイ素、酸化ジルコニウム等の無機粒子を複層型の
イオン交換膜の表面に被覆させたものが用いられてい
る。一方、イオン交換膜の表面には、電解中に鉄の酸化
物またはその水和物を主とする析出物(以下、表面析出
物という)が付着しやすい。
In order to prevent the gas generated during electrolysis from adhering to the film surface and reduce the electrolysis voltage,
A material in which inorganic particles such as silicon carbide and zirconium oxide are coated on the surface of a multilayer ion exchange membrane is used. On the other hand, during electrolysis, a precipitate mainly composed of iron oxide or a hydrate thereof (hereinafter, referred to as a surface precipitate) easily adheres to the surface of the ion exchange membrane.

【0004】従来、電解に使用されるイオン交換膜は性
能が低下した場合、電解槽より取り外され、廃棄物とし
て埋め立て等に使用され、処分されてきた。しかし、近
年、環境に与える影響から、イオン交換膜を構成する含
フッ素ポリマーを、イオン交換膜や燃料電池用の膜の材
料として回収し、再使用することが望まれている。
Conventionally, ion exchange membranes used for electrolysis have been removed from the electrolytic cell when their performance has deteriorated, and used as landfills for waste disposal. However, in recent years, it has been desired to recover and reuse the fluorine-containing polymer constituting the ion-exchange membrane as a material for the ion-exchange membrane or the membrane for a fuel cell due to its influence on the environment.

【0005】カルボン酸基を有する含フッ素ポリマー、
およびスルホン酸基を有する含フッ素ポリマーをイオン
交換膜から回収し、再使用するためには、両者を分別す
るだけでなく、上記イオン交換膜から前述した織布や無
機粒子を除く必要がある。
A fluorine-containing polymer having a carboxylic acid group,
In order to recover and reuse the fluorinated polymer having a sulfonic acid group from the ion exchange membrane, it is necessary to not only separate the two but also remove the woven fabric and the inorganic particles from the ion exchange membrane.

【0006】含フッ素イオン交換膜から含フッ素ポリマ
ーを回収する方法としては以下の方法が知られている。
例えば、カルボン酸基および/またはスルホン酸基を有
する2種以上の含フッ素ポリマー層からなる複層型含フ
ッ素イオン交換膜を、酸型またはアルカリ金属塩型に転
化した後、水溶性有機溶媒中に浸漬して各含フッ素ポリ
マーを溶出させ、その溶出液から各含フッ素ポリマーを
回収する方法(特公平3−14860)、カルボン酸基
を有する含フッ素ポリマーとスルホン酸基を有する含フ
ッ素ポリマーからなる複層型イオン交換膜を、含フッ素
アルコール中に浸漬してスルホン酸基を有する含フッ素
ポリマーを溶出させる方法(特開2000−8680
9)。
The following method is known as a method for recovering a fluorine-containing polymer from a fluorine-containing ion exchange membrane.
For example, after converting a multi-layer type fluorinated ion-exchange membrane composed of two or more types of fluoropolymer layers having a carboxylic acid group and / or a sulfonic acid group into an acid type or an alkali metal salt type, it is added to a water-soluble organic solvent. To elute each fluorine-containing polymer by immersion in water and recover each fluorine-containing polymer from the eluate (Japanese Examined Patent Publication No. 3-14860), from a fluorine-containing polymer having a carboxylic acid group and a fluorine-containing polymer having a sulfonic acid group. A multi-layered ion exchange membrane is immersed in a fluorinated alcohol to elute a fluorinated polymer having a sulfonic acid group (Japanese Patent Laid-Open No. 2000-8680).
9).

【0007】しかし、これらの方法においては、含フッ
素ポリマーを溶解した後、濾過して無機粒子を除去する
が、無機粒子が微粒子であるため、その除去が困難であ
り、得られる含フッ素ポリマーの純度が低く再利用が難
しい、含フッ素ポリマーの全量を溶解させるのに大量の
溶媒を必要とする等の問題がある。
However, in these methods, after dissolving the fluoropolymer, the inorganic particles are removed by filtration. However, since the inorganic particles are fine particles, it is difficult to remove the inorganic particles. There are problems that the purity is low and it is difficult to reuse, and a large amount of solvent is required to dissolve the entire amount of the fluoropolymer.

【0008】[0008]

【発明が解決しようとする課題】本発明は、カルボン酸
基を有する含フッ素ポリマー、スルホン酸基を有する含
フッ素ポリマー、および表面に無機粒子を含有するイオ
ン交換膜から、無機粒子を除去し、カルボン酸基を有す
る含フッ素ポリマー、およびスルホン酸基を有する含フ
ッ素ポリマーを各々高純度で効率よく回収する方法の提
供を目的とする。
SUMMARY OF THE INVENTION The present invention provides a method for removing inorganic particles from a fluorine-containing polymer having a carboxylic acid group, a fluorine-containing polymer having a sulfonic acid group, and an ion-exchange membrane containing inorganic particles on the surface. An object of the present invention is to provide a method for efficiently recovering a fluoropolymer having a carboxylic acid group and a fluoropolymer having a sulfonic acid group with high purity.

【0009】[0009]

【課題を解決するための手段】本発明は、カルボン酸基
を有する含フッ素ポリマー(以下、Cポリマーとい
う)、およびスルホン酸基を有する含フッ素ポリマー
(以下、Sポリマーという)を含有し、表面に無機粒子
が付着したイオン交換膜を溶媒により膨潤させて表面の
無機粒子を除去した後、Sポリマーの良溶媒であり、か
つCポリマーの貧溶媒である溶媒に接触させ、主として
Cポリマーからなる固形物とSポリマーを溶解した溶液
とを得、これらを固液分離により回収することを特徴と
する含フッ素ポリマーの回収方法を提供する。
The present invention comprises a fluorine-containing polymer having a carboxylic acid group (hereinafter referred to as C polymer) and a fluorine-containing polymer having a sulfonic acid group (hereinafter referred to as S polymer). After removing the inorganic particles on the surface by swelling the ion-exchange membrane with the inorganic particles adhered to the solvent, and then contacting with a solvent that is a good solvent for the S polymer and a poor solvent for the C polymer, mainly consisting of the C polymer A method for recovering a fluoropolymer, comprising obtaining a solution in which a solid and an S polymer are dissolved, and recovering the solution by solid-liquid separation.

【0010】ここで、無機粒子とは、ガスが付着するの
を防ぐためにイオン交換膜の表面に付着させた炭化ケイ
素または酸化ジルコニウムなどの粒子だけでなく、表面
析出物等の粒子を含む。なお、本明細書中において、C
ポリマーは酸型だけでなく、カルボン酸基を有する含フ
ッ素ポリマーの一部または全部が塩型になっているもの
を含む。同様にSポリマーは酸型だけでなく、スルホン
酸基を有する含フッ素ポリマーの一部または全部が塩型
になっているものを含む。
Here, the inorganic particles include not only particles such as silicon carbide or zirconium oxide adhered to the surface of the ion exchange membrane in order to prevent gas from adhering, but also particles such as surface precipitates. In the present specification, C
The polymer includes not only the acid form but also a part of or the whole of the fluorine-containing polymer having a carboxylic acid group is in a salt form. Similarly, the S polymer includes not only the acid form but also a form in which a part or all of the fluorinated polymer having a sulfonic acid group is in a salt form.

【0011】本発明によれば、イオン交換膜を溶媒で膨
潤させて、イオン交換膜表面に付着する無機粒子を分
離、除去した後、CポリマーおよびSポリマーを回収す
ることにより、これらのポリマーを純度よく得ることが
できる。
According to the present invention, the ion exchange membrane is swollen with a solvent to separate and remove the inorganic particles adhering to the surface of the ion exchange membrane, and then the C polymer and the S polymer are recovered. It can be obtained with high purity.

【0012】[0012]

【発明の実施の形態】膨潤したイオン交換膜から無機粒
子を分離する方法としては以下の方法が挙げられる。 1)イオン交換膜を固定する。加熱還流、ポンプ循環等
の方法で溶媒を連続的に供給し、イオン交換膜に接触さ
せる。イオン交換膜が膨潤するにしたがい無機粒子がイ
オン交換膜から分離し、溶媒中へ分散する。無機粒子の
分離を促進させる目的から、溶媒をイオン交換膜に接触
させるときにイオン交換膜を振動させてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION As a method for separating inorganic particles from a swollen ion-exchange membrane, the following method can be mentioned. 1) Fix the ion exchange membrane. The solvent is continuously supplied by a method such as heating reflux and pump circulation, and is brought into contact with the ion exchange membrane. As the ion exchange membrane swells, the inorganic particles separate from the ion exchange membrane and disperse in the solvent. For the purpose of promoting the separation of the inorganic particles, the ion exchange membrane may be vibrated when the solvent is brought into contact with the ion exchange membrane.

【0013】2)イオン交換膜を適当な大きさ、好まし
くは1〜30cm角程度に裁断し、溶媒中に投入して撹
拌する。撹拌時間は5時間以上、特には20時間以上が
好ましい。イオン交換膜が膨潤するにしたがい無機粒子
がイオン交換膜から分離し、溶媒中へ分散する。このと
き、膨潤を進行させる目的から、溶媒を加熱することが
好ましい。次いで、ふるいにかけ、ふるい上にイオン交
換膜を残し、無機粒子を分散した溶媒と分離する、また
は、溶媒中の無機粒子を沈降させ、除去した後、イオン
交換膜を抜き出す方法等により無機粒子を除去する。
2) The ion-exchange membrane is cut into a suitable size, preferably about 1 to 30 cm square, put into a solvent and stirred. The stirring time is preferably at least 5 hours, particularly preferably at least 20 hours. As the ion exchange membrane swells, the inorganic particles separate from the ion exchange membrane and disperse in the solvent. At this time, it is preferable to heat the solvent for the purpose of promoting swelling. Next, sieving, leaving the ion-exchange membrane on the sieve, and separating the inorganic particles from the solvent in which the inorganic particles are dispersed, or by sedimenting the inorganic particles in the solvent and removing them, removing the inorganic particles by a method of extracting the ion-exchange membrane, etc. Remove.

【0014】本発明においてイオン交換膜を膨潤させる
溶媒としては、CポリマーおよびSポリマーの溶解度が
低いものが好ましい。具体的には水溶性の有機溶媒と水
との混合溶媒が好ましい。好ましい水溶性の有機溶媒と
しては、メタノール、エタノール、n−プロパノール、
i−プロパノール、ジオキサン、アセトン、スルホラ
ン、エチレングリコール類、プロピレングリコール類が
挙げられる。なかでも、溶媒の回収および再使用のしや
すさから、メタノール、エタノール、n−プロパノー
ル、i−プロパノール、アセトンが好ましく、特には取
扱いのしやすさからメタノールまたはエタノールが好ま
しい。
In the present invention, the solvent for swelling the ion exchange membrane is preferably a solvent having low solubility of C polymer and S polymer. Specifically, a mixed solvent of a water-soluble organic solvent and water is preferable. Preferred water-soluble organic solvents include methanol, ethanol, n-propanol,
Examples include i-propanol, dioxane, acetone, sulfolane, ethylene glycols, and propylene glycols. Among them, methanol, ethanol, n-propanol, i-propanol, and acetone are preferred from the viewpoint of easy recovery and reuse of the solvent, and methanol or ethanol is particularly preferred from the viewpoint of easy handling.

【0015】水溶性の有機溶媒と水との混合溶媒におけ
る水の含有割合は、水溶性の有機溶媒の種類、温度によ
り異なるが、50質量%以上が好ましく、特には80〜
95質量%が好ましい。なお、特に好ましい有機溶媒と
水との混合溶媒は、エタノールと水との混合溶媒であっ
て、水の含有割合が60〜98質量%であるものであ
る。
The content of water in a mixed solvent of a water-soluble organic solvent and water depends on the type and temperature of the water-soluble organic solvent, but is preferably 50% by mass or more, and particularly preferably 80 to 80% by mass.
95 mass% is preferred. A particularly preferred mixed solvent of an organic solvent and water is a mixed solvent of ethanol and water, and has a water content of 60 to 98% by mass.

【0016】イオン交換膜を膨潤させるときの温度は、
溶媒等により異なるが、0〜100℃が採用でき、特に
は15〜50℃が好ましい。温度が高すぎる場合は、C
ポリマーおよびSポリマーの溶媒への溶解量が増え、C
ポリマーおよびSポリマーの回収率が低下する。イオン
交換膜を膨潤させるときの圧力は常圧でも加圧でもよ
い。
The temperature at which the ion exchange membrane swells is
Although it varies depending on the solvent and the like, 0 to 100 ° C can be adopted, and particularly preferably 15 to 50 ° C. If the temperature is too high,
The amount of polymer and S polymer dissolved in the solvent increases,
The recovery of polymer and S-polymer is reduced. The pressure for swelling the ion exchange membrane may be normal pressure or pressurization.

【0017】また、食塩電解に用いられた後のイオン交
換膜においては、含フッ素ポリマーは、カルボン酸基を
有するものもスルホン酸基を有するものもほとんどがナ
トリウムと塩を形成している。したがって、本発明にお
いては、後の工程でCポリマーとSポリマーを効率よく
分離する目的から、イオン交換膜を膨潤させるときに酸
を添加し、CポリマーおよびSポリマーを塩型から酸型
に変換するのが好ましい。
Further, in the ion exchange membrane after being used for the salt electrolysis, most of the fluorine-containing polymers having a carboxylic acid group and those having a sulfonic acid group form a salt with sodium. Therefore, in the present invention, in order to efficiently separate the C polymer and the S polymer in a later step, an acid is added when the ion exchange membrane is swollen, and the C polymer and the S polymer are converted from the salt form to the acid form. Is preferred.

【0018】このとき用いる酸としては、塩酸、硫酸、
リン酸、硝酸、酢酸等が好ましく、特には塩酸が好まし
い。また、塩のほとんどを中和するためには、酸の添加
量を、Cポリマー中の塩型イオン交換基とSポリマー中
の塩型イオン交換基との合計に対して1当量以上とする
のが好ましい。一方、酸の添加量は前記塩型イオン交換
基の合計に対して10当量以下とするのが好ましい。ま
た、使用する酸の好ましい濃度は、酸の種類により異な
るが、0.5〜20質量%である。
The acid used at this time is hydrochloric acid, sulfuric acid,
Phosphoric acid, nitric acid, acetic acid and the like are preferred, and hydrochloric acid is particularly preferred. In order to neutralize most of the salts, the amount of the acid to be added is at least 1 equivalent to the total of the salt-type ion exchange groups in the C polymer and the salt-type ion exchange groups in the S polymer. Is preferred. On the other hand, the addition amount of the acid is preferably 10 equivalents or less based on the total of the salt-type ion exchange groups. The preferred concentration of the acid used depends on the type of the acid, but is 0.5 to 20% by mass.

【0019】本発明においては、膨潤させたイオン交換
膜をSポリマーの良溶媒であり、かつCポリマーの貧溶
媒である溶媒(以下、分離溶媒という)に接触させて、
主としてCポリマーからなる固形物とSポリマーを溶解
した溶液とに分離し、回収する。
In the present invention, the swollen ion exchange membrane is brought into contact with a solvent that is a good solvent for the S polymer and a poor solvent for the C polymer (hereinafter referred to as a separation solvent),
It is separated and recovered into a solid mainly composed of C polymer and a solution in which S polymer is dissolved.

【0020】分離溶媒としては、Sポリマーの溶解度が
Cポリマーの溶解度の10倍以上であるものが好まし
く、特には30倍以上であるものが好ましい。具体的に
は、エタノール、メタノール、水の含有割合が40質量
%以下のエタノール水溶液、水の含有割合が40質量%
以下のメタノール水溶液が好ましく、特にはエタノール
が好ましい。なお、分離溶媒の種類のみならず、温度や
圧力を制御することにより溶解度の調整を行ってもよ
い。
As the separation solvent, a solvent having a solubility of S polymer of 10 times or more as high as that of C polymer is preferable, and a solvent having a solubility of 30 times or more is particularly preferable. Specifically, ethanol, methanol, and an aqueous ethanol solution having a water content of 40% by mass or less, and a water content of 40% by mass.
The following aqueous methanol solutions are preferred, and ethanol is particularly preferred. The solubility may be adjusted by controlling not only the type of the separation solvent but also the temperature and pressure.

【0021】本発明の含フッ素ポリマーの回収方法は、
CポリマーおよびSポリマーを含有する食塩電解用のイ
オン交換膜からCポリマーおよびSポリマーを回収する
のに適している。
The method for recovering a fluorine-containing polymer according to the present invention comprises:
It is suitable for recovering C polymer and S polymer from an ion exchange membrane for salt electrolysis containing C polymer and S polymer.

【0022】上記食塩電解用のイオン交換膜のCポリマ
ーとしては、テトラフルオロエチレンと、カルボン酸基
を有するパーフルオロビニルエーテルとの共重合体から
なり、イオン交換容量が0.8〜1.9ミリ当量/g乾
燥樹脂であるものが挙げられる。上記共重合体として
は、テトラフルオロエチレンとカルボン酸エステル基を
有するパーフルオロビニルエーテルとの共重合体を前駆
体とし、これを加水分解して得られるものが好ましい。
ここで、カルボン酸エステル基を有するパーフルオロビ
ニルエーテルとしては、一般式CF=CF−(OCF
CFX)−(O)−(CF−COCH
(式中、p=0〜3の整数、qは0または1、p+q≧
1、rは0〜12の整数であり、Xは−Fまたは−CF
である。)で示されるものが好ましく、特には以下に
示すものが好ましい。 CF2=CFOCF2CF2CO2CH3、 CF2=CFOCF2CF2CF2CO2CH3、 CF2=CFOCF2CF(CF3)OCF2CF2CO2
3
The C polymer of the ion exchange membrane for salt electrolysis is a copolymer of tetrafluoroethylene and perfluorovinyl ether having a carboxylic acid group, and has an ion exchange capacity of 0.8 to 1.9 mm. Equivalent / g dry resin. As the above copolymer, a copolymer obtained by using a copolymer of tetrafluoroethylene and a perfluorovinyl ether having a carboxylic acid ester group as a precursor and hydrolyzing the precursor is preferable.
Here, as the perfluorovinyl ether having a carboxylic acid ester group, a general formula CF 2 CFCF— (OCF)
2 CFX) p- (O) q- (CF 2 ) r -CO 2 CH 3
(Where p is an integer of 0 to 3, q is 0 or 1, p + q ≧
1, r is an integer of 0 to 12, and X is -F or -CF
3 . ) Are preferable, and particularly those shown below are preferable. CF 2 = CFOCF 2 CF 2 CO 2 CH 3, CF 2 = CFOCF 2 CF 2 CF 2 CO 2 CH 3, CF 2 = CFOCF 2 CF (CF 3) OCF 2 CF 2 CO 2 C
H 3.

【0023】また、前駆体としてはテトラフルオロエチ
レン、カルボン酸エステル基を有するパーフルオロビニ
ルエーテルとともに、さらに以下に示すパーフルオロビ
ニルエーテルを重合させてなる3元系の共重合体も好ま
しい。 CF2=CFOCF2CF2CF3、 CF2=CFOCF2CF(CF3)OCF2CF2CF3
As the precursor, a terpolymer obtained by polymerizing perfluorovinyl ether shown below together with tetrafluoroethylene and perfluorovinyl ether having a carboxylic acid ester group is also preferable. CF 2 = CFOCF 2 CF 2 CF 3, CF 2 = CFOCF 2 CF (CF 3) OCF 2 CF 2 CF 3.

【0024】また、上記食塩電解用のイオン交換膜のS
ポリマーとしては、テトラフルオロエチレンと、スルホ
ン酸基を有するパーフルオロビニルエーテルとの共重合
体であって、イオン交換容量が0.8〜1.3ミリ当量
/g乾燥樹脂であるイオン交換膜が挙げられる。上記共
重合体としては、テトラフルオロエチレンと、側鎖にス
ルホニルフルオライド基を有するパーフルオロビニルエ
ーテルとの共重合体を前駆体とし、これを加水分解して
得られるものが好ましい。ここで、スルホニルフルオラ
イド基を有するパーフルオロビニルエーテルとしては、
一般式CF=CF−(OCFCFZ)−(O)
−(CF−SOF(式中、s=0〜3の整数、
tは0または1、s+t≧1、uは0〜12の整数であ
り、Zは−Fまたは−CFである。)で示されるもの
が好ましく、特には以下に示すものが好ましい。 CF2=CFOCF2CF2SO2F、 CF2=CFOCF2CF(CF3)OCF2CF2SO
2F。
Further, the S of the ion exchange membrane for salt electrolysis
Examples of the polymer include an ion exchange membrane which is a copolymer of tetrafluoroethylene and a perfluorovinyl ether having a sulfonic acid group, and has an ion exchange capacity of 0.8 to 1.3 meq / g dry resin. Can be As the above copolymer, a copolymer obtained by using a copolymer of tetrafluoroethylene and a perfluorovinyl ether having a sulfonyl fluoride group in a side chain as a precursor and hydrolyzing the precursor is preferable. Here, as the perfluorovinyl ether having a sulfonyl fluoride group,
Formula CF 2 = CF- (OCF 2 CFZ ) s - (O) t
— (CF 2 ) u —SO 2 F (where s is an integer of 0 to 3,
t is 0 or 1, s + t ≧ 1, u is an integer of 0 to 12, and Z is —F or —CF 3 . ) Are preferable, and particularly those shown below are preferable. CF 2 = CFOCF 2 CF 2 SO 2 F, CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO
2 F.

【0025】また、本発明においてはイオン交換膜がP
TFEからなる織布等の補強材と積層されている場合
は、補強材を、無機粒子を除去する際に除去してもよ
く、別途除去工程を設けて除去してもよい。
In the present invention, the ion exchange membrane is made of P
When laminated with a reinforcing material such as a woven fabric made of TFE, the reinforcing material may be removed when removing the inorganic particles, or may be removed by providing a separate removing step.

【0026】本発明によれば、CポリマーおよびSポリ
マーは、いずれも純度が90質量%以上、好ましくは9
5質量%以上で回収できる。このように、Cポリマーお
よびSポリマーを、それぞれ高純度で回収できるので、
回収後、精製することなく再利用することも可能であ
る。ただし、用途によりさらなる純度の向上が必要な場
合は精製を行う。精製の方法としては、Cポリマーおよ
びSポリマーとも、メタノール等のアルコール中で硫酸
存在下、加熱処理し、生成するCポリマーのエステル体
等を取り除く方法が好ましい。
According to the present invention, the C polymer and the S polymer each have a purity of 90% by mass or more, preferably 9% by mass.
It can be recovered at 5% by mass or more. As described above, since the C polymer and the S polymer can be respectively recovered with high purity,
After recovery, it can be reused without purification. However, if further improvement in purity is required depending on the application, purification is performed. As a purification method, a method is preferred in which both the C polymer and the S polymer are subjected to a heat treatment in an alcohol such as methanol in the presence of sulfuric acid to remove the resulting C polymer ester.

【0027】本発明で回収されるCポリマーは燃料電池
用の膜材料、食塩電解用のイオン交換膜の材料として再
使用できる。Sポリマーは燃料電池の膜材料、食塩電解
用のイオン交換膜の材料、フッ素樹脂系繊維の材料とし
て使用できる。本発明で回収される各ポリマーは無機粒
子の含有量が低いことから、特には、燃料電池用の膜材
料等の電子材料用途に好適である。
The C polymer recovered in the present invention can be reused as a membrane material for a fuel cell and a material for an ion exchange membrane for salt electrolysis. S-polymer can be used as a membrane material for fuel cells, a material for ion exchange membranes for salt electrolysis, and a material for fluororesin fibers. Since each polymer recovered in the present invention has a low content of inorganic particles, it is particularly suitable for use in electronic materials such as membrane materials for fuel cells.

【0028】本発明の含フッ素ポリマーの回収方法の具
体例は次のようになる。無機粒子およびPTFEの織布
を含むイオン交換膜を裁断したものを酸溶液、例えば1
0質量%の塩酸水溶液とエタノールとの混合溶液(体積
比:10質量%の塩酸水溶液/エタノール=90%/1
0%)で処理する。次いで、ふるいで濾過を行い、得ら
れる濾物を水等の洗浄液で洗い無機粒子を除去する(濾
物がポリマー成分であり、濾液中に無機粒子が分散す
る)。濾物を分離溶媒、例えばエタノールに接触させ、
Cポリマーを主成分とする固形物と、Sポリマーを溶解
した溶液とに分離させる。Cポリマーを主成分とする固
形物は、メタノールなどの溶媒で溶解させ、濾過により
PTFEの織布を分離、除去する。
A specific example of the method for recovering a fluoropolymer of the present invention is as follows. An ion-exchange membrane containing inorganic particles and a PTFE woven cloth is cut into an acid solution such as 1
A mixed solution of 0 mass% hydrochloric acid aqueous solution and ethanol (volume ratio: 10 mass% hydrochloric acid aqueous solution / ethanol = 90% / 1
0%). Next, the mixture is filtered through a sieve, and the obtained residue is washed with a washing liquid such as water to remove inorganic particles (the residue is a polymer component, and the inorganic particles are dispersed in the filtrate). The filtrate is contacted with a separation solvent, for example, ethanol,
Separate into a solid containing C polymer as a main component and a solution in which S polymer is dissolved. The solid containing the C polymer as a main component is dissolved in a solvent such as methanol, and the PTFE woven fabric is separated and removed by filtration.

【0029】[0029]

【実施例】以下に本発明の実施例(例1〜3)および比
較例(例4)を説明する。 [例1] イオン交換膜として、Cポリマーからなる膜と、Sポリ
マーからなる膜と、PTFEからなる織布とが積層さ
れ、表面に無機粒子が付着したイオン交換膜であり、食
塩電解に使用したものを用意した。Cポリマーは、テト
ラフルオロエチレンとカルボン酸基を有するパーフルオ
ロビニルエーテルとの共重合体のナトリウム塩であり、
イオン交換容量が1.8ミリ当量/g乾燥樹脂である。
Sポリマーはテトラフルオロエチレンとスルホン酸基を
有するパーフルオロビニルエーテルとの共重合体のナト
リウム塩であって、イオン交換容量が1.1ミリ当量/
g乾燥樹脂である。
EXAMPLES Examples of the present invention (Examples 1 to 3) and comparative examples (Example 4) will be described below. [Example 1] An ion exchange membrane in which a membrane made of a C polymer, a membrane made of an S polymer, and a woven fabric made of PTFE are laminated, and inorganic particles adhere to the surface, and are used for salt electrolysis. I prepared something. C polymer is a sodium salt of a copolymer of tetrafluoroethylene and perfluorovinyl ether having a carboxylic acid group,
The ion exchange capacity is 1.8 meq / g dry resin.
The S polymer is a sodium salt of a copolymer of tetrafluoroethylene and a perfluorovinyl ether having a sulfonic acid group, and has an ion exchange capacity of 1.1 meq /
g dry resin.

【0030】冷却器、撹拌機を備えた500mlフラス
コに、10質量%塩酸水溶液180g、エタノール20
gを入れ、上記イオン交換膜を2cm角に裁断したもの
9.03g(Cポリマー:7.50g、Sポリマー:
0.86g、織布:0.54g、炭化ケイ素:0.03
g、酸化ジルコニウム:0.04g、表面析出物(鉄元
素換算):0.06g)を添加した。20℃で15時間
撹拌した後、10メッシュのふるい(井内盛栄堂製:以
下同じ)で濾過を行った。得られた固体の濾物と水20
0gを500mlフラスコに入れ、20℃で30分撹拌
後、10メッシュのふるいで濾過を行った。この濾物と
水とを混合、撹拌した後、濾過を行う操作を3回繰り返
し、無機粒子を除去した。
In a 500 ml flask equipped with a condenser and a stirrer, 180 g of a 10% by mass aqueous hydrochloric acid solution, 20 g of ethanol
g, and the above ion-exchange membrane was cut into 2 cm square 9.03 g (C polymer: 7.50 g, S polymer:
0.86 g, woven fabric: 0.54 g, silicon carbide: 0.03
g, zirconium oxide: 0.04 g, and surface precipitates (in terms of iron element): 0.06 g). After stirring at 20 ° C. for 15 hours, the mixture was filtered through a 10-mesh sieve (manufactured by Iuchi Seieido; the same applies hereinafter). The resulting solid residue and water 20
0 g was put in a 500 ml flask, stirred at 20 ° C. for 30 minutes, and filtered through a 10-mesh sieve. The operation of mixing and stirring the residue and water was repeated three times to remove inorganic particles.

【0031】無機粒子が除去された濾物とエタノール2
00gを500mlフラスコに入れ、60℃で15時間
還流した後、10メッシュのふるいで濾過を行い、Cポ
リマーおよびPTFEからなる織布を濾物として、Sポ
リマーが溶解したエタノール溶液を濾液として取り出し
た。ここで、60℃におけるエタノールに対するSポリ
マーの溶解度は、該エタノールに対するCポリマーの溶
解度の50倍である。
The filtrate from which the inorganic particles have been removed and ethanol 2
After placing 00 g in a 500 ml flask and refluxing at 60 ° C. for 15 hours, the solution was filtered through a 10-mesh sieve, and a woven fabric composed of C polymer and PTFE was taken out as a filter, and an ethanol solution in which S polymer was dissolved was taken out as a filtrate. . Here, the solubility of the S polymer in ethanol at 60 ° C. is 50 times the solubility of the C polymer in ethanol.

【0032】次いで、得られた濾液を4000rpmで
30分間遠心分離し、その上澄み液を孔径0.3μmの
濾紙(東洋濾紙製:以下同じ)で濾過を行った後、エタ
ノールを留去し、無色透明な酸型のSポリマーを収率6
9.5%で得た。
Next, the obtained filtrate was centrifuged at 4000 rpm for 30 minutes, and the supernatant was filtered through a filter paper having a pore diameter of 0.3 μm (manufactured by Toyo Roshi Kaisha; the same applies hereinafter). Transparent acid type S-polymer yield 6
Obtained at 9.5%.

【0033】また、Cポリマー、およびPTFEからな
る織布を含む濾物とメタノール200gをフラスコに入
れ、60℃で15時間還流した後、10メッシュのふる
いで濾過を行い、PTFEからなる織布を除去した。次
いで、濾液を4000rpmで30分間遠心分離し、そ
の上澄み液を孔径0.3μmの濾紙で濾過を行った後、
メタノールを留去し、無色透明な酸型のCポリマーを収
率87.4%で得た。
Further, a filtered material containing a woven fabric made of the C polymer and PTFE and 200 g of methanol were placed in a flask, refluxed at 60 ° C. for 15 hours, and then filtered through a 10-mesh sieve to obtain a woven fabric made of PTFE. Removed. Next, the filtrate was centrifuged at 4000 rpm for 30 minutes, and the supernatant was filtered through filter paper having a pore size of 0.3 μm.
The methanol was distilled off to obtain a colorless and transparent acid-form C polymer in a yield of 87.4%.

【0034】得られたCポリマーおよびSポリマーのそ
れぞれについて、炭化ケイ素、酸化ジルコニウムおよび
表面析出物(鉄元素換算)の含有量をICP(高周波誘
導結合プラズマ発光分光分析)により測定したところ、
すべて10ppm以下であった。また19F−NMR(超
電導核磁気共鳴分析)よりポリマー純度を測定したとこ
ろ、Cポリマーの純度は95%であり、Sポリマーの純
度は95%であった。
For each of the obtained C polymer and S polymer, the contents of silicon carbide, zirconium oxide and surface precipitates (in terms of iron element) were measured by ICP (high frequency inductively coupled plasma emission spectroscopy).
All were below 10 ppm. Further, when the polymer purity was measured by 19 F-NMR (superconducting nuclear magnetic resonance analysis), the purity of the C polymer was 95% and the purity of the S polymer was 95%.

【0035】また、以下のようにしてCポリマーをさら
に高純度化した。冷却器、撹拌機を備えた50mlフラ
スコに、得られたCポリマー0.4g、メタノール1
9.6gおよび濃硫酸0.02gを入れ、約58℃で6
時間、撹拌下、還流させた。冷却後、孔径3μmのメン
ブレンフィルターで濾過を行い、濾物として得たCポリ
マーを19F−NMRで分析したところ、純度は99%で
あった。
The C polymer was further purified as follows. In a 50 ml flask equipped with a condenser and a stirrer, 0.4 g of the obtained C polymer, methanol 1
Add 9.6 g and 0.02 g of concentrated sulfuric acid,
The mixture was refluxed for a period of time with stirring. After cooling, the solution was filtered through a membrane filter having a pore size of 3 μm, and the C polymer obtained as a filtrate was analyzed by 19 F-NMR. As a result, the purity was 99%.

【0036】また、以下のようにしてSポリマーをさら
に高純度化した。冷却器、撹拌機を備えた50mlフラ
スコに、得られたSポリマー0.4g、メタノール1
9.6gおよび濃硫酸0.02gを入れ、約58℃で6
時間、撹拌下、還流させた。冷却後、孔径3μmのメン
ブレンフィルターで濾過を行い、濾液として得たSポリ
マーのメタノール溶液を19F−NMRで分析したとこ
ろ、純度は99%であった。
The S-polymer was further purified as follows. In a 50 ml flask equipped with a condenser and a stirrer, 0.4 g of the obtained S-polymer and methanol 1
Add 9.6 g and 0.02 g of concentrated sulfuric acid,
The mixture was refluxed for a period of time with stirring. After cooling, the solution was filtered through a membrane filter having a pore size of 3 μm, and the methanol solution of S polymer obtained as a filtrate was analyzed by 19 F-NMR. As a result, the purity was 99%.

【0037】[例2]10質量%の塩酸水溶液のかわり
に水を用いた以外は、例1と同様にしてイオン交換膜か
ら無機粒子を除去した。次いで、例1と同様の操作を行
い、無色透明のナトリウム塩型のSポリマーを収率5
7.4%で得、無色透明のナトリウム塩型のCポリマー
を収率76.4%で得た。
Example 2 Inorganic particles were removed from the ion exchange membrane in the same manner as in Example 1 except that water was used instead of the 10% by mass aqueous hydrochloric acid solution. Next, the same operation as in Example 1 was performed to obtain a colorless and transparent sodium salt type S polymer in a yield of 5%.
Thus, a colorless and transparent sodium salt type C polymer was obtained at a yield of 76.4%.

【0038】得られたSポリマーおよびCポリマーのそ
れぞれについて、炭化ケイ素、酸化ジルコニウム、表面
析出物(鉄元素換算)の含有量をICPにて測定したと
ころ、すべて10ppm以下であった。また19F−NM
Rより純度を測定したところ、Sポリマーの純度は90
%であり、Cポリマーの純度は95%であった。
The content of silicon carbide, zirconium oxide, and surface precipitates (in terms of iron element) of each of the obtained S polymer and C polymer was measured by ICP and found to be all 10 ppm or less. Also 19 F-NM
When the purity was measured from R, the purity of the S polymer was 90%.
% And the purity of the C polymer was 95%.

【0039】[例3]イオン交換膜として以下の膜9.
34gを用いた以外は例2と同様にして無色透明なナト
リウム塩型のSポリマーを収率76.5%で得、無色透
明なナトリウム塩型のCポリマーを収率53.4%で得
た。
Example 3 The following membrane as an ion exchange membrane 9.
A colorless and transparent sodium salt type S polymer was obtained in a yield of 76.5% in the same manner as in Example 2 except that 34 g was used, and a colorless and transparent sodium salt type C polymer was obtained in a yield of 53.4%. .

【0040】使用したイオン交換膜は、Cポリマーから
なる膜2.20gと、Sポリマー(Sポリマーaとい
う)からなる膜4.40gと、別のSポリマー(Sポリ
マーbという)からなる膜1.89gと、PTFEから
なる織布0.58gとが積層され、無機粒子(酸化ジル
コニウム0.14gおよび表面析出物(鉄元素換算)
0.13g)を含有するイオン交換膜であり、食塩電解
に使用したものである。
The ion-exchange membrane used was 2.20 g of a membrane made of a C polymer, 4.40 g of a membrane made of an S polymer (S polymer a), and a membrane 1 made of another S polymer (S polymer b). .89 g and a woven fabric made of PTFE 0.58 g were laminated, and inorganic particles (0.14 g of zirconium oxide and surface precipitates (in terms of iron element))
0.13 g), which was used for salt electrolysis.

【0041】Cポリマーは、テトラフルオロエチレンと
カルボン酸基を有するパーフルオロビニルエーテルとの
共重合体のナトリウム塩であって、イオン交換容量が
1.0ミリ当量/g乾燥樹脂であるもの、Sポリマーa
はテトラフルオロエチレンとスルホン酸基を有するパー
フルオロビニルエーテルとの共重合体のナトリウム塩で
あって、イオン交換容量が1.1ミリ当量/g乾燥樹脂
であるもの、Sポリマーbはテトラフルオロエチレンと
スルホン酸基を有するパーフルオロビニルエーテルとの
共重合体のナトリウム塩であって、イオン交換容量が
1.0ミリ当量/g乾燥樹脂であるものである。
The C polymer is a sodium salt of a copolymer of tetrafluoroethylene and a perfluorovinyl ether having a carboxylic acid group, the ion exchange capacity of which is 1.0 meq / g dry resin, the S polymer a
Is a sodium salt of a copolymer of tetrafluoroethylene and a perfluorovinyl ether having a sulfonic acid group, having an ion exchange capacity of 1.1 meq / g dry resin. A sodium salt of a copolymer with a perfluorovinyl ether having a sulfonic acid group, having an ion exchange capacity of 1.0 meq / g dry resin.

【0042】得られたSポリマーおよびCポリマーのそ
れぞれについて、酸化ジルコニウムおよび表面析出物
(鉄元素換算)の含有量をICPにて測定したところ、
すべて10ppm以下であった。また19F−NMRより
ポリマー純度を測定したところ、Sポリマーの純度は9
4%であり、Cポリマーの純度は90%であった。
For each of the obtained S polymer and C polymer, the contents of zirconium oxide and surface precipitates (in terms of iron element) were measured by ICP.
All were below 10 ppm. When the polymer purity was measured by 19 F-NMR, the purity of the S polymer was 9
4%, and the purity of the C polymer was 90%.

【0043】[例4]例3で用いたのと同じイオン交換
膜を用い、例3と同様にしてイオン交換膜から無機粒子
を除去した。これにメタノール200gを加え、60℃
で15時間還流した後、10メッシュのふるいで濾過を
行い、PTFEからなる織布を濾物として、Cポリマー
およびSポリマーの混合溶液を濾液として得た。この濾
液を4000rpmで30分間遠心分離し、その上澄み
液を孔径0.3μmの濾紙で濾過を行った後メタノール
を留去し、CポリマーとSポリマーの混合物を固体とし
て得た。この混合物とエタノール200gをフラスコに
入れ、60℃で15時間還流した後、孔径0.3μmの
濾紙で濾過を行い、濾物としてナトリウム塩型のCポリ
マーを収率51.1%で得た。さらに濾液中のエタノー
ルを留去してナトリウム塩型のSポリマーを収率71.
3%で得た。
Example 4 The same ion exchange membrane as used in Example 3 was used, and inorganic particles were removed from the ion exchange membrane in the same manner as in Example 3. 200 g of methanol was added to this,
After refluxing for 15 hours, filtration was performed with a 10-mesh sieve to obtain a mixed solution of C polymer and S polymer as a filtrate using a woven cloth made of PTFE as a filter substance. The filtrate was centrifuged at 4000 rpm for 30 minutes. The supernatant was filtered through a filter paper having a pore size of 0.3 μm, and then methanol was distilled off to obtain a mixture of C polymer and S polymer as a solid. This mixture and 200 g of ethanol were placed in a flask, refluxed at 60 ° C. for 15 hours, and then filtered through a filter paper having a pore size of 0.3 μm to obtain a sodium salt type C polymer as a filtered product in a yield of 51.1%. Further, ethanol in the filtrate was distilled off to obtain a sodium salt type S polymer in a yield of 71.
Obtained at 3%.

【0044】SポリマーおよびCポリマーのそれぞれに
ついて、酸化ジルコニウム、表面析出物(鉄元素換算)
の含有量をICPにて測定したところ、すべて10pp
m以下であった。また、19F−NMRよりポリマー純度
を測定したところ、Sポリマーの純度は93%であり、
Cポリマーの純度は82%であった。
For each of the S polymer and the C polymer, zirconium oxide and surface precipitate (in terms of iron element)
Was measured by ICP.
m or less. Further, when the polymer purity was measured by 19 F-NMR, the purity of the S polymer was 93%,
The purity of the C polymer was 82%.

【0045】[0045]

【発明の効果】本発明により、使用後の含フッ素イオン
交換膜中の含フッ素ポリマーが効率よく、簡便に回収で
きる。上記含フッ素ポリマーのリサイクル工程が確立で
き、廃棄物の低減が図られる。
According to the present invention, the fluorinated polymer in the fluorinated ion exchange membrane after use can be efficiently and simply recovered. A process for recycling the above fluoropolymer can be established, and waste can be reduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 深津 隆 神奈川県茅ヶ崎市茅ヶ崎3丁目2番10号 セイミケミカル株式会社内 (72)発明者 徳倉 良太 神奈川県茅ヶ崎市茅ヶ崎3丁目2番10号 セイミケミカル株式会社内 Fターム(参考) 4F301 AA18 BF11 BF25 BF26 BF27 BF32 CA09 CA12 CA33 CA53 CA65  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Takashi Fukatsu, Inventor 3-2-1-10 Chigasaki, Chigasaki-shi, Kanagawa Prefecture Inside Seimi Chemical Co., Ltd. (72) Ryota Tokukura 3-2-1-10 Chigasaki, Chigasaki-shi, Kanagawa Prefecture Seimi Chemical F term (reference) 4F301 AA18 BF11 BF25 BF26 BF27 BF32 CA09 CA12 CA33 CA53 CA65

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】カルボン酸基を有する含フッ素ポリマー
(以下、Cポリマーという)、およびスルホン酸基を有
する含フッ素ポリマー(以下、Sポリマーという)を含
有し、表面に無機粒子が付着したイオン交換膜を溶媒に
より膨潤させて表面の無機粒子を除去した後、Sポリマ
ーの良溶媒であり、かつCポリマーの貧溶媒である溶媒
に接触させ、主としてCポリマーからなる固形物とSポ
リマーを溶解した溶液とを得、これらを固液分離により
回収することを特徴とする含フッ素ポリマーの回収方
法。
1. An ion-exchange resin containing a fluorinated polymer having a carboxylic acid group (hereinafter, referred to as C polymer) and a fluorinated polymer having a sulfonic acid group (hereinafter, referred to as S polymer), and having inorganic particles attached to the surface. After removing the inorganic particles on the surface by swelling the film with a solvent, the film was brought into contact with a solvent that is a good solvent for the S polymer and a poor solvent for the C polymer, thereby dissolving the solid consisting mainly of the C polymer and the S polymer. A method for recovering a fluoropolymer, comprising obtaining a solution and recovering the solution by solid-liquid separation.
【請求項2】イオン交換膜を膨潤させる溶媒が、水溶性
の有機溶媒と水との混合溶媒である請求項1記載の含フ
ッ素ポリマーの回収方法。
2. The method according to claim 1, wherein the solvent for swelling the ion exchange membrane is a mixed solvent of a water-soluble organic solvent and water.
【請求項3】Sポリマーの良溶媒であり、かつCポリマ
ーの貧溶媒である溶媒は、該溶媒に対するSポリマーの
溶解度が、該溶媒に対するCポリマーの溶解度の10倍
以上である請求項1または2記載の含フッ素ポリマーの
回収方法。
3. The solvent that is a good solvent for the S polymer and a poor solvent for the C polymer has a solubility of the S polymer in the solvent of at least 10 times the solubility of the C polymer in the solvent. 3. The method for recovering a fluoropolymer according to 2.
【請求項4】無機粒子を除去した後のイオン交換膜を、
Sポリマーの良溶媒であり、かつCポリマーの貧溶媒で
ある溶媒に接触させる前に、酸で処理することによりC
ポリマーおよびSポリマーを塩型から酸型に変換する請
求項1〜3いずれか記載の含フッ素ポリマーの回収方
法。
4. The ion-exchange membrane from which inorganic particles have been removed,
Before contact with a solvent that is a good solvent for the S-polymer and a poor solvent for the C-polymer,
The method for recovering a fluoropolymer according to any one of claims 1 to 3, wherein the polymer and the S polymer are converted from a salt form to an acid form.
【請求項5】Cポリマーが、テトラフルオロエチレン
と、カルボン酸基を有するパーフルオロビニルエーテル
とを重合させてなる共重合体であって、イオン交換容量
が0.8〜1.9ミリ当量/g乾燥樹脂である請求項1
〜4いずれか記載の含フッ素ポリマーの回収方法。
5. The C polymer is a copolymer obtained by polymerizing tetrafluoroethylene and perfluorovinyl ether having a carboxylic acid group, and has an ion exchange capacity of 0.8 to 1.9 meq / g. 2. A dry resin.
5. The method for recovering a fluorine-containing polymer according to any one of items 4 to 4.
【請求項6】Sポリマーが、テトラフルオロエチレン
と、スルホン酸基を有するパーフルオロビニルエーテル
とを重合させてなる共重合体であって、イオン交換容量
が0.8〜1.3ミリ当量/g乾燥樹脂である請求項1
〜5いずれか記載の含フッ素ポリマーの回収方法。
6. The S-polymer is a copolymer obtained by polymerizing tetrafluoroethylene and a perfluorovinyl ether having a sulfonic acid group, and has an ion exchange capacity of 0.8 to 1.3 meq / g. 2. A dry resin.
6. The method for recovering a fluoropolymer according to any one of claims 5 to 5.
JP2002030881A 2001-03-07 2002-02-07 Method for recovering fluoropolymer Expired - Fee Related JP4042421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030881A JP4042421B2 (en) 2001-03-07 2002-02-07 Method for recovering fluoropolymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-63503 2001-03-07
JP2001063503 2001-03-07
JP2002030881A JP4042421B2 (en) 2001-03-07 2002-02-07 Method for recovering fluoropolymer

Publications (2)

Publication Number Publication Date
JP2002332376A true JP2002332376A (en) 2002-11-22
JP4042421B2 JP4042421B2 (en) 2008-02-06

Family

ID=26610778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030881A Expired - Fee Related JP4042421B2 (en) 2001-03-07 2002-02-07 Method for recovering fluoropolymer

Country Status (1)

Country Link
JP (1) JP4042421B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119739A1 (en) * 2006-04-12 2007-10-25 Daikin Industries, Ltd. Method for producing reclaimed material
CN116478448A (en) * 2023-06-20 2023-07-25 国家电投集团氢能科技发展有限公司 Method for recycling perfluorinated sulfonic acid resin by using water electrolysis membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119739A1 (en) * 2006-04-12 2007-10-25 Daikin Industries, Ltd. Method for producing reclaimed material
CN116478448A (en) * 2023-06-20 2023-07-25 国家电投集团氢能科技发展有限公司 Method for recycling perfluorinated sulfonic acid resin by using water electrolysis membrane

Also Published As

Publication number Publication date
JP4042421B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
EP0066369B1 (en) Production of a liquid composition containing a perfluorinated ion exchange polymer, and the use of this polymer
CN1212176C (en) Method of recovering fluorochemical surfactant
US4453991A (en) Process for making articles coated with a liquid composition of perfluorinated ion exchange resin
CA1323127C (en) Solutions of fluoropolymers, and their use
EP2440586B1 (en) Fluoroionomers dispersions having low surface tension, low liquid viscosity and high solid content
US4266036A (en) Recovery of polymeric cation exchange materials for reuse by converting by reaction to the precursor form
WO1982001882A1 (en) Cation-exchange resins and use as membranes in electrolytic cells
JP2007099624A (en) Method for recovering fluorine-containing carboxylic acid
WO2003106515A1 (en) Fluorinated monomer having sulfonate functional group, fluorinated copolymer therefrom and ion exchange membrane
JP5867503B2 (en) Fluorine-containing copolymer and ion exchange membrane
JP2002332376A (en) Method for recovering fluoropolymer
EP1239003B1 (en) Process for recovering fluoropolymers
US7015263B2 (en) Process for recovering fluoropolymers
JPWO2012157715A1 (en) Method for producing fluorine-containing copolymer
JP4000362B2 (en) Method for recovering fluoropolymer
CN117964522B (en) Method and device for recovering perfluoro 3, 6-dioxa-4-methyl-7-octenesulfonyl fluoride monomer in polymer
JP2000086809A (en) Recovery of sulfonic acid group-bearing fluoropolymer
JPH1135624A (en) Recovery of fluorinated monomer
CN117964522A (en) Method and device for recovering perfluoro 3, 6-dioxa-4-methyl-7-octenesulfonyl fluoride monomer in polymer
JPS6197336A (en) Reclamation of double-layer fluorine-containing ion exchange membrane
JPS5892407A (en) Separation of liquid mixture
JP2000344825A (en) Production of fluorocarbon polymer particle
JPH07145207A (en) Method of aggregation separation
JPS5888008A (en) Separation of liquid mixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070911

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees