JP2002331566A - Manufacturing method for polyethylene resin foamed tube - Google Patents

Manufacturing method for polyethylene resin foamed tube

Info

Publication number
JP2002331566A
JP2002331566A JP2001140356A JP2001140356A JP2002331566A JP 2002331566 A JP2002331566 A JP 2002331566A JP 2001140356 A JP2001140356 A JP 2001140356A JP 2001140356 A JP2001140356 A JP 2001140356A JP 2002331566 A JP2002331566 A JP 2002331566A
Authority
JP
Japan
Prior art keywords
tube
foam
weight
foamed
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001140356A
Other languages
Japanese (ja)
Inventor
Koji Ichihara
幸治 市原
Kotaro Tsuboi
康太郎 坪井
Junichi Yokoyama
順一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001140356A priority Critical patent/JP2002331566A/en
Publication of JP2002331566A publication Critical patent/JP2002331566A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • B29C44/507Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying extruding the compound through an annular die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid
    • B29L2023/225Insulated

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for obtaining continuously a foamed tube having a high foaming multiplication rate and having uniform and minute foams and a smooth surface. SOLUTION: A polyethylene resin of a density of 0.91-0.93 g/cm<3> is modified by heating it to a temperature or above at which a free radical is formed in the existence of a radical forming agent or by irradiating it by an ionizing radiation, so that the weight-average molecular weight thereof may rise to be 1.5-10 times larger than that before modification. A foam nucleus forming agent is added to the modified resin. A modified resin composition thus obtained is melted by an extruder 1 and then a carbonic acid gas is dissolved therein by 2-5 pts.wt. to 100 pts.wt. of the modified resin composition. This molten material is bled into an atmosphere of atmospheric pressure from a foamed tube die 5 connected to the extruder 1 and formed in the shape of the tube, while it is foamed. Immediately after this forming, the outer peripheral surface of the obtained foamed tube T is air-cooled by an air-cooling device 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低密度ポリエチレ
ン系樹脂を、クリーンな発泡剤である炭酸ガスにて押出
発泡させて、発泡チューブを連続的に製造するポリエチ
レン系樹脂発泡チューブの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polyethylene resin foam tube by continuously producing a foam tube by extruding a low density polyethylene resin with carbon dioxide gas as a clean foaming agent. .

【0002】本発明による発泡チューブは、合成樹脂製
パイプ、銅管、鋼管等のパイプに断熱性を付与する目的
で該パイプを覆う発泡体層として好適に用いられる。本
発明による発泡チューブはポリエチレン系樹脂から成
り、断熱性と可撓性を合わせ持っているので、架橋ポリ
エチレンパイプを被覆するのに特に好適に用いられる。
[0002] The foam tube according to the present invention is suitably used as a foam layer covering a pipe such as a synthetic resin pipe, a copper pipe, a steel pipe or the like for the purpose of imparting heat insulation to the pipe. Since the foamed tube according to the present invention is made of polyethylene resin and has both heat insulation and flexibility, it is particularly suitably used for coating a crosslinked polyethylene pipe.

【従来の技術】従来、熱可塑性樹脂発泡体の製造方法と
しては、熱分解型化学発泡剤を樹脂組成物に練り込み、
該発泡剤の分解温度以上に樹脂組成物を加熱することに
より発泡せしめる化学発泡法と、ブタン、ペンタン、ジ
クロロジフロロメタン(フロンR−12)のような樹脂
の融点以下に沸点を有する有機ガスまたは揮発性液体を
樹脂溶融物に溶解した後、同溶融物を低圧領域に放出し
て発泡せしめるガス発泡法が知られている。化学発泡法
では、均一かつ微細な独立気泡を有する発泡体が得られ
るが、発泡体中に発泡剤の分解残査が残るため、発泡体
の変色、臭気の発生、食品衛生上の問題等が生じる。
2. Description of the Related Art Conventionally, as a method for producing a thermoplastic resin foam, a thermal decomposition type chemical foaming agent is kneaded into a resin composition,
A chemical foaming method in which the resin composition is foamed by heating the resin composition at a temperature higher than the decomposition temperature of the foaming agent; Alternatively, a gas foaming method is known in which a volatile liquid is dissolved in a resin melt, and then the melt is discharged into a low-pressure region and foamed. In the chemical foaming method, a foam having uniform and fine closed cells can be obtained. Occurs.

【0003】一方、ガス発泡法では、使用する発泡剤が
ブタン、ペンタンのような低沸点有機物である場合、発
泡体製造時に爆発性のガスが発生するので、爆発の危険
がある。また、使用する発泡剤がジクロロジフロロメタ
ン(フロンR−12)である場合、爆発の危険が少な
く、発泡時の気化に伴う蒸発潜熱により気泡膜を急激に
冷却固化でき、さらに気泡膜に対するガス透過性が小さ
いため高発泡倍率の発泡体が得られ易すいが、オゾン層
破壊等の環境問題からフロン系ガスは全廃の方向へ進ん
でいる。
On the other hand, in the gas foaming method, when the foaming agent used is a low-boiling organic substance such as butane or pentane, there is a danger of explosion since explosive gas is generated during foam production. When the blowing agent used is dichlorodifluoromethane (CFC R-12), there is little danger of explosion, and the bubble film can be rapidly cooled and solidified by the latent heat of vaporization accompanying vaporization at the time of foaming. Since the permeability is small, it is easy to obtain a foam having a high expansion ratio, but due to environmental problems such as destruction of the ozone layer, CFC-based gases are being totally eliminated.

【0004】上記問題点を解決するために、炭酸ガス、
窒素ガス、空気のような無機ガスや水を発泡剤として用
いる方法が提案されている。これらの発泡剤は、クリー
ンであり、上記のような問題は生じないが、高発泡倍率
の発泡体を安定して得ることが困難である。
In order to solve the above problems, carbon dioxide gas,
A method using an inorganic gas such as nitrogen gas or air or water as a foaming agent has been proposed. These blowing agents are clean and do not cause the above-mentioned problems, but it is difficult to stably obtain a foam having a high expansion ratio.

【0005】特開平6−32929号公報には、架橋ポ
リオレフィン系樹脂組成物を溶融させ、この樹脂溶融物
に無機ガスを溶解し、該樹脂組成物を低圧領域に押出し
て発泡させる方法が開示されている。しかし、本発明者
らが実際に検討を行った結果、無機ガスとして炭酸ガス
を使用し、発泡体として発泡チューブを製造する場合に
は、単に樹脂を架橋させるだけでは脱圧時に破泡を防止
できず、チューブ表面が荒れて外観の悪い発泡チューブ
しか得られなかった。
JP-A-6-32929 discloses a method in which a crosslinked polyolefin-based resin composition is melted, an inorganic gas is dissolved in the resin melt, and the resin composition is extruded into a low-pressure region and foamed. ing. However, as a result of actual studies by the present inventors, when carbon dioxide gas is used as an inorganic gas and a foamed tube is manufactured as a foam, simply cross-linking the resin prevents foam breakage during depressurization. It was not possible to obtain only a foamed tube having a rough surface and poor appearance.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の欠点を克服し、クリーンな無機ガスのうち、
特に炭酸ガスを用いて、高発泡倍率で、気泡が均一微細
で、かつ表面が平滑な発泡チューブを連続的に得る製造
方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to overcome the above-mentioned disadvantages of the prior art, and to provide a clean inorganic gas.
In particular, it is an object of the present invention to provide a method for continuously obtaining a foamed tube having a high foaming ratio, uniform fine bubbles, and a smooth surface using carbon dioxide gas.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究した結果、密度0.91〜
0.93g/cm3 の低密度ポリエチレン系樹脂を、
ラジカル発生剤の存在下に遊離ラジカルが発生する温度
以上に加熱するか、あるいは同樹脂を電離性放射線で照
射することにより変性して、その重量平均分子量を変性
前の1.5〜10倍に上昇させ、この変性低密度ポリエ
チレン系樹脂に気泡核形成剤を添加し、得られた変性樹
脂組成物を押出機にて溶融させた後これに炭酸ガスを変
性樹脂組成物100重量部に対して2〜5重量部溶解さ
せ、この炭酸ガス含有変性樹脂溶融物を押出機に接続さ
れた発泡チューブ金型より大気圧雰囲気に放出して同変
性樹脂溶融物を発泡させながらチューブ状に成形し、こ
の成形直後に、得られた発泡チューブの外周面を冷却す
ることにより、高発泡倍率で、気泡が均一微細で、かつ
表面が平滑な発泡チューブを連続的に製造することがで
きることを見出した。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the density is 0.91 to 0.91.
0.93 g / cm 3 low density polyethylene resin
The resin is denatured by heating it to a temperature or higher at which free radicals are generated in the presence of a radical generator, or by irradiating the resin with ionizing radiation to increase its weight average molecular weight to 1.5 to 10 times that before denaturation. The modified low-density polyethylene resin is added with a foam nucleating agent, and the resulting modified resin composition is melted by an extruder, and then carbon dioxide gas is added to the modified resin composition with respect to 100 parts by weight of the modified resin composition. 2 to 5 parts by weight are melted, and this carbon dioxide-containing modified resin melt is discharged into an atmospheric pressure atmosphere from a foam tube mold connected to an extruder to form a tube while the modified resin melt is foamed, Immediately after the molding, by cooling the outer peripheral surface of the obtained foamed tube, it has been found that a foamed tube having a high expansion ratio, uniform and fine bubbles, and a smooth surface can be continuously produced. .

【0008】上記製造方法において、発泡チューブの外
周面の冷却を、発泡チューブに内圧をかけながら行うこ
とが好ましい。また、気泡核形成剤の添加量は、変性低
密度ポリエチレン系樹脂100重量部に対して好ましく
は0.3〜1.0重量部である。
In the above manufacturing method, it is preferable to cool the outer peripheral surface of the foam tube while applying an internal pressure to the foam tube. The addition amount of the cell nucleating agent is preferably 0.3 to 1.0 part by weight based on 100 parts by weight of the modified low-density polyethylene resin.

【0009】以下、本発明について詳述する。Hereinafter, the present invention will be described in detail.

【0010】本発明で用いられるポリエチレン系樹脂
は、密度0.91〜0.93g/cm3 の低密度ポリ
エチレン系樹脂である。この低密度ポリエチレン系樹脂
を、ラジカル発生剤の存在下に遊離ラジカルが発生する
温度以上に加熱するか、あるいは同樹脂に電離性放射線
を照射することにより変性する。ラジカル発生剤として
は、特に限定されないが、例えば、1,1−ビス(t−
ブチルパーオキシ)シクロヘキサン、t−ブチルパーオ
キシマレイン酸、t−ブチルパーオキシ−3,5,5−
トリメチルヘキサン、シクロヘキサンパーオキサイド、
t−ブチルパーオキシアリルカーボネート、t−ブチル
パーオキシイソプロピルカーボネート、2,2−ビス
(t−ブチルパーオキシ)オクタン、t−ブチルパーオ
キシアセテート、2,2−ビス(t−ブチルパーオキ
シ)ブタン、t−ブチルパーオキシベンゾエート、n−
ブチル−4,4−ビス(t−ブチルパーオキシ)ベルレ
ート、ジt−ブチルパーオキシイソフタレート、ジクミ
ルパーオキサイド、t−ブチルクミルパーオキサイド、
2,5−ジメチル−2,5−ジ(t−ブチルパーオキサ
イド)ヘキサン等の有機過酸化物等が挙げられる。
The polyethylene resin used in the present invention is a low-density polyethylene resin having a density of 0.91 to 0.93 g / cm 3 . The low-density polyethylene-based resin is denatured by heating it to a temperature at which free radicals are generated in the presence of a radical generator or by irradiating the resin with ionizing radiation. Although it does not specifically limit as a radical generator, For example, 1,1-bis (t-
Butylperoxy) cyclohexane, t-butylperoxymaleic acid, t-butylperoxy-3,5,5-
Trimethylhexane, cyclohexane peroxide,
t-butyl peroxyallyl carbonate, t-butyl peroxyisopropyl carbonate, 2,2-bis (t-butylperoxy) octane, t-butylperoxyacetate, 2,2-bis (t-butylperoxy) butane , T-butyl peroxybenzoate, n-
Butyl-4,4-bis (t-butylperoxy) berlate, di-t-butylperoxyisophthalate, dicumyl peroxide, t-butylcumyl peroxide,
Organic peroxides such as 2,5-dimethyl-2,5-di (t-butyl peroxide) hexane and the like can be mentioned.

【0011】ラジカル発生剤と共に、必要に応じて炭素
−炭素不飽和結合を1個以上有する化合物を高分子化助
剤として低密度ポリエチレン系樹脂に添加してもよい。
ラジカル発生剤により低密度ポリエチレン系樹脂を変性
するには、低密度ポリエチレン系樹脂とラジカル発生剤
と必要に応じて高分子化助剤とを変性用の押出機に供給
して、これをラジカル発生剤の分解温度以上の温度で押
出し、遊離ラジカルを発生させて低密度ポリエチレン系
樹脂を架橋させる。こうして変性した樹脂は、これをペ
レット化してから、発泡チューブ製造用の押出機に供給
してもよいし、変性用の押出機に直接発泡チューブ製造
用の押出機を連結して、変性した樹脂を直接発泡チュー
ブ製造用の押出機に供給してもよい。
If necessary, a compound having at least one carbon-carbon unsaturated bond may be added to the low-density polyethylene resin as a polymerization aid together with the radical generator.
To modify a low-density polyethylene resin with a radical generator, the low-density polyethylene resin, a radical generator and, if necessary, a polymerization aid are supplied to an extruder for modification, and this is subjected to radical generation. It extrudes at a temperature higher than the decomposition temperature of the agent to generate free radicals to crosslink the low density polyethylene resin. The resin thus modified may be pelletized and then supplied to an extruder for producing a foamed tube, or an extruder for producing a foamed tube may be directly connected to the extruder for producing a modified May be directly supplied to an extruder for producing a foamed tube.

【0012】低密度ポリエチレン系樹脂を電離性放射線
で照射して同樹脂を変性する場合には、低密度ポリエチ
レン系樹脂をシート状に成形し、該シートを電子線やγ
線等の電離性放射線で照射して同樹脂を架橋させ、次い
でこれをペレット化してから発泡チューブ製造用押出機
に供給する。
When the low-density polyethylene resin is modified by irradiating it with ionizing radiation, the low-density polyethylene resin is formed into a sheet, and the sheet is irradiated with an electron beam or γ.
The resin is cross-linked by irradiation with ionizing radiation such as a wire, and then is pelletized and supplied to an extruder for producing a foamed tube.

【0013】このようにして低密度ポリエチレン系樹脂
を変性して、その重量平均分子量(以下「Mw」と略記
する)を変性前の1.5〜10倍に上昇させる。なお、
Mwは、高温ゲルパーミエーションクロマトグラフィー
(GPC)により測定した値である。
In this way, the low-density polyethylene resin is modified to increase its weight average molecular weight (hereinafter abbreviated as "Mw") to 1.5 to 10 times that before modification. In addition,
Mw is a value measured by high temperature gel permeation chromatography (GPC).

【0014】Mwの上昇倍率が1.5倍未満であると、
押出発泡時の粘度が低く、低倍率で連続気泡の多い発泡
体しか得られない。一方、Mwの上昇倍率が10倍を越
えると、溶融粘度が高くなり過ぎて押出ができなくなる
か、たとえ押出が可能でもメルトフラクチャーにより表
面平滑な発泡体を得ることが困難である。変性によるM
wの上昇倍率の好ましい範囲は、1.5〜3.0であ
る。
When the increase ratio of Mw is less than 1.5 times,
Only a foam having a low viscosity at the time of extrusion foaming and a low magnification and having many open cells can be obtained. On the other hand, if the increase ratio of Mw exceeds 10 times, the melt viscosity becomes too high to make extrusion impossible, or even if extrusion is possible, it is difficult to obtain a foam having a smooth surface by melt fracture. M by denaturation
The preferable range of the increase ratio of w is 1.5 to 3.0.

【0015】ところで、上記変性により得られるMwと
同じMwをもともと有する未変性低密度ポリエチレン系
樹脂を原料樹脂として使用しても、発泡倍率の高い発泡
体は得られない。この原因は明らかではないが、未変性
樹脂よりも変性樹脂の分岐鎖の方が長いことに起因する
と推測される。つまり、分岐鎖の長い方が発泡時の伸長
粘度が高く、発泡時の破泡が起こりにくく、高発泡倍率
の発泡体が得られるものと推測される。
By the way, even if an unmodified low-density polyethylene resin having the same Mw as that obtained by the above modification is used as a raw material resin, a foam having a high expansion ratio cannot be obtained. The reason for this is not clear, but is presumed to be due to the fact that the branched chains of the modified resin are longer than the unmodified resin. In other words, it is presumed that the longer the branched chain, the higher the elongational viscosity during foaming, the less likely it is for foam to break during foaming, and a foam having a high expansion ratio can be obtained.

【0016】次いで、上記変性低密度ポリエチレン系樹
脂に気泡核形成剤を添加する。気泡核形成剤としては、
特に限定されないが、炭酸カルシウム、タルク、クレ
ー、酸化マグネシウム、酸化亜鉛、カーボンブラック、
二酸化珪素、酸化チタン、クエン酸、重曹、オルトホウ
酸と滑石、脂肪酸のアルカリ土類金属塩等が挙げられ、
気泡核形成剤の粒径は好ましくは500μm以下であ
る。500μm以上の気泡核形成剤を使用すると、気泡
径が大きくなりすぎる傾向がある。
Next, a cell nucleating agent is added to the modified low-density polyethylene resin. As the bubble nucleating agent,
Although not particularly limited, calcium carbonate, talc, clay, magnesium oxide, zinc oxide, carbon black,
Silicon dioxide, titanium oxide, citric acid, baking soda, orthoboric acid and talc, alkaline earth metal salts of fatty acids and the like,
The particle size of the cell nucleating agent is preferably 500 μm or less. When a cell nucleating agent having a size of 500 μm or more is used, the cell diameter tends to be too large.

【0017】上記気泡核形成剤の添加量は、上記変性低
密度ポリエチレン系樹脂100重量部に対して好ましく
は0.3〜1.0重量部である。この添加量が0.3重
量部未満であると、気泡核形成剤としての効果が小さ
く、気泡数が少ないために粗大気泡しか得られにくい。
一方、この添加量が1.0重量部を越えると、気泡核形
成剤の分散が充分に行われず、部分的に凝集が生じ、そ
の部分に粗大気泡が生成される可能性がある。上記添加
量のより好ましい範囲は0.3〜0.7重量部である。
The amount of the cell nucleating agent is preferably 0.3 to 1.0 part by weight based on 100 parts by weight of the modified low density polyethylene resin. When the addition amount is less than 0.3 parts by weight, the effect as a cell nucleating agent is small, and only a coarse cell is difficult to be obtained because the number of cells is small.
On the other hand, if the addition amount exceeds 1.0 part by weight, the dispersion of the cell nucleating agent is not sufficiently performed, partial aggregation occurs, and there is a possibility that coarse bubbles are generated in that portion. A more preferred range for the amount is 0.3 to 0.7 parts by weight.

【0018】上記変性樹脂組成物には、必要に応じて、
充填剤、抗酸化剤、顔料、難燃剤等の添加剤を加えても
よい。
The above-mentioned modified resin composition may, if necessary,
Additives such as fillers, antioxidants, pigments and flame retardants may be added.

【0019】本発明においては、発泡剤として炭酸ガス
を用いる。炭酸ガスはクリーンで、環境に対する負荷が
小さく、他の無機ガスに比べて低密度ポリエチレン系樹
脂に対する溶解性が高いためである。
In the present invention, carbon dioxide is used as a foaming agent. This is because carbon dioxide gas is clean, has a small load on the environment, and has higher solubility in low-density polyethylene-based resins than other inorganic gases.

【0020】上記変性低密度ポリエチレン系樹脂と上記
気泡核形成剤からなる変性樹脂組成物を押出機にて溶融
させた後、得られた変性樹脂溶融物に炭酸ガスを溶解さ
せる。
After the modified resin composition comprising the modified low-density polyethylene resin and the cell nucleating agent is melted by an extruder, carbon dioxide is dissolved in the resulting modified resin melt.

【0021】上記炭酸ガスの供給量は変性樹脂組成物1
00重量部に対して2〜5重量部である。この供給量が
2重量部未満であると、高発泡倍率のチューブが得られ
ない。一方、この供給量が5重量部を越えると、上記発
泡チューブの製造方法では破泡を防止できず、発泡チュ
ーブの表面は荒れて外観が悪くなる。
The supply amount of the above-mentioned carbon dioxide gas depends on the modified resin composition 1
It is 2 to 5 parts by weight with respect to 00 parts by weight. If the supply amount is less than 2 parts by weight, a tube having a high expansion ratio cannot be obtained. On the other hand, if the supply amount exceeds 5 parts by weight, the above-described method for producing a foamed tube cannot prevent foam breakage, and the surface of the foamed tube becomes rough and the appearance becomes poor.

【0022】次いで、炭酸ガス含有変性樹脂溶融物を押
出機に接続された発泡チューブ金型より大気圧雰囲気に
放出して、同変性樹脂溶融物を発泡させながらチューブ
状に成形する。このとき、変性した低密度ポリエチレン
系樹脂は、未変性の低密度ポリエチレン系樹脂に比べて
高い伸長粘度を有し、発泡時の破泡が起こりにくいの
で、未変性の低密度ポリエチレン系樹脂に比べて、高発
泡倍率の発泡チューブが得られる。しかし、押出された
直後の発泡チューブは、まだ温度が高いので、発泡チュ
ーブ表面から破泡して、表面は荒れて外観の悪いものに
なってしまう。そこで、炭酸ガス含有変性樹脂溶融物を
発泡チューブ金型より大気圧雰囲気に放出した直後に、
得られた発泡チューブの外周面を冷却して、発泡チュー
ブの温度をすばやく下げて表面からの破泡を防止する。
これにより、高発泡倍率でかつ表面が平滑な発泡チュー
ブが連続的に得られる。
Next, the carbon dioxide-containing modified resin melt is discharged from a foam tube mold connected to an extruder into an atmospheric pressure atmosphere, and the modified resin melt is formed into a tube while being foamed. At this time, the modified low-density polyethylene resin has a higher elongational viscosity than the unmodified low-density polyethylene resin, and is less likely to break during foaming. Thus, a foam tube having a high foaming ratio can be obtained. However, since the temperature of the foamed tube immediately after being extruded is still high, the foam breaks from the foamed tube surface, and the surface becomes rough and the appearance becomes poor. Therefore, immediately after releasing the carbon dioxide-containing modified resin melt from the foam tube mold to the atmospheric pressure atmosphere,
The outer peripheral surface of the obtained foam tube is cooled, and the temperature of the foam tube is quickly lowered to prevent foam from breaking from the surface.
Thereby, a foamed tube having a high expansion ratio and a smooth surface can be continuously obtained.

【0023】発泡チューブの外周面を冷却する方法は特
に限定されないが、発泡チューブの外周面を均一に冷却
できるように、例えば、得られた発泡チューブの外径よ
り大径のリング状の空冷装置を発泡チューブの外に同心
状に配し、空気ボンベから同装置の複数の内向き通気穴
を経て空気を発泡チューブの外周面に当ててこれを冷却
する方法がある。上記空冷装置の設置位置は、発泡チュ
ーブ金型出口に近ければ近いほど破泡防止効果が大きい
ので、出来るだけ発泡チューブ金型出口に近づけるのが
好ましい。
The method of cooling the outer peripheral surface of the foam tube is not particularly limited. For example, in order to uniformly cool the outer peripheral surface of the foam tube, a ring-shaped air cooling device having a diameter larger than the outer diameter of the obtained foam tube is used. Is arranged concentrically outside the foaming tube, and air is applied to the outer peripheral surface of the foaming tube from an air cylinder through a plurality of inward ventilation holes of the device to cool the foaming tube. It is preferable that the air cooling device is located as close as possible to the outlet of the foaming tube mold because the bubble breaking prevention effect is greater as the closer to the outlet of the foaming tube mold.

【0024】発泡チューブの外周面を冷却する方法とし
ては上述のような空気による冷却が好ましい。これは、
例えば、冷却装置として冷却水槽を用い、同水槽内の水
中に発泡チューブを浸漬して急激な冷却を行う方法で
は、伸長粘度が高くなりすぎて、気泡の成長が停止して
しまい、それに伴って発泡倍率も上がらなくなるためで
ある。
As a method for cooling the outer peripheral surface of the foam tube, the above-described cooling with air is preferable. this is,
For example, using a cooling water tank as a cooling device and immersing the foam tube in the water in the water tank to perform rapid cooling, the elongational viscosity becomes too high, and the growth of bubbles stops, and with it This is because the expansion ratio does not increase.

【0025】発泡チューブの外周面の冷却は、発泡チュ
ーブに内圧をかけながら行うのが好ましい。これは、発
泡チューブに内圧をかけることによって、発泡チューブ
がさらに外方に膨らもうとしている状態で冷却されて気
泡が固化するので、発泡チューブの表面がより平滑にな
るためである。
The cooling of the outer peripheral surface of the foam tube is preferably performed while applying internal pressure to the foam tube. This is because when the internal pressure is applied to the foam tube, the foam tube is cooled while the foam tube is about to expand outward, and the bubbles are solidified, so that the surface of the foam tube becomes smoother.

【0026】発泡チューブに内圧をかける方法として
は、特に限定されず、例えば、発泡チューブ金型の内コ
アに、金型のブリッジ部からコア先端面に至る通気路を
設け、金型のブリッジ部を通って通気路に空気を供給し
て発泡チューブ内部に送り込むようにしておき、発泡チ
ューブの先端部をシールすることにより内圧をかける方
法がある。この方法では、内圧を制御することにより、
発泡チューブの内径、外径、厚みが制御でき、所望の発
泡チューブ形状が得られるという利点がある。
The method for applying the internal pressure to the foam tube is not particularly limited. For example, an air passage is provided in the inner core of the foam tube mold from the bridge portion of the mold to the tip surface of the core, and the bridge portion of the mold is provided. There is a method in which air is supplied to the ventilation path through the air supply tube to be sent into the inside of the foam tube, and an inner pressure is applied by sealing a tip portion of the foam tube. In this method, by controlling the internal pressure,
There is an advantage that the inner diameter, outer diameter, and thickness of the foam tube can be controlled, and a desired foam tube shape can be obtained.

【0027】内圧の大きさは、好ましくは2〜5kg/
cm2 程度である。内圧が2kg/cm2 未満である
と、内圧による上記効果がほとんど得られない。一方、
内圧が5kg/cm2 を越えると、発泡チューブの内
径および外径が大きくなりすぎて、厚みが非常に薄くな
ってしまう。
The magnitude of the internal pressure is preferably 2 to 5 kg /
cm 2 . If the internal pressure is less than 2 kg / cm 2 , the above-mentioned effects due to the internal pressure can hardly be obtained. on the other hand,
When the internal pressure exceeds 5 kg / cm 2 , the inner diameter and the outer diameter of the foam tube become too large, and the thickness becomes extremely thin.

【0028】[0028]

【作用】請求項1の製造方法によると、炭酸ガス含有変
性樹脂溶融物を押出発泡させる際に、同樹脂溶融物を発
泡チューブ金型より大気圧雰囲気に放出した直後に、得
られた発泡チューブの外周面を冷却するので、発泡チュ
ーブの温度をすばやく下げて表面からの破泡を防止する
ことができ、これにより、高発泡倍率で、気泡が均一微
細で、かつ表面が平滑な発泡チューブを連続的に製造す
ることができる。
According to the production method of claim 1, when the carbon dioxide-containing modified resin melt is extruded and foamed, the foamed tube obtained immediately after the resin melt is released from the foamed tube mold into the atmospheric pressure atmosphere. Cooling the outer peripheral surface of the foam tube, it is possible to quickly lower the temperature of the foam tube and prevent the foam from breaking from the surface, thereby producing a foam tube having a high foaming ratio, uniform and fine bubbles, and a smooth surface. It can be manufactured continuously.

【0029】請求項2の製造方法によると、内圧をかけ
ながら発泡チューブの外周面を冷却することにより、発
泡チューブがさらに外方に膨らもうとしている状態で冷
却されて気泡が固化するので、より平滑な表面を有する
発泡チューブを得ることができる。
According to the manufacturing method of the second aspect, by cooling the outer peripheral surface of the foam tube while applying the internal pressure, the foam tube is cooled while the foam tube is about to expand outward, and the bubbles are solidified. A foam tube having a smoother surface can be obtained.

【0030】請求項3の製造方法によると、気泡核形成
剤を変性低密度ポリエチレン系樹脂100重量部に対し
て0.3〜1.0重量部添加するので、より微細な気泡
を有する発泡チューブを得ることができる。
According to the method of claim 3, since the cell nucleating agent is added in an amount of 0.3 to 1.0 part by weight based on 100 parts by weight of the modified low-density polyethylene resin, a foamed tube having finer cells is added. Can be obtained.

【0031】[0031]

【発明の実施の形態】以下、本発明の実施の形態を、図
面に基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0032】本発明の発泡チューブの製造方法の一例を
示す図1において、発泡チューブ製造用の押出機(1) の
後端部に原料供給ホッパー(14)から、先に別の押出機で
作製した変性低密度ポリエチレン系樹脂に気泡核形成剤
を添加してなる変性樹脂組成物を供給する。押出機(1)
は2つのステージからなり、第1ステージで上記変性樹
脂組成物を加熱溶融する。次いで、発泡剤として炭酸ガ
スを、第1ステージと第2ステージの間の発泡剤供給部
(2) に炭酸ガスボンベ(3) から定量ポンプ(4)を用いて
変性樹脂組成物の押出量に対して2〜5重量部の供給量
で変性樹脂溶融物に供給し、第2ステージで同溶融物中
に溶解させる。発泡剤供給部(2) では、炭酸ガスが安定
して押出機内に供給できるように、スクリュの溝深さを
深くする等して、樹脂圧を一旦低下させることが好まし
い。第2ステージでは、上記変性樹脂溶融物中に炭酸ガ
スを効率良く溶解させるために、スクリュにダルメージ
等の公知のミキシングエレメントを設けるのが好まし
い。
In FIG. 1 showing an example of the method for producing a foamed tube according to the present invention, the extruder (1) for producing a foamed tube is manufactured by using a raw material supply hopper (14) at a rear end thereof and by using another extruder. A modified resin composition is prepared by adding a cell nucleating agent to the modified low density polyethylene resin. Extruder (1)
Is composed of two stages. In the first stage, the modified resin composition is heated and melted. Next, a carbon dioxide gas as a foaming agent is supplied to the foaming agent supply section between the first stage and the second stage.
In (2), the modified resin composition was supplied from the carbon dioxide gas cylinder (3) to the modified resin melt using a metering pump (4) at a supply amount of 2 to 5 parts by weight with respect to the extruded amount of the modified resin composition. Dissolve in the melt. In the blowing agent supply section (2), it is preferable to temporarily reduce the resin pressure by increasing the depth of the screw groove so that the carbon dioxide gas can be stably supplied into the extruder. In the second stage, a screw is preferably provided with a known mixing element such as dalmage to efficiently dissolve carbon dioxide gas in the modified resin melt.

【0033】引き続き、得られた炭酸ガス含有変性樹脂
溶融物を、押出機(1) に直接接続された発泡チューブ金
型(5) に送り出し、発泡チューブ(T) を成形する。発泡
チューブ金型(5)は内コア(6) と外型(7) とからなり、
内コア(6) は外型(7) にブリッジ(8) により保持されて
いる。外型(7)はバンドヒーター、あるいはオイル等の
熱媒体により温度調整可能となされており、上記炭酸ガ
ス含有変性樹脂溶融物を発泡最適温度に温度調整し、発
泡チューブ金型(5)より大気圧雰囲気に放出して押出発
泡させる。発泡最適温度は、好ましくは(融点−10
℃)〜融点の範囲である。発泡チューブ金型(5) には公
知の偏肉調整機構が設けられていることが好ましい。
Subsequently, the obtained carbon dioxide-containing modified resin melt is sent to a foam tube mold (5) directly connected to the extruder (1) to form a foam tube (T). The foam tube mold (5) consists of an inner core (6) and an outer mold (7),
The inner core (6) is held by an outer mold (7) by a bridge (8). The temperature of the outer mold (7) can be adjusted by a band heater or a heat medium such as oil. The temperature of the modified carbon dioxide-containing modified resin melt is adjusted to the optimum foaming temperature, and the outer mold (7) is larger than the foam tube mold (5). Release to atmospheric pressure and extrude foam. The optimum foaming temperature is preferably (melting point -10
C) to the melting point. It is preferable that the foam tube mold (5) is provided with a known thickness deviation adjusting mechanism.

【0034】次いで、上記炭酸ガス含有変性樹脂溶融物
を発泡チューブ金型(5)より大気圧雰囲気に放出した直
後に、得られた発泡チューブ(T) の外周面を冷却する。
この冷却は、発泡チューブ(T) の外径より大径のリング
状の空冷装置(9) を発泡チューブの外に同心状に配し、
空気ボンベ(13)から同装置(9) の複数の内向き通気穴を
経て空気を発泡チューブ(T) の外周面に当てることによ
り行う。冷却された発泡チューブ(T) を引取機(10)にて
連続的に引き取る。
Next, immediately after the carbon dioxide-containing modified resin melt is discharged from the foam tube mold (5) into the atmospheric pressure atmosphere, the outer peripheral surface of the obtained foam tube (T) is cooled.
For this cooling, a ring-shaped air cooling device (9) having a diameter larger than the outer diameter of the foam tube (T) is arranged concentrically outside the foam tube.
This is performed by applying air from the air cylinder (13) to the outer peripheral surface of the foam tube (T) through a plurality of inward ventilation holes of the device (9). The cooled foam tube (T) is continuously taken off by a take-off machine (10).

【0035】発泡チューブ(T) の外周面の冷却と共に、
発泡チューブ(T) に内圧をかける。この方法は、発泡チ
ューブ金型(5) の内コア(6) に、金型(5) のブリッジ部
(8)からコア先端面に至る通気路(11)を設け、空気ボン
ベ(12)から金型(5) のブリッジ部(8) を通って通気路(1
1)に空気を供給して発泡チューブ(T) の内部に送り込む
ようにしておき、発泡チューブ(T) の先端部を潰してシ
ールすることにより行う。
With the cooling of the outer peripheral surface of the foam tube (T),
Apply internal pressure to the foam tube (T). In this method, the bridge part of the mold (5) is attached to the inner core (6) of the foam tube mold (5).
An air passage (11) is provided from (8) to the core tip surface, and the air passage (1) is passed from the air cylinder (12) through the bridge (8) of the mold (5).
Air is supplied to 1) to be sent into the inside of the foam tube (T), and the end of the foam tube (T) is crushed and sealed.

【0036】[0036]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本実施例は例示であって、本発明を限定するもの
ではない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the examples are illustrative and do not limit the present invention.

【0037】実施例1 低密度ポリエチレン系樹脂(日本ポリケム社製、「LF
440HB」、密度:0.925g/cm3 、融点1
13℃、Mw=75,000)100重量部と、有機過
酸化物としてジクミルパーオキサイド(日本油脂社製、
「パーヘキサD」)0.2重量部を押出機(図示省略)
のホッパーに投入し、この樹脂を200℃でストランド
状に押出した後、得られたストランドをペレタイザーに
よりペレット化した。こうして得られた変性低密度ポリ
エチレン系樹脂の高温GPCによるMwは、151,0
00に上昇していた。
Example 1 Low-density polyethylene resin ("LF" manufactured by Nippon Polychem Co., Ltd.)
440 HB ", density: 0.925 g / cm 3 , melting point 1
13 ° C., Mw = 75,000) 100 parts by weight, and dicumyl peroxide (manufactured by NOF CORPORATION) as an organic peroxide.
0.2 parts by weight of "Perhexa D") is extruded (not shown)
The resin was extruded into a strand at 200 ° C., and the obtained strand was pelletized by a pelletizer. Mw of the modified low-density polyethylene resin thus obtained by high-temperature GPC was 151,0.
It was rising to 00.

【0038】上記変性低密度ポリエチレン系樹脂100
重量部に、気泡核形成剤としてタルク(平均粒径15μ
m)0.6重量部をドライブレンドし、得られた変性樹
脂組成物を図1の押出機(1) にそのホッパー(14)から供
給した。押出機(1) の第1ステージを160℃に設定
し、上記変性樹脂組成物を加熱溶融した。このとき、押
出機(1) の第2ステージと発泡チューブ金型(5)を12
0℃に設定しておいた。上記変性樹脂組成物の押出量は
約10kg/hであった。
The above modified low density polyethylene resin 100
In parts by weight, talc (average particle size 15 μ
m) 0.6 parts by weight were dry blended, and the resulting modified resin composition was supplied to the extruder (1) of FIG. 1 from the hopper (14). The first stage of the extruder (1) was set at 160 ° C., and the modified resin composition was heated and melted. At this time, the second stage of the extruder (1) and the foam tube mold (5) are
It was set to 0 ° C. The extrusion rate of the modified resin composition was about 10 kg / h.

【0039】次いで、発泡剤供給部(2) から定量ポンプ
(4)を用いて、上記変性樹脂組成物の押出量100重量
部に対して炭酸ガス3重量部を押出機(1) に供給し、第
2ステージで上記変性樹脂組成物中に炭酸ガスを溶解さ
せた。このとき、第2ステージと発泡チューブ金型(5)
の温度を108℃に設定し直し、炭酸ガス含有変性樹脂
溶融物を発泡チューブ金型(5)より大気圧雰囲気に放出
して押出発泡させた。
Next, a metering pump is supplied from the blowing agent supply section (2).
Using (4), 3 parts by weight of carbon dioxide gas is supplied to the extruder (1) with respect to 100 parts by weight of the extruded amount of the modified resin composition, and in the second stage, the carbon dioxide gas is introduced into the modified resin composition. Dissolved. At this time, the second stage and the foam tube mold (5)
Was reset to 108 ° C., and the carbon dioxide-containing modified resin melt was discharged from the foam tube mold (5) into an atmosphere of atmospheric pressure to extrude and foam.

【0040】引き続き、上記炭酸ガス含有変性樹脂溶融
物を発泡チューブ金型(5)より大気圧雰囲気に放出した
直後に、得られた発泡チューブ(T) の外周面をリング状
の空冷装置(9)により冷却し、引取機(10)にて発泡チュ
ーブ(T) を連続的に引取った。このようにして得られた
発泡チューブ(T) は、発泡倍率が約5倍で、気泡が均一
微細であり、かつ表面が平滑なものであった。
Immediately after the carbon dioxide-containing modified resin melt was discharged from the foam tube mold (5) to the atmospheric pressure, the outer peripheral surface of the obtained foam tube (T) was cooled by a ring-shaped air cooling device (9). ), And the foaming tube (T) was continuously taken out by a take-up machine (10). The foamed tube (T) thus obtained had a foaming ratio of about 5 times, uniform and fine bubbles, and a smooth surface.

【0041】実施例2 低密度ポリエチレン(日本ポリケム社製、「LF440
HB」、密度:0.925g/cm3 、融点113
℃、Mw=75,000)を2mm厚のシート状に成形
し、得られたシートの両面を照射電圧500keV、照
射線量4Mradの電子線で照射した後、ペレタイザー
によりペレット化した。こうして得られた変性低密度ポ
リエチレン系樹脂の高温GPCによるMwは、142,
000に上昇していた。
Example 2 Low density polyethylene (“LF440” manufactured by Nippon Polychem Co., Ltd.)
HB ", density: 0.925 g / cm 3 , melting point 113
(C, Mw = 75,000) into a sheet having a thickness of 2 mm. Both surfaces of the obtained sheet were irradiated with an electron beam having an irradiation voltage of 500 keV and an irradiation dose of 4 Mrad, and then pelletized by a pelletizer. The Mw of the modified low-density polyethylene resin thus obtained by high-temperature GPC was 142,
000.

【0042】上記変性低密度ポリエチレンを用いた点を
除いて、以降は実施例1と同様の操作を行った。得られ
た発泡チューブ(T) は、発泡倍率が約5倍で、気泡が均
一微細であり、かつ表面が平滑なものであった。
Thereafter, the same operation as in Example 1 was performed except that the above modified low-density polyethylene was used. The foamed tube (T) obtained had an expansion ratio of about 5 times, uniform and fine bubbles, and a smooth surface.

【0043】実施例3 実施例1と同様にして得られた炭酸ガス含有変性樹脂溶
融物を発泡チューブ金型(5)より大気圧雰囲気に放出し
た直後に、リング状の空冷装置(9)により発泡チューブ
の外周面を冷却すると共に、空気ボンベ(12)から金型
(5) のブリッジ部(8) を通って、内コア(6) に設けられ
た通気路(11)に空気を供給して、得られた発泡チューブ
(T) の内部に送り込むようにしておき、発泡チューブ
(T) の先端部を潰してシールした。こうして、発泡チュ
ーブ(T) に3kg/cm2 の内圧をかけながら発泡チ
ューブ(T) の外周面を冷却した以外は、実施例1と同様
にして発泡チューブ(T) を得た。
Example 3 Immediately after the carbon dioxide-containing modified resin melt obtained in the same manner as in Example 1 was discharged from the foam tube mold (5) into the atmosphere of atmospheric pressure, a ring-shaped air cooling device (9) was used. Cool the outer surface of the foam tube and mold from the air cylinder (12).
Air is supplied to the air passage (11) provided in the inner core (6) through the bridge portion (8) of (5), and the obtained foamed tube is obtained.
(T) inside the tube.
The tip of (T) was crushed and sealed. Thus, a foamed tube (T) was obtained in the same manner as in Example 1 except that the outer peripheral surface of the foamed tube (T) was cooled while applying an internal pressure of 3 kg / cm 2 to the foamed tube (T).

【0044】この発泡チューブ(T) は、発泡倍率が約7
倍で、気泡が均一微細であり、かつ表面がさらに平滑な
ものであった。
The expanded tube (T) has an expansion ratio of about 7
Twice, the bubbles were uniformly fine, and the surface was even smoother.

【0045】比較例1 実施例1と同様にして得られた炭酸ガス含有変性樹脂溶
融物を発泡チューブ金型(5)より大気圧雰囲気に放出し
た直後に、発泡チューブ(T) の外周面を冷却しなかった
以外は、実施例1と同様にして発泡チューブ(T) を得
た。
COMPARATIVE EXAMPLE 1 Immediately after the carbon dioxide-containing modified resin melt obtained in the same manner as in Example 1 was discharged from the foam tube mold (5) into the atmosphere of atmospheric pressure, the outer peripheral surface of the foam tube (T) was removed. A foamed tube (T) was obtained in the same manner as in Example 1 except that cooling was not performed.

【0046】この発泡チューブ(T) は、発泡倍率が約3
倍で、表面に破泡による荒れが観察されるものであっ
た。
The expanded tube (T) has an expansion ratio of about 3
And the surface was roughened by foam breakage.

【0047】比較例2 炭酸ガスの供給量を変性樹脂組成物100重量部に対し
て7重量部とした以外は、実施例1と同様にして発泡チ
ューブ(T) を得た。
Comparative Example 2 A foamed tube (T) was obtained in the same manner as in Example 1 except that the supply amount of carbon dioxide gas was changed to 7 parts by weight based on 100 parts by weight of the modified resin composition.

【0048】この発泡チューブ(T) は、発泡倍率が約4
倍で、表面に破泡によるさらに激しい荒れが観察される
ものであった。
This foam tube (T) has an expansion ratio of about 4
At the same time, more intense roughness due to foam breaking was observed on the surface.

【0049】[0049]

【発明の効果】本発明の発泡チューブ製造方法は、上述
のように構成されているので、高発泡倍率で、気泡が均
一微細で、かつ表面が平滑な発泡チューブを連続的に製
造することができる。
Since the method for producing a foamed tube of the present invention is constituted as described above, it is possible to continuously produce a foamed tube having a high expansion ratio, uniform and fine bubbles, and a smooth surface. it can.

【0050】また、発泡剤として炭酸ガスを用いるの
で、化学発泡法のような分解残査の問題や、フロン系ガ
スのようなオゾン層破壊等の環境汚染の恐れがない。
Further, since carbon dioxide gas is used as the foaming agent, there is no risk of decomposition residue as in the case of the chemical foaming method, and there is no risk of environmental pollution such as destruction of the ozone layer such as fluorocarbon gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明における発泡チューブの製造方
法の一例を示す垂直縦断面図である。
FIG. 1 is a vertical longitudinal sectional view showing an example of a method for manufacturing a foam tube according to the present invention.

【符号の説明】[Explanation of symbols]

(1) :発泡チューブ製造用押出機 (2) :発泡剤供給部 (3) :炭酸ガスボンベ (4) :定量ポンプ (5) :発泡チューブ金型 (6) :内コア (7) :外型 (8) :ブリッジ部 (9) :空冷装置 (10):引取機 (11):通気路 (12):空気ボンベ (13):空気ボンベ (14):ホッパー (T) :発泡チューブ (1): Extruder for foam tube production (2): Foaming agent supply unit (3): Carbon dioxide gas cylinder (4): Metering pump (5): Foam tube mold (6): Inner core (7): Outer mold (8): Bridge (9): Air cooling device (10): Take-off machine (11): Ventilation path (12): Air cylinder (13): Air cylinder (14): Hopper (T): Foam tube

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 23:06 C08L 23:06 Fターム(参考) 4F074 AA17 AC02 AC17 AC19 AC21 AC24 AC26 AC32 AC33 AD09 AD10 AG20 BA32 BB02 BB25 BC11 BC12 CA22 DA32 DA59 4F207 AA07J AB02 AB04 AG08 AG20 AK02 KA01 KA11 KA19 KF01 KF04 KK56 KW26 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 23:06 C08L 23:06 F term (Reference) 4F074 AA17 AC02 AC17 AC19 AC21 AC24 AC26 AC32 AC33 AD09 AD10 AG20 BA32 BB02 BB25 BC11 BC12 CA22 DA32 DA59 4F207 AA07J AB02 AB04 AG08 AG20 AK02 KA01 KA11 KA19 KF01 KF04 KK56 KW26

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 密度0.91〜0.93g/cm3
低密度ポリエチレン系樹脂を、ラジカル発生剤の存在下
に遊離ラジカルが発生する温度以上に加熱するか、ある
いは同樹脂を電離性放射線で照射することにより変性し
て、その重量平均分子量を変性前の1.5〜10倍に上
昇させ、この変性低密度ポリエチレン系樹脂に気泡核形
成剤を添加し、得られた変性樹脂組成物を押出機にて溶
融させた後これに炭酸ガスを変性樹脂組成物100重量
部に対して2〜5重量部溶解させ、この炭酸ガス含有変
性樹脂溶融物を押出機に接続された発泡チューブ金型よ
り大気圧雰囲気に放出して同変性樹脂溶融物を発泡させ
ながらチューブ状に成形し、この成形直後に、得られた
発泡チューブの外周面を冷却して、発泡チューブを連続
的に得ることを特徴とするポリエチレン系樹脂発泡チュ
ーブの製造方法。
1. A low-density polyethylene resin having a density of 0.91 to 0.93 g / cm 3 is heated to a temperature at which free radicals are generated in the presence of a radical generator, or the resin is ionized by radiation. To increase the weight-average molecular weight of the modified low-density polyethylene resin by 1.5 to 10 times, and add a cell nucleating agent to the modified low-density polyethylene-based resin. Is melted in an extruder, and 2 to 5 parts by weight of carbon dioxide gas is dissolved in 100 parts by weight of the modified resin composition. Forming a tube while releasing the same modified resin melt into a tube by blowing it into an atmospheric pressure atmosphere from the mold, and immediately after this forming, cooling the outer peripheral surface of the obtained foamed tube to continuously obtain a foamed tube Features Method of manufacturing that the polyethylene resin foamed tube.
【請求項2】 発泡チューブの外周面の冷却を、発泡チ
ューブに内圧をかけながら行うことを特徴とする請求項
1記載のポリエチレン系樹脂発泡チューブの製造方法。
2. The method for producing a polyethylene resin foam tube according to claim 1, wherein the outer peripheral surface of the foam tube is cooled while applying an internal pressure to the foam tube.
【請求項3】 気泡核形成剤の添加量を、変性低密度ポ
リエチレン系樹脂100重量部に対して0.3〜1.0
重量部とすることを特徴とする請求項1または2記載の
ポリエチレン系樹脂発泡チューブの製造方法。
3. The addition amount of the cell nucleating agent is 0.3 to 1.0 with respect to 100 parts by weight of the modified low density polyethylene resin.
The method for producing a polyethylene-based resin foam tube according to claim 1 or 2, wherein the amount is set to parts by weight.
JP2001140356A 2001-05-10 2001-05-10 Manufacturing method for polyethylene resin foamed tube Pending JP2002331566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001140356A JP2002331566A (en) 2001-05-10 2001-05-10 Manufacturing method for polyethylene resin foamed tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001140356A JP2002331566A (en) 2001-05-10 2001-05-10 Manufacturing method for polyethylene resin foamed tube

Publications (1)

Publication Number Publication Date
JP2002331566A true JP2002331566A (en) 2002-11-19

Family

ID=18986975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001140356A Pending JP2002331566A (en) 2001-05-10 2001-05-10 Manufacturing method for polyethylene resin foamed tube

Country Status (1)

Country Link
JP (1) JP2002331566A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2990435A1 (en) * 2005-08-05 2016-03-02 Wavin B.V. Method of making an extruded microcellular polymer foam pipe and die
KR101696170B1 (en) * 2015-07-13 2017-01-13 조동환 Projection Pipe Werter Cooling Type Divice By Geothermal Energy
CN112406150A (en) * 2020-11-06 2021-02-26 贵州黔峰实业有限公司 Preparation and production process of nano modified high-density polyethylene alloy pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2990435A1 (en) * 2005-08-05 2016-03-02 Wavin B.V. Method of making an extruded microcellular polymer foam pipe and die
KR101696170B1 (en) * 2015-07-13 2017-01-13 조동환 Projection Pipe Werter Cooling Type Divice By Geothermal Energy
CN112406150A (en) * 2020-11-06 2021-02-26 贵州黔峰实业有限公司 Preparation and production process of nano modified high-density polyethylene alloy pipe
CN112406150B (en) * 2020-11-06 2023-07-18 贵州黔峰实业有限公司 Preparation and production process of nano modified high-density polyethylene alloy pipe

Similar Documents

Publication Publication Date Title
JP3380816B2 (en) Ultra-low density polyolefin foams, foamable polyolefin compositions and methods of making them
JPH10506935A (en) Moldable thermoplastic polymer foam beads
JP2004250529A (en) Composition for polyolefin resin foam molding, foam molding of the same and method for producing foam molding
US6936200B2 (en) Plastic wood fiber foam structure and method of producing same
KR960704969A (en) A compatibilized carbon black and a process and a method for using
JP3571352B2 (en) Foamable synthetic resin composition, synthetic resin foam, and method for producing synthetic resin foam
JPH0811190A (en) Production of thermoplastic resin foam
JPS6011329A (en) Continuous manufacture of crosslinked and foamed body
JPH10175249A (en) Thermoplastic resin foam and its manufacture
JP2002331566A (en) Manufacturing method for polyethylene resin foamed tube
JP2009235161A (en) Regeneration method of crosslinked polyolefinic resin body
JP2007056148A (en) Manufacturing process of resin foamed body and resin foamed body
JP2007131693A (en) Foaming master batch, method for producing the same, and method for producing injection-molded, foamed article by using the same
JPH0423840A (en) Moldable, shrinked, foamed thermoplastic polymer beads
JP2021195482A (en) Method for producing resin recycled material
JP3236127B2 (en) Method for producing polyolefin resin foam
KR20120095011A (en) Polyolefin copolymer resin form for an air duct and manufacturing method thereof
EP1928756B1 (en) Polymer cork, composition and method
JP2006312728A (en) Recycled resin composition and crosslinked foam product of the recycled resin
JP3792371B2 (en) Method for producing polyolefin resin foam
JP3588545B2 (en) Method for producing polyolefin resin foam
ES2856924T3 (en) High temperature uncrosslinked polyethylene-based foam and manufacturing procedures
US20050035499A1 (en) Method for producing foamed structural parts that are mixed with vegetable carrier materials
JPS634940A (en) Method for molding olefinic resin foamed particles in mold
JP3302806B2 (en) Foam molding material and method for producing foam molding