JP2002331244A - Supported type titanium dioxide catalyst and method for oxidizing aromatic compound using the catalyst - Google Patents

Supported type titanium dioxide catalyst and method for oxidizing aromatic compound using the catalyst

Info

Publication number
JP2002331244A
JP2002331244A JP2001309171A JP2001309171A JP2002331244A JP 2002331244 A JP2002331244 A JP 2002331244A JP 2001309171 A JP2001309171 A JP 2001309171A JP 2001309171 A JP2001309171 A JP 2001309171A JP 2002331244 A JP2002331244 A JP 2002331244A
Authority
JP
Japan
Prior art keywords
titanium dioxide
rutile
catalyst
type titanium
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001309171A
Other languages
Japanese (ja)
Other versions
JP4017851B2 (en
Inventor
Michio Matsumura
道雄 松村
Teruhisa Yokono
照尚 横野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2001309171A priority Critical patent/JP4017851B2/en
Publication of JP2002331244A publication Critical patent/JP2002331244A/en
Application granted granted Critical
Publication of JP4017851B2 publication Critical patent/JP4017851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst useful for efficiently oxidizing an aromatic compound. SOLUTION: The supported type titanium dioxide catalyst is obtained by supporting titanium dioxide fine particles on the surfaces of rutile type titanium dioxide particles in a dispersed state. In this catalyst, it is preferable to support titanium dioxide fine particles with a specific surface area of 30 m<2> /g or more on the surfaces of the rutile type titanium dioxide particles in a dispersed state. The ratio of the titanium dioxide fine particles supported on the surfaces of the rutile type titanium dioxide particles in a dispersed state and the rutile type titanium dioxide particles is, for example, former/latter (weight ratio) = about 0.1/99.9-99.5/0.5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規な二酸化チタン
触媒と、該触媒を用いた芳香族化合物の酸化方法及び酸
素原子含有芳香族化合物の製造法に関する。
The present invention relates to a novel titanium dioxide catalyst, a method for oxidizing an aromatic compound using the catalyst, and a method for producing an aromatic compound containing an oxygen atom.

【0002】[0002]

【従来の技術】芳香族化合物の酸化により得られる芳香
族アルデヒドやキノン類などの酸素原子含有芳香族化合
物(芳香族酸化生成物)は、有機合成化学品又はその中
間原料等として有用な化合物である。芳香族化合物の酸
化方法として、過酸化水素と硫酸鉄(II)、アスコルビ
ン酸、エチレンジアミン四酢酸などの還元剤との組み合
わせからなる試薬を用いる方法、過酸化水素と三フッ化
ホウ素エーテラート、塩化アルミニウム、フッ化水素な
どの酸との組み合わせからなる試薬を用いる方法、有機
過酸又は過酸化物とルイス酸との組み合わせからなる試
薬を用いる方法などが知られている。しかし、これらの
方法は一般に収率が低い、反応速度や反応の選択性が反
応条件の影響を受けやすい等の欠点を有する。また、比
較的高価な試薬や後処理が煩雑となる試薬を用いるた
め、工業的に有利な方法とは言えない。
2. Description of the Related Art Oxygen atom-containing aromatic compounds (aromatic oxidation products) such as aromatic aldehydes and quinones obtained by oxidation of aromatic compounds are compounds useful as organic synthetic chemicals or intermediate materials thereof. is there. As a method for oxidizing an aromatic compound, a method using a reagent comprising a combination of hydrogen peroxide and a reducing agent such as iron (II) sulfate, ascorbic acid, ethylenediaminetetraacetic acid, hydrogen peroxide and boron trifluoride etherate, aluminum chloride And a method using a reagent composed of a combination of an organic peracid or a peroxide and a Lewis acid, and the like. However, these methods generally have drawbacks such as low yield, reaction rate and selectivity of the reaction are easily affected by reaction conditions. In addition, since relatively expensive reagents and reagents that require complicated post-treatment are used, they cannot be said to be industrially advantageous.

【0003】一方、半導体光触媒を用いて光エネルギー
を化学エネルギーに変換し、これを有害物質の分解や有
用な化合物の合成に利用する研究が精力的に行われてい
る。この方法は、反応を室温付近で行うことができる、
環境に対して温和である等の大きな利点を有しており、
近年、芳香族化合物の酸化についても研究が進められて
いる。例えば、特開2000−336051号公報に
は、二酸化チタン等の半導体光触媒の存在下、ナフタレ
ン類を紫外線照射下で酸素酸化することを特徴とするヒ
ドロキシナフタレン類の製造法が開示されている。しか
し、この方法は、酸化反応生成物の収率や選択性の点で
必ずしも十分満足できるものではない。
[0003] On the other hand, research has been made vigorously to convert light energy into chemical energy using a semiconductor photocatalyst and to use the converted energy for decomposing harmful substances or synthesizing useful compounds. In this method, the reaction can be performed at about room temperature,
It has great advantages such as being mild to the environment,
In recent years, studies have been made on the oxidation of aromatic compounds. For example, Japanese Patent Application Laid-Open No. 2000-336051 discloses a method for producing hydroxynaphthalenes, which comprises oxidizing naphthalenes under ultraviolet irradiation in the presence of a semiconductor photocatalyst such as titanium dioxide. However, this method is not always satisfactory in terms of the yield and selectivity of the oxidation reaction product.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明の目的
は、芳香族化合物を効率よく酸化する上で有用な光触媒
を提供することにある。本発明の他の目的は、芳香族化
合物を光照射下で効率よく酸化する方法を提供すること
にある。本発明のさらに他の目的は、芳香族化合物を光
照射下に酸化して対応する酸素原子含有芳香族化合物を
効率よく製造する方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a photocatalyst useful for efficiently oxidizing an aromatic compound. Another object of the present invention is to provide a method for efficiently oxidizing an aromatic compound under light irradiation. Still another object of the present invention is to provide a method for efficiently producing a corresponding oxygen atom-containing aromatic compound by oxidizing an aromatic compound under light irradiation.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意検討を重ねた結果、特定構造の二
酸化チタン光触媒を用いると、芳香族化合物を効率よく
酸化できることを見出し、本発明を完成した。
Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and as a result, have found that the use of a titanium dioxide photocatalyst having a specific structure can efficiently oxidize aromatic compounds. The present invention has been completed.

【0006】すなわち、本発明は、ルチル型二酸化チタ
ン粒子の表面に二酸化チタン微粒子が分散担持されてい
る担持型二酸化チタン触媒を提供する。この触媒の好ま
しい態様では、粒子径100nm以上のルチル型二酸化
チタン粒子の表面に比表面積30m2/g以上の二酸化
チタン微粒子が分散担持されている。ルチル型二酸化チ
タン粒子の表面に分散担持されている二酸化チタン微粒
子と前記ルチル型二酸化チタン粒子との比率は、前者/
後者(重量比)=0.1/99.9〜99.5/0.5
程度が好ましい。
That is, the present invention provides a supported titanium dioxide catalyst in which titanium dioxide fine particles are dispersed and supported on the surface of rutile type titanium dioxide particles. In a preferred embodiment of this catalyst, fine particles of titanium dioxide having a specific surface area of 30 m 2 / g or more are dispersed and supported on the surface of rutile titanium dioxide particles having a particle diameter of 100 nm or more. The ratio of the titanium dioxide fine particles dispersed and supported on the surface of the rutile type titanium dioxide particles to the rutile type titanium dioxide particles is the former /
The latter (weight ratio) = 0.1 / 99.9 to 99.5 / 0.5
The degree is preferred.

【0007】本発明は、また、上記の担持型二酸化チタ
ン触媒の存在下、芳香族化合物を光照射下に、分子状酸
素及び/又は過酸化物により酸化して対応する酸化生成
物を生成させる芳香族化合物の酸化方法を提供する。
The present invention also provides the oxidation of aromatic compounds with molecular oxygen and / or peroxides under light irradiation in the presence of the supported titanium dioxide catalyst to produce corresponding oxidation products. A method for oxidizing an aromatic compound is provided.

【0008】本発明は、さらに、上記の担持型二酸化チ
タン触媒の存在下、芳香族化合物を光照射下に分子状酸
素及び/又は過酸化物により酸化して、対応する芳香族
アルデヒド化合物及び/又はキノン類を生成させる酸素
原子含有芳香族化合物の製造法を提供する。
[0008] The present invention further provides a method of oxidizing an aromatic compound with molecular oxygen and / or peroxide under light irradiation in the presence of the above-mentioned supported titanium dioxide catalyst to form a corresponding aromatic aldehyde compound and / or a corresponding aromatic aldehyde compound. Alternatively, the present invention provides a method for producing an oxygen atom-containing aromatic compound for producing quinones.

【0009】[0009]

【発明の実施の形態】[担持型二酸化チタン触媒]本発
明の担持型二酸化チタン触媒の特徴は、ルチル型二酸化
チタン粒子(以下、「粒子A」と称する場合がある)の
表面に二酸化チタン微粒子(以下、「粒子B」と称する
場合がある)が分散担持されている点にある。このよう
な二酸化チタン触媒は、非担持型である通常のルチル型
二酸化チタン、アナターゼ型二酸化チタンや、これらの
単なる混合物と比較して、光触媒活性が著しく高い。
BEST MODE FOR CARRYING OUT THE INVENTION [Supported Titanium Dioxide Catalyst] The feature of the supported titanium dioxide catalyst of the present invention is that titanium dioxide fine particles are formed on the surface of rutile type titanium dioxide particles (hereinafter sometimes referred to as "particle A"). (Hereinafter may be referred to as “particle B”). Such a titanium dioxide catalyst has remarkably high photocatalytic activity as compared with unsupported ordinary rutile-type titanium dioxide, anatase-type titanium dioxide, or a simple mixture thereof.

【0010】発明者らのこれまでの研究によれば、ルチ
ル型二酸化チタンはアナターゼ型二酸化チタンと比較し
て高い酸化力を示すが、粒子表面への酸素吸着量が一般
的に少なく、還元側の反応である酸素への電子移動が非
常に進行しにくいという欠点を有する。しかも、ルチル
型二酸化チタンの伝導体の電位は−0.5V[対SCE
(飽和カロメル電極)]であり、酸素の一電子還元の電
位−0.56Vとの関係から、酸素への励起電子の移動
過程が律速になっていると推測される。しかし、このよ
うなルチル型二酸化チタンの表面に、アナターゼ型二酸
化チタン等の二酸化チタン微粒子を担持すると、触媒の
表面積が見かけ上増大し、酸素の吸着量が増加するた
め、酸素の還元反応(酸素への励起電子の移動)が大幅
に促進され、これにより反応効率(触媒活性)が飛躍的
に増大するものと考えられる。
According to the studies conducted by the inventors so far, rutile-type titanium dioxide has a higher oxidizing power than anatase-type titanium dioxide, but generally has a smaller amount of oxygen adsorbed on the particle surface and has a lower reducing side. Has the disadvantage that the electron transfer to oxygen, which is the reaction of In addition, the potential of the conductor of the rutile type titanium dioxide is -0.5 V [vs.
(Saturated calomel electrode)], from the relationship with the potential of one-electron reduction of oxygen -0.56 V, it is inferred that the transfer process of the excited electrons to oxygen is rate-limiting. However, when titanium dioxide fine particles such as anatase type titanium dioxide are carried on the surface of such rutile type titanium dioxide, the surface area of the catalyst apparently increases, and the amount of adsorbed oxygen increases, so that the reduction reaction of oxygen (oxygen It is considered that the transfer of the excited electrons to the substrate is greatly promoted, whereby the reaction efficiency (catalytic activity) is dramatically increased.

【0011】本発明の担持型二酸化チタン触媒におい
て、前記粒子Aの粒子径は、二酸化チタン微粒子(粒子
B)の担体として機能できる程度の大きさがあればよ
く、例えば100nm以上(100〜2000nm程
度)、好ましくは150nm以上(150〜1000n
m程度)である。前記粒子Bの粒子径は、担体としての
粒子Aに担持できる範囲で適宜選択でき、例えば90n
m以下(1〜90nm程度)、好ましくは70nm以下
(例えば2〜70nm程度)である。また、粒子Bの比
表面積は、好ましくは30m2/g以上(例えば、30
〜200m2/g程度)、さらに好ましくは40m2/g
以上(例えば、40〜150m2/g程度)である。粒
子Bの比表面積が小さすぎると触媒活性が低下しやす
い。粒子Bはアナターゼ型二酸化チタン微粒子、ルチル
型二酸化チタン微粒子、及びこれらの混合物等の何れで
あってもよい。
In the supported titanium dioxide catalyst of the present invention, the particle diameter of the particles A may be large enough to function as a carrier for titanium dioxide fine particles (particles B), for example, 100 nm or more (about 100 to 2000 nm). ), Preferably 150 nm or more (150 to 1000 n
m). The particle diameter of the particles B can be appropriately selected within a range in which the particles B can be supported on the particles A as a carrier.
m (about 1 to 90 nm), preferably 70 nm or less (for example, about 2 to 70 nm). The specific surface area of the particles B is preferably 30 m 2 / g or more (for example, 30 m 2 / g).
~200m about 2 / g), more preferably 40 m 2 / g
This is the above (for example, about 40 to 150 m 2 / g). If the specific surface area of the particles B is too small, the catalytic activity tends to decrease. The particles B may be any of anatase-type titanium dioxide fine particles, rutile-type titanium dioxide fine particles, and a mixture thereof.

【0012】本発明の担持型二酸化チタン触媒におい
て、前記粒子Bと粒子Aとの比率(前者/後者)が大き
すぎると、粒子Bが担体である粒子Aの表面を覆って、
粒子Aに励起光が有効に当たらなくなり、触媒活性が低
下しやすくなる。また、逆に、粒子Bと粒子Aとの比率
(前者/後者)が小さすぎると、吸着酸素量がさほど増
大しないためか、触媒活性が低下しやすくなる。したが
って、粒子Bと粒子Aとの比率(前者/後者)は、一般
に、0.1/99.9〜99.5/0.5、好ましくは
1/99〜95/5、さらに好ましくは2/98〜65
/35、特に好ましくは5/95〜50/50(とりわ
け15/85〜45/55)程度である。
In the supported titanium dioxide catalyst of the present invention, if the ratio of the particles B to the particles A (the former / the latter) is too large, the particles B cover the surface of the particles A as a carrier,
Excitation light does not effectively hit the particles A, and the catalytic activity tends to decrease. Conversely, if the ratio between the particles B and the particles A (the former / the latter) is too small, the catalytic activity tends to decrease, probably because the amount of adsorbed oxygen does not increase so much. Therefore, the ratio of the particles B to the particles A (the former / the latter) is generally 0.1 / 99.9 to 99.5 / 0.5, preferably 1/99 to 95/5, more preferably 2/9. 98-65
/ 35, particularly preferably about 5/95 to 50/50 (particularly 15/85 to 45/55).

【0013】本発明の担持型二酸化チタン触媒は、例え
ば、担体として機能するルチル型二酸化チタンの粉末と
その表面に分散担持させる二酸化チタンの粉末とを適当
な溶媒中に入れ、所定時間超音波処理を施すことにより
調製できる。なお、アナターゼ型二酸化チタンは、一般
に1次粒子は非常に小さいものの、平均粒径10μm程
度の大きな凝集体を形成しており、これをルチル型二酸
化チタン粒子と共に超音波処理に付すと、アナターゼ型
二酸化チタンの凝集体が解れて生成した1次粒子がルチ
ル型二酸化チタン粒子上に分散担持される。
[0013] The supported titanium dioxide catalyst of the present invention is prepared, for example, by placing a rutile-type titanium dioxide powder functioning as a carrier and a titanium dioxide powder dispersed and supported on the surface thereof in an appropriate solvent and subjecting the powder to ultrasonic treatment for a predetermined time. Can be prepared. In addition, although anatase type titanium dioxide generally has very small primary particles, it forms a large aggregate having an average particle size of about 10 μm, and when this is subjected to ultrasonic treatment together with rutile type titanium dioxide particles, anatase type titanium dioxide is obtained. The primary particles generated by dissolving the aggregates of titanium dioxide are dispersed and supported on the rutile titanium dioxide particles.

【0014】前記超音波処理時に用いる溶媒としては、
特に限定されず、例えば、ヘキサンなどの脂肪族炭化水
素、シクロヘキサンなどの脂環式炭化水素、トルエンな
どの芳香族炭化水素、塩化メチレンなどのハロゲン化炭
化水素、ジエチルエーテルやテトラヒドロフランなどの
エーテル類、アセトニトリルなどのニトリル、酢酸エチ
ルなどのエステル、アセトンなどのケトン、N,N−ジ
メチルホルムアミドなどのアミド、水、及びこれらの混
合溶媒などが例示できる。好ましい溶媒には、アセトニ
トリル等の極性溶媒、水、又はこれらの混合溶媒が含ま
れる。
[0014] As the solvent used in the ultrasonic treatment,
There is no particular limitation, for example, aliphatic hydrocarbons such as hexane, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene, halogenated hydrocarbons such as methylene chloride, ethers such as diethyl ether and tetrahydrofuran, Examples thereof include nitriles such as acetonitrile, esters such as ethyl acetate, ketones such as acetone, amides such as N, N-dimethylformamide, water, and mixed solvents thereof. Preferred solvents include polar solvents such as acetonitrile, water, or mixed solvents thereof.

【0015】超音波処理の温度は、特に限定されない
が、通常0〜100℃程度、好ましくは10〜50℃程
度である。超音波処理の時間は、例えば10分以上(1
0〜120分程度)、好ましくは15分以上(15〜6
0分程度)である。超音波処理時間が短すぎると、ルチ
ル型粒子上にアナターゼ型又はルチル型微粒子が分散担
持された構造が形成されにくい。
The temperature of the ultrasonic treatment is not particularly limited, but is usually about 0 to 100 ° C, preferably about 10 to 50 ° C. The ultrasonic treatment time is, for example, 10 minutes or more (1
0 to 120 minutes), preferably 15 minutes or more (15 to 6 minutes).
0 minutes). If the ultrasonic treatment time is too short, it is difficult to form a structure in which anatase-type or rutile-type fine particles are dispersed and supported on rutile-type particles.

【0016】[芳香族化合物の酸化方法及び酸素原子含
有芳香族化合物の製造法]本発明の方法において、基質
として用いる芳香族化合物としては、芳香族性の炭素環
又は複素環を有し、且つ少なくとも1つの被酸化部位を
有する化合物であれば特に限定されない。前記芳香族性
の炭素環を有する化合物として、例えば、ベンゼン、ナ
フタレン、ビフェニル、インデン、インダン、テトラリ
ン、2,2′−ビナフチル、アセナフテン、フルオレ
ン、フェナントレン、アントラセン、トリフェニレン、
ピレン、クリセン、ナフタセン、コロネンなどが挙げら
れる。また、芳香族性の複素環を有する化合物として、
ピリジン、インドール、キノリンなどの含窒素化合物、
フラン、ベンゾフランなどの含酸素化合物、チオフェ
ン、ベンゾチオフェンなどの含硫黄化合物などが挙げら
れる。
[Aromatic Compound Oxidation Method and Oxygen Atom-Containing Aromatic Compound Production Method] In the method of the present invention, the aromatic compound used as the substrate has an aromatic carbon ring or heterocyclic ring, and The compound is not particularly limited as long as it has at least one site to be oxidized. As the compound having an aromatic carbon ring, for example, benzene, naphthalene, biphenyl, indene, indane, tetralin, 2,2'-binaphthyl, acenaphthene, fluorene, phenanthrene, anthracene, triphenylene,
Pyrene, chrysene, naphthacene, coronene and the like. Further, as a compound having an aromatic heterocyclic ring,
Nitrogen-containing compounds such as pyridine, indole and quinoline,
Examples include oxygen-containing compounds such as furan and benzofuran, and sulfur-containing compounds such as thiophene and benzothiophene.

【0017】前記芳香族化合物における芳香族性炭素環
又は複素環には、反応を阻害しない範囲で、置換基が結
合していてもよい。該置換基として、例えば、ハロゲン
原子、ヒドロキシル基、メルカプト基、置換オキシ基
[例えば、メトキシ、エトキシ、プロポキシ、イソプロ
ポキシ、ブトキシ基などのアルコキシ基(好ましくはC
1-4アルコキシ基);フェノキシ基などのアリールオキ
シ基;アセチルオキシ、プロピオニルオキシ基などのア
シルオキシ基など]、置換チオ基(例えば、メチルチ
オ、エチルチオ基などのアルキルチオ基など)、カルボ
キシル基、置換オキシカルボニル基(例えば、メトキシ
カルボニル、エトキシカルボニル、プロピルオキシカル
ボニル基などのC1-4アルコキシ−カルボニル基な
ど)、置換又は無置換カルバモイル基、アシル基(アセ
チル、プロピオニル、ベンゾイル基などのC2-11アシル
基など)、シアノ基、ニトロ基、置換又は無置換アミノ
基(例えば、アミノ基;N,N−ジメチルアミノ基など
のN,N−ジC1-4アルキルアミノ基;N−アセチルア
ミノ基などのN−C2-11アシルアミノ基など)、アルキ
ル基(例えば、メチル、エチル、プロピル、イソプロピ
ル、ブチル、イソブチル、t−ブチル基などのC1-4
ルキル基など)、アルケニル基(例えば、ビニル基、ア
リル基などのC2-4アルケニル基など)、アルキニル基
(例えば、エチニル基などのC2-4アルキニル基な
ど)、シクロアルキル基(例えば、シクロペンチル、シ
クロヘキシル基などの3〜8員シクロアルキル基な
ど)、アリール基(例えば、フェニル、ナフチル基など
のC6-14アリール基など)などが挙げられる。
Aromatic carbocycle in the aromatic compound
Alternatively, a substituent is bonded to the heterocycle as long as the reaction is not inhibited.
May be combined. As the substituent, for example, halogen
Atom, hydroxyl group, mercapto group, substituted oxy group
[For example, methoxy, ethoxy, propoxy, isopro
Alkoxy groups such as oxy and butoxy groups (preferably C
1-4Aryloxy such as phenoxy group)
A group such as an acetyloxy or propionyloxy group;
Siloxy group etc.), substituted thio group (for example, methylthio
E, alkylthio groups such as ethylthio group), carbo
Xyl group, substituted oxycarbonyl group (for example, methoxy
Carbonyl, ethoxycarbonyl, propyloxycal
C such as bonyl group1-4Alkoxy-carbonyl group
), Substituted or unsubstituted carbamoyl groups, acyl groups (ace
C such as tyl, propionyl and benzoyl groups2-11Acyl
Group), cyano group, nitro group, substituted or unsubstituted amino
Group (for example, amino group; N, N-dimethylamino group, etc.)
N, N-di C1-4Alkylamino group; N-acetyla
NC such as a mino group2-11Acylamino group), alk
(E.g., methyl, ethyl, propyl, isopropyl
C, such as butyl, butyl, isobutyl and t-butyl groups1-4A
Alkyl group), alkenyl group (for example, vinyl group,
C such as a ril group2-4Alkenyl group), alkynyl group
(For example, C such as ethynyl group)2-4Alkynyl group
), Cycloalkyl groups (eg, cyclopentyl,
3- to 8-membered cycloalkyl groups such as clohexyl
), Aryl groups (eg, phenyl, naphthyl, etc.)
C6-14Aryl group).

【0018】また、前記芳香族化合物における芳香族性
炭素環又は複素環には、非芳香族性の炭素環又は複素環
が縮合していてもよい。このような非芳香族性の炭素環
として、例えば、シクロペンタン環、シクロヘキサン環
などの3〜8員シクロアルカン環などが挙げられる。非
芳香族性の複素環としては、ピロリジン環、オキソラン
環、チオラン環、ピペリジン環、テトラヒドロピラン環
などの、窒素原子、酸素原子、硫黄原子から選択された
少なくとも1つのヘテロ原子を1〜3個有する3〜8員
の複素環などが例示される。
Further, a non-aromatic carbon ring or heterocyclic ring may be condensed with the aromatic carbocyclic ring or heterocyclic ring in the aromatic compound. Examples of such a non-aromatic carbon ring include a 3- to 8-membered cycloalkane ring such as a cyclopentane ring and a cyclohexane ring. As the non-aromatic heterocyclic ring, at least one heteroatom selected from a nitrogen atom, an oxygen atom, and a sulfur atom such as a pyrrolidine ring, an oxolane ring, a thiolane ring, a piperidine ring, and a tetrahydropyran ring may be used. And a 3- to 8-membered heterocyclic ring.

【0019】本発明の方法において、前記担持型二酸化
チタン触媒の使用量は、基質として用いる芳香族化合物
100重量部に対して、例えば1〜100重量部、好ま
しくは5〜60重量部、さらに好ましくは10〜30重
量部程度である。
In the method of the present invention, the amount of the supported titanium dioxide catalyst used is, for example, 1 to 100 parts by weight, preferably 5 to 60 parts by weight, and more preferably 100 parts by weight of the aromatic compound used as the substrate. Is about 10 to 30 parts by weight.

【0020】本発明の方法では、基質としての芳香族化
合物を光照射下に分子状酸素及び/又は過酸化物で酸化
する。照射する光としては、通常、390nm以下の紫
外線が使用されるが、可視光線も使用できる。好ましい
光の波長域は420nm以下(可視光線の一部及び紫外
線)である。
In the method of the present invention, an aromatic compound as a substrate is oxidized with molecular oxygen and / or peroxide under light irradiation. As the light to be irradiated, ultraviolet light having a wavelength of 390 nm or less is usually used, but visible light can also be used. The preferred wavelength range of light is 420 nm or less (part of visible light and ultraviolet light).

【0021】分子状酸素としては、純粋な酸素を用いて
もよく、窒素、ヘリウム、アルゴン、二酸化炭素などの
不活性ガスで希釈した酸素や空気を用いてもよい。分子
状酸素の使用量は、基質として用いる芳香族化合物1モ
ルに対して、例えば0.5モル以上、好ましくは1モル
以上である。芳香族化合物に対して過剰モルの分子状酸
素を用いることが多い。
As molecular oxygen, pure oxygen may be used, or oxygen or air diluted with an inert gas such as nitrogen, helium, argon or carbon dioxide may be used. The amount of molecular oxygen used is, for example, 0.5 mol or more, preferably 1 mol or more, per 1 mol of the aromatic compound used as the substrate. Often an excess molar molecular oxygen is used relative to the aromatic compound.

【0022】過酸化物としては、特に限定されず、ペル
オキシド、ヒドロペルオキシド等の何れも使用できる。
代表的な過酸化物として、過酸化水素、クメンヒドロペ
ルオキシド、t−ブチルヒドロペルオキシド、トリフェ
ニルメチルヒドロペルオキシド、t−ブチルペルオキシ
ド、ベンゾイルペルオキシドなどが挙げられる。上記過
酸化水素としては、純粋な過酸化水素を用いてもよい
が、取扱性の点から、通常、適当な溶媒、例えば水に希
釈した形態(例えば、30重量%過酸化水素水)で用い
られる。過酸化物の使用量は、基質として用いる芳香族
化合物1モルに対して、例えば0.1〜5モル程度、好
ましくは0.3〜1.5モル程度である。
The peroxide is not particularly limited, and any of peroxide, hydroperoxide and the like can be used.
Representative peroxides include hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide, triphenylmethyl hydroperoxide, t-butyl peroxide, benzoyl peroxide, and the like. Although pure hydrogen peroxide may be used as the hydrogen peroxide, it is usually used in a form diluted with an appropriate solvent, for example, water (for example, 30% by weight of hydrogen peroxide) from the viewpoint of handleability. Can be The amount of the peroxide used is, for example, about 0.1 to 5 mol, preferably about 0.3 to 1.5 mol, per 1 mol of the aromatic compound used as the substrate.

【0023】本発明では、分子状酸素と過酸化物のうち
一方のみを用いてもよいが、分子状酸素と過酸化物とを
組み合わせることにより、反応速度が大幅に向上する場
合がある。
In the present invention, only one of molecular oxygen and peroxide may be used, but the combination of molecular oxygen and peroxide may greatly improve the reaction rate.

【0024】反応は、通常、溶媒存在下で行われる。該
溶媒としては、例えば、ヘキサン、ヘプタン、オクタ
ン、リグロイン、石油エーテル等の脂肪族炭化水素;シ
クロペンタン、シクロヘキサン、シクロヘプタン等の脂
環式炭化水素;エチルエーテル、イソプロピルエーテ
ル、テトラヒドロフラン等のエーテル類;酢酸エチル等
のエステル類;、アセトニトリル、プロピオニトリル、
ブチロニトリル、ベンゾニトリル等のニトリル類;N,
N−ジメチルホルムアミド等の非プロトン性極性溶媒;
酢酸等の有機酸;水;これらの混合溶媒などが挙げられ
る。
The reaction is usually performed in the presence of a solvent. Examples of the solvent include aliphatic hydrocarbons such as hexane, heptane, octane, ligroin, and petroleum ether; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and cycloheptane; ethers such as ethyl ether, isopropyl ether, and tetrahydrofuran. Esters such as ethyl acetate; acetonitrile, propionitrile,
Nitriles such as butyronitrile and benzonitrile;
An aprotic polar solvent such as N-dimethylformamide;
Organic acids such as acetic acid; water; and mixed solvents thereof.

【0025】反応温度は、反応速度及び反応選択性を考
慮して適宜選択できるが、一般には−20℃〜100℃
程度である。反応は室温付近で行われることが多い。反
応はバッチ式、セミバッチ式、連続式などの何れの方法
で行ってもよい。
The reaction temperature can be appropriately selected in consideration of the reaction rate and the reaction selectivity, but is generally -20 ° C to 100 ° C.
It is about. The reaction is often performed near room temperature. The reaction may be performed by any method such as a batch system, a semi-batch system, and a continuous system.

【0026】上記反応により、芳香族化合物から対応す
る酸化開裂生成物(例えば、芳香族アルデヒド化合
物)、キノン類、ヒドロキシル基含有芳香族化合物など
の酸素原子含有芳香族化合物などが生成する。例えば、
ナフタレンからは2−ホルミルシンナムアルデヒド(酸
化開裂生成物)、1,4−ナフトキノンなどが生成す
る。これらの生成物の生成割合(選択率)は、反応条件
等を適宜選択することにより調整できる。
By the above reaction, corresponding oxidative cleavage products (for example, aromatic aldehyde compounds), quinones, and oxygen-containing aromatic compounds such as hydroxyl-containing aromatic compounds are formed from the aromatic compounds. For example,
From naphthalene, 2-formylcinnamaldehyde (oxidative cleavage product), 1,4-naphthoquinone and the like are produced. The production ratio (selectivity) of these products can be adjusted by appropriately selecting reaction conditions and the like.

【0027】反応生成物は、例えば、濾過、濃縮、蒸
留、抽出、晶析、再結晶、カラムクロマトグラフィーな
どの分離手段や、これらを組み合わせた分離手段により
分離精製できる。また、二酸化チタン触媒は濾過により
容易に分離でき、分離した触媒は、必要に応じて洗浄等
の処理を施した後、リサイクル使用できる。
The reaction product can be separated and purified by, for example, separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, and column chromatography, or a combination of these. Further, the titanium dioxide catalyst can be easily separated by filtration, and the separated catalyst can be recycled after being subjected to a treatment such as washing as required.

【0028】[0028]

【発明の効果】本発明によれば、芳香族化合物を光照射
下に効率よく酸化することができ、例えば、芳香族アル
デヒド化合物やキノン類などの酸素原子含有芳香族化合
物を生産効率よく製造できる。
According to the present invention, an aromatic compound can be efficiently oxidized under light irradiation, and for example, an aromatic aldehyde compound and an oxygen-containing aromatic compound such as quinones can be efficiently produced. .

【0029】[0029]

【実施例】以下に、実施例に基づいて本発明をより詳細
に説明するが、本発明はこれらの実施例により限定され
るものではない。反応生成物の分析及び同定は、キャピ
ラリーガスクロマトグラフ、高速液体クロマトグラフ、
GC−マススペクトル、及び核磁気共鳴スペクトルによ
り行った。二酸化チタンの比表面積は、Micromeritics
社製の表面積測定装置「FlowSorb II 2300」を用いて測
定した。
EXAMPLES The present invention will be described below in more detail with reference to Examples, but the present invention is not limited to these Examples. Analysis and identification of the reaction products are performed by capillary gas chromatography, high performance liquid chromatography,
The measurement was performed by GC-mass spectrum and nuclear magnetic resonance spectrum. The specific surface area of titanium dioxide is determined by Micromeritics
The measurement was performed using a surface area measuring device “FlowSorb II 2300” manufactured by the company.

【0030】実施例1 冷却管と酸素供給管を設置した内容積30mlの外部照
射型反応器に、アナターゼ型二酸化チタン粉末[商品名
「ST−01」、アナターゼ型含量100%、石原産業
(株)製、平均粒子径7nm、比表面積236m2
g]と、ルチル型二酸化チタン粉末[商品名「NS−5
1」、ルチル型(ルチル型含量98.6%)、東邦チタ
ニウム(株)製、平均粒子径200nm、比表面積6.
5m2/g]とを、アナターゼ型二酸化チタンとルチル
型二酸化チタンの比率が、前者/後者=9/1となるよ
うにはかりとり(総量0.015g)、これに、ナフタ
レン0.1g、アセトニトリル3.63g、水0.3g
を加え、室温で超音波処理を30分間行った。スターラ
ーピースにより反応液を攪拌しながら、室温で、酸素ガ
スを2ml/minの流量で吹き込み、500W超高圧
水銀ランプを用いて光照射を1時間行った。この時、光
照射によるナフタレンの直接励起を避けるために340
nm以下の光をカットするフィルターを通して光を照射
した。また、二酸化チタン粉末をスターラーにより分散
させながら光照射した。反応混合液を濾過し、濾液を高
速液体クロマトグラフィーで定量分析した。その結果、
2−ホルミルシンナムアルデヒドが6.9μmol、
1,4−ナフトキノンが2.7μmol生成していた。 [2−ホルミルシンナムアルデヒドのスペクトルデー
タ]1 H−NMR(CDCl3)δ:6.67(1H,dd,
J=16.1,7.8Hz),7.6−8.0(4H,
m),8.58(1H,d,J=16.1Hz),9.
81(1H,d,J=7.8Hz),10.23(1
H,s) MS(m/z):131(M+−29)
Example 1 An anatase type titanium dioxide powder [trade name "ST-01", anatase type content 100%, Ishihara Sangyo Co., Ltd.] was placed in a 30 ml internal irradiation type reactor equipped with a cooling pipe and an oxygen supply pipe. ), Average particle diameter 7 nm, specific surface area 236 m 2 /
g] and rutile-type titanium dioxide powder [trade name “NS-5”
1 ", rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle diameter 200 nm, specific surface area 6.
5m 2 / g] and the ratio of anatase-type titanium dioxide to rutile-type titanium dioxide is 9/1 (total amount: 0.015 g), and 0.1 g of naphthalene and acetonitrile are added thereto. 3.63 g, water 0.3 g
And sonicated at room temperature for 30 minutes. While stirring the reaction solution with a stirrer piece, oxygen gas was blown at a flow rate of 2 ml / min at room temperature, and light irradiation was performed for 1 hour using a 500 W ultra-high pressure mercury lamp. At this time, in order to avoid direct excitation of naphthalene due to light irradiation, 340
Light was irradiated through a filter that cuts light of sub-nm or less. Light irradiation was performed while dispersing the titanium dioxide powder using a stirrer. The reaction mixture was filtered, and the filtrate was quantitatively analyzed by high performance liquid chromatography. as a result,
6.9 μmol of 2-formylcinnamaldehyde,
2.7 μmol of 1,4-naphthoquinone was produced. [Spectral data of 2-formylcinnamaldehyde] 1 H-NMR (CDCl 3 ) δ: 6.67 (1H, dd,
J = 16.1, 7.8 Hz), 7.6-8.0 (4H,
m), 8.58 (1H, d, J = 16.1 Hz), 9.
81 (1H, d, J = 7.8 Hz), 10.23 (1
H, s) MS (m / z): 131 (M + -29).

【0031】実施例2 反応器に、アナターゼ型二酸化チタン粉末[商品名「S
T−01」、アナターゼ型含量100%、石原産業
(株)製、平均粒子径7nm、比表面積236m2
g]と、ルチル型二酸化チタン粉末[商品名「NS−5
1」、ルチル型(ルチル型含量98.6%)、東邦チタ
ニウム(株)製、平均粒子径200nm、比表面積6.
5m2/g]とを、アナターゼ型二酸化チタンとルチル
型二酸化チタンの比率が、前者/後者=7/3となるよ
うにはかりとった(総量0.015g)点以外は、実施
例1と同様の操作を行った。その結果、2−ホルミルシ
ンナムアルデヒドが10.9μmol、1,4−ナフト
キノンが2.2μmol生成していた。
Example 2 An anatase type titanium dioxide powder [trade name "S"
T-01 ", content of anatase type 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 /
g] and rutile-type titanium dioxide powder [trade name “NS-5”
1 ", rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle diameter 200 nm, specific surface area 6.
5m 2 / g] as in Example 1 except that the ratio of anatase-type titanium dioxide to rutile-type titanium dioxide was weighed so that the former / latter = 7/3 (total amount 0.015 g). Was performed. As a result, 10.9 μmol of 2-formylcinnamaldehyde and 2.2 μmol of 1,4-naphthoquinone were produced.

【0032】実施例3 反応器に、アナターゼ型二酸化チタン粉末[商品名「S
T−01」、アナターゼ型含量100%、石原産業
(株)製、平均粒子径7nm、比表面積236m2
g]と、ルチル型二酸化チタン粉末[商品名「NS−5
1」、ルチル型(ルチル型含量98.6%)、東邦チタ
ニウム(株)製、平均粒子径200nm、比表面積6.
5m2/g]とを、アナターゼ型二酸化チタンとルチル
型二酸化チタンの比率が、前者/後者=5/5となるよ
うにはかりとった(総量0.015g)点以外は、実施
例1と同様の操作を行った。その結果、2−ホルミルシ
ンナムアルデヒドが15.1μmol、1,4−ナフト
キノンが2.8μmol生成していた。
Example 3 An anatase type titanium dioxide powder [trade name "S"
T-01 ", content of anatase type 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 /
g] and rutile-type titanium dioxide powder [trade name “NS-5”
1 ", rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle diameter 200 nm, specific surface area 6.
5m 2 / g] as in Example 1 except that the ratio of anatase-type titanium dioxide to rutile-type titanium dioxide was weighed such that the former / latter = 5/5 (total amount 0.015 g). Was performed. As a result, 15.1 μmol of 2-formylcinnamaldehyde and 2.8 μmol of 1,4-naphthoquinone were produced.

【0033】実施例4 反応器に、アナターゼ型二酸化チタン粉末[商品名「S
T−01」、アナターゼ型含量100%、石原産業
(株)製、平均粒子径7nm、比表面積236m2
g]と、ルチル型二酸化チタン粉末[商品名「NS−5
1」、ルチル型(ルチル型含量98.6%)、東邦チタ
ニウム(株)製、平均粒子径200nm、比表面積6.
5m2/g]とを、アナターゼ型二酸化チタンとルチル
型二酸化チタンの比率が、前者/後者=3/7となるよ
うにはかりとった(総量0.015g)点以外は、実施
例1と同様の操作を行った。その結果、2−ホルミルシ
ンナムアルデヒドが15.6μmol、1,4−ナフト
キノンが3.7μmol生成していた。
Example 4 An anatase type titanium dioxide powder [trade name "S"
T-01 ", content of anatase type 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 /
g] and rutile-type titanium dioxide powder [trade name “NS-5”
1 ", rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle diameter 200 nm, specific surface area 6.
5m 2 / g] as in Example 1 except that the ratio of anatase-type titanium dioxide to rutile-type titanium dioxide was the former / latter = 3/7 (total amount 0.015 g). Was performed. As a result, 15.6 μmol of 2-formylcinnamaldehyde and 3.7 μmol of 1,4-naphthoquinone were produced.

【0034】実施例5 反応器に、アナターゼ型二酸化チタン粉末[商品名「S
T−01」、アナターゼ型含量100%、石原産業
(株)製、平均粒子径7nm、比表面積236m2
g]と、ルチル型二酸化チタン粉末[商品名「NS−5
1」、ルチル型(ルチル型含量98.6%)、東邦チタ
ニウム(株)製、平均粒子径200nm、比表面積6.
5m2/g]とを、アナターゼ型二酸化チタンとルチル
型二酸化チタンの比率が、前者/後者=1/9となるよ
うにはかりとった(総量0.015g)点以外は、実施
例1と同様の操作を行った。その結果、2−ホルミルシ
ンナムアルデヒドが15.7μmol、1,4−ナフト
キノンが1.8μmol生成していた。
Example 5 An anatase type titanium dioxide powder [trade name "S"
T-01 ", content of anatase type 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 /
g] and rutile-type titanium dioxide powder [trade name “NS-5”
1 ", rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle diameter 200 nm, specific surface area 6.
5 m 2 / g] as in Example 1 except that the ratio of anatase-type titanium dioxide to rutile-type titanium dioxide was weighed such that the former / latter = 1/9 (total amount 0.015 g). Was performed. As a result, 15.7 μmol of 2-formylcinnamaldehyde and 1.8 μmol of 1,4-naphthoquinone were produced.

【0035】実施例6 反応器に、アナターゼ型二酸化チタン粉末[商品名「S
T−01」、アナターゼ型含量100%、石原産業
(株)製、平均粒子径7nm、比表面積236m2
g]と、ルチル型二酸化チタン粉末[商品名「NS−5
1」、ルチル型(ルチル型含量98.6%)、東邦チタ
ニウム(株)製、平均粒子径200nm、比表面積6.
5m2/g]とを、アナターゼ型二酸化チタンとルチル
型二酸化チタンの比率が、前者/後者=1/49となる
ようにはかりとった(総量0.015g)点以外は、実
施例1と同様の操作を行った。その結果、2−ホルミル
シンナムアルデヒドが12.8μmol、1,4−ナフ
トキノンが0.9μmol生成していた。
Example 6 An anatase type titanium dioxide powder [trade name "S"
T-01 ", content of anatase type 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 /
g] and rutile-type titanium dioxide powder [trade name “NS-5”
1 ", rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle diameter 200 nm, specific surface area 6.
5m 2 / g] was measured as in Example 1 except that the ratio of anatase-type titanium dioxide to rutile-type titanium dioxide was 1/49 (the total amount was 0.015 g). Was performed. As a result, 12.8 μmol of 2-formylcinnamaldehyde and 0.9 μmol of 1,4-naphthoquinone were produced.

【0036】実施例7 反応器に、アナターゼ型二酸化チタン粉末[商品名「S
T−01」、アナターゼ型含量100%、石原産業
(株)製、平均粒子径7nm、比表面積236m2
g]と、ルチル型二酸化チタン粉末[商品名「NS−5
1」、ルチル型(ルチル型含量98.6%)、東邦チタ
ニウム(株)製、平均粒子径200nm、比表面積6.
5m2/g]とを、アナターゼ型二酸化チタンとルチル
型二酸化チタンの比率が、前者/後者=1/98となる
ようにはかりとった(総量0.015g)点以外は、実
施例1と同様の操作を行った。その結果、2−ホルミル
シンナムアルデヒドが10.1μmol、1,4−ナフ
トキノンが0.8μmol生成していた。
Example 7 An anatase type titanium dioxide powder [trade name "S"
T-01 ", content of anatase type 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 /
g] and rutile-type titanium dioxide powder [trade name “NS-5”
1 ", rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle diameter 200 nm, specific surface area 6.
5m 2 / g] was measured as in Example 1 except that the ratio of anatase-type titanium dioxide to rutile-type titanium dioxide was 1/98 (the total amount was 0.015 g). Was performed. As a result, 10.1 μmol of 2-formylcinnamaldehyde and 0.8 μmol of 1,4-naphthoquinone were produced.

【0037】実施例8 反応器に、アナターゼ型二酸化チタン粉末[商品名「S
T−01」、アナターゼ型含量100%、石原産業
(株)製、平均粒子径7nm、比表面積236m2
g]と、ルチル型二酸化チタン粉末[商品名「NS−5
1」、ルチル型(ルチル型含量98.6%)、東邦チタ
ニウム(株)製、平均粒子径200nm、比表面積6.
5m2/g]とを、アナターゼ型二酸化チタンとルチル
型二酸化チタンの比率が、前者/後者=1/374とな
るようにはかりとった(総量0.015g)点以外は、
実施例1と同様の操作を行った。その結果、2−ホルミ
ルシンナムアルデヒドが8.0μmol、1,4−ナフ
トキノンが0.75μmol生成していた。
Example 8 An anatase type titanium dioxide powder [trade name "S"
T-01 ", content of anatase type 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 /
g] and rutile-type titanium dioxide powder [trade name “NS-5”
1 ", rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle diameter 200 nm, specific surface area 6.
5m 2 / g], except that the ratio of anatase-type titanium dioxide to rutile-type titanium dioxide is the former / latter = 1/374 (total amount 0.015 g),
The same operation as in Example 1 was performed. As a result, 8.0 μmol of 2-formylcinnamaldehyde and 0.75 μmol of 1,4-naphthoquinone were produced.

【0038】比較例1 冷却管と酸素供給管を設置した内容積30mlの外部照
射型反応器に、アナターゼ型二酸化チタン粉末[商品名
「ST−01」、アナターゼ型含量100%、石原産業
(株)製、平均粒子径7nm、比表面積236m2
g]を0.015gはかりとり、これに、ナフタレン
0.1g、アセトニトリル3.63g、水0.3gを加
えた。スターラーピースにより反応液を攪拌しながら、
室温で、酸素ガスを2ml/minの流量で吹き込み、
500W超高圧水銀ランプを用いて光照射を1時間行っ
た。この時、光照射によるナフタレンの直接励起を避け
るために340nm以下の光をカットするフィルターを
通して光を照射した。また、二酸化チタン粉末をスター
ラーにより分散させながら光照射した。反応混合液を濾
過し、濾液を高速液体クロマトグラフィーで定量分析し
た。その結果、2−ホルミルシンナムアルデヒドが1.
4μmol、1,4−ナフトキノンが0.75μmol
生成していた。
Comparative Example 1 An anatase type titanium dioxide powder [trade name "ST-01", anatase type content 100%, Ishihara Sangyo Co., Ltd.] was placed in an external irradiation type reactor having a 30 ml inner volume equipped with a cooling pipe and an oxygen supply pipe. ), Average particle diameter 7 nm, specific surface area 236 m 2 /
g] was weighed, and 0.1 g of naphthalene, 3.63 g of acetonitrile, and 0.3 g of water were added thereto. While stirring the reaction solution with a stirrer piece,
At room temperature, oxygen gas is blown at a flow rate of 2 ml / min,
Light irradiation was performed for 1 hour using a 500 W ultra-high pressure mercury lamp. At this time, in order to avoid direct excitation of naphthalene due to light irradiation, light irradiation was performed through a filter that cuts light of 340 nm or less. Light irradiation was performed while dispersing the titanium dioxide powder using a stirrer. The reaction mixture was filtered, and the filtrate was quantitatively analyzed by high performance liquid chromatography. As a result, 2-formylcinnamaldehyde contained 1.
4 μmol, 0.75 μmol of 1,4-naphthoquinone
Had been generated.

【0039】比較例2 冷却管と酸素供給管を設置した内容積30mlの外部照
射型反応器に、ルチル型二酸化チタン粉末[商品名「N
S−51」、ルチル型(ルチル型含量98.6%)、東
邦チタニウム(株)製、平均粒子径200nm、比表面
積6.5m2/g]を0.015gはかりとり、これ
に、ナフタレン0.1g、アセトニトリル3.63g、
水0.3gを加えた。スターラーピースにより反応液を
攪拌しながら、室温で、酸素ガスを2ml/minの流
量で吹き込み、500W超高圧水銀ランプを用いて光照
射を1時間行った。この時、光照射によるナフタレンの
直接励起を避けるために340nm以下の光をカットす
るフィルターを通して光を照射した。また、二酸化チタ
ン粉末をスターラーにより分散させながら光照射した。
反応混合液を濾過し、濾液を高速液体クロマトグラフィ
ーで定量分析した。その結果、2−ホルミルシンナムア
ルデヒドが4.6μmol、1,4−ナフトキノンが
0.4μmol生成していた。
Comparative Example 2 Rutile-type titanium dioxide powder [trade name "N" was placed in a 30-ml internal irradiation reactor equipped with a cooling pipe and an oxygen supply pipe.
S-51 ", rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle diameter 200 nm, specific surface area 6.5 m 2 / g]. .1 g, acetonitrile 3.63 g,
0.3 g of water was added. While stirring the reaction solution with a stirrer piece, oxygen gas was blown at a flow rate of 2 ml / min at room temperature, and light irradiation was performed for 1 hour using a 500 W ultra-high pressure mercury lamp. At this time, in order to avoid direct excitation of naphthalene due to light irradiation, light irradiation was performed through a filter that cuts light of 340 nm or less. Light irradiation was performed while dispersing the titanium dioxide powder using a stirrer.
The reaction mixture was filtered, and the filtrate was quantitatively analyzed by high performance liquid chromatography. As a result, 4.6 μmol of 2-formylcinnamaldehyde and 0.4 μmol of 1,4-naphthoquinone were produced.

【0040】実施例9 反応器に、ルチル型二酸化チタン粉末[触媒学会参照触
媒「JRC−TIO−3」、平均粒子径40nm、比表
面積48.1m2/g]と、ルチル型二酸化チタン粉末
[商品名「NS−51」、ルチル型(ルチル型含量9
8.6%)、東邦チタニウム(株)製、平均粒子径20
0nm、比表面積6.5m2/g]とを、これらの比率
が、前者/後者=7/3となるようにはかりとった(総
量0.015g)点以外は、実施例1と同様の操作を行
った。その結果、2−ホルミルシンナムアルデヒドが2
2.3μmol、1,4−ナフトキノンが1.9μmo
l生成していた。
Example 9 A reactor was charged with rutile-type titanium dioxide powder [Catalyst Society of Japan Reference Catalyst “JRC-TIO-3”, average particle diameter 40 nm, specific surface area 48.1 m 2 / g] and rutile-type titanium dioxide powder [ Brand name “NS-51”, rutile type (rutile type content 9
8.6%), manufactured by Toho Titanium Co., Ltd., average particle size 20
0 nm and a specific surface area of 6.5 m 2 / g] were measured in the same manner as in Example 1 except that the ratio was the former / the latter = 7/3 (total amount: 0.015 g). Was done. As a result, 2-formylcinnamaldehyde was reduced to 2
2.3 μmol, 1.9 μmo of 1,4-naphthoquinone
l had been generated.

【0041】実施例10 反応器に、ルチル型二酸化チタン粉末[触媒学会参照触
媒「JRC−TIO−3」、平均粒子径:40nm、比
表面積48.1m2/g]と、ルチル型二酸化チタン粉
末[商品名「NS−51」、ルチル型(ルチル型含量9
8.6%)、東邦チタニウム(株)製、平均粒子径20
0nm、比表面積6.5m2/g]とを、これらの比率
が、前者/後者=5/5となるようにはかりとった(総
量0.015g)点以外は、実施例1と同様の操作を行
った。その結果、2−ホルミルシンナムアルデヒドが1
6.4μmol、1,4−ナフトキノンが1.8μmo
l生成していた。
Example 10 A reactor was charged with rutile-type titanium dioxide powder [Catalyst Society of Japan Reference Catalyst “JRC-TIO-3”, average particle size: 40 nm, specific surface area: 48.1 m 2 / g] and rutile-type titanium dioxide powder [Product name "NS-51", rutile type (rutile type content 9
8.6%), manufactured by Toho Titanium Co., Ltd., average particle size 20
0 nm and a specific surface area of 6.5 m 2 / g] were measured in the same manner as in Example 1 except that the ratio of the former and the latter was 5/5 (total amount: 0.015 g). Was done. As a result, 1-formylcinnamaldehyde was 1
6.4 μmol, 1.8 μmo of 1,4-naphthoquinone
l had been generated.

【0042】実施例11 反応器に、ルチル型二酸化チタン粉末[触媒学会参照触
媒「JRC−TIO−3」、平均粒子径40nm、比表
面積48.1m2/g]と、ルチル型二酸化チタン粉末
[商品名「NS−51」、ルチル型(ルチル型含量9
8.6%)、東邦チタニウム(株)製、平均粒子径20
0nm、比表面積6.5m2/g]とを、これらの比率
が、前者/後者=3/7となるようにはかりとった(総
量0.015g)点以外は、実施例1と同様の操作を行
った。その結果、2−ホルミルシンナムアルデヒドが1
8.3μmol、1,4−ナフトキノンが2.3μmo
l生成していた。
Example 11 A reactor was charged with rutile-type titanium dioxide powder [catalyst, reference catalyst “JRC-TIO-3”, average particle diameter 40 nm, specific surface area 48.1 m 2 / g] and rutile-type titanium dioxide powder [ Brand name “NS-51”, rutile type (rutile type content 9
8.6%), manufactured by Toho Titanium Co., Ltd., average particle size 20
0 nm and a specific surface area of 6.5 m 2 / g] were measured in the same manner as in Example 1 except that the ratio was the former / the latter = 3/7 (total amount: 0.015 g). Was done. As a result, 1-formylcinnamaldehyde was 1
8.3 μmol, 2.3 μmo of 1,4-naphthoquinone
l had been generated.

【0043】二酸化チタン触媒の粒子構造の解析 実施例5で調製した二酸化チタン触媒(超音波処理後の
触媒)、実施例8で調製した二酸化チタン触媒(超音波
処理後の触媒)、比較例1で用いた二酸化チタン触媒、
比較例2で用いた二酸化チタン触媒の粒子像を走査型電
子顕微鏡(SEM)により観察した。そのSEM写真
を、それぞれ、図1〜図4に示す。
Analysis of Particle Structure of Titanium Dioxide Catalyst Titanium dioxide catalyst prepared in Example 5 (catalyst after ultrasonic treatment), titanium dioxide catalyst prepared in Example 8 (catalyst after ultrasonic treatment), Comparative Example 1 Titanium dioxide catalyst used in
The particle image of the titanium dioxide catalyst used in Comparative Example 2 was observed with a scanning electron microscope (SEM). The SEM photographs are shown in FIGS.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例5で調製した二酸化チタン触媒(超音
波処理後の触媒)の粒子構造を示す走査型電子顕微鏡写
真である(写真の横方向の長さ=1092nmに相
当)。
FIG. 1 is a scanning electron micrograph showing the particle structure of a titanium dioxide catalyst (catalyst after ultrasonic treatment) prepared in Example 5 (corresponding to a horizontal length of the photograph = 1092 nm).

【図2】 実施例8で調製した二酸化チタン触媒(超音
波処理後の触媒)の粒子構造を示す走査型電子顕微鏡写
真である(写真の横方向の長さ=800nmに相当)。
FIG. 2 is a scanning electron micrograph showing the particle structure of the titanium dioxide catalyst (catalyst after ultrasonic treatment) prepared in Example 8 (corresponding to a lateral length of the photograph of 800 nm).

【図3】 比較例1で用いた二酸化チタン触媒の粒子構
造を示す走査型電子顕微鏡写真である(写真の横方向の
長さ=1092nmに相当)。
FIG. 3 is a scanning electron micrograph showing the particle structure of the titanium dioxide catalyst used in Comparative Example 1 (corresponding to the horizontal length of the photograph = 1092 nm).

【図4】 比較例2で用いた二酸化チタン触媒の粒子構
造を示す走査型電子顕微鏡写真である(写真の横方向の
長さ=1092nmに相当)。
FIG. 4 is a scanning electron micrograph showing the particle structure of a titanium dioxide catalyst used in Comparative Example 2 (corresponding to the horizontal length of the photograph = 1092 nm).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 45/36 C07C 45/36 46/04 46/04 47/548 47/548 50/12 50/12 // C07B 61/00 300 C07B 61/00 300 (72)発明者 横野 照尚 兵庫県川西市けやき坂3−9−11 Fターム(参考) 4G069 AA03 AA08 BA04A BA04B BA48A CB07 DA08 EA01X EA01Y EB18X EB18Y EC01X EC03Y EC22X EC22Y FA01 FA02 FB06 FB58 FC08 4H006 AA02 AC44 BA10 BA30 BA95 BE30 4H039 CA62 CC40 CC50 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C07C 45/36 C07C 45/36 46/04 46/04 47/548 47/548 50/12 50/12 / C72B 61/00 300 C07B 61/00 300 (72) Inventor Teruhisa Yokono 3-9-11 Keyakizaka, Kawanishi-shi, Hyogo F-term (reference) 4G069 AA03 AA08 BA04A BA04B BA48A CB07 DA08 EA01X EA01Y EB18X EB18Y EC01X EC03Y EC22 FA01 FA02 FB06 FB58 FC08 4H006 AA02 AC44 BA10 BA30 BA95 BE30 4H039 CA62 CC40 CC50

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ルチル型二酸化チタン粒子の表面に二酸
化チタン微粒子が分散担持されている担持型二酸化チタ
ン触媒。
1. A supported titanium dioxide catalyst in which titanium dioxide fine particles are dispersed and supported on the surface of rutile titanium dioxide particles.
【請求項2】 粒子径100nm以上のルチル型二酸化
チタン粒子の表面に比表面積30m2/g以上の二酸化
チタン微粒子が分散担持されている請求項1記載の担持
型二酸化チタン触媒。
2. The supported titanium dioxide catalyst according to claim 1, wherein titanium dioxide particles having a specific surface area of 30 m 2 / g or more are dispersed and supported on the surface of the rutile titanium dioxide particles having a particle diameter of 100 nm or more.
【請求項3】 ルチル型二酸化チタン粒子の表面に分散
担持されている二酸化チタン微粒子と前記ルチル型二酸
化チタン粒子との比率が、前者/後者(重量比)=0.
1/99.9〜99.5/0.5である請求項1又は2
記載の担持型二酸化チタン触媒。
3. The ratio of the titanium dioxide fine particles dispersed and supported on the surface of the rutile type titanium dioxide particles to the rutile type titanium dioxide particles is the former / the latter (weight ratio) = 0.
The ratio is 1 / 99.9 to 99.5 / 0.5.
The supported titanium dioxide catalyst according to the above.
【請求項4】 請求項1〜3の何れかの項に記載の担持
型二酸化チタン触媒の存在下、芳香族化合物を光照射下
に、分子状酸素及び/又は過酸化物により酸化して対応
する酸化生成物を生成させることを特徴とする芳香族化
合物の酸化方法。
4. An aromatic compound is oxidized with molecular oxygen and / or peroxide under light irradiation in the presence of the supported titanium dioxide catalyst according to claim 1. A method for oxidizing an aromatic compound, which comprises producing an oxidation product.
【請求項5】 請求項1〜3の何れかの項に記載の担持
型二酸化チタン触媒の存在下、芳香族化合物を光照射下
に分子状酸素及び/又は過酸化物により酸化して、対応
する芳香族アルデヒド化合物及び/又はキノン類を生成
させることを特徴とする酸素原子含有芳香族化合物の製
造法。
5. An aromatic compound is oxidized with molecular oxygen and / or peroxide under light irradiation in the presence of the supported titanium dioxide catalyst according to any one of claims 1 to 3, A method for producing an oxygen-containing aromatic compound, which comprises producing an aromatic aldehyde compound and / or quinones.
JP2001309171A 2001-03-07 2001-10-04 Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst Expired - Fee Related JP4017851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001309171A JP4017851B2 (en) 2001-03-07 2001-10-04 Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001063879 2001-03-07
JP2001-63879 2001-03-07
JP2001309171A JP4017851B2 (en) 2001-03-07 2001-10-04 Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst

Publications (2)

Publication Number Publication Date
JP2002331244A true JP2002331244A (en) 2002-11-19
JP4017851B2 JP4017851B2 (en) 2007-12-05

Family

ID=26610805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001309171A Expired - Fee Related JP4017851B2 (en) 2001-03-07 2001-10-04 Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst

Country Status (1)

Country Link
JP (1) JP4017851B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236203A (en) * 2010-04-12 2011-11-24 Nitto Denko Corp Titanium complex, titanium oxide particle and production method therefor
US9847544B2 (en) 2010-04-12 2017-12-19 Nitto Denko Corporation Ion conductive organic-inorganic composite particles, particle-containing resin composition and ion conductive molded article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236203A (en) * 2010-04-12 2011-11-24 Nitto Denko Corp Titanium complex, titanium oxide particle and production method therefor
US9847544B2 (en) 2010-04-12 2017-12-19 Nitto Denko Corporation Ion conductive organic-inorganic composite particles, particle-containing resin composition and ion conductive molded article
US10265693B2 (en) 2010-04-12 2019-04-23 Nitto Denko Corporation Particles, particle dispersion, particle-dispersed resin composition, producing method therefor, resin molded article, producing method therefor, catalyst particles, catalyst solution, catalyst composition, catalyst molded article, titanium complex, titanium oxide particles and producing method therefor

Also Published As

Publication number Publication date
JP4017851B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
Ohno et al. Photocatalytic oxidation of water on TiO2-coated WO3 particles by visible light using Iron (III) ions as electron acceptor
JP2615432B2 (en) Method for partial oxidation of hydrocarbons with gold-titanium oxide containing catalyst
CN102448886A (en) Rutile titanium dioxide nanoparticles each having novel exposed crystal plane and method for producing same
Fox et al. Selectivity in the TiO2-mediated photocatalytic oxidation of thioethers
KR920000904B1 (en) Process for preparing a cycloalkanone and/or cycloalkanol
JP2008221080A (en) Method of manufacturing carbonyl compound
EP0695217B1 (en) Catalyst based on silica and titanium, and utilisation of said catalyst for the epoxydation of olefins
US7166751B2 (en) Method for manufacturing cycloalkanol and/or cycloalkanone
Dabestani et al. Photochemistry of tetracene adsorbed on dry silica: products and mechanism
Fox et al. Photocatalytic oxidation of multifunctional organic molecules. The effect of an intramolecular aryl thioether group on the semiconductor-mediated oxidation/dehydrogenation of a primary aliphatic alcohol
JP4017851B2 (en) Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst
JP4526273B2 (en) Carbon-doped titanium oxide and method for producing the same, photocatalyst, and method for oxidizing organic compound using the catalyst
JP2005298296A (en) Titanium oxide crystal, photocatalyst and oxidation method of organic compound
JP2011001238A (en) Method for producing brookite-type titanium dioxide nanoparticle
JPH09208511A (en) Production of aromatic hydroxy compound
JP4536470B2 (en) Other element doped rutile type titanium oxide and method for producing the same, photocatalyst, and method for oxidizing organic compound using the catalyst
JP2005272463A (en) Method for production of aromatic hydroxy compound
JP2002502847A (en) Catalytic direct oxidation of unsaturated hydrocarbons
JP2004516213A (en) Method for regenerating working solution in hydrogen peroxide production process
JP2005254085A (en) Surface-modified titanium oxide photocatalyst and method of oxidizing organic compound using it
JP2005270736A (en) Compound titanium dioxide catalyst, production method therefor and oxidation method for organic compound using the catalyst
CN110152648A (en) Preparation method, tin catalyst and its application of tin catalyst
JPH07112945A (en) Conversion of carbon dioxide
JP4197224B2 (en) Method for oxidizing compound having carbon-hydrogen bond adjacent to unsaturated bond
Gambarotti et al. Semiconductors in organic photosynthesis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees