JP2002330800A - Method for measuring pesticide residue - Google Patents

Method for measuring pesticide residue

Info

Publication number
JP2002330800A
JP2002330800A JP2002112672A JP2002112672A JP2002330800A JP 2002330800 A JP2002330800 A JP 2002330800A JP 2002112672 A JP2002112672 A JP 2002112672A JP 2002112672 A JP2002112672 A JP 2002112672A JP 2002330800 A JP2002330800 A JP 2002330800A
Authority
JP
Japan
Prior art keywords
pesticide
pesticides
cholinesterase
inhibition
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002112672A
Other languages
Japanese (ja)
Other versions
JP3473022B2 (en
Inventor
Yukio Hosaka
幸男 保坂
Hideharu Maruyama
秀春 丸山
Takayuki Emori
貴之 江盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Satake Corp
Original Assignee
Satake Engineering Co Ltd
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd, Satake Corp filed Critical Satake Engineering Co Ltd
Priority to JP2002112672A priority Critical patent/JP3473022B2/en
Publication of JP2002330800A publication Critical patent/JP2002330800A/en
Application granted granted Critical
Publication of JP3473022B2 publication Critical patent/JP3473022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring pesticide residues by which an amount of a comprehensive enzyme inhibition of a specimen in which two or more kinds of pesticides remain by pesticides can be known and the maximum residual concentration of each the pesticide into the specimen can be known by specifying pesticides naturally having a possibility of remaining in the specimen and reading out and calculating a previously input constant (inhibition constant) denoting a degree of the enzyme inhibition of the single body of the pesticide. SOLUTION: This method for measuring the pesticide residues allows measuring cholinesterase activities by detecting hydrogen peroxide generated by conjugating cholinesterase and comprises estimating the risk of pollution by the pesticide residues by calculating the residual concentration of each the pesticide having a possibility of being included at the maximum from a measured value obtained by measuring deterioration of the cholinesterase activities in a sample containing a plurality of the known pesticides and previously input cholinesterase inhibition activity of each the pesticide and comparing the concentration with a reference value of the residue of each the pesticide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、測定妨害の影響を
極力なくした食品や環境水中に残留する有機リン系殺虫
剤やカルバメート系殺虫剤等の検出を行うための測定方
法と、複数の農薬が共存した場合の農薬残留基準値を基
にした判別を行うための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting an organophosphorus pesticide or a carbamate pesticide remaining in food or environmental water with minimum influence of measurement interference, and a method for detecting a plurality of pesticides. The present invention relates to a method for performing determination based on pesticide residue reference values when coexisting.

【0002】[0002]

【従来の技術】有機リン系農薬、カルバメート系農薬
は、有機塩素系農薬と比較して環境中で容易に代謝分解
されるため、殺虫剤、殺菌剤、除草剤として広く使用さ
れているが、しかしながら、有機リン系殺虫剤、カルバ
メート殺虫剤とその代謝生成物は動物体内に蓄積される
と神経系を著しく害するため、食品危険度管理又は環境
汚染管理的な見地から、安全性確保のために、これら農
薬検査を行う機会が近年増加している。一般に、このよ
うな分野での農薬検出は、現場付近において簡易かつ迅
速に測定できる方法が望まれている。
BACKGROUND OF THE INVENTION Organophosphorus pesticides and carbamate pesticides are widely used as pesticides, fungicides, and herbicides because they are more easily metabolized and degraded in the environment than organochlorine pesticides. However, organophosphorus insecticides, carbamate insecticides and their metabolites, when accumulated in the animal body, significantly harm the nervous system. In recent years, opportunities for conducting these pesticide tests have increased. In general, for detection of pesticides in such a field, a method that can easily and quickly measure near the site is desired.

【0003】従来、殺虫剤等の農薬の検出には、ガスク
ロマトグラフやガスクロマトグラフ質量分析計、高速液
体クロマトグラフ等の大型の精密分析装置を用いて行な
っている。しかしながら、このような精密分析計を用い
た農薬の検出方法は、サンプル中に含まれている成分を
網羅的に、精度良く検出できるものの、測定装置が高価
であり、測定操作が煩雑で熟練を要し、時間がかかる、
測定毎に機器校正のための農薬を使用せざるを得ない等
の問題がある。
Conventionally, detection of pesticides such as insecticides has been carried out using a large-sized precision analyzer such as a gas chromatograph, a gas chromatograph mass spectrometer, and a high-performance liquid chromatograph. However, such a method for detecting pesticides using a precision analyzer can comprehensively and accurately detect the components contained in a sample, but the measuring device is expensive, the measuring operation is complicated, and the skill is high. It takes time,
There are problems such as the necessity of using pesticides for device calibration every measurement.

【0004】一方、簡便な農薬の検出方法として、農薬
阻害性の酵素を素子とした農薬共存による酵素触媒能変
化より間接的に農薬量を測定する方法がある。例えば、
有機リン系殺虫剤、カルバメート系殺虫剤は典型的なコ
リンエステラーゼの阻害性物質であるが、この原理に基
づき、農薬の共存によるコリンエステラーゼの酵素触媒
能(加水分解速度)変化を捉え、これら農薬の共存量を
算出する方法がある。
[0004] On the other hand, as a simple method for detecting pesticides, there is a method of indirectly measuring the amount of a pesticide from a change in enzyme catalytic activity caused by the coexistence of a pesticide using a pesticide inhibiting enzyme as an element. For example,
Organophosphorus insecticides and carbamate insecticides are typical cholinesterase inhibitors. Based on this principle, the change in the enzyme catalyzing ability (hydrolysis rate) of cholinesterase due to the coexistence of pesticides is determined. There is a method of calculating the amount.

【0005】特許第2927221号公報に開示されている現
場での測定に適した簡易な農薬検出装置がこれに該当す
る。また、ある濃度しきい値をもうけた判別が可能な同
様の原理の簡易測定用試験紙(商品名:AT−10、チッ
ソ(株))も市販されている。
[0005] A simple pesticide detection device suitable for on-site measurement disclosed in Japanese Patent No. 2927221 corresponds to this. In addition, a simple measurement test paper (trade name: AT-10, Chisso Corporation) having the same principle and capable of discrimination with a certain concentration threshold is also commercially available.

【0006】また、このときのコリンエステラーゼ活性
測定には特異性基質の分解生成物を適当な発色法で(例
えば、アセチルチオコリンの加水分解により生成するチ
オコリンをチオール官能性発色試薬DTNBにより発色させ
る)発色させ、比色分析計を用いて行われることが一般
的である。
For the measurement of cholinesterase activity at this time, the decomposition product of the specific substrate is subjected to an appropriate coloring method (for example, thiocholine generated by hydrolysis of acetylthiocholine is colored by a thiol-functional coloring reagent DTNB). Color development is generally performed using a colorimeter.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、コリン
エステラーゼ阻害による農薬検出する方法では素子(酵
素)に対して、阻害性を示す農薬は多数存在し、しか
も、農薬ごとの阻害の程度が異なるため、複数(2種以
上)農薬が共存下する場合、それぞれの農薬についての
量を知ることは不可能である(抗原抗体反応のようなそ
れぞれの農薬に対する選択性がない。)。また、実際に
散布される農薬剤に関しても、複数の農薬の混合剤であ
る場合が多く、残留基準値を基にした判定を行うことが
困難である。
However, in the method for detecting pesticides by cholinesterase inhibition, a large number of pesticides exhibiting inhibitory effects on the element (enzyme) exist, and the degree of inhibition differs for each pesticide. When two or more pesticides coexist, it is impossible to know the amount of each pesticide (there is no selectivity for each pesticide such as an antigen-antibody reaction). In addition, the pesticides actually sprayed are often a mixture of a plurality of pesticides, and it is difficult to make a determination based on the residual reference value.

【0008】さらに、コリンエステラーゼ活性を種々の
酸化発色系を用いた吸光光度法で測定することに関して
は、種々の測定妨害(例えば、検体中への着色物質、酸
化剤、還元剤の共存)の影響を受け易いため、農薬の存
在に起因するものでないにも係らず、見かけ上、農薬の
存在あるいは不存在を示す信号が得られること等の課題
がある。
Further, regarding the measurement of cholinesterase activity by an absorption spectrophotometry using various oxidative coloring systems, the influence of various measurement disturbances (for example, the coexistence of a coloring substance, an oxidizing agent, and a reducing agent in a sample). However, there is a problem that a signal indicating the presence or absence of the pesticide is apparently obtained although the signal is not caused by the presence of the pesticide.

【0009】本発明は上記問題点にかんがみ、複数種以
上の農薬が残留している検体の総括的な農薬による酵素
阻害量を知ることができ、前記検体に元々残留する可能
性のある農薬を指定し、あらかじめ入力された農薬単品
での酵素阻害の程度を示す定数(阻害定数)を読み出
し、演算することで、それぞれの農薬の検体中への最大
残留濃度を知ることができる残留農薬測定方法を提供す
ることを技術的課題とする。
In view of the above problems, the present invention makes it possible to know the overall amount of enzyme inhibition by a pesticide in a sample in which a plurality of types of pesticides remain, and to determine the amount of pesticide that may originally remain in the sample. A residual pesticide measurement method that reads out and calculates a constant (inhibition constant) indicating the degree of enzyme inhibition of a pesticide alone, which is specified and input in advance, and thereby knows the maximum residual concentration of each pesticide in the sample. To provide a technical issue.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
本発明は、農薬によるコリンエステラーゼ活性阻害の程
度から試料中の残留農薬量を測定する残留農薬測定方法
において、コリンエステラーゼとコリンオキシダーゼと
を共役して生成する過酸化水素を検出することによりコ
リンエステラーゼ活性を精度よく測定でき、既知の複数
農薬が含まれる試料中のコリンエステラーゼ活性低下を
測定した測定値と、予め記憶された個々の農薬のコリン
エステラーゼ阻害能とから、個々の農薬の、最大含まれ
る可能性のある残存濃度を演算し、該個々の農薬の残留
基準値と比較することで残留農薬汚染による危険性を評
価する、という技術的手段を講じた。
In order to solve the above-mentioned problems, the present invention provides a method for measuring residual pesticides in a sample from the degree of inhibition of cholinesterase activity by pesticides, the method comprising conjugated cholinesterase and choline oxidase. Cholinesterase activity can be accurately measured by detecting the hydrogen peroxide generated by the measurement, and the measured value of the decrease in cholinesterase activity in a sample containing a plurality of known pesticides is compared with the cholinesterase inhibitory ability of each pesticide stored in advance. Therefore, the technical means of calculating the residual concentration of each pesticide that may be contained at the maximum, and evaluating the risk due to residual pesticide contamination by comparing with the residual reference value of each pesticide, is taken. Was.

【0011】これにより、実検体中でのコリンエステラ
ーゼ活性測定を妨害物質の影響が小さく行なえるため、
阻害測定の測定精度が向上する。そして、複数の農薬が
共存する検体中で、酵素阻害観測を行なった場合、1つ
の測定結果(相対活性)から、その中に含まれる複数の
未知濃度の農薬すべてについての最大残存濃度を知るこ
とができ、この濃度とそれぞれ農薬についての残留基準
値とを比較することで、大雑把な検体の残留農薬汚染に
よる安全・危険度判別が行なえるようになる。
As a result, the effect of interfering substances on the measurement of cholinesterase activity in a real sample can be reduced.
The measurement accuracy of the inhibition measurement is improved. Then, when enzyme inhibition observation is performed in a sample in which multiple pesticides coexist, it is necessary to know the maximum residual concentration of all pesticides of multiple unknown concentrations contained in one measurement result (relative activity). By comparing this concentration with the residual reference value for each pesticide, it is possible to roughly determine the safety and danger due to residual pesticide contamination of the sample.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しながら詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0013】まず、複数農薬が混在する検体中での阻害
計測(コリンエステラーゼ活性測定)を吸光光度法より
も選択性に優れ、測定妨害の少ない電気化学デバイスの
アンペロメトッリックセンサを利用して行うのである。
例えば、特開2000-321234に記載され、ポリフェノール
センサとして適用されている過酸化水素に対して高感
度、高選択的な応答性を示す電極を用いることができ
る。農薬阻害による信号を過酸化水素として検出する方
法は、まず、コリンエステラーゼと農薬を含む検体とを
接触させ、これをコリンオキシターゼ、コリンエステラ
ーゼ基質(アセチルコリン及びベンゾイルコリン等)を
含む電解液に滴下、一定時間、過酸化水素を生成する反
応を行った後、反応を停止する(このとき反応停止剤に
はキニジン硫酸塩等が使用できる。)。その後、前述し
たような電極、参照電極、対極を電解セルに挿入し、定
法に従ったアンペロメトリック測定を行い、この時得ら
れる定常状態還元電流値(ii)を農薬による阻害の程度
を示す信号(υi)(ただし、Vi=ii/kt,k:比例定
数,t:時間)として記録する((2)式参照)。
First, inhibition measurement (cholinesterase activity measurement) in a sample in which a plurality of pesticides are mixed is performed by using an amperometric sensor of an electrochemical device which is superior in selectivity to the spectrophotometric method and has less measurement interference. It is.
For example, an electrode described in JP-A-2000-321234 and having high sensitivity and high selective response to hydrogen peroxide applied as a polyphenol sensor can be used. In the method of detecting a signal due to pesticide inhibition as hydrogen peroxide, first, a cholinesterase is brought into contact with a specimen containing a pesticide, and this is dropped into an electrolyte containing choline oxidase and a cholinesterase substrate (acetylcholine, benzoylcholine, etc.) for a certain period of time. After the reaction for producing hydrogen peroxide, the reaction is stopped (in this case, quinidine sulfate or the like can be used as a reaction terminator). Thereafter, the electrode, the reference electrode, and the counter electrode as described above are inserted into the electrolytic cell, and an amperometric measurement is performed according to a standard method. The obtained steady-state reduction current value (ii) indicates the degree of inhibition by the pesticide. It is recorded as a signal (υ i ) (however, Vi = ii / kt, k: proportionality constant, t: time) (see equation (2)).

【0014】[0014]

【数1】 農薬を含まない検体についても同様に測定を行い、これ
によって得られる信号を(υn)(ただし、Vi=in/k
t,in:農薬を含まない検体の定常状態還元電流値,k:比
例定数,t:時間)として記録する((1)式参照)。
(Equation 1) The same measurement is performed for a sample containing no pesticide, and the signal obtained from the measurement is expressed as (υ n ) (where Vi = in / k
(t, in: steady-state reduction current value of a sample not containing pesticides, k: proportionality constant, t: time) are recorded (see equation (1)).

【0015】[0015]

【数2】 以上の(1)式及び(2)式にから農薬による酵素阻害
の程度は、農薬非共存下での活性に対する共存下での活
性の比、つまり、(3)式の相対活性(R.A.:relative
activity)が(υin)として表される。
(Equation 2) From the above formulas (1) and (2), the degree of enzyme inhibition by the pesticide is determined by the ratio of the activity in the presence of the pesticide to the activity in the absence of the pesticide, that is, the relative activity (RA: relative) of the formula (3).
activity) is represented as (υ i / υ n ).

【0016】[0016]

【数3】 (3)式を展開すると、相対活性の逆数は農薬濃度
([I])に対し直線的に応答する。
(Equation 3) Expanding equation (3), the reciprocal of the relative activity responds linearly to the pesticide concentration ([I]).

【0017】[0017]

【数4】 アセチルコリンエステラーゼのアセチルチオコリンに対
するミカエリス定数は、Km=1×10−4であり、基
質濃度を[S]=2×10−4Mとした場合、(5)式の
ようになる。
(Equation 4) The Michaelis constant of acetylcholinesterase with respect to acetylthiocholine is Km = 1 × 10 −4 , and when the substrate concentration is [S] = 2 × 10 −4 M, the equation is as shown in equation (5).

【0018】[0018]

【数5】 そして、相対活性を計測することで、(6)式より農薬
濃度を知ることができる。
(Equation 5) Then, by measuring the relative activity, the concentration of the pesticide can be known from equation (6).

【0019】[0019]

【数6】 (Equation 6)

【0020】例えば、阻害定数(ki)が1×10−7
である農薬の阻害観測を行なった場合、半残存活性濃
度、定量下限濃度、定量上限濃度の関係はそれぞれ図1
のようになる。
For example, when the inhibition constant (ki) is 1 × 10 −7
When the inhibition of pesticides is observed, the relationship between the semi-residual activity concentration, the lower limit of quantification, and the upper limit of quantification is shown in FIG.
become that way.

【0021】酵素に対する阻害定数がそれぞれ異なる3
種の農薬(農薬A,農薬B,農薬C)共存下での酵素活
性(Vi(A+B+C))は、(7)式より求まる。
Inhibition constants for enzymes differ from each other.
The enzyme activity (Vi (A + B + C) ) in the coexistence of seed pesticides (pesticide A, pesticide B, pesticide C) can be obtained from equation (7).

【0022】[0022]

【数7】 農薬非共存下での活性に対する相対活性(R.A.)は
(8)式で表される。
(Equation 7) The relative activity (RA) relative to the activity in the absence of the pesticide is represented by the formula (8).

【0023】[0023]

【数8】 (8)式を展開すると、以下のようになる。(Equation 8) Expanding equation (8) yields the following.

【0024】[0024]

【数9】 アセチルコリンエステラーゼのアセチルチオコリンに対
するミカエリス定数は、Km=1×10−4であり、基
質濃度を[S]=2×10−4Mとした場合、(10)式
のようになり、総括した阻害の程度は、各農薬で酵素阻
害した量の和で表される。
(Equation 9) The Michaelis constant of acetylcholinesterase with respect to acetylthiocholine is Km = 1 × 10 −4 , and when the substrate concentration is [S] = 2 × 10 −4 M, it becomes as shown in the formula (10). Is expressed as the sum of the amounts of enzyme inhibition by each pesticide.

【0025】[0025]

【数10】 例えば、酵素に対する阻害の程度がそれぞれ阻害定数が
Ki=1×10−6M,Ki=1×10−7M,K
=1×10−8Mと異なる農薬A,農薬B,農薬C
の各農薬についての相対活性の農薬濃度依存性は図2に
示すようになるが、この3種の農薬が共存した場合、総
括した阻害の程度は(10)式より、各農薬で阻害した
量の和で表されることから、それぞれの農薬量について
は算出できなくとも、それぞれ農薬が最大どれだけ含ま
れているかを判別することは可能である。
(Equation 10) For example, the degree of inhibition on the enzyme is determined by the inhibition constants Ki A = 1 × 10 −6 M and Ki B = 1 × 10 −7 M, K
pesticide A, pesticide B, pesticide C different from i C = 1 × 10 −8 M
The pesticide concentration dependence of the relative activity of each pesticide is as shown in FIG. 2. When these three pesticides coexist, the degree of inhibition as a whole is calculated from the equation (10) according to the amount inhibited by each pesticide. Therefore, it is possible to determine the maximum amount of each pesticide, even if the amount of each pesticide cannot be calculated.

【0026】例えば、図2を参照すると、それぞれ未知
濃度の農薬A,農薬B,農薬Cが共存する検体中で、阻
害観測を行って得られた相対活性が0.7であった場
合、 農薬Aについては、最大1.3×10−6M 農薬Bについては、最大1.3×10−7M 農薬Cについては、最大1.3×10−8M 含まれているという判断ができ、すべての農薬について
残留基準値以下なので、安全ということが分かる。
For example, referring to FIG. 2, in a sample in which pesticides A, B, and C at unknown concentrations coexist, if the relative activity obtained by performing inhibition observation is 0.7, For A, it can be determined that a maximum of 1.3 × 10 −6 M pesticide B, a maximum of 1.3 × 10 −7 M pesticide C, and a maximum of 1.3 × 10 −8 M are contained. All pesticides are safe because they are below the residue standard.

【0027】[0027]

【実施例】(10)式の妥当性を示すため、2種の共存農
薬に対するアセチルコリンエステラーゼの応答を以下に
検証する。
EXAMPLES In order to show the validity of the formula (10), the response of acetylcholinesterase to two coexisting pesticides will be examined below.

【0028】試験農薬:ベンダイオカルブ(カルバメー
ト系農薬),マラチオン(有機リン系農薬) 2農薬共存下の阻害理論式
Test pesticides: bendiocarb (carbamate pesticide), malathion (organophosphorus pesticide) Theoretical inhibition formula in the presence of two pesticides

【数11】 条件: ベンダイオカルブ(カルバメート系農薬)の阻害定数 KiA=1.67×10−7M マラチオン(有機リン系農薬)の阻害定数 KiB=1.67×10−4M Km=1×10−4M,[S]=2×10−4M 以上の条件で相対活性の理論値と相対活性の実測値とを
プロットすると図7のようになった。
[Equation 11] Conditions: Inhibition constant of bendiocarb (carbamate-based pesticide) K iA = 1.67 × 10 −7 M Inhibition constant of malathion (organophosphorus-based pesticide) K iB = 1.67 × 10 −4 M Km = 1 × 10 −4 M, [S] = 2 × 10 −4 M The theoretical value of the relative activity and the measured value of the relative activity under the above conditions were plotted as shown in FIG.

【0029】以上のように、実サンプル中でも妨害物質
の影響が少なくコリンエステラーゼ活性測定が行なえる
ため、精度よく相対活性(R.A)が算出できる。相対活
性(R.A)が算出されると、以下の農薬濃度の判別方法
により、判定すべき複数の農薬それぞれについての最大
残存濃度を知ることができる。
As described above, since the cholinesterase activity measurement can be performed with little influence of interfering substances even in the actual sample, the relative activity (RA) can be calculated accurately. When the relative activity (RA) is calculated, the maximum residual concentration of each of a plurality of pesticides to be determined can be known by the following pesticide concentration determination method.

【0030】農薬非共存下での酵素活性(V)と共存
下での酵素活性(V)、つまりは、農薬非共存下、共
存下でのコリンエステラーゼの活性は、基質アセチルチ
オコリン(ATC)の加水分解速度を、分解により生成
したチオコリン(TC)をチオール官能試薬DTNBに
より呈色し、これによって呈色したTNBを吸収波長4
12nmでの吸光度を測定することによって得られる
(図3参照)。
The enzyme activity (V n ) in the absence of the pesticide and the enzyme activity (V i ) in the presence of the pesticide, that is, the activity of cholinesterase in the presence and absence of the pesticide are determined by the substrate acetylthiocholine (ATC). ), The thiocholine (TC) produced by the decomposition was colored by the thiol functional reagent DTNB, and the TNB thus colored was converted to an absorption wavelength of 4.
It is obtained by measuring the absorbance at 12 nm (see FIG. 3).

【0031】しかし、複数種の農薬共存下、1種類の農
薬共存下、双方の場合について言えることであるが、実
際のサンプル中(例えば、野菜)でこの方法による阻害
計測を行う場合、農薬非共存下での酵素活性(V)で
はサンプル抽出物が共存しない条件で行うのに対して、
農薬共存下での酵素活性(Vi)では、サンプル抽出物
が共存する条件で行うため、測定妨害物質の影響を受
け、結果、阻害計測の精度は劣化する。この場合、サン
プル抽出物中では抽出物非共存下の場合よりも強く阻害
される。典型例として、トマト抽出物中での阻害計測の
結果を図4に示す。
However, it can be said that in the case of coexistence of a plurality of kinds of pesticides and one kind of pesticides, when the inhibition measurement by this method is carried out in an actual sample (for example, vegetables), it is not possible to use the pesticide. In the case of the enzyme activity (V n ) in the presence of coexistence, it is performed under the condition that the sample extract does not coexist.
In the case of the enzyme activity (Vi) in the coexistence of the pesticide, the measurement is performed under the coexistence condition of the sample extract. In this case, the inhibition is stronger in the sample extract than in the absence of the extract. As a typical example, the results of inhibition measurement in tomato extracts are shown in FIG.

【0032】コリンエステラーゼ活性測定方法として、
コリンエステラーゼの酵素触媒反応により生成した遊離
コリンを、酸化還元酵素の一種である、コリンオキシダ
ーゼを用いて、過酸化水素に変換して、さらに、特開2
000−321234号公報に記載されている過酸化水
素に特異性を示す電気化学デバイスセンサを用いて測定
するから、DTNB法よりもはるかに、実際のサンプル
中での妨害物質の影響が軽減され、酵素阻害計測の精度
が向上することが期待される(図5及び図6参照)。
As a method for measuring cholinesterase activity,
Free choline produced by the enzyme-catalyzed reaction of cholinesterase is converted to hydrogen peroxide using choline oxidase, which is a kind of oxidoreductase.
Since the measurement is performed using the electrochemical device sensor showing specificity to hydrogen peroxide described in JP-A-000-32234, the influence of interfering substances in the actual sample is reduced much more than the DTNB method, It is expected that the accuracy of the enzyme inhibition measurement will be improved (see FIGS. 5 and 6).

【0033】測定器の基本構成は、低電位を与えるため
のポテンションスタット、共役酵素反応及び電気化学測
定を行うための測定セル、各電極をつなぐコネクタ、電
極からの電気信号を増幅するための電気増幅部、得られ
た信号を演算して相対活性(R.A.)にし、記憶する
ためのデータ処理部とからなる。
The basic configuration of the measuring instrument is a potentiostat for giving a low potential, a measuring cell for conducting a conjugate enzyme reaction and an electrochemical measurement, a connector for connecting each electrode, and an amplifying electric signal from the electrode. An electrical amplification unit; and a data processing unit for calculating an obtained signal to make it a relative activity (RA) and storing it.

【0034】さらに、任意のコリンエステラーゼに対し
て阻害を示す農薬の阻害定数を記憶し、読み出すデータ
処理部、予め散布され、検出の可能性のある農薬を打ち
込みし、その農薬について阻害定数を読み出すデータ処
理部、判定すべき複数の農薬それぞれについての最大残
存量とそれぞれの残留農薬基準値との関係から安全・危
険判別を行うためのデータ処理部及びデータ表示部から
構成するとよい。
Further, a data processing section for storing and reading out the inhibition constant of the pesticide which inhibits a given cholinesterase, data of the pesticide which is sprayed in advance and which may be detected, and which reads the inhibition constant of the pesticide. The processing unit may include a data processing unit and a data display unit for performing safety / danger determination based on the relationship between the maximum residual amount of each of the plurality of pesticides to be determined and the respective residual pesticide reference values.

【0035】これにより、判定すべき全ての農薬それぞ
れの残留基準値とを比較することで、大雑把な検体の残
留農薬汚染による安全・危険度判別が行なえる。判別方
法は、判定すべき複数の農薬それぞれについての最大残
存濃度がそれぞれの残留基準値について1農薬でも大き
かったら、危険と判定をするものである。
Thus, by comparing the residual reference values of all the pesticides to be determined with each other, it is possible to roughly determine the safety / risk due to the residual pesticide contamination of the sample. The discrimination method is to judge as dangerous if the maximum residual concentration of each of a plurality of pesticides to be determined is greater than the respective residual reference values by one pesticide.

【0036】[0036]

【発明の効果】農薬によるコリンエステラーゼ活性阻害
の程度から試料中の残留農薬量を測定する残留農薬測定
方法において、コリンエステラーゼを共役して生成する
過酸化水素を検出することによりコリンエステラーゼ活
性を測定でき、既知の複数農薬が含まれる試料中のコリ
ンエステラーゼ活性低下を測定した測定値と、予め記憶
された個々の農薬のコリンエステラーゼ阻害能とから、
個々の農薬の、最大含まれる可能性のある残存濃度を演
算し、該個々の農薬の残留基準値と比較することで残留
農薬汚染による危険性を評価するので、実検体中でのコ
リンエステラーゼ活性測定を妨害物質の影響が小さく行
なえるため、阻害測定の測定精度が向上する。そして、
複数の農薬が共存する検体中で、酵素阻害観測を行なっ
た場合、1つの測定結果(相対活性)から、その中に含
まれる複数の未知濃度の農薬すべてについての最大残存
濃度を知ることができ、この濃度とそれぞれ農薬につい
ての残留基準値とを比較することで、大雑把な検体の残
留農薬汚染による安全・危険度判別が行なえるようにな
る。
According to the method for measuring residual pesticide residues in a sample from the degree of inhibition of cholinesterase activity by pesticides, cholinesterase activity can be measured by detecting hydrogen peroxide produced by coupling cholinesterase. From the measured value of the decrease in cholinesterase activity in a sample containing a plurality of pesticides, and the cholinesterase inhibitory ability of individual pesticides stored in advance,
Calculate the residual concentration of each pesticide that may be contained at the maximum, and evaluate the risk of residual pesticide contamination by comparing with the residual standard value of each pesticide. Therefore, measure cholinesterase activity in actual samples. The influence of interfering substances can be reduced, and the measurement accuracy of the inhibition measurement is improved. And
When enzyme inhibition observation is performed in a sample in which multiple pesticides coexist, the maximum residual concentration of all pesticides of multiple unknown concentrations contained in one measurement result (relative activity) can be known. By comparing this concentration with the residual reference value for each pesticide, it is possible to roughly determine the safety and danger of a sample due to residual pesticide contamination.

【図面の簡単な説明】[Brief description of the drawings]

【図1】特定の阻害定数ある農薬の阻害観測を行なった
際の、半残存活性濃度、定量下限濃度、定量上限濃度の
関係を示すグラフである。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing a relationship between a half residual activity concentration, a lower limit of quantification, and a upper limit of quantification when observing inhibition of a pesticide having a specific inhibition constant.

【図2】複数農薬共存下での各農薬濃度の判別方法を示
すグラフである。
FIG. 2 is a graph showing a method for determining the concentration of each pesticide in the presence of a plurality of pesticides.

【図3】コリンエステラーゼ活性を、基質アセチルチオ
コリン(ATC)の加水分解速度、分解により生成した
チオコリン(TC)をチオール官能試薬DTNBにより
呈色したときの反応式である。
FIG. 3 is a reaction formula when the cholinesterase activity is expressed by the rate of hydrolysis of the substrate acetylthiocholine (ATC) and the color of thiocholine (TC) produced by decomposition with the thiol functional reagent DTNB.

【図4】サンプル抽出物中で抽出物非共存下の場合より
も強く阻害される例を示すグラフである。
FIG. 4 is a graph showing an example in which inhibition is stronger in a sample extract than in the absence of an extract.

【図5】電気化学デバイスの過酸化水素センサをコリン
エステラーゼ活性測定用センサに応用する測定原理を示
す図である。
FIG. 5 is a diagram showing a measurement principle in which a hydrogen peroxide sensor of an electrochemical device is applied to a sensor for measuring cholinesterase activity.

【図6】コリンエステラーゼ活性測定方法を示す図であ
る。
FIG. 6 is a diagram showing a method for measuring cholinesterase activity.

【図7】相対活性の理論値と相対活性の実測値とをプロ
ットした図である。
FIG. 7 is a diagram in which a theoretical value of relative activity and an actually measured value of relative activity are plotted.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年4月17日(2002.4.1
7)
[Submission date] April 17, 2002 (2002.4.1.
7)

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4B063 QA01 QQ20 QQ32 QQ61 QQ89 QQ91 QR03 QR41 QR57 QS28 QX04  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4B063 QA01 QQ20 QQ32 QQ61 QQ89 QQ91 QR03 QR41 QR57 QS28 QX04

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 農薬によるコリンエステラーゼ活性阻害
の程度から試料中の残留農薬量を測定する残留農薬測定
方法において、コリンエステラーゼを共役して生成する
過酸化水素を検出することによりコリンエステラーゼ活
性を測定でき、既知の複数農薬が含まれる試料中のコリ
ンエステラーゼ活性低下を測定した測定値と、予め記憶
された個々の農薬のコリンエステラーゼ阻害能とから、
個々の農薬の、最大含まれる可能性のある残存濃度を演
算し、該個々の農薬の残留基準値と比較することで残留
農薬汚染による危険性を評価する残留農薬測定方法。
1. A method for measuring residual pesticide residues in a sample from the degree of inhibition of cholinesterase activity by pesticides, wherein the cholinesterase activity can be measured by detecting hydrogen peroxide generated by coupling cholinesterase. From the measured value of the decrease in cholinesterase activity in a sample containing a plurality of pesticides, and the cholinesterase inhibitory ability of individual pesticides stored in advance,
A method for measuring residual pesticides, in which the residual concentration of each pesticide which may be contained at the maximum is calculated and the risk due to residual pesticide contamination is evaluated by comparing with the residual reference value of each pesticide.
JP2002112672A 2002-04-15 2002-04-15 Pesticide residue measurement method Expired - Fee Related JP3473022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112672A JP3473022B2 (en) 2002-04-15 2002-04-15 Pesticide residue measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112672A JP3473022B2 (en) 2002-04-15 2002-04-15 Pesticide residue measurement method

Publications (2)

Publication Number Publication Date
JP2002330800A true JP2002330800A (en) 2002-11-19
JP3473022B2 JP3473022B2 (en) 2003-12-02

Family

ID=19193961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112672A Expired - Fee Related JP3473022B2 (en) 2002-04-15 2002-04-15 Pesticide residue measurement method

Country Status (1)

Country Link
JP (1) JP3473022B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270008A (en) * 2004-03-25 2005-10-06 Satake Corp Method for analyzing residual agricultural chemical
JP2007127620A (en) * 2005-11-01 2007-05-24 Development Center For Biotechnology Method for detecting agricultural chemical and bio micro sensor
CN1321194C (en) * 2002-12-30 2007-06-13 高希武 Detection reagent kit for pesticide residue, its preparing method and its use
JP2009142262A (en) * 2007-11-20 2009-07-02 Asahi Kasei Pharma Kk Method for measuring mizoribine and/or ribavirin
JP2011045313A (en) * 2009-08-28 2011-03-10 Satake Corp Method for measuring pesticide residue
JP2012026994A (en) * 2010-07-28 2012-02-09 Funai Electric Advanced Applied Technology Research Institute Inc Enzyme sensor and detection target substance measuring method using enzyme sensor
JP2013053925A (en) * 2011-09-05 2013-03-21 Funai Electric Advanced Applied Technology Research Institute Inc Detector for detecting detection target substance
JP2013053926A (en) * 2011-09-05 2013-03-21 Funai Electric Advanced Applied Technology Research Institute Inc Detection target substance measuring device, and detection target substance measuring method using detection target substance measuring device
JP2013053927A (en) * 2011-09-05 2013-03-21 Funai Electric Advanced Applied Technology Research Institute Inc Enzyme sensor and detection target substance measuring method using the same
CN101713774B (en) * 2009-12-04 2013-05-08 南京大学 Method for identifying ecological risks of pesticides in water body
CN103305589A (en) * 2013-06-06 2013-09-18 南宁市健雄厨房设备有限公司 Method for detecting pesticide residues in vegetables
JP2013238399A (en) * 2012-05-11 2013-11-28 Funai Electric Advanced Applied Technology Research Institute Inc Sensor system and measuring method of detection object using the sensor system
CN103675057A (en) * 2013-11-29 2014-03-26 中国广州分析测试中心 Biosensor for organophosphorus pesticide rapid detection and detecting method thereof
CN103940868A (en) * 2014-04-15 2014-07-23 山东理工大学 Fast detector of pesticide residues based on enzyme immunosensor
CN104007104A (en) * 2014-05-22 2014-08-27 上海交通大学 Kit for rapidly detecting organophosphorus pesticide residues and application method thereof
CN108007986A (en) * 2017-11-28 2018-05-08 安徽师范大学 A kind of gold nano disc electrode, preparation method and its detection application to mesotrione in pesticide of mercury modification

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321194C (en) * 2002-12-30 2007-06-13 高希武 Detection reagent kit for pesticide residue, its preparing method and its use
JP2005270008A (en) * 2004-03-25 2005-10-06 Satake Corp Method for analyzing residual agricultural chemical
JP4553181B2 (en) * 2004-03-25 2010-09-29 株式会社サタケ Pesticide residue analysis method
JP2007127620A (en) * 2005-11-01 2007-05-24 Development Center For Biotechnology Method for detecting agricultural chemical and bio micro sensor
JP4563970B2 (en) * 2005-11-01 2010-10-20 財團法人生物技術開發中心 Method for detecting pesticides and biomicrosensor
JP2009142262A (en) * 2007-11-20 2009-07-02 Asahi Kasei Pharma Kk Method for measuring mizoribine and/or ribavirin
JP2011045313A (en) * 2009-08-28 2011-03-10 Satake Corp Method for measuring pesticide residue
CN101713774B (en) * 2009-12-04 2013-05-08 南京大学 Method for identifying ecological risks of pesticides in water body
JP2012026994A (en) * 2010-07-28 2012-02-09 Funai Electric Advanced Applied Technology Research Institute Inc Enzyme sensor and detection target substance measuring method using enzyme sensor
JP2013053927A (en) * 2011-09-05 2013-03-21 Funai Electric Advanced Applied Technology Research Institute Inc Enzyme sensor and detection target substance measuring method using the same
JP2013053926A (en) * 2011-09-05 2013-03-21 Funai Electric Advanced Applied Technology Research Institute Inc Detection target substance measuring device, and detection target substance measuring method using detection target substance measuring device
JP2013053925A (en) * 2011-09-05 2013-03-21 Funai Electric Advanced Applied Technology Research Institute Inc Detector for detecting detection target substance
JP2013238399A (en) * 2012-05-11 2013-11-28 Funai Electric Advanced Applied Technology Research Institute Inc Sensor system and measuring method of detection object using the sensor system
CN103305589A (en) * 2013-06-06 2013-09-18 南宁市健雄厨房设备有限公司 Method for detecting pesticide residues in vegetables
CN103675057A (en) * 2013-11-29 2014-03-26 中国广州分析测试中心 Biosensor for organophosphorus pesticide rapid detection and detecting method thereof
CN103940868A (en) * 2014-04-15 2014-07-23 山东理工大学 Fast detector of pesticide residues based on enzyme immunosensor
CN103940868B (en) * 2014-04-15 2016-02-24 山东理工大学 A kind of rapid detector for pesticide residue based on enzyme immunosensor
CN104007104A (en) * 2014-05-22 2014-08-27 上海交通大学 Kit for rapidly detecting organophosphorus pesticide residues and application method thereof
CN108007986A (en) * 2017-11-28 2018-05-08 安徽师范大学 A kind of gold nano disc electrode, preparation method and its detection application to mesotrione in pesticide of mercury modification
CN108007986B (en) * 2017-11-28 2020-06-02 安徽师范大学 Mercury-modified gold nanodisk electrode, preparation method and application thereof in detection of mesotrione in pesticide

Also Published As

Publication number Publication date
JP3473022B2 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
JP2002330800A (en) Method for measuring pesticide residue
Bernabei et al. Anticholinesterase activity measurement by a choline biosensor: application in water analysis
US6537744B1 (en) Use of biomarkers in saliva to evaluate the toxicity of agents and the function of tissues in both biomedical and environmental applications
Nunes et al. Acetylcholine enzyme sensor for determining methamidophos insecticide: evaluation of some genetically modified acetylcholinesterases from Drosophila melanogaster
Dong et al. Fluorescence sensor for organophosphorus pesticide detection based on the alkaline phosphatase-triggered reaction
Loughran et al. Monitoring of volatile bases in fish sample headspace using an acidochromic dye
GB2464222A (en) Analysis method and device
Naik et al. Development and validation of a simple assay for the determination of cholinesterase activity in whole blood of laboratory animals
TWM479417U (en) Apparatus for residual pesticide detection
Zheng et al. Detection of dichlorvos residue by flow injection calorimetric biosensor based on immobilized chicken liver esterase
JP4433758B2 (en) Pesticide residue measurement method
Phipps et al. Assessing antioxidant activity in botanicals and other dietary supplements
Jun et al. Monitoring of blood cholinesterase activity in workers exposed to nerve agents
Topçu et al. Evaluation of a new biosensor-based mushroom (Agaricus bisporus) tissue homogenate: investigation of certain phenolic compounds and some inhibitor effects
Xu et al. Comparison of four commercial enzymatic assay kits for the analysis of organophosphate and carbamate insecticides in vegetables
Van Bocxlaer et al. Quantitative colorimetric determination of urinary p-aminophenol with an automated analyzer
Jones et al. Development and validation of a biomonitoring method to measure As, Cr, and Ni in human urine samples by ICP-UCT-MS
CN104673880A (en) Method for detecting small and dense low-density lipoprotein cholesterin
US6746850B2 (en) Assay for detecting, measuring and monitoring the activities and concentrations of proteins and methods of use thereof
Oliver et al. Direct minimally invasive enzymatic determination of tyramine in cheese using digital imaging
FI67404B (en) FOERFARANDE FOER UTFOERING AV MUTAGENITETTEST
Reiner et al. Activity of Cholinesterases in Human Whole Blood Measured with Acetylthiocholine as Substrate and Ethopropazine as Selective Inhibitor of Plasma Butytylcholinesterase
US11214821B2 (en) Reagents and methods of use with automated analyzers for obtaining a specific gravity index for urine
Prokofieva et al. Microplate spectroscopic methods for determination of the organophosphate soman
Cabal et al. Evaluation of flow injection analysis for determination of cholinesterase activities in biological material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3473022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees