JP2002329508A - Solid electrolyte fuel cell and its manufacturing method - Google Patents

Solid electrolyte fuel cell and its manufacturing method

Info

Publication number
JP2002329508A
JP2002329508A JP2001134695A JP2001134695A JP2002329508A JP 2002329508 A JP2002329508 A JP 2002329508A JP 2001134695 A JP2001134695 A JP 2001134695A JP 2001134695 A JP2001134695 A JP 2001134695A JP 2002329508 A JP2002329508 A JP 2002329508A
Authority
JP
Japan
Prior art keywords
electrode
porous metal
fuel cell
solid electrolyte
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001134695A
Other languages
Japanese (ja)
Other versions
JP4811622B2 (en
Inventor
Itaru Shibata
格 柴田
Naoki Hara
直樹 原
Masaharu Hatano
正治 秦野
Mitsugi Yamanaka
貢 山中
Makoto Uchiyama
誠 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001134695A priority Critical patent/JP4811622B2/en
Publication of JP2002329508A publication Critical patent/JP2002329508A/en
Application granted granted Critical
Publication of JP4811622B2 publication Critical patent/JP4811622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel cell and its manufacturing method providing miniaturization and reducing internal resistance by providing electrodes (an air electrode and a fuel electrode) and a solid electrolyte as thin films. SOLUTION: In an SOFC, single cells comprised by holding electrode reaction parts 10-12 and 14 between porous metal substrates 1 and 2 and laminating an electrically conductive and gas impermeable substrate 13 are continuously connected, the electrode reaction parts are comprised by covering side faces of the air electrode 10, the solid electrolyte 12 and the fuel electrode 11 by an electrically insulating and gas impermeable substrate 14, the porous metal substrates 1 and 2 communicate gas, and a cell output is collected by the electrode reaction parts. The SOFC is comprised by continuously connecting single cells comprised by laminating the electrode reaction parts so that the porous metal substrates are held between the electrodes and laminating a porous metal substrate B. The SOFC is comprised by arranging a single cell component comprised by inscribing a porous metal substrate A in the electrode reaction parts in an insertion hole of the porous metal substrate B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質を用
い、電気化学反応により電気エネルギーを得る固体電解
質型燃料電池(SOFC)に係り、更に詳細には、固体
電解質を電極で挟持して成る固体電解質型燃料電池及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell (SOFC) which uses a solid electrolyte to obtain electric energy by an electrochemical reaction, and more particularly to a solid electrolyte comprising a solid electrolyte sandwiched between electrodes. The present invention relates to an electrolyte fuel cell and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来から、2つの電極、即ち燃料極(ア
ノード)と空気極(カソード)で固体酸化物電解質を挟
持する構成を発電要素としてもち、燃料極側に水素、メ
タンなどの炭化水素系燃料ガスを通じ、空気極側側に酸
素、空気などの酸化性ガスを通じて発電する固体電解質
型燃料電池(以下「SOFC」と略す)が知られてい
る。かかるSOFCは、その発電効率が高く、また排熱
利用も可能であり第三世代の燃料電池として期待されて
いる。
2. Description of the Related Art Conventionally, a structure in which a solid oxide electrolyte is sandwiched between two electrodes, that is, a fuel electrode (anode) and an air electrode (cathode), has been used as a power generating element, and hydrocarbons such as hydrogen and methane are provided on the fuel electrode side. 2. Description of the Related Art A solid oxide fuel cell (hereinafter abbreviated as “SOFC”) that generates power through a system fuel gas and an oxidizing gas such as oxygen or air on the air electrode side is known. Such a SOFC has high power generation efficiency and can also utilize waste heat, and is expected as a third-generation fuel cell.

【0003】従来から知られているSOFCのセル構造
としては、電解質支持型セルを例示できる。このセル
は、電解質材料粉を高密度に焼結して緻密電解質体と
し、その表裏にスクリーン印刷等で燃料極及び空気極を
形成して成る。また、このセルは電解質を発電要素の支
持部材として使用している。また、他のセル構造とし
て、電極支持型セルを例示できる。このセルは、電極材
料粉を焼結し多孔質電極体とし、その上に電解質層及び
電極層をスクリーン印刷等で形成して成る。更に、この
セルは、多孔質電極体を発電要素の支持部材として使用
している。
As a cell structure of a conventionally known SOFC, an electrolyte supporting type cell can be exemplified. This cell is formed by sintering an electrolyte material powder at a high density to form a dense electrolyte body, and forming a fuel electrode and an air electrode on the front and back by screen printing or the like. In addition, this cell uses an electrolyte as a support member for a power generation element. Further, as another cell structure, an electrode supporting type cell can be exemplified. This cell is obtained by sintering an electrode material powder to form a porous electrode body, and forming an electrolyte layer and an electrode layer thereon by screen printing or the like. Further, this cell uses a porous electrode body as a support member of a power generation element.

【0004】具体的には、特開平9−50812号公報
では、気孔率が板厚方向に異なるセラミックス電極材料
粉の焼結体より成る多孔質電極基板が報告されている。
また、特開平2000−200614号公報では、同様
にセラミックス電極材料粉の焼結体より成る多孔質電極
基板が報告されている。更に、燃料極/電解質/空気極
(以下「発電要素」と略す)の支持部材として、燃料極
/電解質/空気極を多孔質金属基体に溶射法にて製膜し
たセルが報告されている。更にまた、DLRセル(Pl
asma Sprayed Thin−FilmSOF
C for Reduced Operating T
emperature ,Fuel Cells Bu
lletin,pp597−600,2000)が提案
されている。
[0004] Specifically, Japanese Patent Application Laid-Open No. 9-50812 reports a porous electrode substrate made of a sintered body of ceramic electrode material powder having a porosity that varies in the thickness direction.
Japanese Patent Application Laid-Open No. 2000-200614 similarly reports a porous electrode substrate made of a sintered body of ceramic electrode material powder. Further, as a support member for the fuel electrode / electrolyte / air electrode (hereinafter abbreviated as "power generation element"), a cell in which the fuel electrode / electrolyte / air electrode is formed on a porous metal substrate by a thermal spraying method has been reported. Furthermore, the DLR cell (Pl
asma Sprayed Thin-Film SOF
C for Reduced Operating T
emperature, Fuel Cells Bu
lletin, pp597-600, 2000).

【0005】また、特開平7−45297号公報、実開
昭63−106063号公報などで開示されているよう
に、従来から知られているSOFCでは、燃料極、空気
極で発生した電力を集電するために電極とは別個にNi
フェルトなどの集電体が使用されている。更に、かかる
SOFCは、多数の電池要素を電気的に直列又は並列に
接続して使用されており、その際に、各電池要素を電気
的に接続する部材(以下「I.C.(インタコネク
タ)」と略す)を必要としている。このI.C.は集電
体機能を備える場合もある。更にまた、SOFCは、燃
料極側に水素、メタンなどの炭化水素系燃料ガスを、空
気極側側に酸素、空気などの酸化性ガスを通じて発電す
るため、ガスを電極表面に導くためのガス流路を形成す
る部材を必要とする。このガス流路はI.C.機能を備
える場合もある。
As disclosed in Japanese Patent Application Laid-Open Nos. 7-45297 and 63-106063, conventionally known SOFCs collect electric power generated at a fuel electrode and an air electrode. Ni is separated from the electrode to
Current collectors such as felt are used. Further, such an SOFC is used by electrically connecting a large number of battery elements in series or in parallel. At this time, a member (hereinafter, referred to as “IC (interconnector)”) electrically connects each battery element. ) "). This I. C. May have a current collector function. Furthermore, the SOFC generates a hydrocarbon fuel gas, such as hydrogen or methane, on the fuel electrode side and an oxidizing gas, such as oxygen or air, on the air electrode side, thereby generating a gas flow for guiding the gas to the electrode surface. Requires a member to form a path. This gas flow path is I. C. It may have functions.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記電
解質支持型セルは、電解質を発電要素の支持部材として
使用するため、電解質の厚みは機械的な強度要請からお
およそ数百μm〜数mmとなり、電解質部分の内部抵抗
が増加することがあった。また、上記電極支持型セル
は、電極を発電要素の支持部材として使用するため、電
極体の厚みは機械的な強度要請からおおよそ数mm以上
となり、電極部分の内部抵抗が増加することに加え、燃
料ガス又は酸化性ガスの通気性・拡散性が悪化すること
があった。更に、通気性を改善した特開平9−5081
2号公報及び特開平2000−200614号公報に開
示された多孔質セラミックス電極基板は、電気伝導に対
して十分ではなく、またセラミックス材料特有の脆性が
ある。更にまた、I.C.及びガス流路部材は、上記電
解質支持型セルや上記電極支持型セルとは別個に設置す
る必要があり、SOFCの小型化の障害となっていた。
However, since the above-mentioned electrolyte-supporting cell uses the electrolyte as a support member of the power generation element, the thickness of the electrolyte is about several hundreds μm to several mm due to mechanical strength requirements. The internal resistance of the part sometimes increased. In addition, since the electrode-supporting cell uses the electrode as a support member of the power generation element, the thickness of the electrode body is approximately several mm or more due to mechanical strength requirements, and in addition to the increase in internal resistance of the electrode portion, In some cases, the permeability and diffusion of the fuel gas or the oxidizing gas were deteriorated. Further, Japanese Patent Application Laid-Open No. 9-5081 with improved air permeability
The porous ceramic electrode substrates disclosed in JP-A-2000-200614 and JP-A-2000-200614 are not sufficient for electric conduction and have brittleness inherent to ceramic materials. Furthermore, I.I. C. In addition, the gas flow path member must be provided separately from the electrolyte-supported cell and the electrode-supported cell, which has been an obstacle to downsizing the SOFC.

【0007】また、上述の溶射法を用いて得たセルで
は、溶射成膜の制約のためか、電極、電解質の各膜厚
が数十μmと厚く、内部抵抗が減じられない、多孔金
属体表面が粗いためか、電極、電解質を薄膜化できず内
部抵抗を減じられない、セル下部燃料極へのガス流路
として、多孔質金属体をガス流路として使用せず、概凹
状断面を有するプレートを使用しているためセル小型化
が図れない、セル上部空気極へのガス流路として、多
孔質金属体をガス流路として使用せず、概波状断面を有
するプレート15を使用しているためセル小型化が図れ
ない、ことがあった。
In the cell obtained by using the above-mentioned thermal spraying method, the thickness of each of the electrodes and the electrolyte is as large as several tens of μm, and the internal resistance is not reduced, probably due to the restriction of the thermal spray film formation. Because the surface is rough, the electrode and electrolyte cannot be thinned and the internal resistance cannot be reduced.As a gas flow path to the lower fuel electrode of the cell, the porous metal body is not used as a gas flow path and has a substantially concave cross section. Because the plate is used, the cell size cannot be reduced. As the gas flow path to the upper air electrode of the cell, the porous metal body is not used as the gas flow path, and the plate 15 having a roughly wavy section is used. As a result, the cell size cannot be reduced.

【0008】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、その目的とするところ
は、電極(空気極及び燃料極)及び固体電解質を薄膜化
して内部抵抗を低減し、小型化を達成した固体電解質型
燃料電池及びその製造方法を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to reduce the internal resistance by thinning the electrodes (air electrode and fuel electrode) and the solid electrolyte. It is another object of the present invention to provide a solid oxide fuel cell that achieves miniaturization and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を重ねた結果、発電要素の支持基
体として所望の強度を有する多孔性金属基体を用い、電
池出力の集電機能とガス流路機能を担わせることによ
り、上記課題が解決できることを見出し、本発明を完成
するに至った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that a porous metal substrate having a desired strength is used as a support substrate for a power generation element, and that the output of a battery is collected. It has been found that the above-mentioned problems can be solved by making the electric function and the gas flow path function fulfill, and the present invention has been completed.

【0010】即ち、本発明の固体電解質型燃料電池は、
電極反応部の両面を多孔質金属基体A及びBで挟持して
成る挟持体の表面又は裏面に電気伝導性・ガス不透過性
基体を積層して成る単セルを、該積層方向とほぼ同一方
向に複数個連接して成る固体電解質型燃料電池であっ
て、上記電極反応部が、空気極、固体電解質及び燃料極
をこの順序で積層して得られる積層体の側面を電気絶縁
性・ガス不透過性基体で被覆されて成り、上記多孔質金
属基体A及びBが、燃料ガス又は酸化性ガスを流通する
とともに上記電極反応部より電池出力を集電することを
特徴とする。
That is, the solid oxide fuel cell of the present invention
A single cell in which an electrically conductive and gas-impermeable substrate is laminated on the front or back surface of a sandwich formed by sandwiching both surfaces of an electrode reaction portion between porous metal substrates A and B, in a direction substantially the same as the lamination direction A solid electrolyte fuel cell formed by connecting a plurality of air electrodes, a solid electrolyte, and a fuel electrode in this order. The porous metal substrates A and B are covered with a permeable substrate, and flow fuel gas or oxidizing gas and collect battery output from the electrode reaction section.

【0011】また、本発明の他の固体電解質型燃料電池
は、多孔質金属基体Aが空気極同士又は燃料極同士で挟
持されるように多孔質金属基体Aの両面に電極反応部を
積層し、更に該電極反応部のいずれか一方に多孔質金属
基体Bを積層して成る単セルを、該積層方向とほぼ同一
方向に複数個連接して成る固体電解質型燃料電池であっ
て、上記電極反応部が、空気極、固体電解質及び燃料極
をこの順序で積層して得られる積層体の側面を電気絶縁
性・ガス不透過性基体で被覆されて成り、上記多孔質金
属基体A及びBが、燃料ガス又は酸化性ガスを流通する
とともに上記電極反応部より電池出力を集電することを
特徴とする。
Further, in another solid oxide fuel cell according to the present invention, an electrode reaction section is laminated on both surfaces of the porous metal substrate A so that the porous metal substrate A is sandwiched between air electrodes or fuel electrodes. A solid electrolyte fuel cell comprising a plurality of unit cells each formed by laminating a porous metal substrate B on any one of the electrode reaction sections in a direction substantially the same as the lamination direction; The reaction section is formed by covering the side surface of a laminate obtained by laminating an air electrode, a solid electrolyte, and a fuel electrode in this order with an electrically insulating and gas impermeable substrate, and the porous metal substrates A and B are provided. In addition, a fuel gas or an oxidizing gas is circulated, and the battery output is collected from the electrode reaction section.

【0012】更に、本発明の更に他の固体電解質型燃料
電池は、環状の電極反応部に多孔質金属基体Aを内接し
て成る複数の単セル構成部位を、多孔質金属基体Bに設
けた複数の挿入孔に配設して成る固体電解質型燃料電池
であって、上記電極反応部が、空気極、固体電解質及び
燃料極をこの順序で積層して得られる積層体の側面を電
気絶縁性・ガス不透過性基体で被覆されて成り、上記多
孔質金属基体A及びBが、燃料ガス又は酸化性ガスを流
通するとともに上記電極反応部より電池出力を集電する
ことを特徴とする。
Further, in still another solid oxide fuel cell according to the present invention, a plurality of single-cell components formed by inscribing a porous metal substrate A to an annular electrode reaction portion are provided on a porous metal substrate B. A solid oxide fuel cell having a plurality of insertion holes, wherein the electrode reaction part electrically insulates a side surface of a stacked body obtained by stacking an air electrode, a solid electrolyte, and a fuel electrode in this order. -It is characterized by being covered with a gas impermeable substrate, wherein the porous metal substrates A and B flow fuel gas or oxidizing gas and collect battery output from the electrode reaction section.

【0013】更にまた、本発明の固体電解質型燃料電池
の製造方法は、上記固体電解質型燃料電池を製造するに
当たり、(a)多孔質金属基体A上に空気極又は燃料極
を積層し、(b)該空気極上又は燃料極上に固体電解質
を積層し、(c)該固体電解質上に燃料極又は空気極を
積層し、(d)該燃料極上又は空気極上に多孔質金属基
体Bを積層し、(e)該多孔質金属基体B上に電気伝導
性・ガス不透過性基体を積層し、(f)該空気極及び/
又は燃料極と上記固体電解質とがなす積層体の側面に電
気絶縁性・ガス不透過性基体を被覆し、(g)積層工程
(a)〜(e)及び被覆工程(f)で得られる単セル構
造を積層方向とほぼ同一方向に複数個連続させて接合す
る、ことを特徴とする。
Further, in the method for manufacturing a solid oxide fuel cell according to the present invention, in manufacturing the solid oxide fuel cell, (a) laminating an air electrode or a fuel electrode on a porous metal substrate A; b) stacking a solid electrolyte on the air electrode or fuel electrode, (c) stacking a fuel electrode or air electrode on the solid electrolyte, and (d) stacking a porous metal substrate B on the fuel electrode or air electrode. (E) laminating an electrically conductive and gas impermeable substrate on the porous metal substrate B;
Alternatively, an electrically insulating and gas-impermeable substrate is coated on the side surface of the laminate formed by the fuel electrode and the solid electrolyte, and (g) a single layer obtained in the laminating steps (a) to (e) and the covering step (f). It is characterized in that a plurality of cell structures are continuously joined in substantially the same direction as the lamination direction and joined.

【0014】また、本発明の固体電解質型燃料電池の他
の製造方法は、上記固体電解質型燃料電池を製造するに
当たり、(a)多孔質金属基体Aの両面に空気極又は燃
料極を積層し、(b)該空気極上又は燃料極上に固体電
解質を積層し、(c)該空気極又は燃料極と固体電解質
とがなす積層体の側面に電気絶縁性・ガス不透過性基体
を被覆し、(d)多孔質金属基体Bの両面に燃料極又は
空気極を積層し、(e)該燃料極又は空気極の側面に電
気絶縁性・ガス不透過性基体を被覆し、(f)積層工程
(a)及び(b)と被覆工程(c)で得られる単セル構
成部位と、積層工程(d)及び被覆工程(e)で得られ
る単セル構成部位とを交互に積層方向とほぼ同一方向に
複数個連続させて接合する、ことを特徴とする。
Further, another method of manufacturing a solid oxide fuel cell according to the present invention comprises the steps of: (a) stacking an air electrode or a fuel electrode on both surfaces of a porous metal substrate A to manufacture the solid oxide fuel cell; (B) laminating a solid electrolyte on the air electrode or fuel electrode, and (c) coating an electrical insulating / gas impermeable substrate on a side surface of the laminate formed by the air electrode or fuel electrode and the solid electrolyte; (D) a fuel electrode or an air electrode is laminated on both surfaces of the porous metal substrate B, (e) an electrically insulating / gas impermeable substrate is coated on the side surfaces of the fuel electrode or the air electrode, and (f) a laminating step. (A) and (b) and the single-cell constituent part obtained in the coating step (c) and the single-cell constituent part obtained in the stacking step (d) and the coating step (e) are alternately arranged in substantially the same direction as the stacking direction. And joining them continuously.

【0015】更に、本発明の固体電解質型燃料電池の更
に他の製造方法は、上記固体電解質型燃料電池を製造す
るに当たり、(a)多孔質金属基体Aの長手方向の側面
に空気極又は燃料極を被覆し、(b)該空気極上又は燃
料極上に固体電解質を被覆し、(c)該固体電解質上に
燃料極又は空気極を被覆し、(d)多孔質金属基体Bに
複数の挿入孔を設け、(e)該挿入孔に上記被覆工程
(a)〜(c)で得られた単セル構成部位を複数個配設
し、(f)該空気極、燃料極及び固体電解質の長手方向
の両端に電気絶縁性・ガス不透過性基体を被覆し、該挿
入孔の内壁と該燃料極又は空気極とを接合することを特
徴とする。
Still another method of manufacturing a solid oxide fuel cell according to the present invention comprises the steps of: (a) forming an air electrode or fuel on the side surface of the porous metal substrate A in the longitudinal direction; (B) coating a solid electrolyte on the air electrode or fuel electrode, (c) coating a fuel electrode or air electrode on the solid electrolyte, and (d) inserting a plurality of pieces into the porous metal substrate B. (E) arranging a plurality of single cell constituent parts obtained in the coating steps (a) to (c) in the insertion hole, and (f) lengthening the air electrode, the fuel electrode and the solid electrolyte. It is characterized in that both ends in the direction are covered with an electrically insulating and gas impermeable substrate, and the inner wall of the insertion hole is joined to the fuel electrode or the air electrode.

【0016】[0016]

【発明の実施の形態】以下、本発明の固体電解質型燃料
電池について詳細に説明する。なお、本明細書におい
て、「%」は特記しない限り質量百分率を示す。また、
説明の便宜上、基体や電極などの一方の面を「表面」及
び「上面」、他の面を「裏面」及び「下面」などと記載
するが、これらは等価な要素であり、相互に置換した構
成も本発明の範囲に含まれるのは言うまでもない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a solid oxide fuel cell according to the present invention will be described in detail. In addition, in this specification, "%" shows a mass percentage unless otherwise specified. Also,
For convenience of explanation, one surface such as a base or an electrode is described as “front surface” and “upper surface”, and the other surface is described as “back surface” and “lower surface”, but these are equivalent elements and are replaced with each other. It goes without saying that the configuration is also included in the scope of the present invention.

【0017】上述の如く、本発明の固体電解質型燃料電
池(以下「SOFC」と略す)は、電極反応部の両面を
多孔質金属基体A及びBで挟持して成る挟持体の表面又
は裏面に電気伝導性・ガス不透過性基体を積層して成る
単セルを、該積層方向とほぼ同一方向に複数個連接して
成る。代表的には、図1に示すように、単位構成要素と
なる単セル(多孔質金属基体1/空気極10/固体電解
質12/燃料極11/多孔質金属基体2の構成を採る)
を該積層方向とほぼ同一方向に複数個連接して成る直列
型SOFCを挙げることができる。
As described above, the solid oxide fuel cell (hereinafter abbreviated as "SOFC") of the present invention has a structure in which both surfaces of the electrode reaction portion are sandwiched between the porous metal substrates A and B on the surface or the back surface thereof. A plurality of unit cells each formed by laminating an electrically conductive and gas impermeable substrate are connected in substantially the same direction as the laminating direction. Typically, as shown in FIG. 1, a single cell as a unit component (has a structure of porous metal substrate 1 / air electrode 10 / solid electrolyte 12 / fuel electrode 11 / porous metal substrate 2)
In series in the same direction as the stacking direction.

【0018】ここで、上記電極反応部は、図1に例示す
るように、空気極10、固体電解質12及び燃料極11
をこの順序で積層して得られる積層体の側面を、電気絶
縁性・ガス不透過性基体で被覆して成る。このように、
電極反応部の側面を絶縁部材で被覆することにより空気
極10と燃料極11及び多孔質金属基体1と2を確実に
絶縁し、セルの集積を容易にするものである。また、上
記電気絶縁性・ガス不透過性基体としては、ガラス、セ
ラミックス、又は表面をガラス若しくはセラミックスで
被覆した金属、及びこれらの任意の組合せに係るものな
どを使用することができる。更に、かかる電気絶縁性・
ガス不透過性基体は、0.02〜10mmの厚さで被覆
されることが好適である。厚さが0.02mm未満では
信頼性も含め十分な絶縁性を確保、維持できなくなるこ
とがあり、10mmを超えるとセル自体が大型化するだ
けでなく、ワレ、カケなどにより信頼性が低下し、やは
り絶縁性を維持できなくなることがある。
Here, as shown in FIG. 1, the electrode reaction section includes an air electrode 10, a solid electrolyte 12, and a fuel electrode 11.
Are laminated in this order, and the side surfaces of the laminate are covered with an electrically insulating and gas impermeable substrate. in this way,
By covering the side surface of the electrode reaction part with an insulating member, the air electrode 10 and the fuel electrode 11 and the porous metal bases 1 and 2 are reliably insulated and the integration of cells is facilitated. In addition, as the above-mentioned electrically insulating and gas-impermeable substrate, glass, ceramics, a metal whose surface is coated with glass or ceramics, and any combination thereof can be used. Furthermore, such electrical insulation
The gas impermeable substrate is preferably coated with a thickness of 0.02 to 10 mm. If the thickness is less than 0.02 mm, it may not be possible to secure and maintain sufficient insulation including reliability. If the thickness exceeds 10 mm, not only the cell itself becomes large, but also the reliability is reduced due to cracks and chips. In some cases, the insulation cannot be maintained.

【0019】更に、各電池要素(空気極、固体電解質及
び燃料極)間に電気伝導性・ガス不透過性基体を配設し
ているため、各電池要素を膜厚方向に直列に接続でき
る。上記電気伝導性・ガス不透過性基体としては、多孔
質金属体と同種の金属材料などを使用することができ
る。更に、かかる電気伝導性・ガス不透過性基体は、
0.05〜10mmの厚さで用いることが好適である。
厚さが0.05mm未満ではセル間の接合部材として強
度が低く、良好なセル間接続が阻害されることがあり、
10mmを超えるとセル自体が厚板化し、かえって積層
体の信頼性を損なうことがある。
Further, since the electrically conductive and gas impermeable base is provided between each battery element (air electrode, solid electrolyte and fuel electrode), each battery element can be connected in series in the film thickness direction. As the electrically conductive and gas impermeable substrate, the same kind of metal material as the porous metal body can be used. Further, such an electrically conductive and gas impermeable substrate is
It is preferable to use with a thickness of 0.05 to 10 mm.
If the thickness is less than 0.05 mm, the strength as a joining member between cells is low, and good inter-cell connection may be hindered,
If it exceeds 10 mm, the cell itself becomes thicker, which may impair the reliability of the laminate.

【0020】また、上記多孔質金属基体A及びBが、燃
料ガス又は酸化性ガスを流通するとともに上記電極反応
部より電池出力を集電することを特徴とする。ガス通気
性・拡散性を有する多孔質金属を支持基体として使用す
ることで、該多孔質金属基体1に密着設置される燃料極
10には燃料ガスを、該多孔質金属基体2に密着設置さ
れる空気極11には空気を供給することができる。即
ち、多孔質金属基体は支持基体としての役割及びガス流
路としての役割を兼ねるため、固体電解質、空気極及び
燃料極の全てを薄膜化し、内部抵抗を低減し得る。な
お、上記多孔質金属基体は電池要素を支える役割も担っ
ており、電池要素を薄膜化してもSOFCは所望の強度
を保持できる。
Further, the porous metal substrates A and B are characterized in that the fuel gas or the oxidizing gas flows and the battery output is collected from the electrode reaction section. By using a porous metal having gas permeability and diffusibility as a support substrate, a fuel gas is attached to the fuel electrode 10 that is closely attached to the porous metal substrate 1 and is attached to the porous metal substrate 2. The air electrode 11 can be supplied with air. That is, since the porous metal base serves both as a support base and a gas flow path, all of the solid electrolyte, the air electrode, and the fuel electrode can be thinned to reduce the internal resistance. The porous metal substrate also has a role of supporting the battery element, and the SOFC can maintain a desired strength even when the battery element is thinned.

【0021】上記多孔質金属基体A及びBは、電気伝導
性を有することが望ましく、この場合は、上記電極反応
部より電池出力を集電する。即ち、上記多孔質金属基体
は集電部材としての役割をも兼ねるため、本発明のSO
FCは小型化することができる。かかる多孔質金属基体
としては、ニッケル(Ni)、ニッケルクロム(Ni−
Cr)、ニッケルクロム鉄(Ni−Cr−Fe)、ニッ
ケルクロムタングステンモリブデン(Ni−Cr−W−
Mo)、ニッケルコバルト(Ni−Co)、ニッケル銅
(Ni−Cu)、銀(Ag)、銀パラジウム(Ag−P
r)、銀白金(Ag−Pt)、鉄クロムニッケル(Fe
−Cr−Ni)又は鉄クロムアルミ(Fe−Cr−A
l)、及びこれらの任意の組合せから成る金属を含む合
金を使用するのが好適である。また、多孔質金属基体
は、代表的には所望の空孔率を有する発泡体状で用いら
れるが、特にこれに限定されず、所望の細孔を有する金
属繊維の焼結体、金属微粒子の焼結体及び金属メッシュ
などを使用することができる。更に、セラミックスに金
属(Ni及びAgなど)によりメッキを施した多孔質基
体を使用することもできる。なお、上記以外の金属材料
では、燃料ガス又は酸化性ガスの作り出す、還元雰囲気
又は酸化雰囲気に十分な耐性が得られないことがある。
また、本SOFCは、燃料ガスとしてメタノール、天然
ガス、ガソリンなど炭化水素系ガスを使用できるが、こ
のとき燃料極側に設置される多孔質金属基体が燃料ガス
中に含まれる硫黄などに犯されないようにする必要があ
る。更に、本SOFCは、酸化性ガスとして酸素ガス、
空気を使用できるが、このとき空気極側に設置される多
孔質金属基体は酸化性ガス中で酸化されないようにする
必要がある。
The porous metal substrates A and B desirably have electrical conductivity. In this case, the battery output is collected from the electrode reaction section. That is, since the porous metal substrate also functions as a current collecting member, the porous metal substrate of the present invention
FC can be miniaturized. Nickel (Ni), nickel chromium (Ni-
Cr), nickel chromium iron (Ni-Cr-Fe), nickel chromium tungsten molybdenum (Ni-Cr-W-
Mo), nickel cobalt (Ni-Co), nickel copper (Ni-Cu), silver (Ag), silver palladium (Ag-P
r), silver platinum (Ag-Pt), iron chromium nickel (Fe
-Cr-Ni) or iron-chromium aluminum (Fe-Cr-A)
It is preferred to use alloys comprising metals consisting of 1) and any combination thereof. Further, the porous metal substrate is typically used in the form of a foam having a desired porosity, but is not particularly limited thereto, and may be a sintered body of metal fibers having a desired pore, a metal fine particle. A sintered body, a metal mesh, or the like can be used. Further, a porous substrate obtained by plating ceramics with a metal (such as Ni and Ag) may be used. It should be noted that a metal material other than the above may not have sufficient resistance to a reducing atmosphere or an oxidizing atmosphere generated by a fuel gas or an oxidizing gas.
Further, in the present SOFC, a hydrocarbon-based gas such as methanol, natural gas, gasoline or the like can be used as a fuel gas, but at this time, the porous metal substrate provided on the fuel electrode side is not violated by sulfur contained in the fuel gas. You need to do that. Further, the present SOFC uses oxygen gas as an oxidizing gas,
Although air can be used, it is necessary to prevent the porous metal substrate provided on the air electrode side from being oxidized in the oxidizing gas.

【0022】また、上記多孔質金属基体A及びBは、
0.1〜5mmの厚さであることが好ましい。この場合
は、支持部材としての強度性、I.C.(インタコネク
タ)としての電気伝導性、及びガス流路としてのガス通
気性・拡散性を確保できる。なお、多孔質金属基体の厚
さが0.1mm未満では支持部材として強度が不足した
り、電気伝導性が不十分となることがあり、5mmを超
えるとセル板が厚くなること、ガスの通気性が悪化する
ことがある。
Further, the porous metal substrates A and B are
The thickness is preferably 0.1 to 5 mm. In this case, the strength as a supporting member, I.P. C. Electric conductivity as an (interconnector) and gas permeability / diffusion as a gas flow path can be ensured. If the thickness of the porous metal substrate is less than 0.1 mm, the strength as a support member may be insufficient, or the electrical conductivity may be insufficient. May deteriorate.

【0023】更に、上記多孔質金属基体A及びBとして
は、空孔率の異なる同種又は異種の多孔質基体層を2層
以上積層して成る積層体を使用することができる。な
お、上記多孔質金属基体は、薄膜電池要素である燃料極
や空気極の全面に密着配置することができるので、薄膜
電池要素を良好に支持でき、且つ良好な集電を行うこと
ができる。また、同種又は異種の多孔質基体層の構成材
料は、上述した金属材料などから適宜選択できる。
Further, as the porous metal substrates A and B, a laminate formed by laminating two or more porous substrate layers of the same type or different types having different porosity can be used. The porous metal substrate can be closely attached to the entire surface of the fuel electrode or the air electrode, which is a thin-film battery element, so that the thin-film battery element can be favorably supported and good current collection can be performed. The constituent materials of the same or different kinds of porous base layers can be appropriately selected from the above-mentioned metal materials and the like.

【0024】また、上述のような多孔質金属基体を使用
することにより、膜厚方向に集電可能な薄膜型SOFC
を形成できる。これより、膜厚方向のセル内部抵抗を低
減できる。具体的には、多孔質金属基体を被覆された空
気極及び/又は燃料極、言い換えれば、上記空気極及び
燃料極のうち多孔質金属基体が接触している電極は、5
〜100μmの厚さとすることができる。この場合は、
従来の電極支持型セルに比べ、厚みを少なくとも1/2
0以下に低減ことができ、電極部分の内部電気抵抗を単
純には1/20程度低減できるので有効である。また、
上記固体電解質は、50μm以下の厚さとすることがで
きる。この場合は、従来の電解質支持型セルに比べ、厚
みを少なくとも1/20以下に低減ことができ、電解質
部分の内部電気抵抗を単純には1/20程度低減できる
ので有効である。なお、かかる電極及び固体電解質は、
PVD法、CVD法、溶射法、スクリーン印刷法、スプ
レーコート法、メッキ法、電気泳動法及びゾル・ゲル法
などの各種成膜方法を採用して被覆できる。また、電極
及び固体電解質材料を含むグリーンシートを該多孔質金
属体に貼付け、焼結することで電極及び/又は固体電解
質を形成することができる。
Further, by using the porous metal substrate as described above, a thin film SOFC capable of collecting current in the film thickness direction can be obtained.
Can be formed. Thereby, the cell internal resistance in the film thickness direction can be reduced. Specifically, the air electrode and / or the fuel electrode coated with the porous metal substrate, in other words, the electrode of the air electrode and the fuel electrode which is in contact with the porous metal substrate is 5
The thickness can be set to m100 μm. in this case,
The thickness is at least half that of the conventional electrode-supported cell.
This is effective because it can be reduced to 0 or less, and the internal electric resistance of the electrode portion can be simply reduced by about 1/20. Also,
The solid electrolyte may have a thickness of 50 μm or less. In this case, the thickness can be reduced to at least 1/20 or less as compared with the conventional electrolyte-supported cell, and the internal electric resistance of the electrolyte portion can be simply reduced by about 1/20, which is effective. In addition, such an electrode and a solid electrolyte are:
It can be coated by employing various film forming methods such as PVD, CVD, thermal spraying, screen printing, spray coating, plating, electrophoresis, and sol-gel method. Further, an electrode and / or a solid electrolyte can be formed by attaching a green sheet containing an electrode and a solid electrolyte material to the porous metal body and sintering the green sheet.

【0025】次に、本発明の他のSOFCについて詳細
に説明する。かかるSOFCは、多孔質金属基体Aが空
気極同士又は燃料極同士で挟持されるように多孔質金属
基体Aの両面に電極反応部を積層し、更に該電極反応部
のいずれか一方に多孔質金属基体Bを積層して成る単セ
ルを、該積層方向とほぼ同一方向に複数個連接して成
る。このようなSOFC構成とすることにより、多孔質
金属基体A及び多孔質金属基体Bにそれぞれ燃料ガス又
は酸化性ガスを通じれば良く、燃料電池の小型化、単純
化になるので有効である。代表的には、図2に示すよう
に、単位構成要素(多孔質金属基体1/燃料極10/固
体電解質12/空気極11/多孔質金属基体2/空気極
11/固体電解質12/燃料極10の構成を採る)を該
積層方向とほぼ同一方向に複数個連接して成る並列型S
OFCを挙げることができる。
Next, another SOFC of the present invention will be described in detail. In such an SOFC, an electrode reaction part is laminated on both surfaces of the porous metal base A so that the porous metal base A is sandwiched between the air electrodes or the fuel electrodes, and a porous part is provided on one of the electrode reaction parts. A plurality of unit cells formed by laminating the metal bases B are connected in substantially the same direction as the laminating direction. With such an SOFC configuration, it is only necessary to pass a fuel gas or an oxidizing gas through the porous metal substrate A and the porous metal substrate B, which is effective because the fuel cell can be reduced in size and simplified. Typically, as shown in FIG. 2, the unit components (porous metal substrate 1 / fuel electrode 10 / solid electrolyte 12 / air electrode 11 / porous metal substrate 2 / air electrode 11 / solid electrolyte 12 / fuel electrode) 10) are connected in a direction substantially the same as the laminating direction.
OFC can be mentioned.

【0026】ここで、上記SOFCは、電気伝導性・ガ
ス不透過性基体を使用せず並列に接続したこと以外は、
上述した直列型SOFCとほぼ同様の構成を有するが、
具体的には以下の点で相違する。即ち、上記電気絶縁性
・ガス不透過性基体としては、ガラス、セラミックス、
又は表面をガラス若しくはセラミックスで被覆した金
属、及びこれらの任意の組合せに係るものなどを使用す
ることができる。かかる電気絶縁性・ガス不透過性基体
は、0.02〜10mmの厚さで被覆されることが好適
である。厚さが0.02mm未満では信頼性も含め、十
分な絶縁性を確保、維持できなくなることがあり、10
mmを超えるとセル自体が大型化するだけでなく、ワ
レ、カケなどにより信頼性が低下し、やはり絶縁性を維
持できなくなることがある。また、上記多孔質金属基体
A及びBは、0.1〜5mmの厚さであることが好まし
い。この場合は、支持部材としての強度性、I.C.
(インタコネクタ)としての電気伝導性、及びガス流路
としてのガス通気性・拡散性を確保できる。なお、多孔
質金属基体の厚さが0.1mm未満では支持部材として
強度が不足したり、電気伝導性が不十分となることがあ
り、5mmを超えるとセル板が厚くなること、ガスの通
気性が悪化することがある。
Here, the SOFC was connected in parallel without using an electrically conductive and gas impermeable substrate,
It has almost the same configuration as the series SOFC described above,
Specifically, they differ in the following points. That is, as the electrically insulating / gas impermeable substrate, glass, ceramics,
Alternatively, a metal whose surface is coated with glass or ceramics, or a material relating to any combination thereof can be used. Such an electrically insulating and gas impermeable substrate is preferably coated with a thickness of 0.02 to 10 mm. If the thickness is less than 0.02 mm, it may not be possible to secure and maintain a sufficient insulating property including reliability.
If it exceeds mm, not only the cell itself becomes large, but also the reliability is reduced due to cracks, chips, etc., and the insulating property may not be maintained. Further, the porous metal substrates A and B preferably have a thickness of 0.1 to 5 mm. In this case, the strength as a supporting member, I.P. C.
Electric conductivity as an (interconnector) and gas permeability / diffusion as a gas flow path can be ensured. If the thickness of the porous metal substrate is less than 0.1 mm, the strength as a support member may be insufficient, or the electrical conductivity may be insufficient. May deteriorate.

【0027】次に、本発明の更に他のSOFCについて
詳細に説明する。かかるSOFCは、環状の電極反応部
に多孔質金属基体Aを内接して成る複数の単セル構成部
位を、多孔質金属基体Bに設けた複数の挿入孔に配設し
て成る。このようなSOFC構成とすることにより、ガ
スシールが容易(簡素)となる、耐熱衝撃性が向上する
ので有効である。代表的には、図3に示すように、複数
の単セル構成部位(円柱状の多孔質金属基体1の外周に
燃料極10/固体電解質12/空気極11をこの順に被
覆した構成を採る)を多孔質金属基体2に設けた複数の
挿入孔に配設して成るチューブ型SOFCを挙げること
ができる。なお、かかるSOFCでは多孔質金属基体2
内に絶縁部材を適宜配置することで、直列や並列に接続
することができる。また、挿入孔の形状は丸形、角形、
楕円形及び三角形などが例示できる。
Next, still another SOFC of the present invention will be described in detail. Such a SOFC has a plurality of single-cell components formed by inscribing a porous metal substrate A to an annular electrode reaction portion, and is disposed in a plurality of insertion holes provided in the porous metal substrate B. Such an SOFC configuration is effective because gas sealing becomes easy (simple) and thermal shock resistance is improved. Typically, as shown in FIG. 3, a plurality of single-cell constituent portions (a configuration in which a fuel electrode 10, a solid electrolyte 12, and an air electrode 11 are coated on the outer periphery of a cylindrical porous metal substrate 1 in this order) is used. Is provided in a plurality of insertion holes provided in the porous metal substrate 2. In this SOFC, the porous metal substrate 2
By appropriately arranging an insulating member inside, it can be connected in series or in parallel. In addition, the shape of the insertion hole is round, square,
Oval and triangular shapes can be exemplified.

【0028】ここで、上記SOFCは、電極反応部を環
状にしたこと以外は、上述した直列型SOFCや並列型
SOFCとほぼ同様の構成を有するが、具体的には以下
の点で相違する。即ち、上記多孔質金属基体A及びB
は、0.1〜5mmの厚さであることが好ましい。この
場合は、支持部材としての強度性、I.C.(インタコ
ネクタ)としての電気伝導性、及びガス流路としてのガ
ス通気性・拡散性を確保できる。なお、多孔質金属基体
の厚さが0.1mm未満では支持部材としての強度が十
分ではないことがあり、5mmを超えるとセル、スタッ
クが大型化することがある。
Here, the SOFC has substantially the same configuration as the above-mentioned serial type SOFC and parallel type SOFC except that the electrode reaction section is formed in a ring shape, but specifically differs in the following points. That is, the porous metal substrates A and B
Preferably has a thickness of 0.1 to 5 mm. In this case, strength as a support member, I.P. C. Electric conductivity as an (interconnector) and gas permeability / diffusion as a gas flow path can be ensured. If the thickness of the porous metal substrate is less than 0.1 mm, the strength as a supporting member may not be sufficient, and if it exceeds 5 mm, the cell and the stack may be large.

【0029】次に、本発明のSOFCの製造方法につい
て詳細に説明する。かかる製造方法では、(a)多孔質
金属基体A上に空気極又は燃料極を積層し、(b)該空
気極上又は燃料極上に固体電解質を積層し、(c)該固
体電解質上に燃料極又は空気極を積層し、(d)該燃料
極上又は空気極上に多孔質金属基体Bを積層し、(e)
該多孔質金属基体B上に電気伝導性・ガス不透過性基体
を積層し、(f)該空気極及び/又は燃料極と上記固体
電解質とがなす積層体の側面に電気絶縁性・ガス不透過
性基体を被覆し、(g)積層工程(a)〜(e)及び被
覆工程(f)で得られる単セル構造を積層方向とほぼ同
一方向に複数個連続させて接合し、(h)積層工程
(d)〜(e)及び被覆工程(f)を、例えば850
℃、1Paの条件下で行い、(i)接合工程(g)を、
例えば900℃、0.5Paの条件下で行い、上述の直
列型SOFCが得られる。この方法を採用することによ
り、電極(空気極及び燃料極)及び固体電解質を薄膜化
されたSOFCが製造できるので有効である。また、所
望のSOFC構成を有するのであれば、上記工程(a)
〜(i)の順序は特に限定されず、代表的には、図4に
示すような製造工程でSOFCを製造できる。なお、最
終的に電極及び固体電解質の側面に電気絶縁性・ガス不
透過性基体が被覆されるので、上記被覆工程(f)とし
て上記空気極又は燃料極と上記固体電解質との側面に電
気絶縁性・ガス不透過性基体を被覆した後に、燃料極又
は空気極の側面に電気絶縁性・ガス不透過性基体が被覆
されるように積層工程(c)を行うことができる。ま
た、基体、電極及び固体電解質は、代表的にPVD法、
CVD法、スクリーン印刷法、スプレーコート法、メッ
キ法、電気泳動法及びゾル・ゲル法などで接合すること
ができる。なお、かかる電極及び固体電解質は、PVD
法、CVD法、溶射法、スクリーン印刷法、スプレーコ
ート法、メッキ法、電気泳動法及びゾル・ゲル法などの
各種成膜方法を採用して被覆できる。また、電極及び固
体電解質材料を含むグリーンシートを該多孔質金属体に
貼付け、焼結することで電極及び/又は固体電解質を形
成することができる。
Next, the method for manufacturing an SOFC of the present invention will be described in detail. In this manufacturing method, (a) an air electrode or a fuel electrode is stacked on the porous metal substrate A, (b) a solid electrolyte is stacked on the air electrode or the fuel electrode, and (c) a fuel electrode is stacked on the solid electrolyte. Or (d) laminating a porous metal substrate B on the fuel electrode or the air electrode,
An electrically conductive and gas impermeable substrate is laminated on the porous metal substrate B, and (f) an electrically insulating and gas impermeable substrate is formed on the side surface of the laminate formed by the air electrode and / or the fuel electrode and the solid electrolyte. (H) coating the permeable substrate, joining (g) a plurality of the single cell structures obtained in the laminating steps (a) to (e) and the covering step (f) in a direction substantially the same as the laminating direction; The laminating steps (d) to (e) and the covering step (f) are performed, for example, at 850.
C. and 1 Pa, and (i) the bonding step (g)
For example, the above-described series SOFC is performed at 900 ° C. and 0.5 Pa. By employing this method, an SOFC in which the electrodes (the air electrode and the fuel electrode) and the solid electrolyte are thinned can be manufactured, which is effective. In addition, if it has a desired SOFC configuration, the above step (a)
The order of (i) to (i) is not particularly limited, and typically, a SOFC can be manufactured by a manufacturing process as shown in FIG. Since the electrically insulating and gas-impermeable substrate is finally coated on the side surfaces of the electrode and the solid electrolyte, the electrically insulating and gas-impermeable base is coated on the side surfaces of the air electrode or the fuel electrode and the solid electrolyte in the coating step (f). After coating the permeable / gas impermeable substrate, the laminating step (c) can be performed so that the side surface of the fuel electrode or the air electrode is coated with the electrically insulating / gas impermeable substrate. Further, the substrate, the electrode and the solid electrolyte are typically PVD,
The bonding can be performed by a CVD method, a screen printing method, a spray coating method, a plating method, an electrophoresis method, a sol-gel method, or the like. The electrode and the solid electrolyte are PVD
It can be coated by adopting various film forming methods such as a method, a CVD method, a thermal spraying method, a screen printing method, a spray coating method, a plating method, an electrophoresis method and a sol-gel method. Further, an electrode and / or a solid electrolyte can be formed by attaching a green sheet containing an electrode and a solid electrolyte material to the porous metal body and sintering the green sheet.

【0030】次に、本発明の他のSOFCの製造方法に
ついて詳細に説明する。かかる製造方法では、(a)多
孔質金属基体Aの両面に空気極又は燃料極を積層し、
(b)該空気極上又は燃料極上に固体電解質を積層し、
(c)該空気極又は燃料極と固体電解質とがなす積層体
の側面に電気絶縁性・ガス不透過性基体を被覆し、
(d)多孔質金属基体Bの両面に燃料極又は空気極を積
層し、(e)該燃料極又は空気極の側面に電気絶縁性・
ガス不透過性基体を被覆し、(f)積層工程(a)及び
(b)と被覆工程(c)で得られる単セル構成部位と、
積層工程(d)及び被覆工程(e)で得られる単セル構
成部位とを交互に積層方向とほぼ同一方向に複数個連続
させて接合し、(g)積層工程(a)、(b)及び
(d)と被覆工程(c)を、例えば850℃、1Paの
条件下で行い、(h)被覆工程(e)及び接合工程
(f)を、例えば900℃、0.5Paの条件下で行
い、上述の並列型SOFCが得られる。この方法を採用
することにより、電極(空気極及び燃料極)及び固体電
解質を薄膜化されたSOFCが製造できるので有効であ
る。また、所望のSOFC構成を有するのであれば、上
記工程(a)〜(h)の順序は特に限定されず、代表的
には、図5に示すような製造工程で並列型SOFCを製
造できる。また、基体、電極及び固体電解質は、代表的
にPVD法、CVD法、スクリーン印刷法、スプレーコ
ート法、メッキ法、電気泳動法及びゾル・ゲル法などで
接合することができる。なお、かかる電極及び固体電解
質は、PVD法、CVD法、溶射法、スクリーン印刷
法、スプレーコート法、メッキ法、電気泳動法及びゾル
・ゲル法などの各種成膜方法を採用して被覆できる。ま
た、電極及び固体電解質材料を含むグリーンシートを該
多孔質金属体に貼付け、焼結することで電極及び/又は
固体電解質を形成することができる。
Next, another SOFC manufacturing method of the present invention will be described in detail. In this manufacturing method, (a) the air electrode or the fuel electrode is laminated on both surfaces of the porous metal substrate A,
(B) laminating a solid electrolyte on the air electrode or the fuel electrode,
(C) coating a side surface of the laminate formed by the air electrode or fuel electrode and the solid electrolyte with an electrically insulating and gas impermeable substrate,
(D) A fuel electrode or an air electrode is laminated on both surfaces of the porous metal substrate B, and (e) an electric insulating property is provided on the side surface of the fuel electrode or the air electrode.
A gas-impermeable substrate, and (f) a unit cell component obtained in the laminating steps (a) and (b) and the coating step (c);
A plurality of the unit cell constituent parts obtained in the laminating step (d) and the covering step (e) are alternately and continuously joined in substantially the same direction as the laminating direction, and joined (g) in the laminating steps (a), (b) and (D) and the coating step (c) are performed, for example, at 850 ° C. and 1 Pa, and (h) the coating step (e) and the joining step (f) are performed, for example, at 900 ° C. and 0.5 Pa. Thus, the above-mentioned parallel type SOFC is obtained. By employing this method, an SOFC in which the electrodes (the air electrode and the fuel electrode) and the solid electrolyte are thinned can be manufactured, which is effective. The order of the steps (a) to (h) is not particularly limited as long as the SOFC has a desired SOFC configuration. Typically, a parallel SOFC can be manufactured by the manufacturing steps shown in FIG. The substrate, the electrode, and the solid electrolyte can be typically joined by a PVD method, a CVD method, a screen printing method, a spray coating method, a plating method, an electrophoresis method, a sol-gel method, or the like. The electrode and the solid electrolyte can be coated by employing various film forming methods such as a PVD method, a CVD method, a thermal spraying method, a screen printing method, a spray coating method, a plating method, an electrophoresis method and a sol-gel method. Further, an electrode and / or a solid electrolyte can be formed by attaching a green sheet containing an electrode and a solid electrolyte material to the porous metal body and sintering the green sheet.

【0031】次に、本発明の更に他のSOFCの製造方
法について詳細に説明する。かかる製造方法では、
(a)多孔質金属基体Aの長手方向の側面に空気極又は
燃料極を被覆し、(b)該空気極上又は燃料極上に固体
電解質を被覆し、(c)該固体電解質上に燃料極又は空
気極を被覆し、(d)多孔質金属基体Bに複数の挿入孔
を設け、(e)該挿入孔に上記被覆工程(a)〜(c)
で得られた単セル構成部位を複数個配設し、(f)該空
気極、燃料極及び固体電解質の長手方向の両端に電気絶
縁性・ガス不透過性基体を被覆し、(g)被覆工程
(a)〜(c)及び(f)を、例えば850℃、大気圧
の条件下で行い該挿入孔の内壁と該燃料極又は空気極と
を接合し、上述のチューブ型SOFCが得られる。この
方法を採用することにより、電極(空気極及び燃料極)
及び固体電解質を薄膜化されたSOFCが製造できるの
で有効である。また、所望のSOFC構成を有するので
あれば、上記工程(a)〜(g)の順序は特に限定され
ず、代表的には、図6に示すような製造工程でチューブ
型SOFCを製造できる。また、基体、電極及び固体電
解質は、代表的にPVD法、CVD法、スクリーン印刷
法、スプレーコート法、メッキ法、電気泳動法及びゾル
・ゲル法などで接合することができる。更に、上記挿入
孔は、例えば、ドリル加工、放電加工、レーザー加工な
どにより形成でき、代表的には1〜5mm程度の細孔が
該挿入孔となり得る。
Next, still another method of manufacturing an SOFC of the present invention will be described in detail. In such a manufacturing method,
(A) an air electrode or a fuel electrode is coated on the side surface in the longitudinal direction of the porous metal substrate A; (b) a solid electrolyte is coated on the air electrode or the fuel electrode; and (c) a fuel electrode or a fuel electrode is coated on the solid electrolyte. Covering the air electrode, (d) providing a plurality of insertion holes in the porous metal substrate B, and (e) covering the insertion holes with the coating steps (a) to (c).
(F) coating the air electrode, the fuel electrode and the solid electrolyte on both ends in the longitudinal direction with an electrically insulating and gas-impermeable substrate; Steps (a) to (c) and (f) are performed, for example, under the conditions of 850 ° C. and atmospheric pressure, and the inner wall of the insertion hole and the fuel electrode or the air electrode are joined to obtain the above-mentioned tubular SOFC. . By adopting this method, the electrodes (air electrode and fuel electrode)
This is effective because an SOFC in which the solid electrolyte is thinned can be manufactured. The order of the steps (a) to (g) is not particularly limited as long as the SOFC has a desired SOFC configuration. Typically, a tubular SOFC can be manufactured by the manufacturing steps shown in FIG. The substrate, the electrode, and the solid electrolyte can be typically joined by a PVD method, a CVD method, a screen printing method, a spray coating method, a plating method, an electrophoresis method, a sol-gel method, or the like. Further, the insertion hole can be formed by, for example, drilling, electric discharge machining, laser processing, or the like, and typically a pore of about 1 to 5 mm can be the insertion hole.

【0032】[0032]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0033】(実施例1)図4に示すように、金属微粒
子焼結体(Ni−16Cr−8Feの発砲金属)を多孔
質基体1とし、これに電極10(Ni−8%YSZ)、
固体電解質12(8%YSZ)をこの順にスクリーン印
刷法で積層し、電極10及び固体電解質12の側面に電
気絶縁性・ガス不透過性基体14を被覆し、上記固体電
解質12の上面に電極11(LSC)をスクリーン印刷
法で積層し、その上に金属微粒子焼結体(Ni−16C
r−8Feの発砲金属)を多孔質基体2として積層し、
更に電気伝導性・ガス不透過性基体13を積層してSO
FC構成単位となる単セルを得た。この単セルを複数個
同一方向に積層して、図1に示すような直列型の固体電
解質型燃料電池を得た。各層間は900℃、0.5Pa
で加熱・加圧することにより接合した。なお、多孔質基
体、電気絶縁性・ガス不透過性基体、電気伝導性・ガス
不透過性基体、電池要素(電極及び固体電解質)の構成
を表1に示す。
Example 1 As shown in FIG. 4, a sintered body of fine metal particles (foamed metal of Ni-16Cr-8Fe) was used as a porous substrate 1 and an electrode 10 (Ni-8% YSZ),
The solid electrolyte 12 (8% YSZ) is laminated in this order by a screen printing method, the side surfaces of the electrode 10 and the solid electrolyte 12 are covered with an electrically insulating and gas-impermeable base 14, and the electrode 11 is provided on the upper surface of the solid electrolyte 12. (LSC) is laminated by a screen printing method, and a sintered metal fine particle (Ni-16C) is formed thereon.
r-8Fe foamed metal) as a porous substrate 2
Further, an electrically conductive / gas impermeable substrate 13 is laminated and SO
A single cell as an FC constituent unit was obtained. A plurality of the single cells were stacked in the same direction to obtain a series-type solid oxide fuel cell as shown in FIG. 900 ° C, 0.5 Pa between each layer
By heating and pressurizing. Table 1 shows the configurations of the porous substrate, the electrically insulating and gas impermeable substrate, the electrically conductive and gas impermeable substrate, and the battery elements (electrodes and solid electrolyte).

【0034】(実施例2)図5に示す工程を採用し、電
気伝導性・ガス不透過性基体を用いない以外は実施例1
とほぼ同様の操作を繰り返して、図2に示すような並列
型の固体電解質型燃料電池を得た。なお、多孔質基体、
電気絶縁性・ガス不透過性基体、電池要素(電極及び固
体電解質)の構成を表1に示す。
Example 2 Example 1 was performed except that the process shown in FIG. 5 was adopted and no electrically conductive and gas impermeable substrate was used.
By substantially the same operation as described above, a parallel solid oxide fuel cell as shown in FIG. 2 was obtained. In addition, a porous substrate,
Table 1 shows the configurations of the electrically insulating and gas impermeable substrate and the battery elements (electrodes and solid electrolyte).

【0035】(実施例3)図6に示す工程を採用し、電
気伝導性・ガス不透過性基体を用いず、円柱状のSOF
C構成単位を多孔質金属基体の挿入孔に設置した以外は
実施例1と同様の操作を繰り返して、図3に示すような
チューブ型の固体電解質型燃料電池を得た。なお、多孔
質基体、電気絶縁性・ガス不透過性基体、電池要素(電
極及び固体電解質)の構成を表1に示す。
(Example 3) A columnar SOF employing the process shown in FIG. 6 without using an electrically conductive and gas impermeable substrate
The same operation as in Example 1 was repeated, except that the C constituent unit was placed in the insertion hole of the porous metal substrate, to obtain a tube-type solid oxide fuel cell as shown in FIG. Table 1 shows the configurations of the porous substrate, the electrically insulating and gas impermeable substrate, and the battery elements (electrodes and solid electrolyte).

【0036】[0036]

【表1】 [Table 1]

【0037】以上、本発明を実施例により詳細に説明し
たが、本発明はこれらに限定されるものではなく、本発
明の要旨の範囲内において種々の変形が可能である。例
えば、SOFCの構成単位は単セルに限定されず、単セ
ルを積層方向とほぼ垂直の方向へ2次元的に複数個連結
し一体化して成るセル板を構成単位とすることも可能で
ある。また、多孔質金属単体にガス流路を内設すること
もできる。更に、SOFCの形状等は任意に選択でき、
目的の出力に応じて作製できる。また、燃料極及び空気
極は流通するガス種(水素や空気など)に合わせて、配
置を入れ替えられる。
Although the present invention has been described in detail with reference to the embodiments, the present invention is not limited to these, and various modifications can be made within the scope of the present invention. For example, the structural unit of the SOFC is not limited to a single cell, and a cell plate formed by two-dimensionally connecting and integrating a plurality of single cells in a direction substantially perpendicular to the stacking direction can be used as the structural unit. Further, a gas flow path may be provided inside the porous metal alone. Furthermore, the shape of the SOFC can be arbitrarily selected.
It can be manufactured according to the desired output. The arrangement of the fuel electrode and the air electrode can be switched according to the type of gas (hydrogen, air, etc.) flowing therethrough.

【0038】[0038]

【発明の効果】以上説明してきたように、本発明によれ
ば、発電要素の支持基体として所望の強度を有する多孔
性金属基体を用い、電池出力の集電機能とガス流路機能
を担わせることとしたため、電極(空気極及び燃料極)
及び固体電解質を薄膜化して内部抵抗を低減し、小型化
を達成した固体電解質型燃料電池及びその製造方法を提
供することができる。
As described above, according to the present invention, a porous metal substrate having a desired strength is used as a support substrate for a power generation element, and a battery output power collection function and a gas flow path function are provided. Electrodes (air electrode and fuel electrode)
Further, it is possible to provide a solid electrolyte fuel cell in which the solid electrolyte is thinned to reduce the internal resistance to achieve downsizing, and a method for manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】直列型固体電解質型燃料電池の一例を示す構成
図である。
FIG. 1 is a configuration diagram illustrating an example of a series solid oxide fuel cell.

【図2】並列型固体電解質型燃料電池の一例を示す構成
図である。
FIG. 2 is a configuration diagram illustrating an example of a parallel solid oxide fuel cell.

【図3】チューブ型固体電解質型燃料電池の一例を示す
断面図である。
FIG. 3 is a cross-sectional view illustrating an example of a tube-type solid oxide fuel cell.

【図4】直列型固体電解質型燃料電池の製造工程の一例
を示す概略図である。
FIG. 4 is a schematic view illustrating an example of a manufacturing process of the series-type solid oxide fuel cell.

【図5】並列型固体電解質型燃料電池の製造工程の一例
を示す概略図である。
FIG. 5 is a schematic view showing one example of a manufacturing process of a parallel type solid oxide fuel cell.

【図6】チューブ型固体電解質型燃料電池の製造工程の
一例を示す概略図である。
FIG. 6 is a schematic view showing one example of a manufacturing process of a tubular solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1 多孔質金属基体(A又はB) 2 多孔質金属基体(B又はA) 10 電極(燃料極又は空気極) 11 電極(空気極又は燃料極) 12 固体電解質 13 電気伝導性・ガス不透過性基体 14 電気絶縁性・ガス不透過性基体 DESCRIPTION OF SYMBOLS 1 Porous metal base (A or B) 2 Porous metal base (B or A) 10 Electrode (fuel electrode or air electrode) 11 Electrode (air electrode or fuel electrode) 12 Solid electrolyte 13 Electric conductivity and gas impermeability Substrate 14 Electrically insulating and gas-impermeable substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/88 H01M 4/88 T 8/12 8/12 8/24 8/24 E (72)発明者 秦野 正治 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 山中 貢 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 内山 誠 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 5H018 AA06 AS02 AS03 BB01 BB03 BB08 CC06 DD01 DD08 EE04 EE10 EE12 HH03 5H026 AA06 BB01 BB02 BB04 CC01 CV02 CV08 CX01 EE02 EE08 HH03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 4/88 H01M 4/88 T 8/12 8/12 8/24 8/24 E (72) Inventor Nissan Motor Co., Ltd. (72) Inside the Nissan Motor Co., Ltd. (72) Inventor Mitsuru Yamanaka, Nissan Motor Co., Ltd. (72) Inventor Makoto Uchiyama Kanagawa-ku, Yokohama City, Kanagawa Prefecture 2 Takaracho Nissan Motor Co., Ltd. F-term (reference) 5H018 AA06 AS02 AS03 BB01 BB03 BB08 CC06 DD01 DD08 EE04 EE10 EE12 HH03 5H026 AA06 BB01 BB02 BB04 CC01 CV02 CV08 CX01 EE02 EE08 HH03

Claims (27)

【特許請求の範囲】[Claims] 【請求項1】 電極反応部の両面を多孔質金属基体A及
びBで挟持して成る挟持体の表面又は裏面に電気伝導性
・ガス不透過性基体を積層して成る単セルを、該積層方
向とほぼ同一方向に複数個連接して成る固体電解質型燃
料電池であって、 上記電極反応部が、空気極、固体電解質及び燃料極をこ
の順序で積層して得られる積層体の側面を電気絶縁性・
ガス不透過性基体で被覆されて成り、 上記多孔質金属基体A及びBが、燃料ガス又は酸化性ガ
スを流通するとともに上記電極反応部より電池出力を集
電することを特徴とする固体電解質型燃料電池。
1. A single cell comprising an electrically conductive and gas-impermeable substrate laminated on the front or back surface of a sandwiched body comprising both sides of an electrode reaction portion sandwiched between porous metal substrates A and B. A solid electrolyte fuel cell comprising a plurality of cells connected in substantially the same direction as the direction, wherein the electrode reaction unit electrically connects a side surface of a stacked body obtained by stacking an air electrode, a solid electrolyte, and a fuel electrode in this order. Insulation
A solid electrolyte type wherein the porous metal substrates A and B flow fuel gas or oxidizing gas and collect battery output from the electrode reaction section. Fuel cell.
【請求項2】 上記空気極及び/又は燃料極が、5〜1
00μmの厚さであることを特徴とする請求項1記載の
固体電解質型燃料電池。
2. The method according to claim 1, wherein the air electrode and / or the fuel electrode is 5-1.
2. The solid oxide fuel cell according to claim 1, wherein said fuel cell has a thickness of 00 [mu] m.
【請求項3】 上記固体電解質が、50μm以下の厚さ
であることを特徴とする請求項1又は2記載の固体電解
質型燃料電池。
3. The solid oxide fuel cell according to claim 1, wherein said solid electrolyte has a thickness of 50 μm or less.
【請求項4】 上記多孔質金属基体A及び/又は上記多
孔質金属基体Bが、0.1〜5mmの厚さであることを
特徴とする請求項1〜3のいずれか1つの項に記載の固
体電解質型燃料電池。
4. The method according to claim 1, wherein the porous metal substrate A and / or the porous metal substrate B have a thickness of 0.1 to 5 mm. Solid electrolyte fuel cell.
【請求項5】 上記電気伝導性・ガス不透過性基体が、
0.05〜10mmの厚さであることを特徴とする請求
項1〜4のいずれか1つの項に記載の固体電解質型燃料
電池。
5. The method according to claim 1, wherein the electrically conductive and gas impermeable substrate comprises:
The solid oxide fuel cell according to any one of claims 1 to 4, wherein the thickness is 0.05 to 10 mm.
【請求項6】 上記電気絶縁性・ガス不透過性基体が、
0.02〜10mmの厚さで被覆されることを特徴とす
る請求項1〜5のいずれか1つの項に記載の固体電解質
型燃料電池。
6. The electric insulating / gas impermeable substrate according to claim 1,
The solid oxide fuel cell according to any one of claims 1 to 5, which is coated with a thickness of 0.02 to 10 mm.
【請求項7】 上記多孔質金属基体A及び/又は上記多
孔質金属基体Bが、ニッケル、ニッケルクロム、ニッケ
ルクロム鉄、ニッケルクロムタングステンモリブデン、
ニッケルコバルト、ニッケル銅、銀、銀パラジウム、銀
白金、鉄クロムニッケル及び鉄クロムアルミから成る群
より選ばれた少なくとも1種の金属を含む合金であるこ
とを特徴とする請求項1〜6のいずれか1つの項に記載
の固体電解質型燃料電池。
7. The method according to claim 7, wherein the porous metal substrate A and / or the porous metal substrate B is made of nickel, nickel chromium, nickel chromium iron, nickel chromium tungsten molybdenum,
7. An alloy containing at least one metal selected from the group consisting of nickel cobalt, nickel copper, silver, silver palladium, silver platinum, iron chromium nickel and iron chromium aluminum. A solid oxide fuel cell according to any one of the preceding claims.
【請求項8】 上記電気伝導性・ガス不透過性基体が、
ニッケル、ニッケルクロム、ニッケルクロム鉄、ニッケ
ルクロムタングステンモリブデン、ニッケルコバルト、
ニッケル銅、銀、銀パラジウム、銀白金、鉄クロムニッ
ケル及び鉄クロムアルミから成る群より選ばれた少なく
とも1種の金属を含む合金であることを特徴とする請求
項1〜7のいずれか1つの項に記載の固体電解質型燃料
電池。
8. The electric conductive and gas impermeable substrate according to claim 1,
Nickel, nickel chrome, nickel chromium iron, nickel chrome tungsten molybdenum, nickel cobalt,
8. An alloy containing at least one metal selected from the group consisting of nickel copper, silver, silver palladium, silver platinum, iron chromium nickel and iron chromium aluminum. Item 6. The solid oxide fuel cell according to item 1.
【請求項9】 上記電気絶縁性・ガス不透過性基体が、
ガラス、セラミックス、及び表面をガラス又はセラミッ
クスで被覆した金属から成る群より選ばれた少なくとも
1種のものであることを特徴とする請求項1〜8のいず
れか1つの項に記載の固体電解質型燃料電池。
9. The method according to claim 9, wherein the electrically insulating and gas impermeable substrate comprises:
The solid electrolyte type according to any one of claims 1 to 8, wherein the solid electrolyte type is at least one selected from the group consisting of glass, ceramics, and a metal whose surface is coated with glass or ceramics. Fuel cell.
【請求項10】 多孔質金属基体Aが空気極同士又は燃
料極同士で挟持されるように多孔質金属基体Aの両面に
電極反応部を積層し、更に該電極反応部のいずれか一方
に多孔質金属基体Bを積層して成る単セルを、該積層方
向とほぼ同一方向に複数個連接して成る固体電解質型燃
料電池であって、 上記電極反応部が、空気極、固体電解質及び燃料極をこ
の順序で積層して得られる積層体の側面を電気絶縁性・
ガス不透過性基体で被覆されて成り、 上記多孔質金属基体A及びBが、燃料ガス又は酸化性ガ
スを流通するとともに上記電極反応部より電池出力を集
電することを特徴とする固体電解質型燃料電池。
10. An electrode reaction part is laminated on both sides of the porous metal base A so that the porous metal base A is sandwiched between the air electrodes or the fuel electrodes, and a porous part is formed on one of the electrode reaction parts. A solid electrolyte fuel cell comprising a plurality of single cells formed by laminating porous metal substrates B in substantially the same direction as the laminating direction, wherein the electrode reaction section comprises an air electrode, a solid electrolyte, and a fuel electrode. The side of the laminate obtained by laminating in this order
A solid electrolyte type wherein the porous metal substrates A and B flow fuel gas or oxidizing gas and collect battery output from the electrode reaction section. Fuel cell.
【請求項11】 上記空気極及び/又は燃料極が、5〜
100μmの厚さであることを特徴とする請求項10記
載の固体電解質型燃料電池。
11. The air electrode and / or the fuel electrode may be 5 to
The solid oxide fuel cell according to claim 10, wherein the thickness is 100 µm.
【請求項12】 上記固体電解質が、50μm以下の厚
さであることを特徴とする請求項10又は11記載の固
体電解質型燃料電池。
12. The solid oxide fuel cell according to claim 10, wherein said solid electrolyte has a thickness of 50 μm or less.
【請求項13】 上記多孔質金属基体A及び/又は上記
多孔質金属基体Bが、0.1〜5mmの厚さであること
を特徴とする請求項10〜12のいずれか1つの項に記
載の固体電解質型燃料電池。
13. The method according to claim 10, wherein the porous metal substrate A and / or the porous metal substrate B has a thickness of 0.1 to 5 mm. Solid electrolyte fuel cell.
【請求項14】 上記電気絶縁性・ガス不透過性基体
が、0.02〜10mmの厚さで被覆されることを特徴
とする請求項10〜13のいずれか1つの項に記載の固
体電解質型燃料電池。
14. The solid electrolyte according to claim 10, wherein the electrically insulating and gas impermeable substrate is coated with a thickness of 0.02 to 10 mm. Type fuel cell.
【請求項15】 上記多孔質金属基体A及び/又は上記
多孔質金属基体Bが、ニッケル、ニッケルクロム、ニッ
ケルクロム鉄、ニッケルクロムタングステンモリブデ
ン、ニッケルコバルト、ニッケル銅、銀、銀パラジウ
ム、銀白金、鉄クロムニッケル及び鉄クロムアルミから
成る群より選ばれた少なくとも1種の金属を含む合金で
あることを特徴とする請求項10〜14のいずれか1つ
の項に記載の固体電解質型燃料電池。
15. The method according to claim 15, wherein the porous metal substrate A and / or the porous metal substrate B comprises nickel, nickel chromium, nickel chromium iron, nickel chromium tungsten molybdenum, nickel cobalt, nickel copper, silver, silver palladium, silver platinum, The solid oxide fuel cell according to any one of claims 10 to 14, wherein the alloy is an alloy containing at least one metal selected from the group consisting of iron chromium nickel and iron chromium aluminum.
【請求項16】 上記電気絶縁性・ガス不透過性基体
が、ガラス、セラミックス、及び表面をガラス又はセラ
ミックスで被覆した金属から成る群より選ばれた少なく
とも1種のものであることを特徴とする請求項10〜1
5のいずれか1つの項に記載の固体電解質型燃料電池。
16. The electric insulating / gas impermeable substrate is at least one selected from the group consisting of glass, ceramics, and a metal whose surface is coated with glass or ceramics. Claims 10-1
Item 6. The solid oxide fuel cell according to any one of Items 5.
【請求項17】 環状の電極反応部に多孔質金属基体A
を内接して成る複数の単セル構成部位を、多孔質金属基
体Bに設けた複数の挿入孔に配設して成る固体電解質型
燃料電池であって、 上記電極反応部が、空気極、固体電解質及び燃料極をこ
の順序で積層して得られる積層体の側面を電気絶縁性・
ガス不透過性基体で被覆されて成り、 上記多孔質金属基体A及びBが、燃料ガス又は酸化性ガ
スを流通するとともに上記電極反応部より電池出力を集
電することを特徴とする固体電解質型燃料電池。
17. A porous metal substrate A is provided on an annular electrode reaction portion.
A solid electrolyte fuel cell comprising a plurality of single cell constituent parts inscribed in a plurality of insertion holes provided in a porous metal substrate B, wherein the electrode reaction unit comprises an air electrode, a solid The side surface of the laminate obtained by laminating the electrolyte and anode in this order
A solid electrolyte type wherein the porous metal substrates A and B flow fuel gas or oxidizing gas and collect battery output from the electrode reaction section. Fuel cell.
【請求項18】 上記空気極及び/又は燃料極が、5〜
100μmの厚さであることを特徴とする請求項17記
載の固体電解質型燃料電池。
18. The method according to claim 18, wherein the air electrode and / or the fuel electrode is 5 to
18. The solid oxide fuel cell according to claim 17, having a thickness of 100 [mu] m.
【請求項19】 上記固体電解質が、50μm以下の厚
さであることを特徴とする請求項17又は18記載の固
体電解質型燃料電池。
19. The solid oxide fuel cell according to claim 17, wherein said solid electrolyte has a thickness of 50 μm or less.
【請求項20】 上記多孔質金属基体A及び/又は上記
多孔質金属基体Bが、0.1〜5mmの厚さであること
を特徴とする請求項17〜19のいずれか1つの項に記
載の固体電解質型燃料電池。
20. The method according to claim 17, wherein the porous metal substrate A and / or the porous metal substrate B has a thickness of 0.1 to 5 mm. Solid electrolyte fuel cell.
【請求項21】 上記電気絶縁性・ガス不透過性基体
が、0.02〜10mmの厚さで被覆されることを特徴
とする請求項17〜20のいずれか1つの項に記載の固
体電解質型燃料電池。
21. The solid electrolyte according to claim 17, wherein the electrically insulating and gas impermeable substrate is coated with a thickness of 0.02 to 10 mm. Type fuel cell.
【請求項22】 上記多孔質金属基体A及び/又は上記
多孔質金属基体Bが、ニッケル、ニッケルクロム、ニッ
ケルクロム鉄、ニッケルクロムタングステンモリブデ
ン、ニッケルコバルト、ニッケル銅、銀、銀パラジウ
ム、銀白金、鉄クロムニッケル及び鉄クロムアルミから
成る群より選ばれた少なくとも1種の金属を含む合金で
あることを特徴とする請求項17〜21のいずれか1つ
の項に記載の固体電解質型燃料電池。
22. The method according to claim 19, wherein the porous metal substrate A and / or the porous metal substrate B comprises nickel, nickel chromium, nickel chromium iron, nickel chromium tungsten molybdenum, nickel cobalt, nickel copper, silver, silver palladium, silver platinum, The solid oxide fuel cell according to any one of claims 17 to 21, wherein the alloy is an alloy containing at least one metal selected from the group consisting of iron chromium nickel and iron chromium aluminum.
【請求項23】 上記電気絶縁性・ガス不透過性基体
が、ガラス、セラミックス、及び表面をガラス又はセラ
ミックスで被覆した金属から成る群より選ばれた少なく
とも1種のものであることを特徴とする請求項17〜2
2のいずれか1つの項に記載の固体電解質型燃料電池。
23. The electric insulating and gas impermeable substrate is at least one selected from the group consisting of glass, ceramics, and metal whose surface is coated with glass or ceramics. Claims 17-2
Item 3. The solid oxide fuel cell according to any one of Items 2.
【請求項24】 請求項1〜9のいずれか1つの項に記
載の固体電解質型燃料電池を製造するに当たり、(a)
多孔質金属基体A上に空気極又は燃料極を積層し、
(b)該空気極上又は燃料極上に固体電解質を積層し、
(c)該固体電解質上に燃料極又は空気極を積層し、
(d)該燃料極上又は空気極上に多孔質金属基体Bを積
層し、(e)該多孔質金属基体B上に電気伝導性・ガス
不透過性基体を積層し、(f)該空気極及び/又は燃料
極と上記固体電解質とがなす積層体の側面に電気絶縁性
・ガス不透過性基体を被覆し、(g)積層工程(a)〜
(e)及び被覆工程(f)で得られる単セル構造を積層
方向とほぼ同一方向に複数個連続させて接合する、こと
を特徴とする固体電解質型燃料電池の製造方法。
24. In manufacturing the solid oxide fuel cell according to any one of claims 1 to 9, (a)
An air electrode or a fuel electrode is laminated on the porous metal substrate A,
(B) laminating a solid electrolyte on the air electrode or the fuel electrode,
(C) stacking a fuel electrode or an air electrode on the solid electrolyte;
(D) a porous metal substrate B is laminated on the fuel electrode or the air electrode; (e) an electrically conductive / gas impermeable substrate is laminated on the porous metal substrate B; And / or covering the side surface of the laminate formed by the fuel electrode and the solid electrolyte with an electrically insulating / gas impermeable substrate, and (g) laminating steps (a) to
A method for manufacturing a solid oxide fuel cell, comprising joining a plurality of single cell structures obtained in (e) and the coating step (f) in a direction substantially the same as the lamination direction.
【請求項25】 被覆工程(f)として上記空気極又は
燃料極と上記固体電解質との側面に電気絶縁性・ガス不
透過性基体を被覆した後に、積層工程(c)を行うこと
を特徴とする請求項24記載の固体電解質型燃料電池の
製造方法。
25. The method according to claim 25, wherein the laminating step (c) is performed after the side surfaces of the air electrode or the fuel electrode and the solid electrolyte are coated with an electrically insulating and gas impermeable substrate as the coating step (f). 25. The method for producing a solid oxide fuel cell according to claim 24.
【請求項26】 請求項10〜16のいずれか1つの項
に記載の固体電解質型燃料電池を製造するに当たり、
(a)多孔質金属基体Aの両面に空気極又は燃料極を積
層し、(b)該空気極上又は燃料極上に固体電解質を積
層し、(c)該空気極又は燃料極と固体電解質とがなす
積層体の側面に電気絶縁性・ガス不透過性基体を被覆
し、(d)多孔質金属基体Bの両面に燃料極又は空気極
を積層し、(e)該燃料極又は空気極の側面に電気絶縁
性・ガス不透過性基体を被覆し、(f)積層工程(a)
及び(b)と被覆工程(c)で得られる単セル構成部位
と、積層工程(d)及び被覆工程(e)で得られる単セ
ル構成部位とを交互に積層方向とほぼ同一方向に複数個
連続させて接合する、ことを特徴とする固体電解質型燃
料電池の製造方法。
26. In manufacturing the solid oxide fuel cell according to any one of claims 10 to 16,
(A) An air electrode or a fuel electrode is laminated on both surfaces of the porous metal substrate A, (b) a solid electrolyte is laminated on the air electrode or the fuel electrode, and (c) the air electrode or the fuel electrode and the solid electrolyte are laminated. The side surface of the laminate to be formed is covered with an electrically insulating and gas impermeable substrate, (d) a fuel electrode or an air electrode is laminated on both surfaces of the porous metal substrate B, and (e) a side surface of the fuel electrode or the air electrode. Is coated with an electrically insulating and gas impermeable substrate, and (f) laminating step (a)
And (b) a plurality of single-cell constituent parts obtained in the coating step (c) and a plurality of single-cell constituent parts obtained in the laminating step (d) and the covering step (e) are alternately arranged in substantially the same direction as the laminating direction. A method for manufacturing a solid oxide fuel cell, comprising joining continuously.
【請求項27】 請求項17〜27のいずれか1つの項
に記載の固体電解質型燃料電池を製造するに当たり、
(a)多孔質金属基体Aの長手方向の側面に空気極又は
燃料極を被覆し、(b)該空気極上又は燃料極上に固体
電解質を被覆し、(c)該固体電解質上に燃料極又は空
気極を被覆し、(d)多孔質金属基体Bに複数の挿入孔
を設け、(e)該挿入孔に上記被覆工程(a)〜(c)
で得られた単セル構成部位を複数個配設し、(f)該空
気極、燃料極及び固体電解質の長手方向の両端に電気絶
縁性・ガス不透過性基体を被覆し、該挿入孔の内壁と該
燃料極又は空気極とを接合する、ことを特徴とする固体
電解質型燃料電池の製造方法。
27. In manufacturing the solid oxide fuel cell according to any one of claims 17 to 27,
(A) the air electrode or the fuel electrode is coated on the side surface in the longitudinal direction of the porous metal substrate A; (b) the solid electrolyte is coated on the air electrode or the fuel electrode; and (c) the fuel electrode or the fuel electrode is coated on the solid electrolyte. Covering the air electrode, (d) providing a plurality of insertion holes in the porous metal substrate B, and (e) covering the insertion holes with the coating steps (a) to (c).
(F) covering both ends of the air electrode, the fuel electrode and the solid electrolyte in the longitudinal direction with an electrically insulating and gas impermeable substrate, and A method for manufacturing a solid oxide fuel cell, comprising joining an inner wall and the fuel electrode or the air electrode.
JP2001134695A 2001-05-01 2001-05-01 Solid oxide fuel cell Expired - Lifetime JP4811622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001134695A JP4811622B2 (en) 2001-05-01 2001-05-01 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001134695A JP4811622B2 (en) 2001-05-01 2001-05-01 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2002329508A true JP2002329508A (en) 2002-11-15
JP4811622B2 JP4811622B2 (en) 2011-11-09

Family

ID=18982330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001134695A Expired - Lifetime JP4811622B2 (en) 2001-05-01 2001-05-01 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP4811622B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518075A (en) * 2002-02-14 2005-06-16 アルバータ リサーチ カウンシル インコーポレイテッド Tubular solid oxide fuel cell stack
WO2005071780A1 (en) * 2004-01-27 2005-08-04 Canon Kabushiki Kaisha Fuel cell unit
WO2006090464A1 (en) * 2005-02-24 2006-08-31 Octec, Inc. Solid polymer fuel cell and method for producing same
JP2006302643A (en) * 2005-04-20 2006-11-02 Kyocera Corp Porous material, fuel cell, and fuel battery
JP2007066546A (en) * 2005-08-29 2007-03-15 Hitachi Ltd Cylindrical fuel cell
JP2008016268A (en) * 2006-07-05 2008-01-24 Hitachi Ltd Fuel cell
JP2008098145A (en) * 2006-09-14 2008-04-24 Honda Motor Co Ltd Electrolyte-electrode assembly and its manufacturing method
JP2008166266A (en) * 2006-12-07 2008-07-17 Canon Inc Fuel cell
JP2008226640A (en) * 2007-03-13 2008-09-25 Nissan Motor Co Ltd Fuel cell stack structure
WO2008153200A1 (en) * 2007-06-15 2008-12-18 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2009506507A (en) * 2005-08-31 2009-02-12 テクニカル ユニバーシティ オブ デンマーク Reversible solid oxide fuel cell stack and method for preparing the same
JP2009146858A (en) * 2007-12-18 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Planar solid oxide fuel cell stack
JP2009532849A (en) * 2006-04-05 2009-09-10 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド SOFC laminate with high temperature bonded semi-rack interconnect and method of manufacturing the same
JP2009206080A (en) * 2008-01-30 2009-09-10 Ngk Insulators Ltd Solid oxide fuel cell
JP2009252416A (en) * 2008-04-02 2009-10-29 Sanyo Special Steel Co Ltd Fuel battery cell, and manufacturing method therefor
US7736772B2 (en) 2002-02-14 2010-06-15 Alberta Research Council, Inc. Tubular solid oxide fuel cell stack
JP2010270720A (en) * 2009-05-22 2010-12-02 Sumitomo Electric Ind Ltd Gas decomposition device and configuration structure thereof
JP2011192460A (en) * 2010-03-12 2011-09-29 Mitsubishi Materials Corp Power generation cell unit of solid oxide fuel cell and its manufacturing method
US8039175B2 (en) 2005-01-12 2011-10-18 Technical University Of Denmark Method for shrinkage and porosity control during sintering of multilayer structures
WO2012008266A1 (en) * 2010-07-15 2012-01-19 コニカミノルタホールディングス株式会社 Fuel cell
JP2012028088A (en) * 2010-07-21 2012-02-09 Sumitomo Electric Ind Ltd Membrane electrode assembly, fuel cell, gas abatement device, and method of manufacturing membrane electrode assembly
JP2012119126A (en) * 2010-11-30 2012-06-21 Magunekusu Kk Solid oxide fuel battery
JP2012514311A (en) * 2008-12-31 2012-06-21 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Method for SOFC cathode and co-fired battery and stack
US8252478B2 (en) 2005-01-31 2012-08-28 Technical University Of Denmark Redox-stable anode
US8709674B2 (en) 2005-04-29 2014-04-29 Alberta Research Council Inc. Fuel cell support structure
US8790847B2 (en) 2006-11-23 2014-07-29 Technical University Of Denmark Method for the manufacture of reversible solid oxide cells
WO2015037618A1 (en) * 2013-09-13 2015-03-19 株式会社デンソー Single cell of fuel cell and method for producing same
JP2017507452A (en) * 2013-12-26 2017-03-16 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Air current collector for solid oxide fuel cell and solid oxide fuel cell including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044254A1 (en) * 1998-02-27 1999-09-02 Corning Incorporated Flexible inorganic electrolyte fuel cell design
US6080501A (en) * 1998-06-29 2000-06-27 Motorola, Inc. Fuel cell with integral fuel storage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044254A1 (en) * 1998-02-27 1999-09-02 Corning Incorporated Flexible inorganic electrolyte fuel cell design
US6080501A (en) * 1998-06-29 2000-06-27 Motorola, Inc. Fuel cell with integral fuel storage

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672982B2 (en) * 2002-02-14 2011-04-20 アルバータ リサーチ カウンシル インコーポレイテッド Tubular solid oxide fuel cell stack
JP2005518075A (en) * 2002-02-14 2005-06-16 アルバータ リサーチ カウンシル インコーポレイテッド Tubular solid oxide fuel cell stack
US7736772B2 (en) 2002-02-14 2010-06-15 Alberta Research Council, Inc. Tubular solid oxide fuel cell stack
WO2005071780A1 (en) * 2004-01-27 2005-08-04 Canon Kabushiki Kaisha Fuel cell unit
US8039175B2 (en) 2005-01-12 2011-10-18 Technical University Of Denmark Method for shrinkage and porosity control during sintering of multilayer structures
US8252478B2 (en) 2005-01-31 2012-08-28 Technical University Of Denmark Redox-stable anode
WO2006090464A1 (en) * 2005-02-24 2006-08-31 Octec, Inc. Solid polymer fuel cell and method for producing same
JP2006302643A (en) * 2005-04-20 2006-11-02 Kyocera Corp Porous material, fuel cell, and fuel battery
US8709674B2 (en) 2005-04-29 2014-04-29 Alberta Research Council Inc. Fuel cell support structure
JP2007066546A (en) * 2005-08-29 2007-03-15 Hitachi Ltd Cylindrical fuel cell
US7972742B2 (en) 2005-08-29 2011-07-05 Hitachi, Ltd. Tube type fuel cell to decrease current path length
JP4537292B2 (en) * 2005-08-29 2010-09-01 株式会社日立製作所 Cylindrical fuel cell
JP2009506507A (en) * 2005-08-31 2009-02-12 テクニカル ユニバーシティ オブ デンマーク Reversible solid oxide fuel cell stack and method for preparing the same
US9263758B2 (en) 2005-08-31 2016-02-16 Technical University Of Denmark Reversible solid oxide fuel cell stack and method for preparing same
JP2009532849A (en) * 2006-04-05 2009-09-10 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド SOFC laminate with high temperature bonded semi-rack interconnect and method of manufacturing the same
JP2008016268A (en) * 2006-07-05 2008-01-24 Hitachi Ltd Fuel cell
JP2008098145A (en) * 2006-09-14 2008-04-24 Honda Motor Co Ltd Electrolyte-electrode assembly and its manufacturing method
US8790847B2 (en) 2006-11-23 2014-07-29 Technical University Of Denmark Method for the manufacture of reversible solid oxide cells
JP2008166266A (en) * 2006-12-07 2008-07-17 Canon Inc Fuel cell
JP2008226640A (en) * 2007-03-13 2008-09-25 Nissan Motor Co Ltd Fuel cell stack structure
WO2008153200A1 (en) * 2007-06-15 2008-12-18 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2009146858A (en) * 2007-12-18 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Planar solid oxide fuel cell stack
US8956780B2 (en) 2008-01-30 2015-02-17 Ngk Insulators, Ltd. Solid oxide fuel cell
JP2009206080A (en) * 2008-01-30 2009-09-10 Ngk Insulators Ltd Solid oxide fuel cell
JP2009252416A (en) * 2008-04-02 2009-10-29 Sanyo Special Steel Co Ltd Fuel battery cell, and manufacturing method therefor
JP2012514311A (en) * 2008-12-31 2012-06-21 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Method for SOFC cathode and co-fired battery and stack
US8459467B2 (en) 2008-12-31 2013-06-11 Saint-Gobain Ceramics & Plastics, Inc. SOFC cathode and method for cofired cells and stacks
JP2010270720A (en) * 2009-05-22 2010-12-02 Sumitomo Electric Ind Ltd Gas decomposition device and configuration structure thereof
JP2011192460A (en) * 2010-03-12 2011-09-29 Mitsubishi Materials Corp Power generation cell unit of solid oxide fuel cell and its manufacturing method
JPWO2012008266A1 (en) * 2010-07-15 2013-09-09 コニカミノルタ株式会社 Fuel cell
WO2012008266A1 (en) * 2010-07-15 2012-01-19 コニカミノルタホールディングス株式会社 Fuel cell
JP2012028088A (en) * 2010-07-21 2012-02-09 Sumitomo Electric Ind Ltd Membrane electrode assembly, fuel cell, gas abatement device, and method of manufacturing membrane electrode assembly
JP2012119126A (en) * 2010-11-30 2012-06-21 Magunekusu Kk Solid oxide fuel battery
WO2015037618A1 (en) * 2013-09-13 2015-03-19 株式会社デンソー Single cell of fuel cell and method for producing same
JP2015056363A (en) * 2013-09-13 2015-03-23 株式会社日本自動車部品総合研究所 Fuel cell unit and manufacturing method therefor
JP2017507452A (en) * 2013-12-26 2017-03-16 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Air current collector for solid oxide fuel cell and solid oxide fuel cell including the same
US10249885B2 (en) 2013-12-26 2019-04-02 Research Institute Of Industrial Science & Technology Cathode current collector for solid oxide fuel cell, and solid oxide fuel cell comprising same
EP3089250B1 (en) * 2013-12-26 2019-07-17 Research Institute Of Industrial Science & Technology Cathode current collector for solid oxide fuel cell, and solid oxide fuel cell comprising same

Also Published As

Publication number Publication date
JP4811622B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4811622B2 (en) Solid oxide fuel cell
US7186475B2 (en) Unit cell for solid oxide electrolyte type fuel cell and related manufacturing method
JP4960593B2 (en) Electrochemical battery stack assembly
US7232626B2 (en) Planar electrochemical device assembly
EP1359635B1 (en) Cell body for fuel cell and method of manufacturing the same
EP1732157B1 (en) Method and apparatus for forming electrode interconnect contacts for a solid-oxide fuel cell stack
US20080107948A1 (en) High Specific Power Solid Oxide Fuel Cell Stack
US8652709B2 (en) Method of sealing a bipolar plate supported solid oxide fuel cell with a sealed anode compartment
US20080286630A1 (en) Electrochemical Cell Holder and Stack
JP3705485B2 (en) Single cell for fuel cell and solid oxide fuel cell
JP2003168448A (en) Unit cell for solid electrolyte type fuel cell
JP2002334706A (en) Cell element layer base and cell plate for solid electrolyte type fuel cell
JP2004303508A (en) Unit cell structure for fuel cell, and solid oxide type fuel cell using it
JP2003263994A (en) Solid electrolyte fuel cell
JP5177847B2 (en) Electrochemical equipment
JP2005347095A (en) Substrate for solid oxide fuel cell and cell for solid oxide fuel cell
KR20110047856A (en) Solid oxide fuel cell and method for manufacturing thereof
JP2002358976A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4811622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

EXPY Cancellation because of completion of term