JP2002328148A - Method of measuring insulation characteristic at high temperature for insulation gas - Google Patents

Method of measuring insulation characteristic at high temperature for insulation gas

Info

Publication number
JP2002328148A
JP2002328148A JP2001133359A JP2001133359A JP2002328148A JP 2002328148 A JP2002328148 A JP 2002328148A JP 2001133359 A JP2001133359 A JP 2001133359A JP 2001133359 A JP2001133359 A JP 2001133359A JP 2002328148 A JP2002328148 A JP 2002328148A
Authority
JP
Japan
Prior art keywords
plasma
temperature
gas
insulation
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001133359A
Other languages
Japanese (ja)
Other versions
JP4739574B2 (en
Inventor
Masayuki Hikita
政幸 匹田
Moyu Cho
孟佑 趙
Shinya Otsuka
信也 大塚
Michiaki Nakamura
道昭 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Institute of Technology NUC
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Kyushu Electric Power Co Inc filed Critical Kyushu Institute of Technology NUC
Priority to JP2001133359A priority Critical patent/JP4739574B2/en
Publication of JP2002328148A publication Critical patent/JP2002328148A/en
Application granted granted Critical
Publication of JP4739574B2 publication Critical patent/JP4739574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Installation Of Bus-Bars (AREA)
  • Testing Relating To Insulation (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a convenient method for obtaining an insulation characteristic of insulation gas at a high temperature to allow equipment design based on a quantitative relation between the temperature and the insulation characteristic. SOLUTION: Plasma simulated with a high temperature gas condition is generated by a laser, a relation between a lapse time after the plasma is generated and a temperature is obtained, a change of dielectric strength accompanied to a change of the temperature of the generated plasma is obtained based on the lapse time after the plasma is generated and a change of the dielectric strength of the plasma, and the insulation characteristics, of the measuring- objective insulation gas, at a specified temperature is applied to the change of the dielectric strength accompanied to the change of the temperature of the generated plasma, so as to obtain the dielectric strength of the measuring- objective insulation gas at the high temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス遮断器におけ
るアーク遮断時のSFガスのような絶縁ガスの高温に
おける絶縁特性の評価方法に関する。
The present invention relates to a method for the evaluation of insulating properties in high-temperature insulating gas such as SF 6 gas during arc interruption in the gas circuit breaker.

【0002】[0002]

【従来の技術】SFガスは、優れた絶縁特性と消弧性
能を有するために、ガス絶縁開閉装置(GIS)やガス
絶縁送電線路(GIL)等の絶縁媒休ガスとして広く用
いられている。また、SFガスは、温室効果ガスであ
るために、大気の主成分をなし、地球温暖化には基本的
に無関係なNガスとの混合ガスの使用も検討されてい
る。
2. Description of the Related Art SF 6 gas is widely used as an insulating medium stop gas for gas insulated switchgear (GIS), gas insulated transmission line (GIL), etc. because of its excellent insulating properties and arc extinguishing performance. . Further, since SF 6 gas is a greenhouse gas, it constitutes a main component of the atmosphere, and the use of a mixed gas with N 2 gas which is basically unrelated to global warming is being studied.

【0003】このような絶縁ガスを使用したガス絶縁電
力機器で短絡事故が発生すると大電流が流れ、絶縁ガス
を高温状態に加熱することになる。また、ガス絶縁開閉
器(遮断器)を開放する場合には、アークの発生により
絶縁ガスを加熱することになる。このような高温状態で
は、絶縁ガスはプラズマ状態となり導電率が上昇するこ
とになる。即ち、絶縁耐力の「低下」を引き起こし、機
器の絶縁破壊故障に至る。そのため、機器設計時にその
ような絶縁ガスの高温状態の絶縁特性を加味しておかな
ければならない。
[0003] When a short circuit occurs in a gas-insulated power device using such an insulating gas, a large current flows and the insulating gas is heated to a high temperature. When the gas insulated switch (circuit breaker) is opened, the insulating gas is heated by the generation of an arc. In such a high temperature state, the insulating gas is in a plasma state, and the conductivity increases. That is, the dielectric strength is "decreased", resulting in dielectric breakdown failure of the device. For this reason, it is necessary to take into account the insulating properties of such an insulating gas in a high temperature state when designing the equipment.

【0004】ところが、従来の機器設計においては、経
験則に従いモックアップモデルを作成し、実際に電流遮
断試験を行って絶縁破壊しないかを確かめるトライ・ア
ンド・エラーによる手法が採用されてきた。
However, in the conventional device design, a method based on a try-and-error method has been adopted in which a mock-up model is created according to an empirical rule, and a current cutoff test is actually performed to check whether insulation breakdown occurs.

【0005】ところが、このようなトライアンドエラー
による設計方式では、得られたデータに汎用性のある絶
縁ガスの絶縁耐力と温度の関係は得ることはできない。
また、モックアップモデルの作製に、費用・時間を要す
るばかりか、製作機器の信頼性に欠けるという問題もあ
った。
However, in such a design method based on trial and error, it is not possible to obtain the relationship between the dielectric strength of insulating gas and the temperature which is versatile in the obtained data.
Further, there is a problem that not only costs and time are required for manufacturing the mock-up model, but also that the reliability of the manufactured device is lacking.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、絶縁ガスの高温における絶縁特性を知るた
めの簡便な方法を得て、温度と絶縁特性の定量的な関係
に基づいた機器設計を可能とすることにある。
The problem to be solved by the present invention is to provide a simple method for knowing the insulating characteristics of an insulating gas at a high temperature, and to obtain a device based on a quantitative relationship between the temperature and the insulating characteristics. It is to enable design.

【0007】[0007]

【課題を解決するための手段】本発明の絶縁ガスの高温
における絶縁特性測定方法は、レーザで高温ガス状態を
模擬したプラズマを生成し、プラズマの生成後の経過時
間と温度の関係を知り、プラズマ生成後の経過時間とプ
ラズマの絶縁耐力の変化によって、生成プラズマの温度
の変化にともなう絶縁耐力の変化を知り、測定対象の絶
縁ガスの特定温度における絶縁特性を、前記生成プラズ
マの温度の変化にともなう絶縁耐力の変化に当てはめ
て、測定対象の絶縁ガスの高温における絶縁耐力を知る
ものである。
SUMMARY OF THE INVENTION The present invention provides a method for measuring the insulating properties of an insulating gas at a high temperature. The method includes the steps of generating a plasma simulating a high-temperature gas state with a laser, knowing the relationship between the elapsed time after the plasma generation and the temperature, From the elapsed time after the plasma generation and the change in the dielectric strength of the plasma, the change in the dielectric strength with the change in the temperature of the generated plasma is known, and the insulation characteristics at a specific temperature of the insulating gas to be measured are measured. By applying the change in the dielectric strength accompanying the measurement, the dielectric strength at a high temperature of the insulating gas to be measured is known.

【0008】本発明は、レーザの使用によりプラズマを
再現性良く生成でき、プラズマ生成と電圧印加を電子回
路で精度良く制御できることにより、絶縁ガスの高温状
態を模擬的に実現できる。
According to the present invention, a plasma can be generated with high reproducibility by using a laser, and plasma generation and voltage application can be accurately controlled by an electronic circuit, so that a high temperature state of an insulating gas can be simulated.

【0009】[0009]

【発明の実施の形態】図1は、絶縁ガスとしてSF
スの高温状態を模擬したプラズマ測定対象の絶縁ガスの
高温状態の絶縁特性を模擬的に再現するための生成プラ
ズマの特性測定の要領を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a procedure for measuring characteristics of a generated plasma for simulating the high-temperature insulating characteristics of an insulating gas to be measured by simulating a high-temperature state of SF 6 gas as an insulating gas. Is shown.

【0010】図1(a)は、レーザ一入射によるシミレ
ーションのためのプラズマの生成装置を示す。同図に示
すように、SFガスに、YAGレーザーのレーザー光
を集光して、その部分のガスを電離させることでアーク
発生時の様な高温ガスの特性を有するプラズマを形成し
た。
FIG. 1A shows an apparatus for generating a plasma for simulation by laser irradiation. As shown in the figure, a laser beam of a YAG laser was condensed on SF 6 gas, and the gas in that portion was ionized to form a plasma having the characteristics of a high-temperature gas such as when an arc was generated.

【0011】そして、一方では、図1(b)に示す装置
による干渉計法によって、図1(a)に示す装置によっ
て生成したプラズマの温度の時間経過に伴う低下を測定
した。図1(b)に示す装置では、波長の異なる2つの
レーザー光(図中L1、L2)を用いた二波長干渉計法
に基づき、プラズマ中の電子密度、中性ガス密度を求
め、この得られた両者の値から温度が導出される。この
ような測定をプラズマ生成後の時間を変化させて行うこ
とで、時間経過と温度低下の関係が求められる。図3
は、図1(b)に示す装置によって得た生成プラズマの
生成後の時間経過と温度の関係を示す図である。
On the other hand, a decrease in the temperature of the plasma generated by the apparatus shown in FIG. 1A with time was measured by an interferometer method using the apparatus shown in FIG. 1B. In the apparatus shown in FIG. 1B, the electron density and the neutral gas density in the plasma are obtained based on a two-wavelength interferometer method using two laser beams (L1 and L2 in the figure) having different wavelengths. The temperature is derived from the obtained values. By performing such a measurement while changing the time after plasma generation, the relationship between the passage of time and the temperature drop can be obtained. FIG.
FIG. 2 is a diagram showing a relationship between a time lapse and a temperature after generation of generated plasma obtained by the apparatus shown in FIG.

【0012】図1(a)に示す装置によって生成したプ
ラズマは、図2に示す装置によって時間経過にともなう
絶縁特性の変化を測定した。この測定は、プラズマ生成
後のあるタイミングでインパルス電圧を印加する。その
とき、絶縁破壊が生じる電圧値を印加電圧の波高値を変
化させて求めることで、そのタイミングにおける絶縁破
壊電圧が決定される。この測定方法を電圧印加のタイミ
ングを変化させながら行うことで時間経過に伴う絶縁特
性の変化が求められる。この測定は、絶縁特性を測定す
るための電圧の印加のタイミングを遅らせて測定するこ
とによって行った。図4は、この図2の装置によって得
られたプラズマ生成後の時間経過と絶縁特性の関係を示
す図である。
With respect to the plasma generated by the apparatus shown in FIG. 1A, the change of the insulation characteristics with time was measured by the apparatus shown in FIG. In this measurement, an impulse voltage is applied at a certain timing after plasma generation. At that time, the voltage value at which the dielectric breakdown occurs is obtained by changing the peak value of the applied voltage, whereby the dielectric breakdown voltage at that timing is determined. By performing this measurement method while changing the timing of voltage application, a change in insulation characteristics over time can be obtained. This measurement was performed by delaying the voltage application timing for measuring the insulation characteristics. FIG. 4 is a diagram showing the relationship between the time elapsed after plasma generation and the insulation characteristics obtained by the apparatus of FIG.

【0013】図5は、図3に示すシミレーション用のプ
ラズマの時間経過と温度の関係、および図4に示す時間
経過と絶縁特性の関係から得られた温度と絶縁特性の関
係(概念図)を示す。
FIG. 5 shows the relationship between the time and temperature of the simulation plasma shown in FIG. 3 and the relationship between the temperature and the insulation characteristics obtained from the relationship between the time and the insulation characteristics shown in FIG. 4 (conceptual diagram). Is shown.

【0014】この図5に示す関係により、実際に測定す
べき絶縁ガスのある温度での絶縁特性を当てはめること
によって、絶縁ガスの絶縁特性と温度との関係を知るこ
とができる。
By applying the insulation characteristics at a certain temperature of the insulation gas to be actually measured from the relationship shown in FIG. 5, the relationship between the insulation characteristics of the insulation gas and the temperature can be known.

【0015】[0015]

【発明の効果】本発明は、比較的簡単に絶縁ガスの温度
と絶縁特性の関係を、ガスの種類によらず、比較的簡単
に、且つ、正確に知ることができる。
According to the present invention, the relationship between the temperature of the insulating gas and the insulating characteristics can be relatively easily and accurately determined regardless of the type of gas.

【0016】また、本発明によって、SFガスをはじ
め、今後開発されるであろうSF 代替ガスの高温にお
ける絶縁特性を正確に知ることができるため、信頼性に
優れた各種のガス絶縁機器が設計できる。したがって、
遮断器開放(アーク遮断)時の過渡回復電圧に対する絶
縁設計支援、新絶縁媒体ガスの高温状態の絶縁特性評価
(遮断時・短絡事故時)に適用できる。
Also, according to the present invention, SF6Repel gas
SF that will be developed in the future6 High temperature of alternative gas
The insulation characteristics of the
Excellent various gas insulation equipment can be designed. Therefore,
Insulation against transient recovery voltage when circuit breaker is opened (arc interruption)
Edge design support, insulation characteristics evaluation of new insulating medium gas at high temperature
(At the time of interruption / short circuit accident).

【0017】[0017]

【図面の簡単な説明】[Brief description of the drawings]

【0018】[0018]

【図1】 絶縁ガスとしてSFガスの高温状態を模擬
したプラズマ測定対象の絶縁ガスの高温状態の絶縁特性
を模擬的に再現するためのレーザー生成装置を示す。同
図(b)は、プラズマ生成後の時間経過とプラズマ温度
の関係を測定する要領を示す。
FIG. 1 shows a laser generator for simulating the high-temperature insulation properties of an insulating gas to be measured in a plasma, simulating a high-temperature state of SF 6 gas as an insulating gas. FIG. 2B shows a procedure for measuring the relationship between the time elapsed after plasma generation and the plasma temperature.

【0019】[0019]

【図2】 図2は、プラズマ生成後の時間経過とプラズ
マの絶縁特性の関係を測定する要領を示す。
FIG. 2 shows how to measure the relationship between the time elapsed after plasma generation and the insulating properties of plasma.

【0020】[0020]

【図3】 図1(b)の要領によって得た生成プラズマ
の生成後の時間経過と温度の関係を示す。
FIG. 3 shows a relationship between a lapse of time and a temperature after generation of generated plasma obtained in the manner of FIG. 1B.

【0021】[0021]

【図4】 図2の要領によって得た生成プラズマの生成
後の時間経過と絶縁持性の関係を示す。
FIG. 4 shows the relationship between the time lapse after the generation of the generated plasma obtained in the manner of FIG. 2 and the insulation property.

【0022】[0022]

【図5】 図3と図4から得られた温度と絶縁特性の関
係(概念図)を示す。
FIG. 5 shows a relationship (conceptual diagram) between the temperature and the insulation characteristics obtained from FIGS. 3 and 4.

【0023】[0023]

【符号の説明】[Explanation of symbols]

L1,L2:レーザー光 L1, L2: laser light

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02B 13/055 H02B 13/06 J 5G365 H02G 5/06 391 (72)発明者 趙 孟佑 福岡県北九州市戸畑区仙水町1番1号 九 州工業大学内 (72)発明者 大塚 信也 福岡県北九州市戸畑区仙水町1番1号 九 州工業大学内 (72)発明者 中村 道昭 福岡県福岡市南区塩原二丁目1番47号 九 州電力株式会社総合研究所内 Fターム(参考) 2G015 AA03 AA10 BA01 BA03 CA02 CA08 2G016 AA00 2G059 AA05 BB01 EE09 EE11 FF04 GG01 GG03 5G017 BB01 EE04 EE07 HH04 5G028 GG19 GG21 5G365 DN05 DN06 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H02B 13/055 H02B 13/06 J5G365 H02G 5/06 391 (72) Inventor Moo Zha Senshu, Tobata-ku, Kitakyushu-shi, Fukuoka 1-1, Kyushu Institute of Technology, Kyushu Institute of Technology No. 1-47 F-term in Kyushu Electric Power Co., Inc. Research Laboratory (Reference)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザで高温ガス状態を模擬したプラズ
マを生成し、 プラズマ生成後の経過時間と温度の関係を測定するとと
もに、 プラズマ生成後の経過時間とプラズマの絶縁耐力の変化
を測定し、 上記プラズマ生成後の経過時間と温度の関係と、上記プ
ラズマ生成後の経過時間とプラズマの絶縁耐力の変化か
ら、生成プラズマの温度の変化にともなう絶縁耐力の変
化を知り、 測定対象の絶縁ガスの特定温度における絶縁特性を、前
記生成プラズマの温度の変化にともなう絶縁耐力の変化
に当てはめて、測定対象の絶縁ガスの高温における絶縁
耐力を知る絶縁ガスの高温における絶縁特性測定方法。
1. A plasma simulating a high-temperature gas state is generated by a laser, a relationship between an elapsed time after the plasma is generated and a temperature is measured, and a change in an elapsed time after the plasma is generated and a change in a dielectric strength of the plasma are measured. From the relationship between the elapsed time and temperature after the generation of the plasma and the change in the dielectric strength of the plasma from the elapsed time after the generation of the plasma and the change in the dielectric strength of the plasma, the change in the dielectric strength with the change in the temperature of the generated plasma is known. A method for measuring the insulation properties at a high temperature of an insulating gas, wherein the insulation properties at a specific temperature are applied to the change in the dielectric strength attributable to the change in the temperature of the generated plasma to determine the insulation strength at a high temperature of the insulation gas to be measured.
【請求項2】 プラズマ生成後の経過時間とプラズマの
絶縁耐力の変化は、絶縁耐力の測定のための電圧印加の
時間のタイミングをずらせて行う請求項1に記載の絶縁
ガスの高温における絶縁特性測定方法。
2. The insulation characteristics of an insulating gas at a high temperature according to claim 1, wherein the elapsed time after the generation of the plasma and the change in the dielectric strength of the plasma are changed by shifting the timing of the voltage application time for measuring the dielectric strength. Measuring method.
JP2001133359A 2001-04-27 2001-04-27 Method for measuring insulation characteristics of insulating gas at high temperature Expired - Fee Related JP4739574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001133359A JP4739574B2 (en) 2001-04-27 2001-04-27 Method for measuring insulation characteristics of insulating gas at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001133359A JP4739574B2 (en) 2001-04-27 2001-04-27 Method for measuring insulation characteristics of insulating gas at high temperature

Publications (2)

Publication Number Publication Date
JP2002328148A true JP2002328148A (en) 2002-11-15
JP4739574B2 JP4739574B2 (en) 2011-08-03

Family

ID=18981230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001133359A Expired - Fee Related JP4739574B2 (en) 2001-04-27 2001-04-27 Method for measuring insulation characteristics of insulating gas at high temperature

Country Status (1)

Country Link
JP (1) JP4739574B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107179467A (en) * 2017-05-18 2017-09-19 北京四方继保自动化股份有限公司 GIL Fault Locating Methods and fault location system based on earth current
CN110609217A (en) * 2018-06-14 2019-12-24 平高集团有限公司 Mixed gas low-temperature breakdown voltage detection system and method
CN117538708A (en) * 2023-12-11 2024-02-09 南宁职业技术学院 Calculation method of dielectric strength of binary environment-friendly mixed gas

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104133162B (en) * 2013-08-19 2017-03-22 国家电网公司 Test research device used for electrical performance research on mixed gas of high-voltage electrical equipment
CN103616608B (en) * 2013-12-10 2017-01-18 国家电网公司 Intelligent monitoring device andg method for electric contact state of gas-insulation switch contactor
CN108333502B (en) * 2018-01-15 2020-05-05 温州大学苍南研究院 Method for measuring action temperature of miniature circuit breaker
CN108303643B (en) * 2018-01-15 2020-05-05 温州大学苍南研究院 Method for rapidly measuring thermal time constant of miniature circuit breaker

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS447273Y1 (en) * 1965-06-08 1969-03-18
JPS5678608A (en) * 1979-11-29 1981-06-27 Kubota Ltd Traveling type sand lifting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS447273Y1 (en) * 1965-06-08 1969-03-18
JPS5678608A (en) * 1979-11-29 1981-06-27 Kubota Ltd Traveling type sand lifting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107179467A (en) * 2017-05-18 2017-09-19 北京四方继保自动化股份有限公司 GIL Fault Locating Methods and fault location system based on earth current
CN107179467B (en) * 2017-05-18 2019-11-12 北京四方继保自动化股份有限公司 GIL Fault Locating Method and fault location system based on earth current
CN110609217A (en) * 2018-06-14 2019-12-24 平高集团有限公司 Mixed gas low-temperature breakdown voltage detection system and method
CN117538708A (en) * 2023-12-11 2024-02-09 南宁职业技术学院 Calculation method of dielectric strength of binary environment-friendly mixed gas
CN117538708B (en) * 2023-12-11 2024-05-10 南宁职业技术学院 Calculation method of dielectric strength of binary environment-friendly mixed gas

Also Published As

Publication number Publication date
JP4739574B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
Lindmayer et al. The process of arc splitting between metal plates in low voltage arc chutes
Yan et al. The development of PC based CAD tools for auto-expansion circuit breaker design
Wu et al. Modeling of current-limiting circuit breakers for the calculation of short-circuit current
JP2002328148A (en) Method of measuring insulation characteristic at high temperature for insulation gas
Kolimas et al. Low voltage modular circuit breakers: FEM employment for modelling of arc chambers
Andrea et al. A new DC and AC arc fault electrical model
Bizjak et al. Combined model of SF/sub 6/circuit breaker for use in digital simulation programs
St-Jean et al. Equivalence between direct and synthetic short-circuit interruption tests on HV circuit breakers
van der Sluis et al. Comparison of test circuits for high-voltage circuit breakers by numerical calculations with arc models
Li et al. Simulation analysis of intermittent arc grounding fault applying with improved cybernetic arc model
Shin et al. Development of switching performance evaluator and arc modelling tool for low-voltage switching devices
Shin et al. Arc modelling for switching performance evaluation in low-voltage switching devices
Shea et al. Measuring molded case circuit breaker resistance
CN110083905B (en) Hot spot temperature analysis method for dynamic capacity increase of isolating switch
Bizzarri et al. Brushing up on the urbanek black box arc model
Bösche et al. Test setup design for measuring the conductance in the mechanical part of hybrid-circuit-breakers before and after current commutation
Choi et al. Prediction of temperature rise of eco-friendly GIS with electromagnetic-thermal coupled analysis
Urai et al. Arc and Fluid Dynamics Simulation for High-Voltage Circuit Breakers as a Design Tool
Naderi et al. An experimental investigation and model development of arc discharge during impulse test
Blundell et al. A simplified turbulent arc model for the current-zero period of a gas-blast circuit breaker
Oh et al. Predicting Thermal Interruption Characteristics of a 72.5-kV CO 2 Circuit Breaker
Urai et al. Estimation of 80kA short-line fault interrupting capability in an SF 6 gas circuit breaker based on arc model calculation
Brahma New fault location scheme for a two-terminal transmission line using synchronized phasor measurements
Huang et al. Study on the influence of mechanism dispersion on transient recovery voltage distribution of modular DC vacuum circuit breakers
Ye et al. Coupled CFD simulation in high-voltage circuit breaker development: Free convection

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees