JP2002327271A - Electroconductive hard carbon film - Google Patents

Electroconductive hard carbon film

Info

Publication number
JP2002327271A
JP2002327271A JP2001131095A JP2001131095A JP2002327271A JP 2002327271 A JP2002327271 A JP 2002327271A JP 2001131095 A JP2001131095 A JP 2001131095A JP 2001131095 A JP2001131095 A JP 2001131095A JP 2002327271 A JP2002327271 A JP 2002327271A
Authority
JP
Japan
Prior art keywords
hard carbon
carbon film
conductive hard
film according
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001131095A
Other languages
Japanese (ja)
Other versions
JP4929531B2 (en
Inventor
Yoshinori Irie
美紀 入江
Yoshiharu Uchiumi
慶春 内海
Hisanori Ohara
久典 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001131095A priority Critical patent/JP4929531B2/en
Publication of JP2002327271A publication Critical patent/JP2002327271A/en
Application granted granted Critical
Publication of JP4929531B2 publication Critical patent/JP4929531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electroconductive hard carbon film having adequate abrasion resistance, oxidation resistance, and corrosion resistance, and being used for an application and a production process in which electroconductive members contact each other, or in a corrosive environment, and a coated member therewith. SOLUTION: The electroconductive hard carbon film has a structure in which at least one part of SP<2> connective crystals continuously ranges to a film thickness direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、導電性硬質炭素
皮膜及びその被覆部材に関し、より具体的には、複数の
導電性部材が接することで電気的に導通する導電部材、
又は腐食環境下において用いられる導電部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive hard carbon film and a covering member thereof, and more specifically, to a conductive member that is electrically connected when a plurality of conductive members come into contact with each other.
Alternatively, the present invention relates to a conductive member used in a corrosive environment.

【0002】[0002]

【従来の技術】従来、互いに接触させることで電気的に
導通させる導電性部材の接触部には、通常の金属や、カ
ーボンなどの有機導電材料や、貴金属材料などが用いら
れている。
2. Description of the Related Art Conventionally, ordinary metals, organic conductive materials such as carbon, and noble metal materials have been used for contact portions of conductive members that are brought into electrical conduction by being brought into contact with each other.

【0003】[0003]

【発明が解決しようとする課題】しかし、通常金属を用
いた場合、通常金属が酸化して絶縁体化しやすく、また
強度も低く、摩耗しやすいため、寿命が短いという問題
点があった。また、有機導電材料を用いた場合、有機導
電材料の強度が低く摩耗しやすいため、寿命が短いとい
う問題点があった。また、貴金属材料は酸化しにくい導
電材料として使用されてきたが、強度が低いために摩耗
しやすく、寿命が短く、かつ高価であるという問題点が
あった。
However, when a metal is used, there is a problem that the metal is easily oxidized to form an insulator, and has low strength and is easily worn, so that its life is short. In addition, when an organic conductive material is used, the strength of the organic conductive material is low, and the organic conductive material is liable to wear. In addition, noble metal materials have been used as conductive materials that are not easily oxidized, but have a problem that they are easily worn due to low strength, have a short life, and are expensive.

【0004】また、これら貴金属や有機導電性材料は、
最終製品まで組み立てるときに部材同士の接触が起こる
場合も有り、その接触による損傷から、その用をなさな
くなる場合もあり、最終製品の歩留まりを低下させるこ
ともあった。
Further, these noble metals and organic conductive materials are
When assembling to the final product, the members may come into contact with each other, and the damage caused by the contact may cause the member not to be used, thereby lowering the yield of the final product.

【0005】一方、腐食環境下では、導電性材料として
主に貴金属材料が用いられているが、ピンホールが存在
した場合、そのピンホールを起点として腐食が進行する
ため、ピンホールを無くすために貴金属材料の厚膜化
(10μm以上)で対応している。このため、高価とな
る。
On the other hand, in a corrosive environment, a noble metal material is mainly used as a conductive material. When a pinhole is present, corrosion proceeds from the pinhole as a starting point. This is supported by increasing the thickness of the noble metal material (at least 10 μm). For this reason, it becomes expensive.

【0006】また、たとえピンホールがなくとも、最終
製品まで組み立てるときに部材同士の接触が起こる場合
も有り、その接触による損傷が腐食起点となる場合もあ
った。
[0006] Even when there is no pinhole, there is a case where members come into contact with each other when assembling to a final product, and damage due to the contact sometimes becomes a corrosion starting point.

【0007】そこでこの発明は、良好な耐摩耗性、耐酸
化性及び耐食性を有し、導電性部材同士の接触する用途
や工程、又は腐食環境下において用いられる導電性硬質
炭素皮膜及びその被覆部材を提供することを目的とす
る。
Accordingly, the present invention provides a conductive hard carbon film having good abrasion resistance, oxidation resistance and corrosion resistance and used in applications or processes where conductive members come into contact with each other or in a corrosive environment, and a coated member thereof. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】この発明は、SP2結合
性結晶の少なくとも一部が、膜厚方向に連続的に連なっ
た構造を有する導電性硬質炭素皮膜を用いることにより
上記の課題を解決したのである。
The present invention solves the above-mentioned problems by using a conductive hard carbon film having a structure in which at least a part of the SP 2 bonding crystal is continuously connected in the film thickness direction. It was done.

【0009】SP2結合性結晶の少なくとも一部が、膜
厚方向に連続的に連なった構造を有するので、高い導電
性を保持できる。また、導電性硬質炭素皮膜を用いるの
で、良好な耐摩耗性、耐酸化性及び耐食性を有する。
[0009] Since at least a part of the SP 2 bonding crystal has a structure continuously connected in the film thickness direction, high conductivity can be maintained. Further, since the conductive hard carbon film is used, it has good wear resistance, oxidation resistance and corrosion resistance.

【0010】[0010]

【発明の実施の形態】この発明にかかる導電性硬質炭素
皮膜は、SP2結合性結晶の少なくとも一部が、膜厚方
向に連続的に連なった構造を有するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The conductive hard carbon film according to the present invention has a structure in which at least a part of the SP 2 bonding crystal is continuously connected in the film thickness direction.

【0011】上記のSP2結合性結晶とは、炭素を主成
分とし、結晶内の少なくとも一部にSP2結合炭素を有
し、マクロ的にみて構造に周期性があるものをいう。こ
のような構造を有するものとしては、具体的には、グラ
ファイト、カーボンナノチューブ、オニオンクラスター
等のフラーレン族があげられる。
The above-mentioned SP 2 -bonded crystal is a crystal having carbon as a main component, having SP 2 -bonded carbon in at least a part of the crystal, and having a periodic structure in macroscopic view. Specific examples of those having such a structure include fullerenes such as graphite, carbon nanotubes, and onion clusters.

【0012】上記SP2結合性結晶は、炭素が6員環、
5員環を形成して連なることで平面又は曲面(以下、
「SP2結合平面又は曲面」と称する。)を形成し、そ
の平面又は曲面が単独、又は複数が積み重なった構造を
有する。また、このSP2結合平面又は曲面内には、S
2結合性結晶が単独で存在していることは稀であり、
グラファイト構造や多種のフラーレン族の構造が混在
し、互いに連なった状態のものが多い。
In the above SP 2 -bonding crystal, the carbon has a six-membered ring,
A plane or curved surface (hereinafter, referred to as a five-membered ring)
Referred to as "SP 2 bond flat or curved." ) Is formed, and the plane or the curved surface has a single or plural stacked structure. Also, in this SP 2 coupling plane or curved surface, S
It is rare that a P 2 binding crystal exists alone,
Graphite structures and various types of fullerene group structures are mixed and often connected to each other.

【0013】上記の炭素を主成分とするとは、炭素以外
に、不純物として、雰囲気ガスとして使用されたアルゴ
ン、窒素や原料ガスに含まれている水素等、その製法上
不可避な元素が混入しているものの、それ以外の金属元
素などは含んでいないことをいう。不可避な不純物も少
ない方が好ましく、炭素が硬質炭素皮膜全体の構成元素
に対して80at.%以上、100at.%以下で形成
されていることが望ましく、90at.%以上がより好
ましい。なお、「at.%」とは、原子数を基準とした
百分率をいう。
The above-mentioned "mainly containing carbon" means that in addition to carbon, unavoidable elements such as argon and nitrogen used as atmosphere gas and hydrogen contained in the raw material gas are mixed as impurities. But does not include other metal elements. It is preferable that the number of unavoidable impurities is small, and that carbon is 80 at. % Or more, 100 at. % Or less, and 90 at. % Or more is more preferable. Note that “at.%” Refers to a percentage based on the number of atoms.

【0014】また、上記のSP2結合性結晶の少なくと
も一部が、膜厚方向に連続的に連なった構造とは、図4
に示すように、複数のSP2結合性結晶30が硬質炭素
皮膜の最下層(基材側)から最上層(表面側)まで連な
った構造をいう。具体的には、基材29上に、必要に応
じて中間層28を介して皮膜27が設けられる場合、中
間層28又は基材29と接する皮膜27の面からその面
と反対側の面にかけて、SP2結合性結晶30が連なっ
た構造をいう。このとき、皮膜27は、連なったSP2
結合性結晶を有すれば、その構造を問わず、図4に示す
ような構造と同一構造を必ずしも有する必要はない。
A structure in which at least a part of the SP 2 bonding crystal is continuously connected in the film thickness direction is described in FIG.
As shown in FIG. 2 , a structure in which a plurality of SP 2 binding crystals 30 are connected from the lowermost layer (substrate side) to the uppermost layer (surface side) of the hard carbon film. Specifically, when the coating 27 is provided on the base material 29 via the intermediate layer 28 as necessary, the coating 27 extends from the surface of the coating 27 in contact with the intermediate layer 28 or the base material 29 to a surface opposite to the surface. , SP 2 binding crystals 30 in a row. At this time, the film 27 is continuous with SP 2
If it has a bonding crystal, it is not necessary to have the same structure as the structure shown in FIG. 4 regardless of its structure.

【0015】この発明にかかる硬質炭素皮膜が、膜厚方
向にSP2結合性結晶が連続的に連なった構造を有する
と、膜厚方向にSP2結合性結晶が連続的に連なった構
造を有さない場合に比べ、同じ導電率でも硬度が高く、
高い耐摩耗性を示す。
The organic hard carbon film according to the present invention, as having the thickness direction SP 2 bond crystal, which are arranged in this sequential structure, a structure in which SP 2 bond crystal, which are arranged in this continuously in the thickness direction Compared to the case without, the hardness is higher even with the same conductivity,
Shows high wear resistance.

【0016】この発明にかかる硬質炭素皮膜は、SP2
結合性結晶の部分で導電性を有し、それ以外の部分は、
耐摩耗性を有する。SP2結合性結晶の含有率の増加は
皮膜の低硬度化につながり、耐摩耗性を低下させる。ま
た、耐食性もSP2結合性結晶の含有率の増加によって
減少する。したがって、SP2結合性結晶の含有率を小
さくしながら、高い導電率を達成することが、耐摩耗
性、耐食性の面から重要である。そのため、SP2結合
性結晶が皮膜表面から皮膜最下層まで連続的に存在して
いることは、皮膜の膜厚方向の導電率を高めることに効
果的であり、結果的にSP2結合性結晶の含有率を低減
することができるので望ましい。
The hard carbon film according to the present invention is SP 2
It has conductivity in the part of the bonding crystal, and the other parts are
Has wear resistance. Increasing the content of SP 2 -bonded crystals leads to lower hardness of the film and lowers abrasion resistance. Also, the corrosion resistance is reduced by increasing the content of the SP 2 -binding crystals. Therefore, achieving high conductivity while reducing the content of the SP 2 -bonding crystal is important from the viewpoint of wear resistance and corrosion resistance. Therefore, the fact that the SP 2 bonding crystal is present continuously from the film surface to the lowermost layer of the film is effective in increasing the conductivity in the film thickness direction of the film, and as a result, the SP 2 bonding crystal Is desirable because the content of the compound can be reduced.

【0017】また、SP2結合性結晶の少なくとも一部
にグラファイト構造を有する方が、より高耐摩耗性、高
耐食性を有しながら、高導電率を達成できるので望まし
い。
It is desirable that at least a part of the SP 2 -bonding crystal has a graphite structure, because it can achieve high electrical conductivity while having higher wear resistance and higher corrosion resistance.

【0018】さらに、SP2結合性結晶の少なくとも一
部によって構成されるSP2結合平面又は曲面と、基板
表面とがなす角度、より好ましくは、膜厚方向に連続に
連なったSP2結合性結晶の一部によって構成されるS
2結合平面又は曲面と、基板表面とがなす角度が60
°以上、120°以下である構造を有すると、得られる
硬質炭素皮膜は、より高耐摩耗性、高耐食性を有しなが
ら、高導電率を達成できるという利点を有する。上記の
角度について具体的に説明すると、図5に示すように、
SP2結合性結晶の層構造が観察できる方向で断面観察
した場合、基材29又は中間層28上の皮膜中の炭素原
子31のうち、SP2結合によって結合された炭素原子
31によって形成される平面又は曲面、すなわち、SP
2結合平面又は曲面32と、基材29の表面がなす角度
33が上記の60°以上、120°以下とするのがよ
い。つまり、上記のSP2結合平面又は曲面32と垂直
な軸、図5におけるC軸35が、基板29表面に対して
0°以上、30°以下、又は150°以上、180°以
下を有していることと同義である。
Further, the angle formed between the SP 2 bonding plane or curved surface constituted by at least a part of the SP 2 bonding crystal and the substrate surface, more preferably, the SP 2 bonding crystal continuously connected in the film thickness direction. S constituted by a part of
The angle between the P 2 bonding plane or curved surface and the substrate surface is 60
When it has a structure of not less than 120 ° and not more than 120 °, the obtained hard carbon film has an advantage that it can achieve high electrical conductivity while having higher wear resistance and higher corrosion resistance. When the above angle is specifically described, as shown in FIG.
When the cross section is observed in a direction in which the layer structure of the SP 2 -bonded crystal can be observed, it is formed by the carbon atoms 31 bonded by the SP 2 bond among the carbon atoms 31 in the film on the base material 29 or the intermediate layer 28. Plane or curved, ie SP
It is preferable that the angle 33 formed by the two bonding planes or curved surfaces 32 and the surface of the substrate 29 is not less than 60 ° and not more than 120 °. That is, the axis perpendicular to the SP 2 coupling plane or the curved surface 32, the C-axis 35 in FIG. 5, has 0 ° or more, 30 ° or less, or 150 ° or more and 180 ° or less with respect to the surface of the substrate 29. Is synonymous with

【0019】図5に示すような硬質炭素皮膜において、
SP2結合平面又は曲面32の平面方向又は曲面方向の
導電率は高く、これと垂直な方向であるC軸方向の導電
率は低い。したがって、SP2結合性結晶のC軸35が
基板に対して30°以下又は150°以上である方が、
皮膜27の厚さ方向である皮膜表面から皮膜最下層方向
への導電率を高めようとする場合に望ましい。同じ導電
率であっても、C軸35が基板に対して30°以下又は
150°以上である方が、SP2結合性結晶の含有率を
より低い状態で、高硬度、高耐摩耗性を有することがで
き、従来法と比べて、基板に到達するイオンのエネルギ
ーを高めることができる。
In a hard carbon film as shown in FIG.
The conductivity of the SP 2 coupling plane or the curved surface 32 in the plane direction or the curved surface direction is high, and the conductivity in the C-axis direction, which is a direction perpendicular to the plane direction, is low. Therefore, when the C axis 35 of the SP 2 bonding crystal is 30 ° or less or 150 ° or more with respect to the substrate,
This is desirable when it is desired to increase the conductivity from the coating surface, which is the thickness direction of the coating 27, to the coating lowermost layer direction. Even with the same electrical conductivity, when the C axis 35 is 30 ° or less or 150 ° or more with respect to the substrate, high hardness and high wear resistance can be obtained in a state where the content of the SP 2 bonding crystal is lower. And the energy of ions reaching the substrate can be increased as compared with the conventional method.

【0020】このような構造をもつSP2結合性結晶の
少なくとも一部が、膜厚方向に連続的である構造を有す
ると、より高硬度、高耐摩耗性を有しながら、高導電率
を達成できる点で望ましい構造である。
When at least a part of the SP 2 bonding crystal having such a structure has a structure that is continuous in the film thickness direction, high conductivity and high hardness can be obtained while having higher hardness and higher wear resistance. This is a desirable structure that can be achieved.

【0021】また、この発明にかかる硬質炭素皮膜に含
まれるSP2結合平面又は曲面と隣接するSP2結合平面
又は曲面との層間距離34は、2.4Å以上3.9Å以
下であることが好ましい。上記層間距離とは、SP2
合平面又は曲面同士がファンデルワールス力で結合して
いるところの平面又は曲面間の距離のことをいい、積み
重なったSP2結合平面又は曲面間の距離のことであ
る。グラファイトではC面距離の半分がこれに相当す
る。上記層間距離を有する硬質炭素皮膜は、高硬度、高
導電率を有する。
The interlayer distance 34 between the SP 2 bonding plane or the curved surface and the adjacent SP 2 bonding plane or the curved surface included in the hard carbon film according to the present invention is preferably 2.4 ° or more and 3.9 ° or less. . The interlayer distance refers to the distance between planes or curved surfaces where the SP 2 coupling planes or curved surfaces are coupled by van der Waals force, and refers to the distance between stacked SP 2 coupling planes or curved surfaces. is there. In graphite, half of the C-plane distance corresponds to this. The hard carbon film having the above interlayer distance has high hardness and high electrical conductivity.

【0022】上記のSP2結合性結晶の存在及びその構
造は、透過電子顕微鏡による観察や電子線回折、X線回
折によって確認できる。
The existence and structure of the above-mentioned SP 2 binding crystal can be confirmed by observation with a transmission electron microscope, electron beam diffraction and X-ray diffraction.

【0023】この発明の硬質炭素皮膜は、上記のSP2
結合性結晶以外の部分は、非晶質である。ナノオーダー
でみると、SP3結合性のクラスター構造が観察される
場合もあるが、CuK線を用いたX線回折、透過電子線
回折においては、SP2結合性結晶に関するピーク以外
は結晶構造を示唆するピークは観察されない。
The hard carbon film of the present invention has the above SP 2
The portion other than the bonding crystal is amorphous. In the nano order, a cluster structure with SP 3 bonding may be observed, but in X-ray diffraction and transmission electron diffraction using CuK line, the crystal structure other than the peak relating to the SP 2 bonding crystal is changed. No suggestive peak is observed.

【0024】また、この発明にかかる硬質炭素皮膜は、
電子エネルギー損失分光による評価によってもSP2
合性結晶の存在を確認することができ、そのピーク形状
は、285eV付近のピーク高さ(I285)と293
eV付近のピーク高さ(I293)の比(=I293/
I285)が0.9以上1.6以下であることが望まし
い。285eV付近のピークはπ−π*遷移に起因し、
SP2結合の存在を示唆している。一方、293eV付
近のピークは、σ−σ*遷移に起因する。I293/I
285が0.9以下であると、SP2結合性結晶の割合
が高くなりすぎて、皮膜硬度が低くなりすぎるため、耐
摩耗性の点で劣ったり、皮膜の緻密性が悪くなって耐食
性が劣る場合がある。一方I293/I285が1.6
以上になるとSP2結合性結晶の割合が低くなりすぎ
て、導電性が低くなる場合がある。
Further, the hard carbon film according to the present invention comprises:
The presence of the SP 2 -bonding crystal can also be confirmed by evaluation by electron energy loss spectroscopy, and the peak shape is such that the peak height (I285) near 285 eV and 293
Ratio of peak height (I293) near eV (= I293 /
I285) is preferably 0.9 or more and 1.6 or less. The peak around 285 eV is due to the π-π * transition,
Suggesting the presence of SP 2 bonds. On the other hand, the peak near 293 eV is due to the σ-σ * transition. I293 / I
When 285 is 0.9 or less, the proportion of SP 2 -bonding crystals becomes too high, and the film hardness becomes too low. May be inferior. On the other hand, I293 / I285 was 1.6.
Above the above, the proportion of the SP 2 -bonding crystal may be too low, and the conductivity may be low.

【0025】さらに、この発明にかかる硬質炭素皮膜
は、ヌープ硬度が1000以上3000以下である方
が、耐摩耗性の点で望ましい。ヌープ硬度は、ダイヤモ
ンド製のヌープ圧子を用いて、15gの負荷重を10秒
間押し付けて計測する。
Further, the hard carbon coating according to the present invention preferably has a Knoop hardness of 1,000 or more and 3000 or less from the viewpoint of abrasion resistance. The Knoop hardness is measured by using a diamond Knoop indenter and pressing a load of 15 g for 10 seconds.

【0026】これらの硬質炭素皮膜を部材上に形成する
場合、部材が固体、気体、液体と接触するところの少な
くとも一部に形成されていれば良い。すなわち、必ずし
も部材全面に被覆する必要は無く、例えば複数の部材が
接触する各部材の表面や、腐食環境下で使用され、耐食
性を特に必要とする部材表面に形成させることでも効果
を発揮する。
When these hard carbon films are formed on a member, the member only needs to be formed on at least a part of the member that comes into contact with a solid, gas, or liquid. That is, it is not always necessary to cover the entire surface of the member. For example, the effect can be exerted even when the member is formed on a surface of each member that is in contact with a plurality of members or is used in a corrosive environment and particularly requires corrosion resistance.

【0027】また、部材に直接的に形成する必要はな
く、例えば密着力向上や耐食性の向上を目指して4a、
5a、6a族の金属の少なくとも一つからなる窒化物、
炭化物、炭窒化物の皮膜を中間層として、部材と本発明
の硬質炭素皮膜の間に形成しても十分な効果が得られ
る。この場合、先に述べたSP2結合性結晶の連続性
は、硬質炭素皮膜表面から中間層直上までである。
Further, it is not necessary to form them directly on the member. For example, 4a,
A nitride comprising at least one of metals belonging to the group 5a and 6a;
A sufficient effect can be obtained even if a carbide or carbonitride film is used as an intermediate layer and formed between the member and the hard carbon film of the present invention. In this case, the continuity of the SP 2 bonding crystal described above is from the surface of the hard carbon film to immediately above the intermediate layer.

【0028】この発明にかかる導電性硬質炭素皮膜は、
スパッタ蒸着法、真空アーク蒸着法等の蒸着法を用いる
ことにより、形成させることができる。
The conductive hard carbon film according to the present invention comprises:
It can be formed by using an evaporation method such as a sputtering evaporation method or a vacuum arc evaporation method.

【0029】上記のいずれの蒸着法を採用する場合であ
っても、基板に到達する炭素イオンのエネルギーを大き
くすることにより、SP2結合性結晶の少なくとも一部
が膜厚方向に連続的に連なった構造を形成させることが
できる。上記の基板に到達する炭素イオンのエネルギー
を高くする方法としては、各蒸着装置の基板バイアスを
負側に高くする方法があげられる。以下、基板バイアス
値は、絶対値表示とするが、すべて符号は負である。上
記基板バイアスとしては、400〜1000Vがよく、
400〜600Vが好ましい。バイアス電圧の絶対値が
400Vより小さいと、非晶質炭素成分の割合が多くな
り、SP2結合性結晶は連続とならない場合が生じる。
一方、バイアス電圧の絶対値が1000Vより大きい
と、析出した被膜がエッチングされ、緻密な膜となりに
くくなり、硬度が下がる場合が生じる。
In any of the above vapor deposition methods, at least a part of the SP 2 -bonded crystal is continuously connected in the film thickness direction by increasing the energy of carbon ions reaching the substrate. Can be formed. As a method of increasing the energy of the carbon ions reaching the substrate, there is a method of increasing the substrate bias of each vapor deposition device to the negative side. Hereinafter, the substrate bias value is expressed as an absolute value, but all the signs are negative. The substrate bias is preferably 400 to 1000 V,
400-600V is preferred. If the absolute value of the bias voltage is smaller than 400 V, the ratio of the amorphous carbon component increases, and the SP 2 bonding crystal may not be continuous.
On the other hand, if the absolute value of the bias voltage is larger than 1000 V, the deposited film is etched, and it is difficult to form a dense film, and the hardness may decrease.

【0030】この発明にかかる導電性硬質炭素皮膜は、
固体電解室型燃料電池セパレーター、各種電池電極、メ
ッキ用電極などの腐食環境下で使用される導電部材に使
用すると、耐腐食性の向上に効果を発揮できる。又は、
キー接点、プラグ電極、配線基板用接点、及びブラシ給
電接点などの接触、摺動接点としても耐摩耗性、耐久性
の向上に効果を発揮できる。尚、本発明の導電性硬質炭
素皮膜を形成する部材はここにあげた部材に制約される
ことはなく、複数の導電性部材が接することで電気的に
導通する導電部材、又は腐食環境下において用いられる
導電部材はもとより、単に耐摩耗性が求められる各種工
具、部品等にも適用できる。
The conductive hard carbon film according to the present invention comprises:
When used for a conductive member used in a corrosive environment such as a solid electrolytic chamber type fuel cell separator, various battery electrodes, and plating electrodes, the effect of improving corrosion resistance can be exerted. Or
It can also be used as a key contact, a plug electrode, a wiring board contact, a brush feed contact, etc., and a sliding contact. In addition, the member forming the conductive hard carbon film of the present invention is not limited to the members listed here, and a conductive member that is electrically conductive when a plurality of conductive members come into contact with each other, or in a corrosive environment. The present invention can be applied not only to the conductive member to be used but also to various tools, parts and the like that simply require wear resistance.

【0031】[0031]

【実施例】以下に実施例及び比較例をあげてこの発明を
さらに具体的に説明する。なお、以下の実施例及び比較
例において基板バイアス値を絶対値表示するが、符号は
全て負である。 (実施例1)図1に示す高周波プラズマCVD装置を用
いた。この装置は、真空槽1内に水平板状の基材ホルダ
2を具え、基材ホルダ2には、高周波電源3および直流
電源4が接続されている。そして、真空槽1はガス導入
口5とガス排気口6を具えている。
The present invention will be described more specifically below with reference to examples and comparative examples. In the following examples and comparative examples, the substrate bias value is indicated by an absolute value, but the signs are all negative. (Example 1) The high frequency plasma CVD apparatus shown in FIG. 1 was used. The apparatus includes a horizontal plate-shaped substrate holder 2 in a vacuum chamber 1, and a high-frequency power supply 3 and a DC power supply 4 are connected to the substrate holder 2. The vacuum chamber 1 has a gas inlet 5 and a gas outlet 6.

【0032】次に、上記高周波プラズマCVD装置を用
いた場合のイオン照射方法、導電性硬質炭素皮膜の形成
方法を以下に示す。まず、真空槽1内の基材ホルダ2に
基材7をセットした後、装置内を0.002Pa以下に
ガス排気口6から真空排気する。雰囲気ガスとして、A
rをガス導入口5より導入し、真空槽1内が所定の圧力
になるようにする。そして、基材ホルダ2に高周波電源
3により高周波電力500Wを、直流電源4により直流
電圧を印加し、基材ホルダに所定の負のバイアスを印加
する。これにより、高周波プラズマによりイオン化され
た正の電荷を持つ雰囲気ガスのイオンが基材7に衝突
し、基材表面の汚れや酸化物層がエッチングにより除去
される。
Next, an ion irradiation method and a method of forming a conductive hard carbon film when the above high-frequency plasma CVD apparatus is used will be described below. First, after setting the substrate 7 on the substrate holder 2 in the vacuum chamber 1, the inside of the apparatus is evacuated to 0.002 Pa or less from the gas exhaust port 6. As atmosphere gas, A
r is introduced from the gas introduction port 5 so that the inside of the vacuum chamber 1 has a predetermined pressure. Then, a high frequency power of 500 W is applied to the substrate holder 2 by the high frequency power supply 3 and a DC voltage is applied by the DC power supply 4 to apply a predetermined negative bias to the substrate holder. As a result, the ions of the atmospheric gas having a positive charge, which have been ionized by the high-frequency plasma, collide with the substrate 7, thereby removing the dirt and the oxide layer on the substrate surface by etching.

【0033】その後、真空槽1内を真空排気した後に、
真空槽1内が10Paの圧力になるようにガス導入口5
よりメタンガスを導入し、高周波電源3により基材ホル
ダ2に高周波電力300〜800W、直流電圧として5
0V〜200Vを投入し、導電性硬質炭素皮膜を形成し
た。直流電圧を硬質炭素皮膜を成膜する通常条件より絶
対値を大きく設定することで導電性硬質炭素皮膜を作製
することができた。これら導電性硬質炭素皮膜は、SP
2結合性結晶以外の部分は非晶質であった。
Then, after the inside of the vacuum chamber 1 is evacuated,
Gas inlet 5 so that the pressure in vacuum chamber 1 is 10 Pa.
Methane gas is introduced into the base material holder 2 by the high-frequency power supply 3 and the high-frequency power is 300 to 800 W, and the DC voltage is 5
A voltage of 0 V to 200 V was applied to form a conductive hard carbon film. The conductive hard carbon film could be produced by setting the absolute value of the DC voltage to be larger than the normal condition for forming the hard carbon film. These conductive hard carbon films are SP
The portions other than the two- bond crystals were amorphous.

【0034】(実施例2)図2に示すスパッタ蒸着装置
を用いて硬質炭素皮膜を形成した。この装置は、真空槽
8内に水平円盤状の回転テーブル9を具え、この回転テ
ーブル9に垂直に固定された基材ホルダ10を具える。
基材ホルダ10を挟む対向する真空槽側壁にはスパッタ
蒸発源11が設置され、各スパッタ蒸発源11は高周波
電源12に接続される。スパッタ蒸発源11にはターゲ
ット13が装着されている。片方のターゲット13にT
i,Cr,Vをセットしておき、もう片方のターゲット
13に固体炭素をセットしておく。また、基材ホルダ1
0には回転テーブル9に接続されたパルスDC電源14
により所定の負のバイアス電圧を付与することができ
る。
Example 2 A hard carbon film was formed by using a sputter deposition apparatus shown in FIG. This apparatus includes a horizontal disk-shaped rotary table 9 in a vacuum chamber 8 and a substrate holder 10 fixed vertically to the rotary table 9.
Sputter evaporation sources 11 are installed on opposing vacuum chamber side walls sandwiching the base material holder 10, and each sputter evaporation source 11 is connected to a high frequency power supply 12. A target 13 is mounted on the sputter evaporation source 11. T on one target 13
i, Cr, and V are set, and solid carbon is set on the other target 13. Also, the substrate holder 1
0 is a pulse DC power supply 14 connected to the turntable 9.
Thus, a predetermined negative bias voltage can be applied.

【0035】真空槽8内を真空排気した後に、真空槽8
内が1Pa以下の圧力になるようにガス導入口15より
2ガスとArガスを導入する。N2ガスとArガスの比
は、N2/Ar=1/2〜1/10である。固体炭素タ
ーゲットを装着したスパッタ蒸発源11に高周波電力4
00Wを投入し、基材ホルダ10に50Vのバイアス電
圧を印加し、回転テーブル9を5rpmで回転させなが
ら、Cr,Ti,Vの窒化物を中間層として形成した。
After evacuating the vacuum chamber 8, the vacuum chamber 8 is evacuated.
An N 2 gas and an Ar gas are introduced from the gas inlet 15 so that the inside pressure is 1 Pa or less. The ratio of N 2 gas to Ar gas is N 2 / Ar = 1/2 to 1/10. A high-frequency power of 4 is applied to the sputtering evaporation source 11 equipped with a solid carbon target.
With a power of 00 W, a bias voltage of 50 V was applied to the substrate holder 10 and the nitride of Cr, Ti, and V was formed as an intermediate layer while rotating the rotary table 9 at 5 rpm.

【0036】次に、真空槽8内を真空排気した後に、真
空槽8内が1Pa以下の圧力になるようにガス導入口1
5よりCH4ガスとArガスを導入する。CH4ガスとA
rガスの比はCH4/Ar=1/2〜1/10である。
固体炭素ターゲットを装着したスパッタ蒸発源11に高
周波電力400Wを投入し、基材ホルダ10に200V
〜800Vのバイアス電圧を印加し、回転テーブル9を
5rpmで回転させながら、導電性硬質炭素皮膜を形成
した。基板ホルダーヘの直流電圧を硬質炭素皮膜を成膜
する通常条件より絶対値を大きく設定することで導電性
硬質炭素皮膜を作製できた。これら導電性硬質炭素皮膜
は、SP2結合性結晶以外の部分は非晶質であった。
Next, after the inside of the vacuum chamber 8 is evacuated, the gas inlet port 1 is controlled so that the inside of the vacuum chamber 8 has a pressure of 1 Pa or less.
From step 5, CH 4 gas and Ar gas are introduced. CH 4 gas and A
The ratio of r gas is CH 4 / Ar = 1/2 to 1/10.
A high-frequency power of 400 W is applied to the sputter evaporation source 11 equipped with a solid carbon target, and 200 V is applied to the substrate holder 10.
While applying a bias voltage of 800800 V and rotating the rotary table 9 at 5 rpm, a conductive hard carbon film was formed. By setting the DC voltage to the substrate holder to be larger in absolute value than the normal condition for forming a hard carbon film, a conductive hard carbon film could be produced. In these conductive hard carbon films, portions other than the SP 2 binding crystals were amorphous.

【0037】(実施例3)図3に示す真空アーク蒸着装
置をもちいて硬質炭素皮膜を形成した。この装置は、真
空槽18内に水平円盤状の回転テーブル19を具え、こ
の回転テーブル19に垂直に固定された基材ホルダ20
を具える。基材ホルダ20を挟む対向する真空槽側壁に
はターゲット21を有するアーク放電蒸発源が設置さ
れ、各ターゲット21は直流電源22に接続される。片
方のターゲット21には、Ti,Cr,V金属を、もう
片方のターゲット21には固体炭素をセットする。ま
た、基材ホルダ20には回転テーブル19に接続された
直流電源23により所定の負のバイアス電圧を付与する
ことができる。そして、真空槽18はガス導入口24と
ガス排気口25とが設けられる。
Example 3 A hard carbon film was formed by using a vacuum arc evaporation apparatus shown in FIG. This apparatus includes a horizontal disk-shaped rotary table 19 in a vacuum chamber 18, and a substrate holder 20 fixed vertically to the rotary table 19.
With. An arc discharge evaporation source having targets 21 is provided on the opposite vacuum chamber side walls with the substrate holder 20 interposed therebetween, and each target 21 is connected to a DC power supply 22. One target 21 is set with Ti, Cr and V metals, and the other target 21 is set with solid carbon. Further, a predetermined negative bias voltage can be applied to the substrate holder 20 by the DC power supply 23 connected to the turntable 19. The vacuum chamber 18 has a gas inlet 24 and a gas outlet 25.

【0038】基材ホルダ20に基材26をセットした
後、装置内を0.002Pa以下にガス排気口25から
真空排気する。真空槽18内が2Paの圧力になるよう
にガス導入口24よりN2ガスを導入する。基材ホルダ
20に50V〜150Vのバイアス電圧を印加し、T
i,Cr,V金属ターゲットにカソード電流60Aを流
してアーク放電を発生させ、回転テーブル19を5rp
mで回転させながら、中間層を形成した。
After setting the substrate 26 in the substrate holder 20, the inside of the apparatus is evacuated to 0.002 Pa or less from the gas exhaust port 25. N 2 gas is introduced from the gas inlet 24 so that the inside of the vacuum chamber 18 has a pressure of 2 Pa. A bias voltage of 50 V to 150 V is applied to the substrate holder 20, and T
An arc discharge is generated by applying a cathode current of 60 A to the i, Cr, V metal target, and the rotating table 19 is rotated at 5 rpm.
While rotating at m, an intermediate layer was formed.

【0039】次に、真空槽18内が1Paの圧力になる
ようにガス導入口24よりArガスを導入する。又は装
置内を0.002Pa以下のままの状態で、基材ホルダ
20に150V〜800Vのバイアス電圧を印加し、固
体炭素ターゲットにカソード電流50Aを流してアーク
放電を発生させ、回転テーブル19を5rpmで回転さ
せながら、導電性硬質炭素皮膜を形成した。基板ホルダ
ーヘの直流電圧を硬質炭素皮膜を成膜する通常条件より
絶対値を大きく設定し、導電性硬質炭素皮膜を作製でき
た。これら導電性硬質炭素皮膜は、SP2結合性結晶以
外の部分は非晶質であった。
Next, Ar gas is introduced from the gas inlet 24 so that the pressure in the vacuum chamber 18 becomes 1 Pa. Alternatively, with the inside of the apparatus kept at 0.002 Pa or less, a bias voltage of 150 V to 800 V is applied to the base material holder 20, a cathode current of 50 A flows through the solid carbon target to generate arc discharge, and the rotary table 19 is rotated at 5 rpm. While rotating at, a conductive hard carbon film was formed. The absolute value of the DC voltage applied to the substrate holder was set to be larger than the normal condition for forming the hard carbon film, and a conductive hard carbon film could be produced. In these conductive hard carbon films, portions other than the SP 2 binding crystals were amorphous.

【0040】(比較例1〜3)成膜時の基板バイアス電
圧を実施例1〜3の範囲外に設定した皮膜を形成した。
Comparative Examples 1 to 3 Films in which the substrate bias voltage during film formation was set outside the range of Examples 1 to 3 were formed.

【0041】[評価] 被膜強度測定 ダイヤモンド製のヌープ圧子を用い、荷重15g、荷重
負荷時間10秒間とし、測定値10点の平均値を採用し
た。皮膜表面の凹凸が大きく圧痕の形状が見えにくい時
は、#8000のダイヤモンドペーストでバフ研摩を施
し、圧痕形状が観察できるようにした。
[Evaluation] Measurement of Coating Strength Using a Knoop indenter made of diamond, a load of 15 g and a load application time of 10 seconds were used, and an average value of 10 measured values was adopted. When the unevenness of the coating surface was so large that the shape of the indentation was difficult to see, buffing was performed with a # 8000 diamond paste so that the indentation shape could be observed.

【0042】上記のSP2結合性結晶の存在、C軸の
配向性の角度、グラファイト結晶の存在、SP2結合性
結晶の連続性、及び層間距離は、透過電子顕微鏡による
観察や電子線回折、X線回折によって調べた。
The presence of the above SP 2 bond crystal, orientation of the angle of the C axis, the presence of the graphite crystal, the continuity of the SP 2 bond crystal, and the interlayer distance is observed and electron diffraction by transmission electron microscopy, It was examined by X-ray diffraction.

【0043】5万回接触後のキー接点性能 上記の各成膜法によって成膜した導電性硬質炭素皮膜
を、携帯電話機用のキー接点を構成する皿ばね及び受け
側接点表面のSUS305基板上に、形成した。それら
の接点について、5万回の接点動作後のキー接点におけ
る接触抵抗を測定した。
Key contact performance after 50,000 contacts The conductive hard carbon film formed by each of the above-described film forming methods is applied to a SUS305 substrate on the surface of a coned disc spring and a receiving-side contact constituting a key contact for a mobile phone. , Formed. For these contacts, the contact resistance at the key contact after 50,000 contact operations was measured.

【0044】炭素含有率 ラザフォード後方散乱で炭素を定量化し、弾性反跳粒子
検出法で水素を定量化し、炭素含有率を算出した。
Carbon content Carbon was quantified by Rutherford backscattering, hydrogen was quantified by an elastic recoil particle detection method, and the carbon content was calculated.

【0045】I293/I285 電子エネルギー損失分光法を用いて、285eV付近の
ピーク高さ(I285)と293eV付近のピーク高さ
(I293)の比(=I293/I285)を算出し
た。
I293 / I285 Using electron energy loss spectroscopy, the ratio (= I293 / I285) of the peak height (I285) around 285 eV and the peak height (I293) around 293 eV was calculated.

【0046】導電率 試料上の2点に電極を設け、これらの間に一定の電流を
流して2電極間の電位降下を測定し、抵抗値を算出して
導電率を算出した。上記の各結果を表1に併せて示す。
Conductivity Electrodes were provided at two points on the sample, a constant current was passed between them, the potential drop between the two electrodes was measured, and the resistance was calculated to calculate the conductivity. The results are shown in Table 1.

【0047】[0047]

【表1】 [Table 1]

【0048】表1の結果より、接点部分にこの発明にか
かる導電性硬質炭素皮膜を形成した部材は、酸化などの
変質がなく良好な接点性能を示すことがわかった。一
方、この発明の範囲外である比較例は、比較例1、2、
3については、皮膜自身の導電率が充分でなく用をなさ
ない。この実施例は5万回後の接触抵抗の増加が、当初
の値の3倍以内に抑えられた。
From the results shown in Table 1, it was found that the member having the conductive hard carbon film according to the present invention formed on the contact portion exhibited good contact performance without deterioration such as oxidation. On the other hand, Comparative Examples outside the scope of the present invention are Comparative Examples 1, 2,
For No. 3, the conductivity of the film itself is not sufficient and it is useless. In this example, the increase in the contact resistance after 50,000 times was suppressed within three times the initial value.

【0049】[0049]

【発明の効果】この発明にかかる導電性硬質炭素皮膜
は、SP2結合性結晶の少なくとも一部が、膜厚方向に
連続的に連なった構造を有するので、高い導電性を保持
できる。
The conductive hard carbon film according to the present invention has a structure in which at least a part of the SP 2 bonding crystal has a continuous structure in the film thickness direction, so that high conductivity can be maintained.

【0050】また、導電性硬質炭素皮膜を用いるので、
良好な耐摩耗性、耐酸化性及び耐食性を有する。
Also, since a conductive hard carbon film is used,
Has good wear resistance, oxidation resistance and corrosion resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高周波プラズマCVD装置を示す概略図FIG. 1 is a schematic diagram showing a high-frequency plasma CVD apparatus.

【図2】スバッタ蒸着装置を示す概略図FIG. 2 is a schematic diagram showing a sbutter evaporation apparatus.

【図3】真空アーク蒸着装置を示す概略図FIG. 3 is a schematic diagram showing a vacuum arc evaporation apparatus.

【図4】SP2結合結晶が膜厚方向に連続的に連なった
状態を示す模式図
FIG. 4 is a schematic view showing a state in which SP 2 bonded crystals are continuously connected in the film thickness direction.

【図5】SP2結合結晶と基材平面がなす角度について
の説明図
FIG. 5 is an explanatory view of an angle formed by an SP 2 bonded crystal and a substrate plane.

【符号の説明】[Explanation of symbols]

1 真空槽 2 基材ホルダ 3 高周波電源 4 直流電源 5 ガス導入口 6 ガス排気口 7 基材 8 真空槽 9 由転テーブル 10 基材ホルダ 11 スパッタ蒸発源 12 高周波電源 13 ターゲット 14 直流電源 15 ガス導入口 16 ガス排気口 17 基材 18 真空槽 19 回転テーブル 20 基材ホルダ 21 ターゲット 22 直流電源 23 直流電源 24 ガス導入口 25 ガス排気口 26 基材 27 皮膜 28 中間層 29 基材 30 SP2結合結晶 31 炭素原子 32 SP2結合平面又は曲面 33 SP2結合平面又は曲面と基材表面がなす角度 34 層間距離DESCRIPTION OF SYMBOLS 1 Vacuum tank 2 Substrate holder 3 High frequency power supply 4 DC power supply 5 Gas inlet 6 Gas exhaust port 7 Substrate 8 Vacuum tank 9 Rotation table 10 Substrate holder 11 Sputtering evaporation source 12 High frequency power supply 13 Target 14 DC power supply 15 Gas introduction Port 16 Gas exhaust port 17 Substrate 18 Vacuum tank 19 Rotary table 20 Substrate holder 21 Target 22 DC power supply 23 DC power supply 24 Gas inlet 25 Gas exhaust port 26 Substrate 27 Coating 28 Intermediate layer 29 Substrate 30 SP 2 bonded crystal 31 angle 34 interlayer distance formed by carbon atoms 32 SP 2 bond flat or curved 33 SP 2 bond flat or curved and the substrate surface

フロントページの続き (72)発明者 大原 久典 伊丹市昆陽北一丁目1番1号 住友電気工 業株式会社伊丹製作所内 Fターム(参考) 4G046 CA02 CB00 CB03 CB09 CC06 4K029 BA02 BA07 BA17 BA34 BB02 BB07 BC03 BD03 CA01 CA05 CA06 DB05 DB17 DC05 DD06 4K030 AA10 BA27 BB01 FA03 KA20 LA01 LA11 Continued on the front page (72) Inventor Hisanori Ohara 1-1-1, Kunyo-Kita, Itami City F-term in Sumitomo Electric Industries, Ltd. Itami Works 4G046 CA02 CB00 CB03 CB09 CC06 4K029 BA02 BA07 BA17 BA34 BB02 BB07 BC03 BD03 CA01 CA05 CA06 DB05 DB17 DC05 DD06 4K030 AA10 BA27 BB01 FA03 KA20 LA01 LA11

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 SP2結合性結晶の少なくとも一部が、
膜厚方向に連続的に連なった構造を有する導電性硬質炭
素皮膜。
1. The method according to claim 1, wherein at least a part of the SP 2 binding crystal is
A conductive hard carbon film having a structure continuously connected in the film thickness direction.
【請求項2】 SP2結合性結晶の少なくとも一部にグ
ラファイト構造を有する請求項1に記載の導電性硬質炭
素皮膜。
2. The conductive hard carbon film according to claim 1, wherein at least a part of the SP 2 bonding crystal has a graphite structure.
【請求項3】 SP2結合性結晶の少なくとも一部によ
って構成されるSP2結合平面又は曲面と、基板表面と
により形成される角度が、60°以上、120°以下で
ある請求項1又は2に記載の導電性硬質炭素皮膜。
3. An angle formed by an SP 2 bonding plane or a curved surface constituted by at least a part of the SP 2 bonding crystal and a substrate surface is 60 ° or more and 120 ° or less. The conductive hard carbon film according to the above.
【請求項4】 膜厚方向に連続的に連なったSP2結合
性結晶の一部によって構成されるSP2結合平面又は曲
面と、基板表面とにより形成される角度が、60°以
上、120°以下である請求項2に記載の導電性硬質炭
素皮膜。
4. An angle formed by an SP 2 bonding plane or a curved surface constituted by a part of an SP 2 bonding crystal continuously connected in a film thickness direction and a substrate surface is 60 ° or more and 120 ° or more. The conductive hard carbon film according to claim 2, which is as follows.
【請求項5】 SP2結合平面又は曲面と隣接するSP2
結合平面又は曲面との層間距離が、2.4Å以上3.9
Å以下である請求項1乃至4のいずれかに記載の導電性
硬質炭素皮膜。
5. The SP 2 adjacent to the SP 2 bond flat or curved
The distance between the bonding plane and the curved surface is 2.4 ° or more and 3.9 or more.
The conductive hard carbon film according to any one of claims 1 to 4, wherein
【請求項6】 SP2結合性結晶以外の部分は、非晶質
である請求項1乃至5のいずれかに記載の導電性硬質炭
素皮膜。
6. The conductive hard carbon film according to claim 1, wherein a portion other than the SP 2 binding crystal is amorphous.
【請求項7】 電子エネルギー損失分光における285
eV付近のピーク高さ(I285)と293eV付近の
ピーク高さ(I293)の比(=I293/I285)
が0.9以上1.6以下である請求項1乃至6のいずれ
かに記載の導電性硬質炭素皮膜。
7. 285 in electron energy loss spectroscopy
Ratio of peak height (I285) near eV to peak height (I293) near 293 eV (= I293 / I285)
The conductive hard carbon film according to any one of claims 1 to 6, wherein is not less than 0.9 and not more than 1.6.
【請求項8】 ヌープ硬度が1000以上3000以下
である請求項1乃至7のいずれかに記載の導電性硬質炭
素皮膜。
8. The conductive hard carbon film according to claim 1, which has a Knoop hardness of 1000 or more and 3000 or less.
【請求項9】 炭素の組成が皮膜全体の80at.%以
上、100at.%以下である請求項1乃至8のいずれ
かに記載の導電性硬質炭素皮膜。
9. The method according to claim 9, wherein the composition of carbon is 80 at. % Or more, 100 at. %. The conductive hard carbon film according to any one of claims 1 to 8, which is not more than 10%.
【請求項10】 複数の部材が接触する部材表面、又は
腐食環境下で使用される部材表面に形成された請求項1
乃至9のいずれかに記載の導電性硬質炭素皮膜。
10. A member formed on a surface of a member in contact with a plurality of members or a member used in a corrosive environment.
10. The conductive hard carbon film according to any one of items 1 to 9.
【請求項11】 スパッタ蒸着法、真空アーク蒸着法を
用いて形成された請求項1乃至10のいずれかに記載の
導電性硬質炭素皮膜。
11. The conductive hard carbon film according to claim 1, which is formed by using a sputter deposition method or a vacuum arc deposition method.
JP2001131095A 2001-04-27 2001-04-27 Conductive hard carbon film Expired - Lifetime JP4929531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001131095A JP4929531B2 (en) 2001-04-27 2001-04-27 Conductive hard carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001131095A JP4929531B2 (en) 2001-04-27 2001-04-27 Conductive hard carbon film

Publications (2)

Publication Number Publication Date
JP2002327271A true JP2002327271A (en) 2002-11-15
JP4929531B2 JP4929531B2 (en) 2012-05-09

Family

ID=18979340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001131095A Expired - Lifetime JP4929531B2 (en) 2001-04-27 2001-04-27 Conductive hard carbon film

Country Status (1)

Country Link
JP (1) JP4929531B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247060A (en) * 2001-12-17 2003-09-05 Sumitomo Electric Ind Ltd Method of producing amorphous carbon film and amorphous carbon-coated sliding parts
JP2005006479A (en) * 2003-06-16 2005-01-06 Matsushita Electric Ind Co Ltd Sliding contact material
JP2006199564A (en) * 2005-01-24 2006-08-03 Nachi Fujikoshi Corp Method of manufacturing carbon onion
JP2007297698A (en) * 2006-04-28 2007-11-15 Tatung Co Method for manufacturing dlc film
JP2010024476A (en) * 2008-07-16 2010-02-04 Plasma Ion Assist Co Ltd Diamond-like carbon and manufacturing method thereof
WO2010061696A1 (en) * 2008-11-25 2010-06-03 日産自動車株式会社 Conductive member and solid state polymer fuel cell using same
JP2010129395A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Laminated structural body, its manufacturing method, and fuel cell using the same
JP2010129393A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Gas diffusion layer for fuel cell, its manufacturing method, and fuel cell using the same
JP2010129394A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Conductive member, its manufacturing method, separator for fuel cell using the same, and solid polymer fuel cell
JP2010153353A (en) * 2008-11-25 2010-07-08 Nissan Motor Co Ltd Conductive member, manufacturing method thereof, as well as fuel cell separator and solid polymer fuel cell using the same
JP2010156026A (en) * 2008-12-29 2010-07-15 Sumitomo Electric Ind Ltd Hard carbon film, and method for forming the same
JP2011148686A (en) * 2009-12-25 2011-08-04 Toyota Central R&D Labs Inc Amorphous carbon orientation film and method for forming the same
EP2361882A1 (en) 2006-05-22 2011-08-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Conductive member provided with amorphous carbon film, process for its manufacture and fuel cell separator
JP2013104107A (en) * 2011-11-15 2013-05-30 Dowa Thermotech Kk Hard film-coated member and method for manufacturing the same
US20130330617A1 (en) * 2011-02-21 2013-12-12 Japan Capacitor Industrial Co., Ltd. Electrode foil, current collector, electrode, and electric energy storage element using same
WO2014163038A1 (en) * 2013-04-02 2014-10-09 太陽化学工業株式会社 Structure equipped with amorphous carbon film having electrically conductive part and containing silicon, and method for manufacturing same
WO2015122159A1 (en) * 2014-02-12 2015-08-20 株式会社アルバック Method for forming carbon electrode film, carbon electrode, and method for manufacturing phase change memory element
JP2017171989A (en) * 2016-03-23 2017-09-28 日本アイ・ティ・エフ株式会社 Coated film, method for manufacturing the same and pvd apparatus
WO2018235750A1 (en) 2017-06-20 2018-12-27 日本ピストンリング株式会社 Sliding member and coating film
US10283785B2 (en) 2012-01-30 2019-05-07 Toyota Jidosha Kabushiki Kaisha Amorphous carbon film, process for forming amorphous carbon film, electrically conductive member and fuel cell bipolar plate having amorphous carbon film
US10428416B2 (en) 2014-09-17 2019-10-01 Nippon Itf, Inc. Coating film, manufacturing method for same, and PVD device
US10457885B2 (en) 2014-09-17 2019-10-29 Nippon Itf, Inc. Coating film, manufacturing method for same, and PVD device
JP2021021098A (en) * 2019-07-25 2021-02-18 日本アイ・ティ・エフ株式会社 Amorphous hard carbon film and method for depositing the same
US11247903B2 (en) 2016-03-23 2022-02-15 Nippon Itf, Inc. Coating film, method for manufacturing same, and PVD apparatus
US11261519B2 (en) 2015-12-18 2022-03-01 Nippon Itf, Inc. Coating film, manufacturing method therefor, and PVD apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127210A (en) * 1983-12-12 1985-07-06 Agency Of Ind Science & Technol Production of high electrically conductive thin film
JPH1025565A (en) * 1996-07-12 1998-01-27 Osamu Takai Production of head thin film and hard thin film
JP2002161352A (en) * 2000-11-07 2002-06-04 Teer Coatings Ltd Carbon coating, method and apparatus for coating carbon, and article having such coating
JP2002216615A (en) * 2001-01-15 2002-08-02 Noritake Co Ltd Manufacturing method of field electron emitter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127210A (en) * 1983-12-12 1985-07-06 Agency Of Ind Science & Technol Production of high electrically conductive thin film
JPH1025565A (en) * 1996-07-12 1998-01-27 Osamu Takai Production of head thin film and hard thin film
JP2002161352A (en) * 2000-11-07 2002-06-04 Teer Coatings Ltd Carbon coating, method and apparatus for coating carbon, and article having such coating
JP2002216615A (en) * 2001-01-15 2002-08-02 Noritake Co Ltd Manufacturing method of field electron emitter

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247060A (en) * 2001-12-17 2003-09-05 Sumitomo Electric Ind Ltd Method of producing amorphous carbon film and amorphous carbon-coated sliding parts
JP2005006479A (en) * 2003-06-16 2005-01-06 Matsushita Electric Ind Co Ltd Sliding contact material
JP4680612B2 (en) * 2005-01-24 2011-05-11 株式会社不二越 Production method of carbon onion
JP2006199564A (en) * 2005-01-24 2006-08-03 Nachi Fujikoshi Corp Method of manufacturing carbon onion
JP2007297698A (en) * 2006-04-28 2007-11-15 Tatung Co Method for manufacturing dlc film
US8119242B2 (en) 2006-05-22 2012-02-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Amorphous carbon film, process for forming amorphous carbon film, conductive member provided with amorphous carbon film, and fuel cell separator
EP2361882A1 (en) 2006-05-22 2011-08-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Conductive member provided with amorphous carbon film, process for its manufacture and fuel cell separator
JP4704453B2 (en) * 2008-07-16 2011-06-15 株式会社プラズマイオンアシスト Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product
JP2010024476A (en) * 2008-07-16 2010-02-04 Plasma Ion Assist Co Ltd Diamond-like carbon and manufacturing method thereof
JP2010153353A (en) * 2008-11-25 2010-07-08 Nissan Motor Co Ltd Conductive member, manufacturing method thereof, as well as fuel cell separator and solid polymer fuel cell using the same
US8974983B2 (en) 2008-11-25 2015-03-10 Nissan Motor Co., Ltd. Electrical conductive member and polymer electrolyte fuel cell using the same
WO2010061696A1 (en) * 2008-11-25 2010-06-03 日産自動車株式会社 Conductive member and solid state polymer fuel cell using same
RU2472257C1 (en) * 2008-11-25 2013-01-10 Ниссан Мотор Ко., Лтд. Electroconductive unit and fuel element with polymer electrolyte with its usage
JP2010129394A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Conductive member, its manufacturing method, separator for fuel cell using the same, and solid polymer fuel cell
JP2010129393A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Gas diffusion layer for fuel cell, its manufacturing method, and fuel cell using the same
JP2010129395A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Laminated structural body, its manufacturing method, and fuel cell using the same
JP2010156026A (en) * 2008-12-29 2010-07-15 Sumitomo Electric Ind Ltd Hard carbon film, and method for forming the same
JP2011148686A (en) * 2009-12-25 2011-08-04 Toyota Central R&D Labs Inc Amorphous carbon orientation film and method for forming the same
US8999604B2 (en) 2009-12-25 2015-04-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Oriented amorphous carbon film and process for forming the same
US20130330617A1 (en) * 2011-02-21 2013-12-12 Japan Capacitor Industrial Co., Ltd. Electrode foil, current collector, electrode, and electric energy storage element using same
US9418796B2 (en) * 2011-02-21 2016-08-16 Japan Capacitor Industrial Co., Ltd. Electrode foil, current collector, electrode, and electric energy storage element using same
JP2013104107A (en) * 2011-11-15 2013-05-30 Dowa Thermotech Kk Hard film-coated member and method for manufacturing the same
US10283785B2 (en) 2012-01-30 2019-05-07 Toyota Jidosha Kabushiki Kaisha Amorphous carbon film, process for forming amorphous carbon film, electrically conductive member and fuel cell bipolar plate having amorphous carbon film
JPWO2014163038A1 (en) * 2013-04-02 2017-02-16 太陽誘電ケミカルテクノロジー株式会社 Structure having conductive carbon and amorphous carbon film containing silicon and method for manufacturing the same
WO2014163038A1 (en) * 2013-04-02 2014-10-09 太陽化学工業株式会社 Structure equipped with amorphous carbon film having electrically conductive part and containing silicon, and method for manufacturing same
TWI645058B (en) * 2014-02-12 2018-12-21 日商愛發科股份有限公司 Method of forming carbon electrode layer, and method for manufacturing phase-change memory device
JPWO2015122159A1 (en) * 2014-02-12 2017-03-30 株式会社アルバック Method for forming carbon electrode film, method for producing carbon electrode and phase change memory element
CN105980593A (en) * 2014-02-12 2016-09-28 株式会社爱发科 Method for forming carbon electrode film, carbon electrode, and method for manufacturing phase change memory element
WO2015122159A1 (en) * 2014-02-12 2015-08-20 株式会社アルバック Method for forming carbon electrode film, carbon electrode, and method for manufacturing phase change memory element
US10428416B2 (en) 2014-09-17 2019-10-01 Nippon Itf, Inc. Coating film, manufacturing method for same, and PVD device
US10457885B2 (en) 2014-09-17 2019-10-29 Nippon Itf, Inc. Coating film, manufacturing method for same, and PVD device
US11261519B2 (en) 2015-12-18 2022-03-01 Nippon Itf, Inc. Coating film, manufacturing method therefor, and PVD apparatus
JP2017171989A (en) * 2016-03-23 2017-09-28 日本アイ・ティ・エフ株式会社 Coated film, method for manufacturing the same and pvd apparatus
US11247903B2 (en) 2016-03-23 2022-02-15 Nippon Itf, Inc. Coating film, method for manufacturing same, and PVD apparatus
WO2018235750A1 (en) 2017-06-20 2018-12-27 日本ピストンリング株式会社 Sliding member and coating film
US11293548B2 (en) 2017-06-20 2022-04-05 Nippon Piston Ring Co., Ltd Sliding member and coating film
JP2021021098A (en) * 2019-07-25 2021-02-18 日本アイ・ティ・エフ株式会社 Amorphous hard carbon film and method for depositing the same
JP7209355B2 (en) 2019-07-25 2023-01-20 日本アイ・ティ・エフ株式会社 Amorphous hard carbon film and its deposition method

Also Published As

Publication number Publication date
JP4929531B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP2002327271A (en) Electroconductive hard carbon film
KR101127197B1 (en) Fuel cell separator, fuel cell separator manufacturing method and fuel cell
TW201429035A (en) Conductive member, electrode, secondary battery, capacitor, method for producing conductive member, and method for producing electrode
JP5439965B2 (en) Conductive member, method for producing the same, fuel cell separator using the same, and polymer electrolyte fuel cell
JP2006286457A (en) Manufacturing method of fuel cell separator
KR20140122114A (en) Metal separator for fuel cell and manufacturing method of the same
TWI460295B (en) Conductive and protective film and method for producing the same
JP2017179419A (en) Formation method of carbon film
CN108486546A (en) A kind of BDD membrane electrodes material and preparation method thereof
CN118805082A (en) Electrode and electrochemical measurement system
EP3964604A1 (en) Doped dlc for bipolar plate (bpp) and tribological applications
US10858746B2 (en) Method of manufacturing graphene by DC switching
JP3236594B2 (en) Member with carbon film formed
JP2990220B2 (en) Carbon or carbon-based coating
JP7350235B2 (en) Method for manufacturing carbon nanoparticles
JPH06131968A (en) Field emission type electron source and array substrate
JP5272575B2 (en) Manufacturing method of fuel cell separator
JP3236599B2 (en) Complex
JP2006140009A (en) Metal separator for solid polyelectrolyte fuel cell and its manufacturing method
KR100686318B1 (en) Apparatus and method for coating nanostructure of conductive carbon
JP3236600B2 (en) Method of forming carbon or carbon-based coating
JP3236602B2 (en) Method of forming carbon or carbon-based coating
US20230227963A1 (en) Preparation method of niobium diselenide film with ultra-low friction and low electrical noise under sliding electrical contact in vacuum
JPH10183350A (en) Electrical member
JP3236601B2 (en) Complex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4929531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term