JP2002327079A - Titanium oxide/organic polymer composite suitable as artificial bone and the like - Google Patents

Titanium oxide/organic polymer composite suitable as artificial bone and the like

Info

Publication number
JP2002327079A
JP2002327079A JP2001135160A JP2001135160A JP2002327079A JP 2002327079 A JP2002327079 A JP 2002327079A JP 2001135160 A JP2001135160 A JP 2001135160A JP 2001135160 A JP2001135160 A JP 2001135160A JP 2002327079 A JP2002327079 A JP 2002327079A
Authority
JP
Japan
Prior art keywords
titanium oxide
organic polymer
apatite
resin
polymer composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001135160A
Other languages
Japanese (ja)
Other versions
JP4017836B2 (en
Inventor
Tadashi Kokubo
正 小久保
Masakazu Kawashita
将一 川下
Takeaki Miyamoto
武明 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001135160A priority Critical patent/JP4017836B2/en
Publication of JP2002327079A publication Critical patent/JP2002327079A/en
Application granted granted Critical
Publication of JP4017836B2 publication Critical patent/JP4017836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide anatase-type titanium oxide fine particles/organic polymer composite, having an ability to form an apatite in an aqueous solution supersaturated with the apatite such as pseudo body fluid, and to provide a composite material wherein the apatite is formed on the surface of the above composite. SOLUTION: A blended compound, composed of at least anatase-type titanium oxide fine particles or precurser compound thereof and a curable or thermoplastic resin, is molded, or cut out or organized from this molded product to form the composite material. Anatase-type titanium oxide fine particles, having the ability to form the apatite in aqueous solution supersaturated with the apatite such as pseudo body fluid, is exposed on the surface of the above composite material by mechanical abrasion or/and chemical treatment to form the titanium oxide/organic polymer composite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、少なくともアナタ
ーゼ型二酸化チタン微粒子と硬化性あるいは熱可塑性有
機高分子との複合材料から得られる、擬似体液などのア
パタイトに対して過飽和な水溶液中もしくは体内でアパ
タイト形成能を有する骨置換用あるいは骨修復用アナタ
ーゼ型酸化チタン・有機高分子複合体およびアパタイト
が表面に形成された骨置換用あるいは骨修復用アナター
ゼ型酸化チタン・有機高分子複合体に関する。
The present invention relates to apatite in an aqueous solution or a body supersaturated with respect to apatite, such as a simulated body fluid, obtained from a composite material of at least anatase type titanium dioxide fine particles and a curable or thermoplastic organic polymer. The present invention relates to an anatase-type titanium oxide / organic polymer composite for bone replacement or bone repair having a forming ability and an anatase-type titanium oxide / organic polymer composite for bone replacement or bone repair having apatite formed on the surface.

【0002】[0002]

【従来の技術】天然の骨は、有機質コラーゲン繊維がア
パタイト結晶を繋ぎ合わせて構成された3次元複合体で
ある。このような構造は、有機高分子のコラーゲン繊維
上に無機質のアパタイト微結晶が規則正しく析出したも
のが3次元的に織・編み上げられることにより形成され
ている。有機質コラーゲン繊維は、アパタイトに対して
相補的な補強作用をし、骨に外圧が加わったときの変形
を可能にする(可撓性が付与される)。このような機械
的構造を、アパタイトで被覆された有機高分子繊維から
3次元的に作り上げることができれば、得られた材料
は、天然の骨と同様の骨結合能および機械的特性を持つ
ことから、人工骨用アパタイト・高分子複合体として有
用である。そして、このような、観点に基づく新しい人
工骨の開発が盛んに行われている。(例えばMasami Tan
ahashiら、J. Am. Ceram. Soc. 1994年第77巻2
805頁、Yasuo Shikinamiら、Biomaterials 1998
年第19巻617頁)。
2. Description of the Related Art Natural bone is a three-dimensional complex composed of organic collagen fibers joined with apatite crystals. Such a structure is formed by three-dimensionally weaving and knitting inorganic apatite microcrystals regularly deposited on an organic polymer collagen fiber. The organic collagen fibers have a complementary reinforcing effect on apatite, and enable deformation (providing flexibility) when bone is subjected to external pressure. If such a mechanical structure can be made three-dimensionally from organic polymer fibers coated with apatite, the resulting material will have the same osteointegration and mechanical properties as natural bone. It is useful as an apatite-polymer composite for artificial bone. And development of such a new artificial bone based on a viewpoint is actively performed. (For example, Masami Tan
ahashi et al., J. Am. Ceram. Soc.
805, Yasuo Shikinami et al., Biomaterials 1998.
19, 617).

【0003】特開平10−244166号公報には、多
孔質リン酸カルシウム膜をコートした酸化チタン、特に
アナターゼ結晶型の酸化チタンを、擬似体液中に前記酸
化チタンを表面に有する基材を浸漬することにより製造
すること、およびこうして得られた材料を有機繊維やプ
ラスチックに練り込んだものは、前記酸化チタンの光触
媒作用により前記有機繊維やプラスチックの劣化をもた
らすことがないことが記載されているが、前記酸化チタ
ンをそのまま有機繊維やプラスチックに練り込んだもの
が、擬似体液などのアパタイトに対して過飽和な水溶液
中で該表面にアパタイトを生成することについては、全
く記載されていない。
JP-A-10-244166 discloses that a porous calcium phosphate membrane-coated titanium oxide, particularly titanium oxide of anatase crystal type, is immersed in a simulated body fluid by immersing a substrate having the titanium oxide on the surface. It is described that the produced and kneaded material thus obtained in organic fibers and plastics do not cause deterioration of the organic fibers and plastics due to the photocatalytic action of the titanium oxide. There is no description about producing titanium apatite on an organic fiber or plastic as it is kneaded in an aqueous solution supersaturated with apatite such as a simulated body fluid.

【0004】A C S Symp Ser(Am Chem Soc),No.585,P6
-18、には、ポリプロピレン(PP)およびチタンブト
キシドを溶融押し出した後、加水分解することによりサ
ブミクロン(ナノ)サイズの二酸化チタンを含む無機−
有機複合材料を作ったことが、また、Polym Mater Sci
Eng,Vol.70,P224-225,1994、には、PP、酸化チタン、
核剤およびカップリング剤から、骨に類似した合成材料
を製造したことが、記載されているが、該材料が擬似体
液などのアパタイトに対して過飽和な水溶液中において
アパタイト形成能を有するかどうかの考察もされていな
いし、骨修復材料として有用であることを示唆する記載
もない。すなわち、有機高分子とアナターゼ微粒子との
配合物から、擬似体液などのアパタイトに対して過飽和
な水溶液中においてアパタイト形成能を持つ無機−有機
複合体を得るという発想は全く新しいものである。
[0004] ACS Symp Ser (Am Chem Soc), No. 585, P6
-18, an inorganic material containing titanium dioxide having a submicron (nano) size by melting and extruding polypropylene (PP) and titanium butoxide.
The fact that organic composites were made
Eng, Vol. 70, P224-225, 1994, has PP, titanium oxide,
It has been described that a synthetic material similar to bone was produced from a nucleating agent and a coupling agent, but whether the material has apatite-forming ability in an aqueous solution supersaturated with respect to apatite such as a simulated body fluid. There is no discussion or suggestion that it is useful as a bone repair material. That is, the idea of obtaining an inorganic-organic composite having apatite-forming ability in an aqueous solution supersaturated with apatite such as a simulated body fluid from a blend of an organic polymer and anatase fine particles is completely new.

【0005】[0005]

【発明が解決しようとする課題】本願発明の課題は、前
記発想に基づいて、少なくとも有機高分子およびアナタ
ーゼ型二酸化チタン微粒子との配合物からなり、擬似体
液などのアパタイトに対して過飽和な水溶液中において
アパタイト形成能を持つアナターゼ型二酸化チタン微粒
子・有機高分子複合体、および該複合体表面にアパタイ
トを形成させたアナターゼ型二酸化チタン微粒子・有機
高分子複合体を提供することである。前記課題を解決す
るためには、二酸化チタンは、前記従来技術においても
言及している様に、有機物の分解反応において触媒作用
をするという有用な機能も、本発明のような用途におい
ては不都合をもたらすという厄介な問題があり、前記不
都合を起こさない好ましい有機高分子およびアナターゼ
型二酸化チタン微粒子の組み合わせを見出すことが重要
であり、これらを含めて、前記課題を解決できる無機−
有機複合体を、材料、製法、構造などの種々の面から検
討した。
SUMMARY OF THE INVENTION An object of the present invention, based on the above-mentioned idea, is to prepare a mixture of at least an organic polymer and fine particles of anatase type titanium dioxide, which is supersaturated with an apatite such as a simulated body fluid. The present invention provides an anatase type titanium dioxide fine particle / organic polymer composite having apatite forming ability and an anatase type titanium dioxide fine particle / organic polymer composite having apatite formed on the surface of the composite. In order to solve the above-mentioned problem, titanium dioxide has a useful function of catalyzing a decomposition reaction of an organic substance, as mentioned in the above-mentioned prior art. It is important to find a combination of a preferred organic polymer and anatase-type titanium dioxide fine particles that does not cause the above-mentioned disadvantages.
Organic composites were studied from various aspects such as materials, manufacturing methods, and structures.

【0006】[0006]

【課題を解決するための手段】本発明は、少なくともア
ナターゼ型二酸化チタン微粒子または該微粒子の前駆体
化合物と硬化性または熱可塑性樹脂とからなる配合物を
用いて成形した、または該成形物から切り出された物ま
たは該成形物を組織化した複合材料を、機械的研磨また
は/および化学的処理により複合材料の表面に擬似体液
などのアパタイトに対して過飽和な水溶液中もしくは体
内においてアパタイトを形成する能力を持つアナターゼ
型二酸化チタン微粒子を露出させて得られる酸化チタン
・有機高分子複合体である。好ましくは、硬化性または
熱可塑性樹脂がエポキシ系樹脂、飽和または不飽和ポリ
エステル系樹脂、ポリアミド系樹脂、シリコーン樹脂、
ポリオレフィン系樹脂、ポリスチレン、アクリロニトリ
ル−ブタジエン−スチレン共重合体樹脂、アクリロニト
リル−スチレン共重合体樹脂、ポリカーボネート系樹
脂、ポリアセタールから選択される酸化チタン光触媒特
性による酸化・還元作用により実質的に劣化しない少な
くとも1種の樹脂であることを特徴とする前記酸化チタ
ン・有機高分子複合体であり、より好ましくは、硬化性
または熱可塑性樹脂がエポキシ系樹脂、飽和または不飽
和ポリエステル系樹脂、シリコーン樹脂、ポリエチレン
から選択される酸化チタン光触媒特性による酸化・還元
作用により実質的に劣化しない少なくとも1種の樹脂で
あることを特徴とする前記酸化チタン有機高分子複合体
である。また、前記成形物がブロック、シート、ファイ
バー、テープ、またはフィラメント状であり、切り出さ
れた物および組織化された物の形状がスライバー、ヤー
ン、不織布、2次元または3次元織編物である前記各酸
化チタン有機高分子複合体である。更に前記各酸化チタ
ン・有機高分子複合体の表面に擬似体液などのアパタイ
トに対して過飽和な水溶液中においてアパタイトを形成
させた人工骨および骨修復用の各酸化チタン−有機高分
子複合体である。
SUMMARY OF THE INVENTION The present invention relates to a method for molding or cutting out a compound comprising at least a fine particle of anatase type titanium dioxide or a precursor compound of the fine particle and a curable or thermoplastic resin. Ability to form apatite in a supersaturated aqueous solution or apatite such as a simulated body fluid on the surface of a composite material by mechanical polishing or / and chemical treatment of a composite material obtained by assembling the molded product or the molded material. Is a titanium oxide-organic polymer composite obtained by exposing anatase type titanium dioxide fine particles having the following. Preferably, the curable or thermoplastic resin is an epoxy resin, a saturated or unsaturated polyester resin, a polyamide resin, a silicone resin,
At least one which is not substantially deteriorated by oxidation / reduction by photocatalytic properties of titanium oxide selected from polyolefin resin, polystyrene, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene copolymer resin, polycarbonate resin and polyacetal. The above-mentioned titanium oxide-organic polymer composite characterized by being a kind of resin, more preferably, the curable or thermoplastic resin is an epoxy resin, a saturated or unsaturated polyester resin, a silicone resin, or polyethylene. The above-mentioned titanium oxide-organic polymer composite, characterized in that it is at least one kind of resin that does not substantially deteriorate due to the oxidation / reduction action due to the selected titanium oxide photocatalytic properties. Further, each of the molded articles is a block, a sheet, a fiber, a tape, or a filament, and each of the cut and organized articles is a sliver, a yarn, a nonwoven fabric, a two-dimensional or three-dimensional woven or knitted article. It is a titanium oxide organic polymer composite. Further, each titanium oxide-organic polymer composite for artificial bone and bone repair in which apatite is formed in an aqueous solution supersaturated with respect to apatite such as a simulated body fluid on the surface of each titanium oxide-organic polymer composite. .

【0007】[0007]

【本発明の実施の態様】本発明をより詳細に説明する。 A.本発明の特徴をより詳細に説明する。本発明の人工
骨および骨修復用の各酸化チタン−有機高分子複合体
は、酸化チタンによる酸化・還元触媒作用により劣化し
難い硬化性樹脂とアナターゼ型酸化チタン微粒子とから
実質的になる。酸化チタン微粒子とは、100μm〜1
0nmの平均粒径を持つアナターゼ型酸化チタンを意味
する。球状粒子を用いると、充填密度を上げ、複合体の
アパタイト形成能と機械的強度を上げることができる。 B.本発明で使用する硬化性樹脂としては、不飽和ポリ
エステル、例えばマルトー製の硬組織標本包埋樹脂、ビ
スフェノールA型のエポキシ樹脂〔例えば、昭和高分子
(株)製、アラルダイド スタンダード 主剤〕、変性
シリコーン系湿気硬化型1液弾性接着剤〔セメダイン
(株)社製「セメダインスーパーX」(商品名)〕など
を挙げることができ、または熱可塑性樹脂としては、ポ
リアルキレンテレフタレート、例えばPETのような飽
和ポリエステル系樹脂、ポリオレフィン、例えばポリエ
チレンなどを挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail. A. The features of the present invention will be described in more detail. The titanium oxide-organic polymer composite for artificial bone and bone repair of the present invention is substantially composed of a curable resin which is hardly deteriorated by oxidation / reduction catalysis by titanium oxide and anatase type titanium oxide fine particles. The titanium oxide fine particles are 100 μm to 1 μm.
Means anatase type titanium oxide having an average particle size of 0 nm. When spherical particles are used, the packing density can be increased, and the apatite-forming ability and mechanical strength of the composite can be increased. B. Examples of the curable resin used in the present invention include unsaturated polyester, for example, a hard tissue specimen embedding resin manufactured by Maltoux, an epoxy resin of bisphenol A type (for example, Araldide Standard main agent manufactured by Showa Polymer Co., Ltd.), modified silicone Moisture-curable one-component elastic adhesive [“Cedine Super X” (trade name) manufactured by Cemedine Co., Ltd.] or the like, or as the thermoplastic resin, a polyalkylene terephthalate, for example, a saturated resin such as PET. Examples include polyester-based resins and polyolefins such as polyethylene.

【0008】C.本発明で使用するアナターゼ型二酸化
チタン微粒子としては、市販のものを使用できる。市販
のものとしては、硫酸法により得られた、石原産業株式
会社製の、平均粒径200、100、20nmのアナタ
ーゼ微粒子(以下、T200、T100、T20と表記
する。)を好ましいものとして挙げることができる。ま
た、ゾル−ゲル法により微粒子を調整することもでき
る。該調製方法は、チタン酸テトライソプロピルの2−
プロパノール溶液に、撹拌下超純水を滴下し撹拌(室温
下、15分間)後乾燥(70℃で24時間)し、これを
80℃の温水で処理(24時間)し、乾燥、粉砕するこ
とにより得られる(以下、TSと表記する。)。これら
のアナターゼ型二酸化チタン微粒子表面の粉末X線回折
パターンおよびフーリエ変換赤外拡散反射分光スペクト
ルを図1および図2示す。微粒子表面のTi−OHの量
は、T200、T100、T20、TSの順に増加する
ことが分かった。また、アナターゼ型二酸化チタン微粒
子としては、文献J.Am.Ceram.Soc.、75
(6)1587-95(1992)に記載の球形の二酸化チタン粉末を、
30℃〜120℃のpH7.0以下の温水中で処理して
得たものは粒子が球状に近く、かつ粒度分布が狭いの
で、本発明の複合体、特に繊維状の複合体を得る場合に
おいて、充填率を上げることができるので好ましい。
C. As the anatase type titanium dioxide fine particles used in the present invention, commercially available ones can be used. As a commercially available product, anatase fine particles having an average particle size of 200, 100, and 20 nm (hereinafter referred to as T200, T100, and T20) manufactured by Ishihara Sangyo Co., Ltd. obtained by a sulfuric acid method are preferred. Can be. Fine particles can also be prepared by a sol-gel method. The preparation method is based on 2-isopropyltetraisopropyl titanate.
Ultrapure water is dropped into the propanol solution with stirring, stirred (at room temperature, 15 minutes), dried (at 70 ° C. for 24 hours), treated with warm water at 80 ° C. (24 hours), dried and pulverized. (Hereinafter, referred to as TS). The powder X-ray diffraction pattern and the Fourier transform infrared diffuse reflection spectrum of the surface of these anatase type titanium dioxide fine particles are shown in FIG. 1 and FIG. It was found that the amount of Ti-OH on the surface of the fine particles increased in the order of T200, T100, T20, and TS. Further, as anatase type titanium dioxide fine particles, reference is made to J. Appl. Am. Ceram. Soc. , 75
(6) 1587-95 (1992) spherical titanium dioxide powder according to,
In the case of obtaining the composite of the present invention, particularly a fibrous composite, those obtained by treating in warm water having a pH of 7.0 or less at 30 ° C. to 120 ° C. have a particle shape close to a sphere and a narrow particle size distribution. , Since the filling rate can be increased.

【0009】D,少なくともアナターゼ型二酸化チタン
微粒子または該微粒子の前駆体化合物と硬化性または熱
可塑性樹脂とからなる配合物を用いて成形物を製造する
工程としては、 1,硬化性または熱可塑性樹脂とアナターゼ型二酸化チ
タン微粒子または該微粒子の前駆体化合物とを混合した
後、該混合物を、成形型内で硬化または押出成形(加熱
溶融しても良い)させ成形する方法、 2,溶剤を用いて均一分散液または溶液とし、該溶液を
成形型内に入れ溶媒を除去することによりまたは気体中
または凝固浴中に押出して成形する方法などがある。
D, the step of producing a molded article using at least a compound comprising anatase type titanium dioxide fine particles or a precursor compound of the fine particles and a curable or thermoplastic resin includes the steps of: 1, curable or thermoplastic resin And mixing the anatase type titanium dioxide fine particles or a precursor compound of the fine particles with the mixture, and then curing or extruding the mixture (may be heated and melted) in a mold to form the mixture. There is a method in which a homogeneous dispersion or solution is formed, and the solution is placed in a mold and the solvent is removed, or the solution is extruded into a gas or a coagulation bath and molded.

【0010】E.人工骨などの製品は、目的との関連で
適宜設計された鋳型を用いて製造しても、ブロック状な
どに成形した材料から、目的との関連で適宜設計された
形状に切り出したり、織・編物、不織布、紙の組織に成
形することにより製造しても良い。このような、成形方
法を選択することにより、硬さ、密度、柔軟性、弾性率
などを調整することもできる。
E. Even if products such as artificial bones are manufactured using molds appropriately designed in relation to the purpose, they can be cut out from materials molded in blocks or the like into shapes appropriately designed in relation to the purpose, or can be woven or woven. It may be manufactured by molding into a knitted, nonwoven, or paper structure. By selecting such a molding method, hardness, density, flexibility, elastic modulus, and the like can be adjusted.

【0011】F.得られた成形物は、更に生体活性を高
めるために、擬似体液(SBF:Simulated Body Fl
uid)などのアパタイトに対して過飽和な水溶液中でア
パタイトと同様のCa/P原子比を有するアパタイトを
その表面に形成させて製品とすることができる。
F. The obtained molded product was used to further enhance the biological activity by simulating body fluid (SBF: Simulated Body Fl).
apatite having the same Ca / P atomic ratio as apatite in an aqueous solution supersaturated with apatite such as uid) can be obtained as a product.

【0012】G、 アパタイトに対して過飽和な水溶液
の一例(擬似体液:SBF、ヒトの血漿とほぼ等しい無
機イオン濃度を有する。〔T.Kokubo,H.Kusitani,S.Sakk
a,T.Kitsugi and T.Yamamuro,“Solutions able to rep
roduce in vivo surface-structure changes in bioact
ive glass-ceramic A-W”,J.Biomed,Mater.Res.24,721-
734(1996)〕を表1に示す。
G, an example of an aqueous solution supersaturated with respect to apatite (simulated body fluid: SBF, having an inorganic ion concentration approximately equal to that of human plasma. [T. Kokubo, H. Kusitani, S. Sakk]
a, T.Kitsugi and T.Yamamuro, “Solutions able to rep
roduce in vivo surface-structure changes in bioact
ive glass-ceramic AW ”, J.Biomed, Mater.Res.24,721-
734 (1996)] is shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【実施例】実施例1 前記アナターゼ型二酸化チタン微粒子、T200、T1
00、T20およびTSとエポキシ系接着剤とを、それ
ぞれ微粒子:樹脂の比が、重量比で3:7となるように
混合し、これを成形枠に入れ、70℃で24時間乾燥さ
せてブロックを成形した。これから10×10×1mm
3の試料片を切り出した。該試料片を#400研磨紙で
研磨し、アナターゼ型二酸化チタン微粒子を表面に露出
させた試料を得た。これをエタノールなどの液で洗浄し
アナターゼ型酸化チタン微粒子−エポキシ樹脂複合体
〔C200(T200使用)、C100(T100使
用)、C20(T20使用)およびCS(TS使用)〕
とした。
EXAMPLES Example 1 The fine particles of anatase type titanium dioxide, T200, T1
00, T20 and TS and the epoxy-based adhesive were mixed so that the weight ratio of the fine particles to the resin was 3: 7, and the mixture was placed in a molding frame, dried at 70 ° C. for 24 hours, and blocked. Was molded. From now on 10 × 10 × 1mm
Sample No. 3 was cut out. The sample piece was polished with # 400 abrasive paper to obtain a sample in which anatase type titanium dioxide fine particles were exposed on the surface. This is washed with a liquid such as ethanol, and anatase-type titanium oxide fine particles-epoxy resin composite [C200 (using T200), C100 (using T100), C20 (using T20) and CS (using TS)]
And

【0015】得られた試料を前記擬似体液中に4日間浸
漬した。浸漬前後の試料表面の薄膜X線回折パターンを
図3(a)(b)に示す。浸漬後の試料表面にはアパタ
イトが形成されていることが分かる。
The obtained sample was immersed in the simulated body fluid for 4 days. FIGS. 3A and 3B show thin-film X-ray diffraction patterns of the sample surface before and after immersion. It can be seen that apatite is formed on the sample surface after immersion.

【0016】実施例2 使用する樹脂を不飽和ポリエステル系樹脂(株式会社マ
ルトー、製品名リゴラック 2004WM-2)とした以外は、
実施例1と同様の操作により、アナターゼ型酸化チタン
微粒子?不飽和ポリエステル系樹脂複合体を作製した
〔P200(T200使用)、P100(T100使
用)、P20(T20使用)およびPS(TS使
用)〕。得られた試料を、実施例1と同じ条件で擬似体
液に浸漬した。浸漬前後の試料表面の薄膜X線回折パタ
ーンを図4(a)(b)に示す。浸漬後の試料表面には
アパタイトが形成されていることが分かる。
Example 2 Except that the resin used was an unsaturated polyester resin (Malteau Co., Ltd., product name Rigolac 2004WM-2)
By the same operation as in Example 1, an anatase-type titanium oxide fine particle-unsaturated polyester resin composite was produced [P200 (using T200), P100 (using T100), P20 (using T20) and PS (using TS)]. . The obtained sample was immersed in a simulated body fluid under the same conditions as in Example 1. FIGS. 4A and 4B show thin-film X-ray diffraction patterns of the sample surface before and after immersion. It can be seen that apatite is formed on the sample surface after immersion.

【0017】実施例3 使用する樹脂として変性シリコーン系湿気硬化型1液弾
性接着剤〔セメダイン(株)社製「セメダインスーパー
X」(商品名)〕系樹脂を用い、酸化チタンとしてPS
を用い実施例1の操作により、アナターゼ型酸化チタン
微粒子−変性シリコーン系湿気硬化型1液接着剤複合体
(SS)を製造した。得られた試料を、実施例1と同じ
条件で擬似体液に浸漬した。浸漬前後の試料表面の薄膜
X線回折パターンを図5に示す。浸漬後の試料表面には
アパタイトが形成されていることが分かる。
Example 3 A modified silicone moisture-curable one-component elastic adhesive [Cemedine Super X (trade name) manufactured by Cemedine Co., Ltd.] is used as a resin, and PS is used as titanium oxide.
Was used to produce anatase-type titanium oxide fine particles-modified silicone-based moisture-curable one-part adhesive composite (SS). The obtained sample was immersed in a simulated body fluid under the same conditions as in Example 1. FIG. 5 shows thin-film X-ray diffraction patterns of the sample surface before and after immersion. It can be seen that apatite is formed on the sample surface after immersion.

【0018】[0018]

【発明の効果】以上述べたように、本発明の硬化型樹脂
とアナターゼ型酸化チタン微粒子とを組み合わせ、研磨
により表面に該アナターゼ型酸化チタン微粒子を露出さ
せることにより、擬似体液などのアパタイトに対して過
飽和な水溶液中でアパタイトを形成し得る、安定な人工
骨などとして有用な酸化チタン・有機高分子複合体が得
られるという優れた効果がもたらされる。
As described above, the curable resin of the present invention is combined with the anatase-type titanium oxide fine particles, and the anatase-type titanium oxide fine particles are exposed on the surface by polishing, so that the apatite such as a simulated body fluid can be removed. An excellent effect of obtaining a titanium oxide-organic polymer composite useful as a stable artificial bone or the like, which can form apatite in a supersaturated aqueous solution, is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 T200、T100、T20、TSの表面の
粉末X線回折パターン
FIG. 1 X-ray powder diffraction pattern of the surface of T200, T100, T20, TS

【図2】 T200、T100、T20、TSの表面の
フーリエ変換赤外拡散反射分光スペクトル
FIG. 2 shows a Fourier transform infrared diffuse reflection spectrum of the surface of T200, T100, T20, and TS.

【図3】 擬似体液に4日間浸漬前(a)後(b)のア
ナターゼ型酸化チタン微粒子−エポキシ樹脂複合体〔C
200(T200使用)、C100(T100使用)、
C20(T20使用)およびCS(TS使用)〕表面の
薄膜X線回折パターン
FIG. 3 shows an anatase-type titanium oxide fine particle-epoxy resin composite [C] before (a) and after (b) immersion in a simulated body fluid for 4 days.
200 (using T200), C100 (using T100),
C20 (using T20) and CS (using TS)] Thin film X-ray diffraction pattern on the surface

【図4】 擬似体液に4日間浸漬前(a)後(b)のア
ナターゼ型酸化チタン微粒子−ポリエステル系樹脂複合
体〔P200(T200使用)、P100(T100使
用)、P20(T20使用)およびPS(TS使用)〕
表面の薄膜X線回折パターン
FIG. 4 shows an anatase-type titanium oxide fine particle-polyester resin composite [P200 (using T200), P100 (using T100), P20 (using T20) and PS] before (a) and after (b) immersion in a simulated body fluid for 4 days. (Using TS)]
Thin film X-ray diffraction pattern on the surface

【図5】 擬似体液に4日間浸漬前(a)後(b)のア
ナターゼ型酸化チタン微粒子−変性シリコーン系湿気硬
化型1液接着剤複合体表面の薄膜X線回折パターン
FIG. 5 is a thin-film X-ray diffraction pattern on the surface of an anatase-type titanium oxide fine particle-modified silicone-based moisture-curable one-part adhesive composite before (a) and after (b) immersion in a simulated body fluid for four days.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08J 7/06 C08J 7/06 Z C08K 3/22 C08K 3/22 C08L 101/00 C08L 101/00 Fターム(参考) 4C081 AB04 BB07 CA02 CA03 CA05 CA09 CA16 CA23 CA27 CB01 CB02 CF14 DA01 DA02 DA04 DA06 DB07 4F006 AA11 AA12 AA15 AA32 AA34 AA35 AA36 AA38 AA42 AA55 AB77 BA00 CA09 EA04 4F071 AA02 AA03 AA42 AA49 AA67 AB18 AE17 AH19 BB01 BB06 BC01 BC07 4F073 AA06 AA08 BA06 BA19 BA22 BA23 BA26 BA29 BA33 BA47 BB01 BB02 GA05 4J002 BB001 BC031 BC061 BN151 CB001 CD001 CF001 CF211 CG001 CL001 CP031 DE136 FD016 GB01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08J 7/06 C08J 7/06 Z C08K 3/22 C08K 3/22 C08L 101/00 C08L 101/00 F term (Ref.) AA06 AA08 BA06 BA19 BA22 BA23 BA26 BA29 BA33 BA47 BB01 BB02 GA05 4J002 BB001 BC031 BC061 BN151 CB001 CD001 CF001 CF211 CG001 CL001 CP031 DE136 FD016 GB01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 少なくともアナターゼ型二酸化チタン微
粒子または該微粒子の前駆体化合物と硬化性または熱可
塑性樹脂とからなる配合物を用いて成形した、または該
成形物から切り出された物または該成形物を組織化した
複合材料を、機械的研磨または/および化学的処理によ
り複合材料の表面に擬似体液などのアパタイトに対して
過飽和な水溶液中または体内においてアパタイト形成能
を持つアナターゼ型二酸化チタン微粒子を露出させて得
られる酸化チタン・有機高分子複合体。
Claims 1. An article molded or cut out from at least an anatase-type titanium dioxide fine particle or a compound comprising a precursor compound of the fine particle and a curable or thermoplastic resin, or a molded article cut out from the molded article. The structured composite material is subjected to mechanical polishing or / and chemical treatment to expose anatase-type titanium dioxide fine particles having an apatite-forming ability in an aqueous solution supersaturated with respect to apatite such as a simulated body fluid or in the body by mechanical polishing or / and chemical treatment. Titanium oxide / organic polymer composite obtained by
【請求項2】 硬化性または熱可塑性樹脂がエポキシ系
樹脂、飽和または不飽和ポリエステル系樹脂、ポリアミ
ド系樹脂、シリコーン樹脂、ポリオレフィン系樹脂、ポ
リスチレン、アクリロニトリル−ブタジエン−スチレン
共重合体樹脂、アクリロニトリル−スチレン共重合体樹
脂、ポリカーボネート系樹脂、ポリアセタールからなる
群から選択される該酸化チタン光触媒特性による酸化・
還元作用により実質的に劣化しない少なくとも1種の樹
脂であることを特徴とする請求項1に記載の酸化チタン
・有機高分子複合体。
2. The curable or thermoplastic resin is an epoxy resin, saturated or unsaturated polyester resin, polyamide resin, silicone resin, polyolefin resin, polystyrene, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene. Oxidation by photocatalytic properties of the titanium oxide selected from the group consisting of a copolymer resin, a polycarbonate resin, and a polyacetal.
The titanium oxide / organic polymer composite according to claim 1, wherein the composite is at least one resin that does not substantially deteriorate by a reducing action.
【請求項3】 成形物がブロック、シート、ファイバ
ー、テープ、またはフィラメント状の物であり、該成形
物から切り出された物および組織化された物がスライバ
ー、ヤーン、不織布、2次元または3次元織編物である
ことを特徴とする請求項1または2に記載の酸化チタン
・有機高分子複合体。
3. The molded article is a block, sheet, fiber, tape, or filamentous article, and an object cut and organized from the molded article is a sliver, a yarn, a nonwoven fabric, two-dimensional or three-dimensional. The titanium oxide / organic polymer composite according to claim 1 or 2, which is a woven or knitted fabric.
【請求項4】 研磨手段が、研磨シート、研磨剤、サン
ドブラストから選択される少なくとも1種からなること
を特徴とする請求項1、2または3に記載の酸化チタン
・有機高分子複合体。
4. The titanium oxide / organic polymer composite according to claim 1, wherein the polishing means comprises at least one selected from a polishing sheet, an abrasive, and sandblast.
【請求項5】 アナターゼ型二酸化チタン微粒子が平均
粒径100μm〜10nmのサイズであることを特徴と
する請求項1〜4のいずれかに記載の酸化チタン・有機
高分子複合体。
5. The titanium oxide-organic polymer composite according to claim 1, wherein the anatase type titanium dioxide fine particles have a mean particle size of 100 μm to 10 nm.
【請求項6】 請求項1、2、3、4または5に記載の
酸化チタン・有機高分子複合体の人工骨としての使用。
6. Use of the titanium oxide / organic polymer composite according to claim 1, 2, 3, 4 or 5 as an artificial bone.
【請求項7】 アパタイトに対して過飽和な水溶液との
接触によりアパタイト層が表面に形成されたことを特徴
とする請求項1から6のいずれかに記載の酸化チタン・
有機高分子複合体。
7. The titanium oxide according to claim 1, wherein an apatite layer is formed on the surface by contact with a supersaturated aqueous solution of apatite.
Organic polymer complex.
【請求項8】 アパタイトに対して過飽和な水溶液が擬
似体液であることを特徴とする請求項7記載の酸化チタ
ン・有機高分子複合体。
8. The titanium oxide / organic polymer composite according to claim 7, wherein the aqueous solution supersaturated with respect to apatite is a simulated body fluid.
JP2001135160A 2001-05-02 2001-05-02 Titanium oxide organic polymer composite suitable for artificial bones Expired - Fee Related JP4017836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001135160A JP4017836B2 (en) 2001-05-02 2001-05-02 Titanium oxide organic polymer composite suitable for artificial bones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001135160A JP4017836B2 (en) 2001-05-02 2001-05-02 Titanium oxide organic polymer composite suitable for artificial bones

Publications (2)

Publication Number Publication Date
JP2002327079A true JP2002327079A (en) 2002-11-15
JP4017836B2 JP4017836B2 (en) 2007-12-05

Family

ID=18982678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001135160A Expired - Fee Related JP4017836B2 (en) 2001-05-02 2001-05-02 Titanium oxide organic polymer composite suitable for artificial bones

Country Status (1)

Country Link
JP (1) JP4017836B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141630A (en) 2002-08-27 2004-05-20 Contamination Control Service:Kk Biomaterial

Also Published As

Publication number Publication date
JP4017836B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
Mondal et al. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application
Manzoor et al. 3D printed PEEK/HA composites for bone tissue engineering applications: Effect of material formulation on mechanical performance and bioactive potential
Wu et al. A biomimetic hierarchical scaffold: natural growth of nanotitanates on three-dimensional microporous Ti-based metals
Zeng et al. Characterization of silk fibroin/chitosan 3D porous scaffold and in vitro cytology
US9931438B2 (en) Article with foamed surface, implant and method of producing the same
Shuai et al. Processing and characterization of laser sintered hydroxyapatite scaffold for tissue engineering
Furuichi et al. Preparation of hierarchically organized calcium phosphate–organic polymer composites by calcification of hydrogel
Yabutsuka et al. Effect of pores formation process and oxygen plasma treatment to hydroxyapatite formation on bioactive PEEK prepared by incorporation of precursor of apatite
TWI572376B (en) A bone cement composition, a bone cement composition kit using the same, a method for producing a bone cement composition, and a cement composition for hardening
Ghomi et al. A novel investigation on characterization of bioactive glass cement and chitosan-gelatin membrane for jawbone tissue engineering
Peng et al. Hydroxyapatite needle-shaped particles/poly (l-lactic acid) electrospun scaffolds with perfect particle-along-nanofiber orientation and significantly enhanced mechanical properties
Oladapo et al. 3D-printed biomimetic bone implant polymeric composite scaffolds
Du et al. Rapid biomimetic mineralization of hydroxyapatite-g-PDLLA hybrid microspheres
Leonor et al. Functionalization of different polymers with sulfonic groups as a way to coat them with a biomimetic apatite layer
Raboh et al. Bioactivity and drug release study of dexamethasone loaded bioglass/Chitosan composites for biomedical applications
Yang et al. 3, 4-Dihydroxyphenylalanine-assisted hydroxyapatite nanoparticle coating on polymer scaffolds for efficient osteoconduction
Zakharov et al. Synthesis and properties of calcium hydroxyapatite/silk fibroin organomineral composites
Khaghani et al. Influence of incorporating fluoroapatite nanobioceramic on the compressive strength and bioactivity of glass ionomer cement
Rezaei et al. Development of hydroxyapatite nanorods-polycaprolactone composites and scaffolds derived from a novel in-situ sol-gel process
JP2002327079A (en) Titanium oxide/organic polymer composite suitable as artificial bone and the like
Rahman et al. Evaluation of a novel nanocrystalline hydroxyapatite powder and a solid hydroxyapatite/Chitosan-Gelatin bioceramic for scaffold preparation used as a bone substitute material
JP5728321B2 (en) Manufacturing method of biological implant
Ren et al. Preparation and characterization of Antheraea pernyi silk fibroin based nanohydroxyapatite composites
Reina et al. Porosity and compressive strength of PLA-based scaffold coated with hydroxyapatite-gelatin to reconstruct mandibula: a literature review
Bagheri et al. Baghdadite reinforced polycaprolactone scaffold for bone tissue engineering

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees