JP2002323655A - Super compact zoom lens - Google Patents

Super compact zoom lens

Info

Publication number
JP2002323655A
JP2002323655A JP2001127816A JP2001127816A JP2002323655A JP 2002323655 A JP2002323655 A JP 2002323655A JP 2001127816 A JP2001127816 A JP 2001127816A JP 2001127816 A JP2001127816 A JP 2001127816A JP 2002323655 A JP2002323655 A JP 2002323655A
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
component
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001127816A
Other languages
Japanese (ja)
Other versions
JP4720005B2 (en
JP2002323655A6 (en
Inventor
Haruo Sato
治夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001127816A priority Critical patent/JP4720005B2/en
Priority to US10/125,589 priority patent/US6621643B2/en
Priority to CNB021181896A priority patent/CN1241046C/en
Publication of JP2002323655A publication Critical patent/JP2002323655A/en
Publication of JP2002323655A6 publication Critical patent/JP2002323655A6/en
Application granted granted Critical
Publication of JP4720005B2 publication Critical patent/JP4720005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a super compact zoom lens having the angle of view of about 2ω=74.1 deg. to 11.8 deg., having a variable power ratio of about 6.6, made small in diameter and small in size to a possible limit, constituted of small number of lenses, made excellent in cost performance and realizing high performance and high magnification. SOLUTION: This zoom lens has a 1st lens group G1 having positive refractive power, a 2nd lens group G2 having negative refractive power, at least one lens group and a lens group Gm having positive refractive power in this order from an object side, and power is varied by changing a distance between the 1st and the 2nd lens groups G1 and G2. Then, the lens group Gm is constituted of a positive lens component L1 whose convex surface faces to an image side and a negative lens component L2 whose concave surface faces to the object side in this order from the object side, and satisfies a specified condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高倍率を有し、かつ
小型軽量でコストパフォーマンスに優れた超コンパクト
なズームレンズ、特に、超コンパクトな高倍率標準ズー
ムレンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-compact zoom lens having high magnification, small size, light weight and excellent cost performance, and more particularly to an ultra-compact high-magnification standard zoom lens.

【0002】[0002]

【従来の技術】現在、広角端状態を含み、ズーム比3〜
4倍を有する、所謂標準ズームレンズは小型化と低コス
ト化の一途をたどっている。このレンズは常にカメラボ
ディに装着されたまま持ち運ばれるため、小型で軽量か
つ充分な結像性能を有し安価であることが必須の条件に
なっている。このような条件を満足するには各レンズ群
を強いパワーで構成し、かつ各レンズ群を出来る限り薄
肉化する必要がある。
2. Description of the Related Art At present, including a wide-angle end state, a zoom ratio of 3 to
The so-called standard zoom lens having a magnification of four times has been steadily reduced in size and cost. Since this lens is always carried while being mounted on the camera body, it is essential that the lens be small, lightweight, have sufficient imaging performance, and be inexpensive. In order to satisfy such a condition, it is necessary to configure each lens unit with strong power and to make each lens unit as thin as possible.

【0003】例えば、特開平1−229217号公報、
特開平8−248319号公報、特開平9−10145
9号公報、特開2000−75204号公報、特開20
00−187161号公報等に開示されているような正
負正正のパワー配置を有する4群ズームが提案されてい
る。
[0003] For example, Japanese Patent Application Laid-Open No. 1-222917,
JP-A-8-248319, JP-A-9-10145
9, JP-A-2000-75204, JP-A-20
A four-group zoom having a positive, negative, positive, and positive power arrangement as disclosed in, for example, JP-A-00-187161 has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記各
公報に開示されているズームレンズは、ズーム比も3か
ら4倍程度のものが主流である。また、大ズーム比を有
する事例においても大型で構成枚数も多く、性能も満足
できるものではなかった。本発明のごとく、ライカ判で
28〜200mmというズーム比6.62倍を超えて、
かつ極限までダウンサイジングされた超コンパクトなズ
ームレンズは存在していない。
However, most of the zoom lenses disclosed in the above publications have a zoom ratio of about 3 to 4 times. Further, even in a case having a large zoom ratio, the size is large and the number of components is large, and the performance is not satisfactory. As in the present invention, the zoom ratio of 28 to 200 mm in the Leica format exceeds 6.62 times,
And there is no ultra-compact zoom lens downsized to the limit.

【0005】本発明は上記問題に鑑みてなされたもので
あり、2ω=74.1°〜11.8°程度の画角を有
し、約6.6倍の変倍比を有する極限まで小径化、小型
化され、少ない構成枚数で、コストパフォーマンスに優
れ、かつ高性能・高倍率な超コンパクトなズームレンズ
を提供することを目的としている。
The present invention has been made in view of the above problems, and has an angle of view of about 2ω = 74.1 ° to 11.8 °, and has a small diameter up to the limit having a magnification ratio of about 6.6. It is an object of the present invention to provide an ultra-compact zoom lens that is compact, miniaturized, has a small number of components, is excellent in cost performance, and has high performance and high magnification.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、物体側から順に、正の屈折力を有する第
1レンズ群G1と、負の屈折力を有する第2レンズ群G
2と、少なくとも1つのレンズ群と、正の屈折力を有す
るレンズ群Gmとを有し、前記第1レンズ群G1と前記
第2レンズ群G2との空気間隔を変化させることによっ
て、変倍する超コンパクトなズームレンズにおいて、前
記レンズ群Gmは物体側から順に、像側に凸面を向けた
正レンズ成分L1と、物体側に凹面を向けた負レンズ成
分L2とからなる。好ましくは、前記レンズ群Gmは、
正レンズ成分L1と負レンズ成分L2とのみからなるこ
とが望ましい。そして、前記レンズ群Gmの広角端状態
において最も物体側のレンズ成分の物体側頂点から最も
像側のレンズ成分(最終レンズ)の像側頂点までの光軸
上の長さをΣdw、前記ズームレンズの全系の望遠端状
態の焦点距離をftとそれぞれしたとき、以下の条件を
満足することが望ましい。 (1) 0.10<Σdw/ft<0.54
In order to solve the above problems, the present invention provides, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G1 having a negative refractive power.
2, at least one lens group, and a lens group Gm having a positive refractive power. The magnification is changed by changing the air gap between the first lens group G1 and the second lens group G2. In the ultra-compact zoom lens, the lens group Gm includes, in order from the object side, a positive lens component L1 having a convex surface facing the image side and a negative lens component L2 having a concave surface facing the object side. Preferably, the lens group Gm is
It is desirable that only the positive lens component L1 and the negative lens component L2 be included. In the wide-angle end state of the lens group Gm, the length on the optical axis from the object side vertex of the lens component closest to the object side to the image side vertex of the lens component closest to the image (final lens) is Σdw, and the zoom lens is When the focal length of the entire system at the telephoto end is denoted by ft, it is desirable that the following condition be satisfied. (1) 0.10 <Σdw / ft <0.54

【0007】また、本発明の好ましい態様では、前記第
1レンズ群G1の焦点距離をf1としたとき以下の条件
を満足することが望ましい。 (2) 0.20<f1/ft<0.55
In a preferred aspect of the present invention, it is desirable that the following condition is satisfied when the focal length of the first lens group G1 is f1. (2) 0.20 <f1 / ft <0.55

【0008】また、本発明の好ましい態様では、前記第
2レンズ群G2の焦点距離をf2としたとき、以下の条
件を満足することが望ましい。 (3) 0.03<|f2|/ft<0.20
In a preferred aspect of the present invention, it is preferable that the following condition is satisfied when the focal length of the second lens group G2 is f2. (3) 0.03 <| f2 | / ft <0.20

【0009】また、本発明の好ましい態様では、前記レ
ンズ群Gm中の正レンズ成分L1の像側頂点から負レン
ズ成分L2の物体側頂点までの光軸上の長さをdpn、
前記レンズ群Gm中の最も物体側のレンズ成分の物体側
頂点から最も像側のレンズ成分の像側頂点までの光軸上
の長さをdmとそれぞれしたとき、以下の条件を満足す
ることが望ましい。 (4) 0.23<dpn/dm<0.90
In a preferred aspect of the present invention, the length on the optical axis from the image-side vertex of the positive lens component L1 to the object-side vertex of the negative lens component L2 in the lens group Gm is dpn,
When the length on the optical axis from the object side vertex of the most object side lens component to the image side vertex of the most image side lens component in the lens group Gm is dm, the following condition may be satisfied. desirable. (4) 0.23 <dpn / dm <0.90

【0010】また、前記レンズ群Gm中の正レンズ成分
L1と、負レンズ成分L2とのどちらかに、少なくとも
1面の非球面を有することが望ましい。極端にレンズ群
Gmを薄肉化し、かつ色消しと収差補正の条件を満足す
る最低枚数で構成された場合、特に非球面の導入によっ
て収差補正効果を持たせることが本発明の効果を十分発
揮させるため望ましい。
It is desirable that either the positive lens component L1 or the negative lens component L2 in the lens group Gm has at least one aspheric surface. In the case where the lens group Gm is made extremely thin and the minimum number of lenses that satisfies the conditions of achromatism and aberration correction is provided, the effect of the present invention can be sufficiently exerted by giving an aberration correction effect particularly by introducing an aspheric surface. Desirable.

【0011】[0011]

【発明の実施の形態】通常、従来の28〜200mm相
当のズームレンズは、小型化を推し進めるにあたり、各
群のパワーを強め、かつ収差補正のために構成枚数を増
すという設計方法を採用している。しかし、この設計方
法では、レンズ枚数の増加分に起因して各群が厚肉化す
るため、重量増加を招いてしまう。また、各レンズ群間
のデッドスペースが減少し、痛し痒しで結局大型化に向
かってしまう傾向がある。したがって、さらなるダウン
サイジングにはまったく発想の異なる設計法が必要であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A conventional zoom lens equivalent to 28 to 200 mm usually adopts a design method of increasing the power of each group and increasing the number of components for aberration correction in order to promote miniaturization. I have. However, according to this design method, each group becomes thicker due to the increase in the number of lenses, which causes an increase in weight. In addition, the dead space between the lens groups is reduced, and it tends to be painful and eventually larger. Therefore, further downsizing requires a completely different design approach.

【0012】そこで、本発明は無駄なレンズを殺ぎ落と
し、各群の構成枚数を極小化するという新たな設計法を
用いたのである。その効果を用いたことによって、各群
を薄肉化し、無理なパワー配置を設定せずに小型化を図
ることが可能になったのである。
Therefore, the present invention uses a new design method of killing useless lenses and minimizing the number of components in each group. By using the effect, each group can be made thinner, and the size can be reduced without setting an unreasonable power arrangement.

【0013】特に本発明で重要なことは、正負正正を代
表とする正(凸)先行ズームレンズの後群(マスター
群)のレンズ構成を、色消しと収差補正の最低枚数であ
る、正負(凸凹)二つのエレメントのみで構成したこと
である。この構成はテレフォトタイプの基本構成であ
る。本発明のような構成は、極端に後群(マスター群)
を薄肉化し、バックフォーカスの短縮化を実現するのに
必須な条件なのである。その構成によってフィルターサ
イズの極小化、レンズ径の極小化、全長の極小化を達成
できたのである。
It is particularly important in the present invention that the rear (master) group of the positive (convex) leading zoom lens, which is represented by positive, negative, positive, and positive, is designed to have the minimum number of achromatic and aberration correction lenses. (Roughness) This is a configuration composed of only two elements. This configuration is a basic configuration of a telephoto type. The configuration like the present invention is extremely rear group (master group)
This is an essential condition for reducing the thickness of the lens and shortening the back focus. With this configuration, it was possible to minimize the filter size, the lens diameter, and the overall length.

【0014】以下に各条件式にしたがって、本発明の特
徴を説明する。条件式(1)は、ズームレンズの光学全
長からバックフォーカス、所謂光学系の全厚を望遠側の
焦点距離で規格化したものである。条件式(1)の上限
値を上回る場合、ズームレンズの光学系の全厚が厚くな
ってしまう。その結果、本発明の目的である小型化を、
本発明のレンズ構成で満たすことが出来なくなる。ま
た、鏡筒を含めた重量も重くなり、材料のコストも増加
し、常用高倍率ズームレンズとしては魅力の無いものと
なってしまう。
The features of the present invention will be described below according to each conditional expression. The conditional expression (1) is obtained by standardizing the back focus, that is, the total thickness of the optical system, from the total optical length of the zoom lens by the focal length on the telephoto side. When the value exceeds the upper limit of conditional expression (1), the entire thickness of the optical system of the zoom lens becomes thick. As a result, miniaturization, which is the object of the present invention,
It cannot be satisfied with the lens configuration of the present invention. In addition, the weight including the lens barrel becomes heavy, and the cost of materials increases, which makes the lens unattractive as a regular high-power zoom lens.

【0015】なお、条件式(1)の上限値を0.50以
下に設定すると、より低コストで常用高倍率ズームレン
ズ実現できる。また、条件式(1)の上限値を0.47
以下に設定すると、さらに低コストで常用高倍率ズーム
レンズ実現できる。さらに、条件式(1)の上限値を
0.45以下に設定すると本発明の効果を最大限に発揮
できる。
If the upper limit of conditional expression (1) is set to 0.50 or less, a general high-power zoom lens can be realized at lower cost. In addition, the upper limit of conditional expression (1) is set to 0.47.
With the following settings, a common high-power zoom lens can be realized at a lower cost. Further, when the upper limit value of conditional expression (1) is set to 0.45 or less, the effect of the present invention can be maximized.

【0016】逆に、条件式(1)の下限値を下回る場
合、ズームレンズの光学系の全厚が著しく薄肉化する。
このため、まず、バックフォーカスが短くなり一眼レフ
用の交換レンズとして使用することが、実質上できなく
なる。また、各群を著しく強いパワーを持たせる必要が
あるので、収差補正が困難になり、結果的にズーム変倍
比を大きくすることが不可能になるため好ましくない。
なお、条件式(1)の下限値を0.20以上に設定する
と本発明の効果を最大限に発揮できる。
On the other hand, if the lower limit of conditional expression (1) is not reached, the total thickness of the optical system of the zoom lens will be extremely thin.
For this reason, first, the back focus becomes short, and it becomes virtually impossible to use it as an interchangeable lens for a single-lens reflex camera. Further, it is necessary to give each group a remarkably strong power, so that it becomes difficult to correct aberrations, and as a result, it becomes impossible to increase the zoom ratio, which is not preferable.
When the lower limit of conditional expression (1) is set to 0.20 or more, the effects of the present invention can be maximized.

【0017】次に条件式(2)の説明をする。条件式
(2)は第1レンズ群の焦点距離を望遠側の焦点距離で
規格化したものである。第1レンズ群の焦点距離の最適
化は良好な収差補正と大きさを決定する上で重要な条件
である。条件式(2)の上限値を上回る場合、第1レン
ズ群のパワーが弱くなることを意味し、結果的にズーム
レンズ全系の大型化を招き好ましくない。また、本発明
のような高倍率ズームの場合、望遠時に著しい全長変化
をもたらし、鏡筒にカム曲線を刻むのが困難になり実現
出来なくなる。また、本発明のような極端に少ない構成
の場合、最適なペッツバール和の設定がより重要にな
る。第1レンズ群のパワーの低減化はペッツバール和を
小さくし、ひいては像面湾曲と非点収差の補正が困難に
なり好ましくない。
Next, conditional expression (2) will be described. Conditional expression (2) is obtained by normalizing the focal length of the first lens unit with the focal length on the telephoto side. Optimization of the focal length of the first lens group is an important condition in determining good aberration correction and size. When the value exceeds the upper limit of conditional expression (2), it means that the power of the first lens unit is weakened, and as a result, the whole zoom lens system is undesirably enlarged. Further, in the case of a high-magnification zoom as in the present invention, a significant change in the overall length is caused at the time of telephoto, making it difficult to carve a cam curve in the lens barrel, which cannot be realized. In the case of an extremely small configuration as in the present invention, setting of an optimal Petzval sum becomes more important. Reducing the power of the first lens unit reduces the Petzval sum, which makes it difficult to correct curvature of field and astigmatism, which is not preferable.

【0018】なお、条件式(2)の上限値を0.50以
下に設定すると、より最適なペッツバール和の設定が可
能である。また条件式(2)の上限値を0.48以下に
設定すると本発明の効果を最大限に発揮できる。
If the upper limit of conditional expression (2) is set to 0.50 or less, it is possible to set a more optimal Petzval sum. If the upper limit value of conditional expression (2) is set to 0.48 or less, the effects of the present invention can be maximized.

【0019】逆に、条件式(2)の下限値を下回る場
合、第1レンズ群のパワーが著しく大きくなることを意
味する。第1レンズ群のパワーの著しい増加は、前玉に
入射する大画角の光線を更にレンズ周辺部分に下げる作
用をする。このため、周辺光量は減少し、結果的に前玉
径の大型化とフィルターサイズの大型化とを招き好まし
くない。また、収差補正上も広角側では周辺コマ収差の
悪化、望遠側では球面収差の悪化等を招き好ましくな
い。なお、条件式(2)の下限値を0.30以上に設定
すると、本発明の効果を最大限に発揮できる。
On the other hand, when the value goes below the lower limit of conditional expression (2), it means that the power of the first lens unit becomes extremely large. The remarkable increase in the power of the first lens group has the effect of lowering the light beam having a large angle of view incident on the front lens to the peripheral portion of the lens. For this reason, the amount of peripheral light decreases, resulting in an increase in the front lens diameter and an increase in the filter size, which is not preferable. In addition, in terms of aberration correction, peripheral coma is deteriorated on the wide angle side, and spherical aberration is deteriorated on the telephoto side. When the lower limit of conditional expression (2) is set to 0.30 or more, the effects of the present invention can be maximized.

【0020】次に条件式(3)の説明をする。条件式
(3)は第2レンズ群の焦点距離の絶対値を望遠側の焦
点距離で規格化したものである。条件式(3)の上限値
を上回る場合、負の第2レンズ群のパワーが弱くなるこ
とを意味する。この場合、第2レンズ群の移動量が増
し、大型化を招く。また、前玉に入射する大画角の光線
を更にレンズ周辺部分に下げるため、周辺光量は減少
し、結果的に前玉径の大型化とフィルターサイズの大型
化を招き好ましくない。
Next, the conditional expression (3) will be described. Conditional expression (3) is obtained by normalizing the absolute value of the focal length of the second lens unit with the focal length on the telephoto side. When the value exceeds the upper limit of conditional expression (3), it means that the power of the negative second lens unit becomes weak. In this case, the amount of movement of the second lens group increases, resulting in an increase in size. Further, since the light beam having a large angle of view incident on the front lens is further reduced to the peripheral portion of the lens, the peripheral light amount is reduced, and as a result, the diameter of the front lens and the filter size are increased, which is not preferable.

【0021】なお、条件式(3)の上限値を0.10以
下に設定すると、より小型化を実現できる。また条件式
(3)の上限値を0.085以下に設定すると本発明の
効果を最大限に発揮できる。
If the upper limit of conditional expression (3) is set to 0.10 or less, further miniaturization can be realized. When the upper limit of conditional expression (3) is set to 0.085 or less, the effects of the present invention can be maximized.

【0022】逆に、条件式(3)の下限値を下回る場
合、負の第2レンズ群のパワーが著しく強くなることを
意味する。この場合、ペッツバール和を適切な値よりも
小さくなり、ひいては像面湾曲と非点収差の補正が困難
になり好ましくない。また、広角端の歪曲収差を初め、
軸外収差の補正が困難になり好ましくない。
On the other hand, when the value goes below the lower limit of conditional expression (3), it means that the power of the negative second lens unit becomes extremely strong. In this case, the Petzval sum becomes smaller than an appropriate value, and it becomes difficult to correct the curvature of field and astigmatism. Also, including distortion at the wide-angle end,
Correction of off-axis aberration becomes difficult, which is not preferable.

【0023】また、前記レンズ群Gm中の正レンズ成分
L1、負レンズ成分L2のどちらかに、少なくとも1面
の非球面を有することが望ましい。極端にレンズ群Gm
を薄肉化し、かつ色消しと収差補正の条件の最低枚数で
構成された場合、特に非球面の導入によって収差補正効
果を持たせることが本発明の効果を十分発揮させるため
望ましい。特に本発明のような高倍率化ズームレンズの
場合は、非球面によって望遠側の球面収差と、上方コマ
収差の補正を行うことが小型・高性能のために重要なポ
イントである。
It is preferable that either the positive lens component L1 or the negative lens component L2 in the lens group Gm has at least one aspheric surface. Extremely lens group Gm
When the thickness of the lens is reduced and the number of lenses is set to the minimum number of conditions for achromatism and aberration correction, it is desirable to provide an aberration correction effect by introducing an aspherical surface in order to sufficiently exert the effects of the present invention. In particular, in the case of a high-magnification zoom lens as in the present invention, it is important to correct spherical aberration on the telephoto side and upper coma aberration by using an aspheric surface for miniaturization and high performance.

【0024】また、本発明の効果を最大限発揮するには
正負正正の4群構成ズームレンズを基本構成とすること
が、小型化と高性能化のバランスから好ましい。
In order to maximize the effect of the present invention, it is preferable that the zoom lens has a basic structure of a positive / negative / positive / positive four-group zoom lens in view of a balance between miniaturization and high performance.

【0025】次に条件式(4)の説明をする。この条件
式は前記レンズ群Gm中の二つのレンズエレメントに挟
まれた間隔の大小について適切に規定するものである。
本発明の様に正レンズエレメントと負レンズエレメント
からなる場合、その空気間隔は群としての主点をコント
ロールし、その直前の群とのデッドスペースを確保し、
かつバックフォーカスを最適な値に設定し、小型化と高
倍率化の両立化を図り、両レンズエレメントのパワーを
最適に保ち、良好な収差補正を実現する役割を担ってい
る。
Next, conditional expression (4) will be described. This conditional expression appropriately defines the magnitude of the distance between the two lens elements in the lens group Gm.
In the case of comprising a positive lens element and a negative lens element as in the present invention, the air space controls the principal point as a group, and secures a dead space with the group immediately before it,
In addition, the back focus is set to an optimum value, thereby achieving both miniaturization and high magnification, maintaining the power of both lens elements at an optimum, and fulfilling the role of achieving good aberration correction.

【0026】条件式(4)の上限値を上回る場合、ズー
ムレンズ全長が大きくなり、また、バックフォーカスが
短くなるので好ましくない。
When the value exceeds the upper limit of conditional expression (4), the total length of the zoom lens becomes large, and the back focus becomes short.

【0027】逆に、条件式(4)の下限値を下回る場
合、両レンズエレメントのパワーが強くなることを意味
する。この場合、広角端、望遠端ともに球面収差を初め
とする諸収差の補正が悪化し、好ましくない。また、製
造上の問題として、偏芯許容量の著しく少ないレンズエ
レメントが発生し、製造困難になり好ましくない。さら
に、最終レンズの像側の面が、像面に対し著しい凹面に
なってしまう。このため、規定より著しく大きいバック
フォーカスを達成しなければ、所謂一眼レフのクイック
リターンミラーと機械的干渉を起こし使用できなくな
る。
Conversely, when the value goes below the lower limit of conditional expression (4), it means that the power of both lens elements becomes strong. In this case, correction of various aberrations including spherical aberration is deteriorated at both the wide-angle end and the telephoto end, which is not preferable. Further, as a problem in manufacturing, a lens element having an extremely small eccentric tolerance is generated, which makes manufacturing difficult, which is not preferable. Further, the image-side surface of the final lens becomes significantly concave with respect to the image surface. For this reason, unless a back focus significantly larger than the specified value is achieved, mechanical interference occurs with a so-called single-lens reflex quick return mirror, and the lens cannot be used.

【0028】なお、条件式(4)の下限値を0.30以
上に設定すると、球面収差等の諸収差をより良好に補正
できる。また条件式(4)の下限値を0.58以上に設
定すると本発明の効果を最大限に発揮できる。
If the lower limit of conditional expression (4) is set to 0.30 or more, various aberrations such as spherical aberration can be corrected more favorably. If the lower limit of conditional expression (4) is set to 0.58 or more, the effects of the present invention can be maximized.

【0029】また、本発明の好ましい態様では、前記少
なくとも1つのレンズ群は、正の屈折力を有する第3レ
ンズ群G3のみで構成され、前記第3レンズ群G3の焦
点距離をf3、前記レンズ群Gmの焦点距離をfmとそ
れぞれしたとき、以下の条件式(5)を満足することが
望ましい。 (5) 0.2<f3/fm<1.0
In a preferred aspect of the present invention, the at least one lens group includes only a third lens group G3 having a positive refractive power, the focal length of the third lens group G3 being f3, Assuming that the focal length of the group Gm is fm, it is preferable that the following conditional expression (5) is satisfied. (5) 0.2 <f3 / fm <1.0

【0030】次に条件式(5)の説明をする。この条件
式(5)は第3レンズ群と第4レンズ群とのパワーの比
を規定した条件である。第3レンズ群のパワーが第4レ
ンズ群のパワーよりも強いことが諸収差を補正する上で
必要であり、特に望遠端の球面収差補正においてはこの
条件を満たすことが望ましい。
Next, the conditional expression (5) will be described. This conditional expression (5) is a condition that defines the power ratio between the third lens unit and the fourth lens unit. It is necessary for the correction of various aberrations that the power of the third lens group is stronger than the power of the fourth lens group, and it is desirable to satisfy this condition especially for spherical aberration correction at the telephoto end.

【0031】条件式(5)の上限値を上回る場合、第3
レンズ群に比較し第4レンズ群のパワーが強くなること
を意味する。この場合、特に望遠側の球面収差やコマ収
差の悪化が著しく、本発明のような超コンパクトな高倍
率ズームは達成できない。なお、条件式(5)の上限値
を0.8以下に設定すると、球面収差等の諸収差をより
良好に補正できる。また条件式(5)の上限値を0.6
以下に設定すると本発明の効果を最大限に発揮できる。
If the upper limit of conditional expression (5) is exceeded, the third condition
This means that the power of the fourth lens group is higher than that of the lens group. In this case, spherical aberration and coma aberration particularly on the telephoto side are significantly deteriorated, and a super-compact high-magnification zoom as in the present invention cannot be achieved. When the upper limit of conditional expression (5) is set to 0.8 or less, various aberrations such as spherical aberration can be corrected more favorably. Also, the upper limit value of conditional expression (5) is set to 0.6.
By setting the following, the effects of the present invention can be maximized.

【0032】また、条件式(5)の下限値を下回る場
合、第4レンズ群に比較し第3レンズ群のパワーが強く
なることを意味する。この場合、広角側、望遠側ともに
球面収差を初めとする諸収差の補正が悪化し、好ましく
ない。また、製造上の問題として、レンズエレメントの
一部が偏芯許容量の著しく少なくなり、製造困難になり
好ましくない。
If the lower limit of conditional expression (5) is not reached, it means that the power of the third lens unit is stronger than that of the fourth lens unit. In this case, correction of various aberrations including spherical aberration is deteriorated on both the wide-angle side and the telephoto side, which is not preferable. Further, as a problem in manufacturing, the allowable eccentricity of a part of the lens element becomes extremely small, which makes manufacturing difficult, which is not preferable.

【0033】なお、条件式(5)の下限値を0.3以上
に設定すると、球面収差等の諸収差をより良好に補正で
きる。また条件式(5)の下限値を0.35以上に設定
すると本発明の効果を最大限に発揮できる。
If the lower limit of conditional expression (5) is set to 0.3 or more, various aberrations such as spherical aberration can be corrected more favorably. When the lower limit of conditional expression (5) is set to 0.35 or more, the effects of the present invention can be maximized.

【0034】次に、本発明に導入した非球面について説
明する。本発明の効果を最大限に発揮するには、レンズ
群Gm中の正レンズ成分L1、負レンズ成分L2の両方
に、少なくとも各1面の、光軸から周辺に向かうにした
がってレンズ単体の正の屈折力が弱まる形状か、または
レンズ単体の負の屈折力が強まる形状を有する非球面を
有する事が望ましい。
Next, the aspherical surface introduced into the present invention will be described. In order to maximize the effect of the present invention, both the positive lens component L1 and the negative lens component L2 in the lens group Gm have at least one positive surface of the lens as it goes from the optical axis toward the periphery. It is desirable to have an aspherical surface having a shape in which the refractive power is weakened or a shape in which the negative refractive power of the lens unit is increased.

【0035】これは、特に本発明のような超コンパクト
で高倍率を有するズームレンズには効果的な技術であ
る。上述したとおり、極端にレンズ群Gmを薄肉化し、
かつ色消しと収差補正の条件の最低枚数で構成された本
発明では、正レンズ成分L1、負レンズ成分L2の両方
に非球面を導入することによって、球面収差を初め、コ
マ収差等の軸外諸収差を良好にし、最適なバックフォー
カスと各群間のデッドスペースを設定する設計自由度を
得ることができる。
This is an effective technique particularly for a zoom lens having an ultra-compact and high magnification as in the present invention. As described above, the lens group Gm is extremely thinned,
In the present invention, which is configured with the minimum number of achromatic and aberration correction conditions, an aspheric surface is introduced into both the positive lens component L1 and the negative lens component L2, so that off-axis such as spherical aberration and coma aberration can be obtained. Various aberrations can be improved, and a degree of freedom in designing an optimum back focus and a dead space between groups can be obtained.

【0036】また、光軸からレンズ周辺に向かうにした
がってレンズ単体の正の屈折力が弱まる形状か、または
レンズ単体の負の屈折力が強まる形状を有することは、
すなわち負の球面収差をより補正できる形状を示してい
る。これはレンズ群Gm単体の球面収差補正を良好に行
い、大きなFナンバーに対応可能にするためである。
In addition, having a shape in which the positive refractive power of a single lens decreases as going from the optical axis to the periphery of the lens, or a shape in which the negative refractive power of a single lens increases,
That is, the shape shows that the negative spherical aberration can be further corrected. This is because the spherical aberration of the lens group Gm alone is favorably corrected, and a large F number can be handled.

【0037】また、更に本発明の効果を発揮させるに
は、前記レンズ群Gm中の正レンズ成分L1は両面非球
面によって構成され、その両面非球面レンズの像側の非
球面は、光軸上の曲率に比較して有効径周辺部分の曲率
が大きくなる形状をしていることが望ましい。これは上
述したとおり、レンズ群Gm単体の球面収差補正を良好
に行い、更に軸外諸収差の補正効果も高めるためであ
る。両面非球面のそれぞれの面はレンズの厚みを隔てて
いるから、各面それぞれに各光線の入射高や偏角が異な
る。この入射高や偏角の差を利用し各非球面の形状設計
を行えば、複数の収差を同時に補正することが可能なの
である。
Further, in order to further exert the effect of the present invention, the positive lens component L1 in the lens group Gm is composed of a double-sided aspherical surface, and the image-side aspherical surface of the double-sided aspherical lens is located on the optical axis. It is desirable to have a shape in which the curvature of the peripheral portion of the effective diameter is larger than the curvature of. This is because, as described above, the spherical aberration of the lens group Gm alone is favorably corrected, and the effect of correcting various off-axis aberrations is also enhanced. Since the surfaces of the two aspheric surfaces are separated from each other by the thickness of the lens, the incident height and the declination of each ray are different on each surface. A plurality of aberrations can be corrected at the same time by designing the shape of each aspheric surface using the difference between the incident height and the declination.

【0038】また更に、前記レンズ群Gm中の負レンズ
成分L2は少なくとも1面の非球面を有し、その非球面
は光軸上よりも有効径最周辺部分が負の屈折力が強まる
形状を有することが望ましい。これは主に広角端の像面
湾曲等の軸外収差や望遠端のコマ収差の補正に有利に働
くのである。
Further, the negative lens component L2 in the lens group Gm has at least one aspherical surface, and the aspherical surface has a shape in which the negative part of the effective diameter at the outermost periphery of the effective diameter becomes stronger than on the optical axis. It is desirable to have. This works favorably for correcting off-axis aberrations such as field curvature at the wide-angle end and coma aberrations at the telephoto end.

【0039】また、本発明の好ましい態様では、前記第
2レンズ群G2は、少なくとも1つの負レンズ成分と正
レンズ成分を有し、前記正レンズ成分のd線に対する屈
折率をnp、アッベ数をνpとそれぞれしたとき、以下
の条件式(6),(7)を満足する事が望ましい。 (6) np<1.85 (7) νp<27
In a preferred aspect of the present invention, the second lens group G2 has at least one negative lens component and a positive lens component, and has a refractive index np of the positive lens component with respect to d-line and an Abbe number. When νp is satisfied, it is desirable that the following conditional expressions (6) and (7) are satisfied. (6) np <1.85 (7) νp <27

【0040】次に条件式(6),(7)の説明をする。
条件式(6),(7)は前記第2レンズ群中の正レンズ
の最適な硝材を示した条件である。条件式(6)はd線
に対する最適な屈折率の設定を示している。
Next, conditional expressions (6) and (7) will be described.
Conditional expressions (6) and (7) are conditions indicating the optimum glass material of the positive lens in the second lens group. Conditional expression (6) shows the setting of the optimum refractive index for the d-line.

【0041】条件式(6)の上限値を上回る場合、正
(凸)の屈折率が高くなりすぎ、第2レンズ群を比較的
強いパワーで使用した場合、ペッツバール和の最適な設
定が困難になり、好ましくない。なお、条件式(6)の
上限値を1.84以下、さらに1.83以下に設定する
と本発明の効果を最大限に発揮できる。
When the value exceeds the upper limit of conditional expression (6), the positive (convex) refractive index becomes too high, and when the second lens group is used with relatively high power, it is difficult to optimally set the Petzval sum. Is not preferred. When the upper limit value of conditional expression (6) is set to 1.84 or less, further 1.83 or less, the effect of the present invention can be maximized.

【0042】条件式(7)はアッベ数の適切な設定を示
している。条件式(7)を満足しない場合は、結果的に
軸上色収差と倍率色収差のズーミングによる変動が補正
しきれず、好ましくない。
Conditional expression (7) shows an appropriate setting of the Abbe number. If the conditional expression (7) is not satisfied, the fluctuations due to the zooming of the longitudinal chromatic aberration and the lateral chromatic aberration cannot be completely corrected, which is not preferable.

【0043】[0043]

【実施例】以下、添付図面に基づいて本発明の実施例を
説明する。 (第1実施例)図1は第1実施例のレンズ構成とその移
動軌跡を示している。第1実施例にかかる超コンパクト
なズームレンズは、物体側から順に、正の屈折力を有す
る第1レンズ群G1と、負の屈折力を有する第2レンズ
群G2と、正の屈折力を有する第3レンズ群G3と、正
の屈折力を有する第4レンズ群Gmとの正・負・正・正
の4つの群から構成される。
Embodiments of the present invention will be described below with reference to the accompanying drawings. (First Embodiment) FIG. 1 shows a lens configuration of the first embodiment and the movement locus thereof. The ultra-compact zoom lens according to the first example has, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. The third lens group G3 and the fourth lens group Gm having a positive refractive power include four positive, negative, positive, and positive groups.

【0044】第1レンズ群G1は、物体側から順に、物
体側に凸面を向けた負メニスカスレンズと正レンズとの
接合よりなる接合正レンズL11と、物体側に凸面を向
けた正メニスカスレンズL12とから構成される。第2
レンズ群G2は、物体側から順に、物体側に非球面を有
し、樹脂とガラス部材の複合からなる負メニスカスレン
ズL21と、両凹形状の負レンズL22と、両凸形状の
正レンズL23と、両凹形状の負レンズL24とから構
成される。第3レンズ群G3は、物体側から順に、開口
絞りSと、両凸形状の正レンズL31と、正メニスカス
レンズL32と、物体側に凹面を向けた負メニスカスレ
ンズL33とから構成される。第4レンズ群Gmは、物
体側から順に、両面に非球面を有し両凸形状を持った両
面非球面正レンズL1と、固定絞りSFと、物体側に樹
脂とガラス部材の複合からなる非球面を有した非球面負
レンズL2とから構成される。
The first lens group G1 includes, in order from the object side, a cemented positive lens L11 composed of a cemented negative meniscus lens having a convex surface facing the object side and a positive lens, and a positive meniscus lens L12 having a convex surface facing the object side. It is composed of Second
The lens group G2 has, in order from the object side, a negative meniscus lens L21 having an aspheric surface on the object side, made of a composite of a resin and a glass member, a biconcave negative lens L22, and a biconvex positive lens L23. , And a biconcave negative lens L24. The third lens group G3 includes, in order from the object side, an aperture stop S, a biconvex positive lens L31, a positive meniscus lens L32, and a negative meniscus lens L33 having a concave surface facing the object side. The fourth lens group Gm includes, in order from the object side, a double-sided aspherical positive lens L1 having an aspheric surface on both surfaces and having a biconvex shape, a fixed stop SF, and a non-aperture made of a composite of a resin and a glass member on the object side. An aspherical negative lens L2 having a spherical surface.

【0045】そして、変倍は広角端状態から望遠端状態
に向かって、第1レンズ群G1と第2レンズ群G2との
間の空気間隔が拡大し、第2レンズ群G2と第3レンズ
群G3との間の空気間隔が縮小し、第3レンズ群G3と
第4レンズ群Gmとの間の空気間隔が縮小するように全
レンズ群を独立して移動することによって行なう。ま
た、近距離合焦は第2レンズ群G2を物体方向に移動し
て行なう。
In zooming, from the wide-angle end state to the telephoto end state, the air gap between the first lens group G1 and the second lens group G2 increases, and the second lens group G2 and the third lens group. This is performed by moving all the lens groups independently so that the air gap between the lens group G3 and the third lens group G3 and the fourth lens group Gm is reduced. In addition, short-distance focusing is performed by moving the second lens group G2 in the object direction.

【0046】表1に本実施例の諸元値を掲げる。全体諸
元において、fは焦点距離、FNOはFナンバー、2ω
は画角をそれぞれ示す。また、レンズデータにおいて、
riはレンズ面Riの曲率半径、diはレンズ面Riとレン
ズ面Ri+1との光軸上の面間隔、niはレンズ面Riとレ
ンズ面Ri+1との間の媒質のd線の屈折率、νiはレンズ
面Riとレンズ面Ri+1との間の媒質のアッベ数、BFは
バックフォーカスをそれぞれ示す。さらに、非球面デー
タにおける「E-n」は「×10-n」を表している。
Table 1 shows the specification values of this embodiment. In the overall specifications, f is the focal length, FNO is the F number, 2ω
Indicates an angle of view. In the lens data,
ri is the radius of curvature of the lens surface Ri, di is the distance between the lens surfaces Ri and Ri + 1 on the optical axis, and ni is the refraction of the d-line of the medium between the lens surfaces Ri and Ri + 1. The ratio, νi, is the Abbe number of the medium between the lens surface Ri and the lens surface Ri + 1, and BF is the back focus. Further, “ En ” in the aspherical surface data represents “× 10 −n ”.

【0047】諸元表に示す非球面は、光軸から垂直方向
の高さyにおける各非球面の頂点の接平面から光軸方向
に沿った距離(サグ量)をS(y)とし、基準の曲率半
径をR、円錐係数をκ、n次の非球面係数をCnとそれ
ぞれするとき、以下の非球面式で与えられる。
For the aspherical surface shown in the specification table, the distance (sag amount) along the optical axis direction from the tangent plane of the apex of each aspherical surface at the height y in the vertical direction from the optical axis is defined as S (y). Let R be the radius of curvature, κ be the conic coefficient, and Cn be the n-th order aspherical coefficient.

【0048】[0048]

【数1】S(y)=(y2/R)/[1+(1-κ・y2/R2)1/2]+C3・|y|3+C4
・y4+C5・|y|5+C6・y6+C8・y8+C10・y10+C12・y12+C14・y14
## EQU1 ## S (y) = (y 2 / R) / [1+ (1-κ · y 2 / R 2 ) 1/2 ] + C3 · | y | 3 + C4
・ Y 4 + C5 ・ | y | 5 + C6 ・ y 6 + C8 ・ y 8 + C10 ・ y 10 + C12 ・ y 12 + C14 ・ y 14

【0049】諸元表(レンズデータ)中の非球面には、
面番号に★印を付けており、r欄には近軸曲率半径を記
入してある。また、諸元表(可変間隔データ)におい
て、βは物体と像間の結像倍率を示し、1−POSは広
角端で無限遠合焦時を、2−POSは中間焦点距離状態
で無限遠合焦時を、3−POSは望遠端で無限遠合焦時
を示し、4−POSは広角端でβ=-0.03333での合焦時
を、5−POSは中間焦点距離状態でβ=-0.03333での
合焦時を、6−POSは望遠端でβ=-0.03333での合焦
時を示し、7−POSは広角端で近距離合焦時を、8−
POSは中間焦点距離状態で近距離合焦時を、9−PO
Sは望遠端で近距離合焦時を示す。また、諸元表の焦点
距離、曲率半径、面間隔その他の長さの単位は一般に
「mm」が使われるが、光学系は比例拡大又は比例縮小
しても同等の光学性能が得られるので、これに限られる
ものではない。以上の説明は、他の実施例においても同
様である。
In the aspherical surface in the specification table (lens data),
The surface number is marked with a star, and the paraxial radius of curvature is entered in the r column. In the specification table (variable interval data), β indicates the imaging magnification between the object and the image, 1-POS indicates infinity focusing at the wide angle end, and 2-POS indicates infinity at the intermediate focal length state. 3-POS indicates focusing at infinity at the telephoto end, 4-POS indicates focusing at β = −0.03333 at the wide angle end, and 5-POS indicates β = − at the intermediate focal length state. When focusing at 0.03333, 6-POS indicates focusing at the telephoto end at β = −0.03333, 7-POS indicates focusing at close range at the wide-angle end, and 8-POS.
POS is a 9-PO
S indicates the state at the telephoto end when focusing on a short distance. In addition, the unit of the focal length, radius of curvature, surface spacing and other lengths of the specification table are generally `` mm '', but the same optical performance can be obtained even if the optical system is proportionally enlarged or reduced, It is not limited to this. The above description is the same in other embodiments.

【0050】[0050]

【表1】 (全体諸元) f=29.1〜192mm 2ω=74.1°〜11.8° FNO=3.6〜5.9 (レンズデータ) r d ν n 1) 85.2964 1.8000 23.78 1.846660 2) 52.3479 6.8000 60.09 1.640000 3) -11096.9620 0.1000 1.000000 4) 57.2728 3.8500 82.52 1.497820 5) 232.6502 D5 1.000000 6)★ 113.7061 0.0500 38.09 1.553890 7) 98.4767 1.6000 42.72 1.834810 8) 15.1317 4.8000 1.000000 9) -49.0060 0.9000 49.61 1.772500 10) 59.9897 0.1000 1.000000 11) 25.8325 3.5000 22.76 1.808090 12) -56.8121 0.9500 1.000000 13) -25.2334 0.9000 49.61 1.772500 14) 500.0000 D14 1.000000 15> 開口絞り 0.5000 1.000000 16) 24.4453 4.3000 82.52 1.497820 17) -38.9608 0.1000 1.000000 18) 23.8212 2.0500 82.52 1.497820 19) 46.3499 2.7000 1.000000 20) -24.7866 1.0000 23.78 1.846660 21) -55.6820 D21 1.000000 22)★ 103.4624 3.5000 64.10 1.516800 23)★ -29.2538 0.0000 1.000000 24) 固定絞り 7.8500 1.000000 25)★ -311.1355 0.2000 38.09 1.553890 26) -100.0000 1.3000 46.58 1.804000 27) 125.3392 BF 1.000000 (非球面係数) 面 κ C3 C4 C6 6 6.2788 -0.11851E-5 1.41700E-6 -9.06140E-9 C8 C10 C12 -8.32020E-11 1.34880E-12 -0.38798E-14 面 κ C3 C4 C6 22 -99.9999 -0.23379E-5 -1.61500E-5 -2.10980E-7 C8 C10 7.43050E-10 1.73820E-11 面 κ C3 C4 C6 23 2.1022 -0.35074E-5 -1.26210E-5 -5.83470E-8 C8 C10 C12 -4.50420E-10 2.23330E-11 -0.32891E-14 面 κ C3 C4 C5 25 576.7229 -0.69399E-5 -3.82770E-5 0.65412E-7 C6 C8 C10 -5.66570E-9 -7.01160E-10 3.79140E-12 C12 0.16919E-13 (可変間隔データ) 1-POS 2-POS 3-POS f 29.1 50 192 D0 ∞ ∞ ∞ D5 2.16928 9.21209 38.15808 D14 19.14864 12.10583 0.80311 D21 5.75080 3.31464 1.46943 4-POS 5-POS 6-POS β -0.03333 -0.03333 -0.03333 D0 825.2688 1429.7337 5065.4811 D5 1.59450 8.75909 36.58228 D14 19.72342 12.55883 2.37891 D21 5.75080 3.31464 1.46943 7-POS 8-POS 9-POS β -0.08067 -0.13669 -0.31493 D0 314.9335 299.9877 259.2589 D5 0.79962 7.41055 29.90142 D14 20.51830 13.90737 9.05977 D21 5.75080 3.31464 1.46943 (条件対応値) (1)Σdw/ft=0.395 (2)f1/ft=0.418 (3)|f2|/ft=0.0768 (4)dpn/dm=0.611 (5)f3/fm=0.491 (6)np=1.80809 (7)νp=22.76(Table 1) (Overall specifications) f = 29.1 to 192 mm 2ω = 74.1 ° to 11.8 ° FNO = 3.6 to 5.9 (lens data) rd ν n 1) 85.2964 1.8000 23.78 1.846660 2 52.3479 6.8000 60.09 1.640000 3) -11096.9620 0.1000 1.000000 4) 57.2728 3.8500 82.52 1.497820 5) 232.6502 D5 1.000000 6) ★ 113.7061 0.0500 38.09 1.553890 7) 98.4767 1.6000 42.72 1.834810 8) 15.1317 4.8000 1.000000 9) -49.0060 0.9000 49.61 1.500 0.1000 1.000000 11) 25.8325 3.5000 22.76 1.808090 12) -56.8121 0.9500 1.000000 13) -25.2334 0.9000 49.61 1.772500 14) 500.0000 D14 1.000000 15> Aperture stop 0.5000 1.000000 16) 24.4453 4.3000 82.52 1.497820 17) -38.9608 0.1000 1.000000 18) 23.8212 2.0500 82.52 1.497820 19) 46.3499 2.7000 1.000000 20) -24.7866 1.0000 23.78 1.846660 21) -55.6820 D21 1.000000 22) ★ 103.4624 3.5000 64.10 1.516800 23) ★ -29.2538 0.0000 1.000000 24) Fixed throttle 7.8500 1.000000 25) ★ -311.1355 0.2000 38.09 1.553890 26) -10 0.0000 1.3000 46.58 1.804000 27) 125.3392 BF 1.000000 (Aspheric coefficient) Surface κ C3 C4 C6 6 6.2788 -0.11851E-5 1.41700E-6 -9.06140E-9 C8 C10 C12 -8.32020E-11 1.34880E-12 -0.38798E -14 surface κ C3 C4 C6 22 -99.9999 -0.23379E-5 -1.61500E-5 -2.10980E-7 C8 C10 7.43050E-10 1.73820E-11 surface κ C3 C4 C6 23 2.1022 -0.35074E-5 -1.26210E -5 -5.83470E-8 C8 C10 C12 -4.50420E-10 2.23330E-11 -0.32891E-14 surface κ C3 C4 C5 25 576.7229 -0.69399E-5 -3.82770E-5 0.65412E-7 C6 C8 C10 -5.66570 E-9 -7.01160E-10 3.79140E-12 C12 0.16919E-13 (Variable interval data) 1-POS 2-POS 3-POS f 29.1 50 192 D0 ∞ ∞ ∞ D5 2.16928 9.21209 38.15808 D14 19.14864 12.10583 0.80311 D21 5.75080 3.31464 1.46943 4-POS 5-POS 6-POS β -0.03333 -0.03333 -0.03333 D0 825.2688 1429.7337 5065.4811 D5 1.59450 8.75909 36.58228 D14 19.72342 12.55883 2.37891 D21 5.75080 3.31464 1.46943 7-POS 8-POS 9-POS β -0.08067 -0.13669 -0.31493 0 314.9335 299.9877 259.2589 D5 0.79962 7.41055 29.9014 2 D14 20.51830 13.90737 9.05977 D21 5.75080 3.31464 1.46943 (Conditional value) (1) Σdw / ft = 0.395 (2) f1 / ft = 0.418 (3) | f2 | /ft=0.0768 (4) dpn /Dm=0.611 (5) f3 / fm = 0.391 (6) np = 1.80909 (7) vp = 22.76

【0051】図2,3,4は、それぞれ第1実施例の広
角端状態で無限遠合焦時の収差図、中間焦点距離状態で
無限遠合焦時の収差図、望遠端状態の無限遠合焦時の収
差図である。収差図において、FNOはFナンバー、Y
は像高、d,gはそれぞれd線,g線の収差曲線である
ことを示している。また非点収差において、実線はサジ
タル像面、点線はメリジオナル像面を示している。以
下、全ての実施例の収差図において同様である。各収差
図から明らかなように、本実施例では、広角端状態、中
間焦点距離状態、望遠端状態の各状態において、大画角
までカバーしたうえ良好に諸収差が補正されていること
がわかる。
FIGS. 2, 3 and 4 are aberration diagrams of the first embodiment when focused on infinity at the wide-angle end state, aberration diagrams on focusing on infinity at the intermediate focal length state, and infinity at the telephoto end state. It is an aberration figure at the time of focusing. In the aberration diagram, FNO is the F number, Y
Indicates an image height, and d and g indicate aberration curves of d-line and g-line, respectively. Regarding astigmatism, a solid line indicates a sagittal image plane, and a dotted line indicates a meridional image plane. Hereinafter, the same applies to the aberration diagrams of all the examples. As is clear from the aberration diagrams, in the present embodiment, in each state of the wide-angle end state, the intermediate focal length state, and the telephoto end state, various aberrations are well corrected while covering up to a large angle of view. .

【0052】(第2実施例)図5は第2実施例にかかる
超コンパクトなズームレンズの構成とその移動軌跡を示
している。物体側から順に、正の屈折力を有する第1レ
ンズ群G1と、負の屈折力を有する第2レンズ群G2
と、正の屈折力を有する第3レンズ群G3と、正の屈折
力を有する第4レンズ群Gmとの正・負・正・正の4つ
の群から構成される。
(Second Embodiment) FIG. 5 shows the configuration of an ultra-compact zoom lens according to the second embodiment and the locus of movement thereof. In order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power
, A third lens group G3 having a positive refractive power, and a fourth lens group Gm having a positive refractive power.

【0053】第1レンズ群G1は、物体側から順に、物
体側に凸面を向けた負メニスカスレンズと正レンズとの
接合よりなる接合正レンズL11と、物体側に凸面を向
けた正メニスカスレンズL12とから構成される。第2
レンズ群G2は、物体側から順に、物体側に非球面を有
し、樹脂とガラス部材の複合からなる負メニスカスレン
ズL21と、両凹形状の負レンズL22と、両凸形状の
正レンズL23と、両凹形状の負レンズL24とから構
成される。第3レンズ群G3は、物体側から順に、開口
絞りSと、両凸形状の正レンズL31と、両凸形状の正
レンズL32と、両凹形状の負レンズL33とから構成
される。第4レンズ群Gmは、物体側から順に、両面に
非球面を有した両面非球面正レンズL1と、物体側の面
に非球面を有した非球面負レンズL2とから構成され
る。
The first lens group G1 includes, in order from the object side, a cemented positive lens L11 composed of a cemented negative meniscus lens having a convex surface facing the object side and a positive lens, and a positive meniscus lens L12 having a convex surface facing the object side. It is composed of Second
The lens group G2 has, in order from the object side, a negative meniscus lens L21 having an aspheric surface on the object side, made of a composite of a resin and a glass member, a biconcave negative lens L22, and a biconvex positive lens L23. , And a biconcave negative lens L24. The third lens group G3 includes, in order from the object side, an aperture stop S, a biconvex positive lens L31, a biconvex positive lens L32, and a biconcave negative lens L33. The fourth lens group Gm includes, in order from the object side, a double-sided aspheric positive lens L1 having an aspheric surface on both surfaces and an aspheric negative lens L2 having an aspheric surface on the object side surface.

【0054】変倍は広角端状態から望遠端状態に向かっ
て、第1レンズ群G1と第2レンズ群G2との間の空気
間隔が拡大し、第2レンズ群G2と第3レンズ群G3と
の間の空気間隔が縮小し、第3レンズ群G3と第4レン
ズ群Gmとの間の空気間隔が縮小するように全レンズ群
を独立して移動することによって行なう。また、近距離
合焦は第2レンズ群G2を物体方向に移動して行なう。
表2に第2実施例の諸元値を掲げる。
During zooming, the air gap between the first lens group G1 and the second lens group G2 increases from the wide-angle end state to the telephoto end state, and the second lens group G2 and the third lens group G3 Is performed by moving all the lens groups independently so that the air gap between the third lens group G3 and the fourth lens group Gm is reduced. In addition, short-distance focusing is performed by moving the second lens group G2 in the object direction.
Table 2 shows the specification values of the second embodiment.

【0055】[0055]

【表2】 (全体諸元) f=29.1〜192mm 2ω=75.72°〜12.2° FNo=3.6〜5.9 (レンズデータ) r d ν n 1) 87.5279 1.8000 23.78 1.846660 2) 53.1253 6.5000 58.54 1.651600 3) -5701.5805 0.1000 1.000000 4) 57.4865 4.0000 82.52 1.497820 5) 226.2795 D5 1.000000 6)★ 234.4399 0.1000 38.09 1.553890 7) 200.0000 1.6000 46.58 1.804000 8) 15.4471 4.5000 1.000000 9) -41.8184 0.8000 46.58 1.804000 10) 95.9284 0.2000 1.000000 11) 25.9036 3.8000 25.43 1.805180 12) -34.9386 0.6000 1.000000 13) -24.6319 0.8000 46.58 1.804000 14) 93.9444 D14 1.000000 15> 開口絞り 0.5000 1.000000 16) 32.9805 2.8000 70.41 1.487490 17) -96.6873 0.1000 1.000000 18) 22.2785 5.0000 65.47 1.603000 19) -26.7618 0.3000 1.000000 20) -24.6754 0.8000 34.96 1.801000 21) 62.9378 D21 1.000000 22)★ 36.7066 4.5000 64.10 1.516800 23)★-126.1978 9.3824 1.000000 24)★ -49.8973 1.6000 49.61 1.772500 25) -74.7878 BF 1.000000 (非球面係数) 面 κ C4 C6 C8 C10 6 1.0000 1.74130E-6 -3.42140E-8 3.14560E-10 -6.55690E-13 22 5.8537 2.59170E-5 2.64070E-7 2.05700E-9 1.98630E-11 23 141.6794 6.12670E-5 3.95820E-7 5.44070E-10 7.23820E-11 24 1.2657 -2.35230E-5 -5.14680E-8 -3.57100E-10 3.87290E-12 (可変間隔データ) 1-POS 2-POS 3-POS f 29.1 50 192 D0 ∞ ∞ ∞ D5 2.33792 11.58687 38.76375 D14 19.38779 12.74116 0.95866 D21 5.25943 2.96326 0.99363 4-POS 5-POS 6-POS β -0.03333 -0.03333 -0.03333 D0 819.1429 1414.9776 5002.932 D5 1.76314 11.08415 37.03206 D14 19.96257 13.24388 2.69035 D21 5.25943 2.96326 0.99363 7-POS 8-POS 9-POS β -0.08146 -0.13528 -0.30970 D0 305.3047 289.9969 251.0323 D5 0.95506 9.61720 30.20712 D14 20.77065 14.71083 9.51529 D21 5.25943 2.96326 0.99363 (条件対応値) (1)Σdw/ft=0.400 (2)f1/ft=0.418 (3)|f2|/ft=0.0768 (4)dpn/dm=0.606 (5)f3/fm=0.491 (6)np=1.80518 (7)νp=25.43[Table 2] (Overall specifications) f = 29.1 to 192 mm 2ω = 75.72 ° to 12.2 ° FNo = 3.6 to 5.9 (lens data) rd ν n 1) 87.5279 1.8000 23.78 1.846660 2 ) 53.1253 6.5000 58.54 1.651600 3) -5701.5805 0.1000 1.000000 4) 57.4865 4.0000 82.52 1.497820 5) 226.2795 D5 1.000000 6) 234.4399 0.1000 38.09 1.553890 7) 200.0000 1.6000 46.58 1.804000 8) 15.4471 4.5000 1.000000 9) -41.8184 0.8000 46.58 1.80 0.2000 1.000000 11) 25.9036 3.8000 25.43 1.805180 12) -34.9386 0.6000 1.000000 13) -24.6319 0.8000 46.58 1.804000 14) 93.9444 D14 1.000000 15> Aperture stop 0.5000 1.000000 16) 32.9805 2.8000 70.41 1.487490 17) -96.6873 0.1000 1.000000 18) 22.2785 5.0000 65.47 1.603000 19) -26.7618 0.3000 1.000000 20) -24.6754 0.8000 34.96 1.801000 21) 62.9378 D21 1.000000 22) ★ 36.7066 4.5000 64.10 1.516800 23) ★ -126.1978 9.3824 1.000000 24) ★ -49.8973 1.6000 49.61 1.772500 25) -74.7878 BF 1.000000 (Aspherical) Number) surface κ C4 C6 C8 C10 6 1.0000 1.74130E-6 -3.42140E-8 3.14560E-10 -6.55690E-13 22 5.8537 2.59170E-5 2.64070E-7 2.05700E-9 1.98630E-11 23 141.6794 6.12670E -5 3.95820E-7 5.44070E-10 7.23820E-11 24 1.2657 -2.35230E-5 -5.14680E-8 -3.57100E-10 3.87290E-12 (Variable interval data) 1-POS 2-POS 3-POS f 29.1 50 192 D0 ∞ ∞ 5 D5 2.33792 11.58687 38.76375 D14 19.38779 12.74116 0.95866 D21 5.25943 2.96326 0.99363 4-POS 5-POS 6-POS β -0.03333 -0.03333 -0.03333 D0 819.1429 1414.9776 5002.932 D5 1.76314 11.08415 37.03206 3.208388. 0.99363 7-POS 8-POS 9-POS β -0.08146 -0.13528 -0.30970 D0 305.3047 289.9969 251.0323 D5 0.95506 9.61720 30.20712 D14 20.77065 14.71083 9.51529 D21 5.25943 2.96326 0.99363 (Conditional value) (1) Σdw / ft = 0.400 (2) ) F1 / ft = 0.418 (3) | f2 | /ft=0.0768 (4) dpn / dm = 0.606 (5) f3 / fm = 0.491 (6) np = 1.80518 (7) vp = 25.43

【0056】図6,7,8は、それぞれ第2実施例の広
角端状態で無限遠合焦時の収差図、中間焦点距離状態で
無限遠合焦時の収差図、望遠端状態の無限遠合焦時の収
差図である。各収差図から明らかなように、本実施例で
は、広角端状態、中間焦点距離状態、望遠端状態の各状
態において、大画角までカバーしたうえ良好に諸収差が
補正されていることがわかる。
FIGS. 6, 7 and 8 are aberration diagrams of the second embodiment when focused on infinity at the wide-angle end state, aberration diagrams on focusing on infinity at the intermediate focal length state, and infinity at the telephoto end state. It is an aberration figure at the time of focusing. As is clear from the aberration diagrams, in the present embodiment, in each state of the wide-angle end state, the intermediate focal length state, and the telephoto end state, various aberrations are well corrected while covering up to a large angle of view. .

【0057】(第3実施例)図9は、第3実施例にかか
る超コンパクトなズームレンズのレンズ構成とその移動
軌跡を示している。物体側から順に、正の屈折力を有す
る第1レンズ群G1と、負の屈折力を有する第2レンズ
群G2と、正の屈折力を有する第3レンズ群G3と、正
の屈折力を有する第4レンズ群Gmとの正・負・正・正
の4つの群から構成される。
(Third Embodiment) FIG. 9 shows a lens configuration of an ultra-compact zoom lens according to a third embodiment and the movement locus thereof. In order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, and a positive refractive power The fourth lens group Gm is composed of four groups: positive, negative, positive, and positive.

【0058】第1レンズ群G1は、物体側から順に、物
体側に凸面を向けた負メニスカスレンズと正レンズとの
接合よりなる接合正レンズL11と、物体側に凸面を向
けた正メニスカスレンズL12とから構成される。第2
レンズ群G2は、物体側から順に、物体側に非球面を有
し、樹脂とガラス部材の複合からなる負メニスカスレン
ズL21と、両凹形状の負レンズL22と、両凸形状の
正レンズL23と、両凹形状の負レンズL24とから構
成される。第3レンズ群G3は、物体側から順に、開口
絞りSと、両凸形状の正レンズL31と、両凸形状の正
レンズと両凹形状の負レンズの接合による接合正レンズ
L32とから構成される。第4レンズ群Gmは、物体側
から順に、両面に非球面を有し、両凸形状をした両面非
球面正レンズL1と、物体側の面に非球面を有した非球
面負メニスカスレンズL2とから構成される。
The first lens group G1 includes, in order from the object side, a cemented positive lens L11 composed of a cemented negative meniscus lens having a convex surface facing the object side and a positive lens, and a positive meniscus lens L12 having a convex surface facing the object side. It is composed of Second
The lens group G2 has, in order from the object side, a negative meniscus lens L21 having an aspheric surface on the object side, made of a composite of a resin and a glass member, a biconcave negative lens L22, and a biconvex positive lens L23. , And a biconcave negative lens L24. The third lens group G3 includes, in order from the object side, an aperture stop S, a biconvex positive lens L31, and a cemented positive lens L32 formed by joining a biconvex positive lens and a biconcave negative lens. You. The fourth lens group Gm includes, in order from the object side, a double-sided aspherical positive lens L1 having an aspheric surface on both surfaces and a biconvex shape, and an aspherical negative meniscus lens L2 having an aspheric surface on the object side surface. Consists of

【0059】変倍は、広角端状態から望遠端状態に向か
って、第1レンズ群G1と第2レンズ群G2との間の空
気間隔が拡大し、第2レンズ群G2と第3レンズ群G3
との間の空気間隔が縮小し、第3レンズ群G3と第4レ
ンズ群Gmとの間の空気間隔が縮小するように全レンズ
群を独立して移動することによって行なう。また、近距
離合焦は第2レンズ群G2を物体方向に移動して行な
う。
In zooming, the air gap between the first lens group G1 and the second lens group G2 increases from the wide-angle end state to the telephoto end state, and the second lens group G2 and the third lens group G3
Is performed by moving all the lens groups independently so that the air gap between the third lens group G3 and the fourth lens group Gm is reduced. In addition, short-distance focusing is performed by moving the second lens group G2 in the object direction.

【0060】[0060]

【表3】 (全体諸元) f=29.1〜192mm 2ω=75.98〜12.21° FNo=3.6〜5.9 (レンズデータ) r d ν n 1) 76.7545 1.8000 23.78 1.846660 2) 48.6074 6.4000 58.54 1.651600 3) 1026.1021 0.1000 1.000000 4) 59.9580 3.8000 82.52 1.497820 5) 235.0890 D5 1.000000 6)★ 128.8373 0.0500 38.09 1.553890 7) 120.0000 1.6000 42.72 1.834810 8) 15.2404 4.6000 1.000000 9) -41.5181 0.8000 52.67 1.741000 10) 55.7590 0.1000 1.000000 11) 27.4299 3.2000 23.78 1.846660 12) -57.7463 1.0000 1.000000 13) -26.3624 0.8000 49.61 1.772500 14) 6663.8990 D14 1.000000 15> 開口絞り 0.5000 1.000000 16) 30.7236 3.0000 64.10 1.516800 17) -90.0392 0.1000 1.000000 18) 22.8071 5.2000 65.47 1.603000 19) -23.2674 1.5000 37.17 1.834000 20) 56.1488 D20 1.000000 21) ★ 45.7569 3.0000 64.10 1.516800 22) ★ -55.8518 3.0000 1.000000 23) 固定絞り 7.0401 1.000000 24) -21.0825 1.6000 42.24 1.799520 25) -27.3149 BF 1.000000 (非球面係数) 面 κ C4 C6 C8 C10 6 1.0000 1.08270E-6 -3.32900E-8 2.73850E-10 -6.80120E-13 21 -0.3603 -7.05470E-7 2.38510E-8 -3.20800E-12 -7.27680E-12 22 1.0000 -3.71520E-6 -5.71920E-8 -3.30780E-10 -5.13670E-12 24 1.2657 -2.93730E-5 -1.08010E-7 -1.18720E-9 -1.08530E-12 (可変間隔データ) 1-POS 2-POS 3-POS f 29.1 50 192 D0 ∞ ∞ ∞ D5 2.17796 11.42691 38.60379 D14 19.49011 12.84348 1.06098 D20 5.27034 2.97417 1.00454 4-POS 5-POS 6-POS β -0.03333 -0.03333 -0.03333 D0 819.1429 1414.9776 5002.932 D5 1.60318 10.92419 36.87210 D14 20.06489 13.34620 2.79267 D20 5.27034 2.97417 1.00454 7-POS 8-POS 9-POS β -0.08146 -0.13528 -0.30970 DO 305.3047 289.9969 251.0323 D5 0.79510 9.45724 30.04716 D14 20.87297 14.81315 9.61761 D20 5.27034 2.97417 1.00454 (条件対応値) (1)Σdw/ft=0.397 (2)f1/ft=0.418 (3)|f2|/ft=0.0768 (4)dpn/dm=0.686 (5)f3/fm=0.491 (7)νp=23.78[Table 3] (Overall specifications) f = 29.1 to 192 mm 2ω = 75.98 to 12.21 ° FNo = 3.6 to 5.9 (lens data) rd ν n 1) 76.7545 1.8000 23.78 1.846660 2) 48.6074 6.4000 58.54 1.651600 3) 1026.1021 0.1000 1.000000 4) 59.9580 3.8000 82.52 1.497820 5) 235.0890 D5 1.000000 6) ★ 128.8373 0.0500 38.09 1.553890 7) 120.0000 1.6000 42.72 1.834810 8) 15.2404 4.6000 1.000000 9) -41.5181 0.8000 52.67 1.741000 1000000 11) 27.4299 3.2000 23.78 1.846660 12) -57.7463 1.0000 1.000000 13) -26.3624 0.8000 49.61 1.772500 14) 6663.8990 D14 1.000000 15> Aperture stop 0.5000 1.000000 16) 30.7236 3.0000 64.10 1.516800 17) -90.0392 0.1000 1.000000 18) 22.8071 5.2000 65.47 1.603000 19) -23.2674 1.5000 37.17 1.834000 20) 56.1488 D20 1.000000 21) ★ 45.7569 3.0000 64.10 1.516800 22) ★ -55.8518 3.0000 1.000000 23) Fixed aperture 7.0401 1.000000 24) -21.0825 1.6000 42.24 1.799520 25) -27.3149 BF 1.000000 (non-spherical) Coefficient) Surface κ C4 C6 C8 C10 6 1.0000 1.08270E-6 -3.32900E-8 2.73850E-10 -6.80120E-13 21 -0.3603 -7.05470E-7 2.38510E-8 -3.20800E-12 -7.27680E-12 22 1.0000 -3.71520E-6 -5.71920E-8 -3.30780E-10 -5.13670E-12 24 1.2657 -2.93730E-5 -1.08010E-7 -1.18720E-9 -1.08530E-12 (Variable interval data) 1 -POS 2-POS 3-POS f 29.1 50 192 D0 ∞ ∞ 5 D5 2.17796 11.42691 38.60379 D14 19.49011 12.84348 1.06098 D20 5.27034 2.97417 1.00454 4-POS 5-POS 6-POS β -0.03333 -0.03333 -0.03333 D0 819.1429 1414.9776 5002.932 D5 1.60318 10.92419 36.87210 D14 20.06489 13.34620 2.79267 D20 5.27034 2.97417 1.00454 7-POS 8-POS 9-POS β -0.08146 -0.13528 -0.30970 DO 305.3047 289.9969 251.0323 D5 0.79510 9.45724 30.04716 D14 20.87297 14.81315 9.61761 974 5.100 Σdw / ft = 0.297 (2) f1 / ft = 0.418 (3) | f2 | /ft=0.0768 (4) dpn dm = 0.686 (5) f3 / fm = 0.491 (7) νp = 23.78

【0061】図10,11,12,は、それぞれ第3実
施例の広角端状態で無限遠合焦時の収差図、中間焦点距
離状態で無限遠合焦時の収差図、望遠端状態の無限遠合
焦時の収差図である。各収差図から明らかなように、本
実施例では、広角端状態、中間焦点距離状態、望遠端状
態の各状態において、大画角までカバーしたうえ良好に
諸収差が補正されていることがわかる。
FIGS. 10, 11, and 12 are aberration diagrams at the wide-angle end state when focused on infinity, in the intermediate focal length state when focused on infinity, and at the telephoto end state, respectively. It is an aberration figure at the time of far focus. As is clear from the aberration diagrams, in the present embodiment, in each state of the wide-angle end state, the intermediate focal length state, and the telephoto end state, various aberrations are well corrected while covering up to a large angle of view. .

【0062】なお、上記各実施例の開口絞りは第3レン
ズ群G3の直前に設けてあるが、第3レンズ群G3の内
部や第4レンズ群Gmの直前に配置しても良い。また、
本発明に導入されている非球面は結果的に同等の作用を
生み出す素子、たとえば屈折率分布型光学素子や回折光
学素子、回折作用を持った素子と屈折作用を持った素子
とのハイブリットからなる回折ハイブリット型光学素子
と置き換えても、本発明の範疇にあることはいうまでも
ない。
Although the aperture stop in each of the above embodiments is provided immediately before the third lens group G3, it may be disposed inside the third lens group G3 or immediately before the fourth lens group Gm. Also,
The aspherical surface introduced in the present invention is composed of an element which produces the same effect as a result, for example, a gradient index optical element or a diffractive optical element, a hybrid of a diffractive element and a refractive element. It goes without saying that the present invention is within the scope of the present invention even if it is replaced with a diffraction hybrid type optical element.

【0063】[0063]

【発明の効果】以上説明したように、本発明によれば、
2ω=74.1°〜11.8°程度の画角を有し、約
6.6倍の変倍比を有する極限まで小径化、小型化さ
れ、少ない構成枚数で、コストパフォーマンスに優れ、
かつ高性能・高倍率な超コンパクトなズームレンズを提
供できる。
As described above, according to the present invention,
It has an angle of view of 2ω = 74.1 ° to 11.8 °, has a small diameter and size down to the limit with a zoom ratio of about 6.6, has a small number of components, and has excellent cost performance.
In addition, an ultra-compact zoom lens with high performance and high magnification can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例にかかる超コンパクトなズ
ームレンズのレンズ構成及び移動軌跡を示した図であ
る。
FIG. 1 is a diagram showing a lens configuration and a movement locus of an ultra-compact zoom lens according to a first embodiment of the present invention.

【図2】上記第1実施例の広角端状態の無限遠合焦時の
収差図である。
FIG. 2 is an aberration diagram for focusing on infinity in the wide-angle end state of the first embodiment.

【図3】上記第1実施例の中間焦点距離状態の無限遠合
焦時の収差図である。
FIG. 3 is an aberration diagram for focusing on infinity in the intermediate focal length state according to the first embodiment.

【図4】上記第1実施例の望遠端状態の無限遠合焦時の
収差図である。
FIG. 4 is an aberration diagram for focusing on infinity in the telephoto end state of the first embodiment.

【図5】本発明の第2実施例にかかる超コンパクトなズ
ームレンズのレンズ構成及び移動軌跡を示した図であ
る。
FIG. 5 is a diagram illustrating a lens configuration and a movement locus of an ultra-compact zoom lens according to a second embodiment of the present invention.

【図6】上記第2実施例の広角端状態の無限遠合焦時の
収差図である。
FIG. 6 is an aberration diagram for focusing on infinity at the wide-angle end in the second embodiment.

【図7】上記第2実施例の中間焦点距離状態の無限遠合
焦時の収差図である。
FIG. 7 is an aberration diagram for focusing on infinity in the intermediate focal length state according to the second embodiment.

【図8】上記第2実施例の望遠端状態の無限遠合焦時の
収差図である。
FIG. 8 is an aberration diagram for focusing on infinity in the telephoto end state of the second embodiment.

【図9】本発明の第3実施例にかかる超コンパクトなズ
ームレンズのレンズ構成及び移動軌跡を示した図であ
る。
FIG. 9 is a diagram showing a lens configuration and a movement locus of an ultra-compact zoom lens according to a third embodiment of the present invention.

【図10】上記第3実施例の広角端状態の無限遠合焦時
の収差図である。
FIG. 10 is an aberration diagram for focusing on infinity at the wide-angle end in the third embodiment.

【図11】上記第3実施例の中間焦点距離状態の無限遠
合焦時の収差図である。
FIG. 11 is an aberration diagram for focusing on infinity in an intermediate focal length state according to the third embodiment.

【図12】上記第3実施例の望遠端状態の無限遠合焦時
の収差図である。
FIG. 12 is an aberration diagram for focusing on infinity in the telephoto end state of the third embodiment.

【符号の説明】[Explanation of symbols]

G1・・・・第1レンズ群 G2・・・・第2レンズ群 G3・・・・第3レンズ群 Gm・・・・レンズ群 S・・・・・開口絞り SF・・・・固定絞り G1 ... first lens group G2 ... second lens group G3 ... third lens group Gm ... lens group S ... aperture stop SF ... fixed aperture

フロントページの続き Fターム(参考) 2H087 KA02 MA13 PA10 PA11 PA17 PA18 PB12 QA02 QA06 QA07 QA17 QA21 QA25 QA37 QA39 QA41 QA46 RA05 RA12 RA13 RA32 SA23 SA27 SA29 SA32 SA62 SA63 SA64 SA65 SB04 SB15 SB24 SB25 SB32 SB33Continued on the front page F term (reference) 2H087 KA02 MA13 PA10 PA11 PA17 PA18 PB12 QA02 QA06 QA07 QA17 QA21 QA25 QA37 QA39 QA41 QA46 RA05 RA12 RA13 RA32 SA23 SA27 SA29 SA32 SA62 SA63 SA64 SA65 SB04 SB15 SB24 SB25 SB32 SB33

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】物体側から順に、正の屈折力を有する第1
レンズ群G1と、負の屈折力を有する第2レンズ群G2
と、少なくとも1つのレンズ群と、全体で正の屈折力を
有するレンズ群Gmとを有し、 前記第1レンズ群G1と前記第2レンズ群G2との空気
間隔を変化させることによって、変倍する超コンパクト
なズームレンズにおいて、 前記レンズ群Gmは、物体側から順に、像側に凸面を向
けた正レンズ成分L1と、物体側に凹面を向けた負レン
ズ成分L2とからなり、 広角端状態における最も物体側のレンズ成分の物体側頂
点から最も像側のレンズ成分の像側頂点までの光軸上の
長さをΣdw、 前記ズームレンズの全系の望遠端状態の焦点距離をft
とそれぞれしたとき、以下の条件を満足することを特徴
とする超コンパクトなズームレンズ。 (1) 0.10<Σdw/ft<0.54
1. A first lens having a positive refractive power in order from the object side.
A lens group G1 and a second lens group G2 having negative refractive power
And at least one lens group, and a lens group Gm having a positive refractive power as a whole. The magnification is changed by changing the air gap between the first lens group G1 and the second lens group G2. In the ultra-compact zoom lens, the lens group Gm includes, in order from the object side, a positive lens component L1 having a convex surface facing the image side and a negative lens component L2 having a concave surface facing the object side. Is the length on the optical axis from the object side vertex of the lens component closest to the object side to the image side vertex of the lens component closest to the image side is Σdw, and the focal length of the entire zoom lens system at the telephoto end is ft.
An ultra-compact zoom lens that satisfies the following conditions. (1) 0.10 <Σdw / ft <0.54
【請求項2】前記第1レンズ群G1の焦点距離をf1と
したとき以下の条件を満足することを特徴とする請求項
1に記載の超コンパクトなズームレンズ。 (2) 0.20<f1/ft<0.55
2. The ultra-compact zoom lens according to claim 1, wherein the following condition is satisfied when the focal length of said first lens group G1 is f1. (2) 0.20 <f1 / ft <0.55
【請求項3】前記第2レンズ群G2の焦点距離をf2と
したとき以下の条件を満足することを特徴とする請求項
1又は2に記載の超コンパクトなズームレンズ。 (3) 0.03<|f2|/ft<0.20
3. The ultra-compact zoom lens according to claim 1, wherein the following condition is satisfied when the focal length of said second lens group G2 is f2. (3) 0.03 <| f2 | / ft <0.20
【請求項4】前記レンズ群Gm中の正レンズ成分L1の
像側頂点から負レンズ成分L2の物体側頂点までの光軸
上の長さをdpn、 前記レンズ群Gm中の最も物体側のレンズ成分の物体側
頂点から最も像側のレンズ成分の像側頂点までの光軸上
の長さをdmとそれぞれしたとき、以下の条件を満足す
ることを特徴とする請求項1乃至3の何れか1項に記載
の超コンパクトなズームレンズ。 (4) 0.23<dpn/dm<0.90
4. The length on the optical axis from the image-side vertex of the positive lens component L1 in the lens group Gm to the object-side vertex of the negative lens component L2 is dpn, and the lens closest to the object side in the lens group Gm. 4. The following condition is satisfied when a length on the optical axis from the object-side vertex of the component to the image-side vertex of the lens component closest to the image is defined as dm. 2. An ultra-compact zoom lens according to item 1. (4) 0.23 <dpn / dm <0.90
【請求項5】前記レンズ群Gm中の正レンズ成分L1と
負レンズ成分L2とのどちらかに、少なくとも1面の非
球面を有することを特徴とする請求項1乃至4の何れか
1項に記載の超コンパクトなズームレンズ。
5. The method according to claim 1, wherein at least one of the aspheric surfaces is provided in one of the positive lens component L1 and the negative lens component L2 in the lens group Gm. The ultra-compact zoom lens described.
【請求項6】前記少なくとも1つのレンズ群は、正の屈
折力を有する第3レンズ群G3のみで構成され、 前記第3レンズ群G3の焦点距離をf3、 前記レンズ群Gmの焦点距離をfmとそれぞれしたと
き、 以下の条件を満足することを特徴とする請求項1乃至5
の何れか1項に記載の超コンパクトなズームレンズ。 (5) 0.2<f3/fm<1.0
6. The at least one lens group comprises only a third lens group G3 having a positive refractive power, wherein the focal length of the third lens group G3 is f3, and the focal length of the lens group Gm is fm. Wherein the following conditions are satisfied:
An ultra-compact zoom lens according to any one of the preceding claims. (5) 0.2 <f3 / fm <1.0
【請求項7】前記レンズ群Gm中の正レンズ成分L1
と、負レンズ成分L2との両方に、少なくとも各1面の
非球面を有することを特徴とし、 前記非球面の中で少なくとも1面は、光軸からレンズ周
辺に向かうにしたがってレンズ単体の正の屈折力が弱ま
る形状、またはレンズ単体の負の屈折力が強まる形状を
有することを特徴とする請求項1乃至6の何れか1項に
記載の超コンパクトなズームレンズ。
7. The positive lens component L1 in the lens group Gm
And both the negative lens component L2 and the negative lens component L2 have at least one aspheric surface, and at least one of the aspheric surfaces has a positive lens unit positive as going from the optical axis toward the lens periphery. The ultra-compact zoom lens according to any one of claims 1 to 6, wherein the zoom lens has a shape in which a refractive power is weakened or a shape in which a negative refractive power of a single lens is increased.
【請求項8】前記レンズ群Gm中の正レンズ成分L1は
両面非球面によって構成され、前記両面非球面レンズの
像側の非球面は、光軸上の曲率に比較して有効径周辺部
分の曲率が大きくなる形状をしていることを特徴とする
請求項1乃至7の何れか1項に記載の超コンパクトなズ
ームレンズ。
8. The positive lens component L1 in the lens group Gm is constituted by a double-sided aspherical surface, and the aspherical surface on the image side of the double-sided aspherical lens has a portion around the effective diameter as compared with the curvature on the optical axis. The ultra-compact zoom lens according to any one of claims 1 to 7, wherein the zoom lens has a shape having a large curvature.
【請求項9】前記レンズ群Gm中の負レンズ成分L2は
少なくとも1面の非球面を有することを特徴とし、前記
非球面は光軸上よりも有効径最周辺部分が負の屈折力が
強まる形状を有することを特徴とする請求項1乃至8の
何れか1項に記載の超コンパクトなズームレンズ。
9. The negative lens component L2 in the lens group Gm has at least one aspherical surface, and the aspherical surface has a negative refractive power at an outermost peripheral portion of an effective diameter than on the optical axis. The ultra-compact zoom lens according to any one of claims 1 to 8, wherein the zoom lens has a shape.
【請求項10】前記第2レンズ群G2は、少なくとも1
つの負レンズ成分と正レンズ成分を有し、 前記正レンズ成分のd線に対する屈折率をnp、アッベ
数をνpとそれぞれしたとき、以下の条件を満足する事
を特徴とする請求項1乃至9の何れか1項に記載の超コ
ンパクトなズームレンズ。 (6) np<1.85 (7) νp<27
10. The lens system according to claim 1, wherein the second lens group includes at least one lens.
10. A lens system according to claim 1, comprising: a negative lens component and a positive lens component, wherein when the refractive index of the positive lens component with respect to d-line is np and the Abbe number is νp, the following conditions are satisfied. An ultra-compact zoom lens according to any one of the preceding claims. (6) np <1.85 (7) νp <27
JP2001127816A 2001-04-25 2001-04-25 Zoom lens Expired - Lifetime JP4720005B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001127816A JP4720005B2 (en) 2001-04-25 2001-04-25 Zoom lens
US10/125,589 US6621643B2 (en) 2001-04-25 2002-04-19 Zoom lens system
CNB021181896A CN1241046C (en) 2001-04-25 2002-04-24 Vari-focus lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001127816A JP4720005B2 (en) 2001-04-25 2001-04-25 Zoom lens

Publications (3)

Publication Number Publication Date
JP2002323655A true JP2002323655A (en) 2002-11-08
JP2002323655A6 JP2002323655A6 (en) 2011-05-06
JP4720005B2 JP4720005B2 (en) 2011-07-13

Family

ID=18976618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001127816A Expired - Lifetime JP4720005B2 (en) 2001-04-25 2001-04-25 Zoom lens

Country Status (1)

Country Link
JP (1) JP4720005B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277235B2 (en) 2005-09-29 2007-10-02 Nikon Corporation Zoom lens system
JP2008026837A (en) * 2006-06-22 2008-02-07 Ricoh Co Ltd Zoom lens, imaging device and personal digital assistant
JP2008209753A (en) * 2007-02-27 2008-09-11 Nikon Corp Zoom lens and optical device having the same
JP2009098458A (en) * 2007-10-17 2009-05-07 Olympus Imaging Corp Zoom lens and imaging apparatus having the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229217A (en) * 1988-03-09 1989-09-12 Minolta Camera Co Ltd Extremely compact high variable-power zoom lens system including wide-angle range
JPH0634886A (en) * 1992-07-20 1994-02-10 Olympus Optical Co Ltd Variable power lens
JPH08248319A (en) * 1995-03-13 1996-09-27 Canon Inc Zoom lens
JPH11305124A (en) * 1998-04-23 1999-11-05 Canon Inc Zoom lens and optical instrument using the zoom lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229217A (en) * 1988-03-09 1989-09-12 Minolta Camera Co Ltd Extremely compact high variable-power zoom lens system including wide-angle range
JPH0634886A (en) * 1992-07-20 1994-02-10 Olympus Optical Co Ltd Variable power lens
JPH08248319A (en) * 1995-03-13 1996-09-27 Canon Inc Zoom lens
JPH11305124A (en) * 1998-04-23 1999-11-05 Canon Inc Zoom lens and optical instrument using the zoom lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277235B2 (en) 2005-09-29 2007-10-02 Nikon Corporation Zoom lens system
JP2008026837A (en) * 2006-06-22 2008-02-07 Ricoh Co Ltd Zoom lens, imaging device and personal digital assistant
JP2008209753A (en) * 2007-02-27 2008-09-11 Nikon Corp Zoom lens and optical device having the same
JP2009098458A (en) * 2007-10-17 2009-05-07 Olympus Imaging Corp Zoom lens and imaging apparatus having the same

Also Published As

Publication number Publication date
JP4720005B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US7227700B2 (en) Wide zoom lens system
JP3200925B2 (en) Zoom lens with wide angle of view
JPH06337354A (en) Zoom lens
JP3301579B2 (en) Inner focusing type zoom lens
JP3554366B2 (en) High-magnification real-image finder
JP2020101838A (en) Zoom optical system and optical device
US6621643B2 (en) Zoom lens system
JPH07199070A (en) Zoom lens
JP4325200B2 (en) Zoom lens
JPH07287168A (en) Zoom lens with high power variation rate
JP2001221947A (en) Zoom lens
JP3029148B2 (en) Rear focus zoom lens
JPH10197794A (en) Zoom lens
JP3219574B2 (en) Zoom lens
JP3005037B2 (en) Compact high zoom lens
JP4720005B2 (en) Zoom lens
JPH11295601A (en) Zoom lens having three bonded lenses
JP2006053437A (en) Zoom lens
JP3029150B2 (en) Wide-angle high zoom lens
JP2002323656A (en) Zoom lens
JP2002323655A6 (en) Ultra compact zoom lens
JPH0792390A (en) Zoom lens
JPH11160631A (en) Wide visual field eyepiece
JPH0735979A (en) Zoom lens
JP3716476B2 (en) Zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4720005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250