JP2002323619A - Method for condensing light - Google Patents

Method for condensing light

Info

Publication number
JP2002323619A
JP2002323619A JP2001127674A JP2001127674A JP2002323619A JP 2002323619 A JP2002323619 A JP 2002323619A JP 2001127674 A JP2001127674 A JP 2001127674A JP 2001127674 A JP2001127674 A JP 2001127674A JP 2002323619 A JP2002323619 A JP 2002323619A
Authority
JP
Japan
Prior art keywords
face
light
outer diameter
incident
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001127674A
Other languages
Japanese (ja)
Inventor
Yukinari Shirako
行成 白子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2001127674A priority Critical patent/JP2002323619A/en
Publication of JP2002323619A publication Critical patent/JP2002323619A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently condensing incident light. SOLUTION: A light transmission body 5 has a circular section of a desired outer diameter, the core part 5A of which has a prescribed refractive index n1 and a diameter D and is located on the central axis line, and a clad part 5B which has a prescribed smaller refractive index n2 than the index n1 and a diameter d, and is located around the core. The outer diameter of the light transmission body 5 gradually and continuously decreases along the longitudinal direction while keeping a similar sectional form, and the outer diameter is kept constant after the outer diameter reaches a prescribed value. The end face on the side of the maximum outer diameter of the light transmission body 5 is defined as an incident end face 51 and the end face on the side of the minimum outer diameter located at the opposite side in the longitudinal direction is defined as an emission end face 52. The method for condensing light is characterized by the fact that the light energy density of the incident light from the incident end face 51 is enhanced at the emission end face 52 by approximately (D/d)<2> times.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は光を集めてその光
エネルギーを増大させる集光方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light collecting method for collecting light and increasing its light energy.

【0002】[0002]

【従来の技術】図5はもっとも初期の内視鏡を例示する
ものであって、これについて光の集光方法を説明しよ
う。同図で、符号101は光ファイバの束を示し、10
2はその光ファイバ束の入射端面を示す。この入射端面
102から光を入射させるためには次のような方法がと
られる。
2. Description of the Related Art FIG. 5 illustrates an earliest endoscope, and a method of condensing light will be described. In the figure, reference numeral 101 denotes a bundle of optical fibers,
Reference numeral 2 denotes an incident end face of the optical fiber bundle. In order to make light incident from the incident end face 102, the following method is employed.

【0003】すなわち例えばキセノンランプのような光
源1から出る光を反射鏡2で集めて凸レンズ3に導き、
この凸レンズ3による輝点像4を入射端面102に結ば
せるやり方である。つまりこの場合は反射鏡2によるも
のと凸レンズ3によるものと2回の集光方法を使用して
光ファイバ束101に入射させている。
That is, light emitted from a light source 1 such as a xenon lamp is collected by a reflecting mirror 2 and guided to a convex lens 3,
In this method, the bright spot image 4 formed by the convex lens 3 is formed on the incident end face 102. In other words, in this case, the light is incident on the optical fiber bundle 101 by using the light condensing method using the method using the reflecting mirror 2 and the method using the convex lens 3 twice.

【0004】また図6について太陽光を集光して建物6
内部の照明をする場合を考えてみると、従来は屋根61
の上や建物の側面などに多くのパネル型の太陽電池10
3を配設し、これらからの電気エネルギーを点灯回路8
1に導いて適宜の照明用電灯8を点灯させるやり方であ
った。
[0004] Referring to FIG.
Considering the case where the interior is illuminated, the roof 61 is conventionally used.
Many panel-type solar cells 10 on a building or on the side of a building
3 is provided, and electric energy from these is supplied to a lighting circuit 8.
1 to turn on an appropriate lighting lamp 8.

【0005】[0005]

【発明が解決しようとする課題】しかしながら図5に示
す集光方法によっては、図からも容易に推測できるよう
に、光ファイバ束101内の全部の個々の光ファイバに
効果的に光を導入させることができない、つまり輝点像
に正対し、あるいはこれに近接した一部の光ファイバに
しか光を導入できない欠点がある。すなわち従来の集光
方法では、この場合のように次の段階の光学装置への入
射に適するように、集光光束の拡がりが次の装置の入射
口と合致するように集光することは不可能であった。
However, depending on the focusing method shown in FIG. 5, light can be effectively introduced into all the individual optical fibers in the optical fiber bundle 101, as can be easily inferred from the drawing. However, there is a disadvantage that light can be introduced only into a part of optical fibers directly facing or close to the bright spot image. That is, in the conventional focusing method, it is not possible to focus the light so that the spread of the focused light beam coincides with the entrance of the next device so as to be suitable for the next stage of the optical device as in this case. It was possible.

【0006】また太陽光を利用して建物内を照射する場
合、従来は太陽電池を用いて一旦発電し、その電流によ
って照明用の電灯をつけて照明するという間接的な照明
であり、発電、配電の設備も必要であり、それだけ太陽
エネルギーの利用効率が低い欠点があった。
In the case of irradiating the inside of a building with the use of sunlight, conventionally, the power is once generated by using a solar cell, and the current is used to indirectly illuminate with a lighting lamp. Power distribution equipment is also required, which has the drawback of low solar energy utilization efficiency.

【0007】[0007]

【課題を解決するための手段】この発明は上述した従来
の課題を解決するためになされたものであって、請求項
1の発明によるその解決手段は、所望の外径の円形断面
をなし、中心軸線位置に位置する所定の屈折率の直径D
のコア部と、その周囲のこれより小さい所定の屈折率の
直径dのクラッド部とを有し、断面形状が相似のまま長
手方向に順次連続的に前記外径が減少し、所定の外径以
後はその外径のまま継続して成る導光体の、最大外径側
の端面を入射端面とし、長手方向の反対側に位置する最
小外径の端面を出射端面として、前記入射端面から入射
した光を前記出射端面においては、光エネルギー密度を
ほぼ(D/d)2 倍に高めることを特徴とする集光方法
である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and the invention according to claim 1 has a circular cross section having a desired outer diameter. The diameter D of the predetermined refractive index located at the center axis position
Core portion and a surrounding clad portion having a diameter d having a predetermined refractive index smaller than the core portion, and the outer diameter is sequentially and continuously reduced in the longitudinal direction while the cross-sectional shape is similar, and the predetermined outer diameter is reduced. Thereafter, the light guide continuously formed with its outer diameter remains, and the end face on the maximum outer diameter side is used as the incident end face, and the end face with the minimum outer diameter located on the opposite side in the longitudinal direction is used as the output end face, and the light enters from the incident end face. The light condensing method is characterized in that the light energy density of the emitted light is increased substantially (D / d) 2 times at the exit end face.

【0008】また請求項2によるその解決手段は、単数
または複数個の前記導光体を、その入射端面が太陽光を
受けるように建物に配設し、前記導光体の出射端面を照
射レンズに接続して、太陽光を直接前記照射レンズから
前記建物内に照射するようにする集光方法である。
According to a second aspect of the present invention, there is provided a light guide wherein one or a plurality of the light guides are disposed in a building such that an incident end face of the light guide receives sunlight. And a sunlight condensing method for directly irradiating sunlight into the building from the irradiation lens.

【0009】[0009]

【発明の実施の形態】図1についてこの発明の集光方法
の実施に重要な役割を担う導光体5を説明する。これは
ちょうど、光ファイバ母材から紡糸する工程で、光ファ
イバ母材の下端が順に外径が小さくなってゆき、所定の
ファイバ径以後はその外径が継続する紡糸状況を考え、
その母材の下端の円錐状部分を含めて下方に細いファイ
バが延びているものを切り取ったものと理解すればい
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, a light guide 5 which plays an important role in carrying out the light collecting method of the present invention will be described. This is exactly the spinning process from the optical fiber preform, the lower end of the optical fiber preform gradually decreases in outer diameter, and considering the spinning situation where the outer diameter continues after the predetermined fiber diameter,
It can be understood that a thin fiber extending downward including the conical portion at the lower end of the base material is cut out.

【0010】すなわち円錐状をなす導光体5の中心軸線
位置に、所定の屈折率n1 のコア部5Aがあり、その周
囲にこれより小さい所定の屈折率n2 のクラッド部5B
が設けられる。
That is, a core portion 5A having a predetermined refractive index n 1 is provided at the center axis position of the light guide 5 having a conical shape, and a clad portion 5B having a predetermined refractive index n 2 smaller than the core portion 5A is provided therearound.
Is provided.

【0011】しかしてこの導光体5は、コア径が最大
(D)の入射端面51から断面が相似のまま軸方向(長
手方向)に順次連続的に外径が小さくなり(長手方向に
一部同じ外径のままの部分があってもいい)、反対側端
部の出射端面52においてはコア径は最小(d)とな
る。
Thus, the outer diameter of the light guide 5 becomes smaller continuously in the axial direction (longitudinal direction) from the incident end face 51 having the maximum core diameter (D) while the cross section is similar (one in the longitudinal direction). The core diameter may be the minimum (d) at the emission end face 52 at the opposite end.

【0012】本発明の導光体5の場合、外径を減少させ
ると言っても、普通の光ファイバ並みの0.125mm
まで減少させなくてもいい。撓曲性さえ要求しなけれ
ば、減少させた小径側の直径の大きさは任意である。
In the case of the light guide 5 of the present invention, the outer diameter is reduced to 0.125 mm, which is equivalent to that of an ordinary optical fiber.
You do not need to decrease it. If the flexibility is not required, the reduced diameter on the smaller diameter side is arbitrary.

【0013】たとえば図1において、PP平面で切断し
てここを出射端面52とすれば、出射端面のコア径は図
示のように最小dより大きいd1 である。また図2はこ
のような導光体5を複数本まとめたものを示すものであ
る。
For example, in FIG. 1, if the section is taken along the PP plane and this is taken as the exit end face 52, the core diameter of the exit end face is d 1 which is larger than the minimum d as shown in the figure. FIG. 2 shows a plurality of such light guides 5 combined.

【0014】この導光体5の入射端面51から入射する
光は、面積が(πD)2 の入射口から入り、出射端面5
2においては、面積が(πd)2 に狭まっているために
光エネルギー密度としてはほぼ(D/d)2 倍になるわ
けである。
Light incident from the incident end face 51 of the light guide 5 enters through an entrance port having an area of (πD) 2 and exits from the exit end face 5.
In No. 2, since the area is reduced to (πd) 2 , the light energy density becomes almost (D / d) 2 times.

【0015】この発明の導光体5の利点は、出射端面5
2の大きさを任意に選定できることである。既に説明し
たように、PP平面で切り取れば、出射端面52の大き
さを任意コア径d1 にすることができる。すなわち、こ
れは図5で説明した従来の内視鏡の光ファイバ束101
の入射端面の円に完全に合致させることも可能であっ
て、照明効率の増大は極めて大きい。
The advantage of the light guide 5 of the present invention is that
2 can be arbitrarily selected. As already described, if Kiritore in PP plane can be the size of the exit end face 52 to any core diameter d 1. That is, this is the optical fiber bundle 101 of the conventional endoscope described with reference to FIG.
It is also possible to completely match the circle of the incident end face of the lens, and the increase in illumination efficiency is extremely large.

【0016】図3はこの発明の導光体5を建物6の屋内
照明に利用した場合を示す。すなわち、複数の導光体5
の入射端面は太陽光を受けやすいように配置され、各出
射端面はガラス球のような適宜の照射レンズ7に直接接
続される。この照射レンズ7は乱反射を生じさせるよう
に作用するものが選定され、太陽光が直接この照射レン
ズ7を経由して屋内を照明する理である。
FIG. 3 shows a case where the light guide 5 of the present invention is used for indoor lighting of a building 6. That is, the plurality of light guides 5
Are arranged so as to easily receive sunlight, and each emission end face is directly connected to an appropriate irradiation lens 7 such as a glass sphere. The irradiating lens 7 is selected to act to cause diffuse reflection, and the sunlight is directly illuminated indoors via the irradiating lens 7.

【0017】また図4はこの導光体5を固体レーザ光の
出力部に利用した場合を例示する。同図で符号9はレー
ザロッド、10は励起ランプで共に楕円形の集光用反射
鏡11の各焦点位置に配置される。符号12は全反射ミ
ラー、13はQスイッチ変調素子、14はアパーチャ
(小孔)である。出力部に導光体5を利用することによ
ってレーザ光のエネルギーを高め、レーザ加工・計測等
の利用効率を一段と向上させることができる。
FIG. 4 shows an example in which the light guide 5 is used for an output section of solid-state laser light. In the figure, reference numeral 9 denotes a laser rod, and 10 denotes an excitation lamp, which are arranged at respective focal positions of an elliptical converging reflecting mirror 11. Reference numeral 12 denotes a total reflection mirror, 13 denotes a Q-switch modulation element, and 14 denotes an aperture (small hole). By using the light guide 5 for the output unit, the energy of the laser light can be increased, and the utilization efficiency of laser processing, measurement, and the like can be further improved.

【0018】[0018]

【発明の効果】この発明によれば、光の入射端面の面積
を任意に広くできるから、光量の大きい入射光を効率的
に導入できると共に、次に続く光学装置の入射口に合致
させるように出射端面の面積を任意に選定できるから、
光学機器等の内部の光の経路における光の損失なく集光
することができる利点がある。
According to the present invention, the area of the light incident end face can be arbitrarily increased, so that a large amount of incident light can be efficiently introduced, and the light can be made to coincide with the entrance of the next optical device. Since the area of the emission end face can be arbitrarily selected,
There is an advantage that light can be collected without loss of light in a light path inside an optical device or the like.

【0019】またこの発明によれば、比較的大きい面積
の入射端面から導入された光が、比較的小さい出射端面
から出るようにされ、その経路内ではほとんど損失がな
いから、光エネルギーはほぼ入射、出射両端面の面積の
二乗比で拡大され、レーザ光加工装置などに好適に応用
できる利点がある。
Further, according to the present invention, light introduced from the incident end face having a relatively large area is made to exit from the relatively small exit end face, and there is almost no loss in the path, so that light energy is substantially incident. There is an advantage that it can be suitably applied to a laser beam processing apparatus or the like by being magnified by the square ratio of the area of the emission end faces.

【0020】さらに太陽光を建物内部の照明に使用する
場合も、従来のような太陽光電池や発電・配電の設備も
不要で、直接屋内照明に利用できる利点がある。
Further, when sunlight is used for lighting the interior of a building, there is an advantage that it can be used directly for indoor lighting without the need for conventional solar cells or power generation / distribution facilities.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法の実施に用いる導光体を示す側断
面図である。
FIG. 1 is a side sectional view showing a light guide used to carry out the method of the present invention.

【図2】本発明の導光体を複数本まとめた状態を示す斜
視図である。
FIG. 2 is a perspective view showing a state in which a plurality of light guides of the present invention are put together.

【図3】本発明の導光体を屋内照明に利用する場合の構
成を示す簡略側断面図である。
FIG. 3 is a simplified side sectional view showing a configuration when the light guide of the present invention is used for indoor lighting.

【図4】本発明の方法をレーザ光の集光に応用した場合
を示す簡略斜視図である。
FIG. 4 is a simplified perspective view showing a case where the method of the present invention is applied to focusing of laser light.

【図5】従来の内視鏡に使用されている集光伝送装置を
示す簡略側断面図である。
FIG. 5 is a simplified side cross-sectional view showing a condensing transmission device used in a conventional endoscope.

【図6】太陽電池を利用した従来の家屋内照明装置の構
成を示した略図である。
FIG. 6 is a schematic diagram showing a configuration of a conventional indoor lighting device using a solar cell.

【符号の説明】[Explanation of symbols]

1 光源 2 反射鏡 3 凸レンズ 4 輝点像 5 導光体 5A コア部 5B クラッド部 51、102 入射端面 52 出射端面 6 建物 61 屋根 7 照射レンズ 8 照明用電灯 81 点灯回路 9 レーザロッド 10 励起ランプ 11 集光用反射用鏡 12 全反射ミラー 13 Qスイッチ変調素子 14 アパーチャ DESCRIPTION OF SYMBOLS 1 Light source 2 Reflector 3 Convex lens 4 Bright spot image 5 Light guide 5A Core part 5B Cladding part 51,102 Incident end face 52 Emitting end face 6 Building 61 Roof 7 Irradiation lens 8 Lighting lamp 81 Lighting circuit 9 Laser rod 10 Excitation lamp 11 Condensing reflection mirror 12 Total reflection mirror 13 Q-switch modulation element 14 Aperture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所望の外径の円形断面をなし、中心軸線
位置に位置する所定の屈折率(n1 )の直径Dのコア部
(5A)と、その周囲のこれより小さい所定の屈折率
(n2 )の直径dのクラッド部(5B)とを有し、断面
形状が相似のまま長手方向に順次連続的に前記外径が減
少し、所定の外径以後はその外径のまま継続して成る導
光体(5)の、最大外径側の端面を入射端面(51)と
し、長手方向の反対側に位置する最小外径の端面を出射
端面(52)として、前記入射端面(51)から入射し
た光を前記出射端面(52)においては、光エネルギー
密度をほぼ(D/d)2 倍に高めることを特徴とする集
光方法。
1. A core part (5A) having a circular cross section with a desired outer diameter and having a predetermined refractive index (n 1 ) having a diameter D located at the center axis and a predetermined predetermined refractive index around the core part. (N 2 ) having a clad portion (5B) having a diameter d, wherein the outer diameter decreases continuously and continuously in the longitudinal direction while the cross-sectional shape is similar, and the outer diameter continues after the predetermined outer diameter. The light guide (5) thus formed has an end face on the maximum outer diameter side as an incident end face (51), and an end face with a minimum outer diameter located on the opposite side in the longitudinal direction as an emission end face (52). A light condensing method characterized by increasing the light energy density of the light incident from (51) on the emission end face (52) almost (D / d) 2 times.
【請求項2】 単数または複数個の前記導光体(5)
を、その入射端面(51)が太陽光を受けるように建物
(6)に配設し、前記導光体(5)の各出射端面(5
2)を照射レンズ(7)に接続して、太陽光を直接前記
照射レンズ(7)から前記建物(6)内に照射するよう
にする集光方法。
2. A light guide or a plurality of light guides (5).
Are arranged in the building (6) such that the incident end face (51) receives sunlight, and each of the exit end faces (5) of the light guide (5).
(2) A method of condensing light by connecting the illumination lens (7) to the sunlight directly from the illumination lens (7) into the building (6).
JP2001127674A 2001-04-25 2001-04-25 Method for condensing light Pending JP2002323619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001127674A JP2002323619A (en) 2001-04-25 2001-04-25 Method for condensing light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001127674A JP2002323619A (en) 2001-04-25 2001-04-25 Method for condensing light

Publications (1)

Publication Number Publication Date
JP2002323619A true JP2002323619A (en) 2002-11-08

Family

ID=18976499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001127674A Pending JP2002323619A (en) 2001-04-25 2001-04-25 Method for condensing light

Country Status (1)

Country Link
JP (1) JP2002323619A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157225A (en) * 2003-11-06 2005-06-16 Sumitomo Electric Ind Ltd Optical transmission body module
JP2009139418A (en) * 2007-12-03 2009-06-25 Hikari Energy Kenkyusho:Kk Light condensing device and light condensing method
EP2083299A1 (en) * 2008-01-25 2009-07-29 FUJIFILM Corporation Optical fiber structure
JP2012524302A (en) * 2009-04-14 2012-10-11 オーエフエス ファイテル,エルエルシー Fiber-based laser combiner
JP2014071171A (en) * 2012-09-28 2014-04-21 Ji Engineering Kk Optical component, light guide member usable in optical component, and light irradiation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157225A (en) * 2003-11-06 2005-06-16 Sumitomo Electric Ind Ltd Optical transmission body module
JP2009139418A (en) * 2007-12-03 2009-06-25 Hikari Energy Kenkyusho:Kk Light condensing device and light condensing method
EP2083299A1 (en) * 2008-01-25 2009-07-29 FUJIFILM Corporation Optical fiber structure
US7899288B2 (en) 2008-01-25 2011-03-01 Fujifilm Corporation Optical fiber structure
JP2012524302A (en) * 2009-04-14 2012-10-11 オーエフエス ファイテル,エルエルシー Fiber-based laser combiner
JP2014071171A (en) * 2012-09-28 2014-04-21 Ji Engineering Kk Optical component, light guide member usable in optical component, and light irradiation device

Similar Documents

Publication Publication Date Title
EP0610033B1 (en) Collection optics for high brightness discharge light source
RU2472066C2 (en) Lighting device
KR101853989B1 (en) Ring light illuminator, beam shaper and method for illumination
US4106078A (en) Light source system
KR101765974B1 (en) Ring light illuminator and beam shaper for ring light illuminator
CA2402560A1 (en) Coupling of light from a light source to a target using dual ellipsoidal reflectors
JP2003509111A (en) Irradiation device
US11635604B2 (en) Luminous flux collector for directing light into a light-diffusing fiber
JPS59133507A (en) Artificial light source device
JP2002323619A (en) Method for condensing light
JP3366746B2 (en) Video scope camera head
CN110185955A (en) It is a kind of that there are the laser flashlight optical systems and laser flashlight of more optical axises
JP2001228402A (en) Confocal optical scanner and confocal microscope
JPS637643B2 (en)
CN211698453U (en) Laser lighting structure
JP2579280Y2 (en) Lighting equipment
KR20020033112A (en) System for collecting and condensing light
JP2002289016A (en) Lighting device
JPH11176221A (en) Light source device and axicon prism for use in it
WO2023058700A1 (en) Beam shaping lens, beam shaping element, light source device for endoscope, and endoscope
CN216952905U (en) Light source setting structure
KR950011976B1 (en) Optical source generating system
JP2003090939A (en) Illuminator
JP2001318265A (en) Method for coupling optical fiber and coupling optical system
JP2842676B2 (en) Light beam irradiation device