JP2002322203A - Method for producing fine resin particles and fine resin particles - Google Patents

Method for producing fine resin particles and fine resin particles

Info

Publication number
JP2002322203A
JP2002322203A JP2001128118A JP2001128118A JP2002322203A JP 2002322203 A JP2002322203 A JP 2002322203A JP 2001128118 A JP2001128118 A JP 2001128118A JP 2001128118 A JP2001128118 A JP 2001128118A JP 2002322203 A JP2002322203 A JP 2002322203A
Authority
JP
Japan
Prior art keywords
resin particles
fine resin
liquid drops
fine particles
droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001128118A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nakatani
康弘 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001128118A priority Critical patent/JP2002322203A/en
Publication of JP2002322203A publication Critical patent/JP2002322203A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve problems in which monomer liquid drops are split by shearing force and the resultant fine resin particles often cause scattering of the particle diameter by dispersing monomer liquid drops into a continuous phase and heating, stirring an polymerizing the dispersed liquid drops when producing fine resin particles. SOLUTION: This method for producing fine resin particles is characterized by successively producing liquid drops composed of a polymerizable monomer as a disperse phase in a continuous phase, irradiating the liquid drops with active beam and then polymerizing the liquid drops.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化学、医療、電子
材料分野などに使用される均一粒径の樹脂微粒子及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin particle having a uniform particle size used in the fields of chemistry, medicine, electronic materials and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、樹脂微粒子を作製する方法と
しては懸濁重合法が知られている。この方法は、攪拌機
を備えた反応槽に分散安定剤を溶解した水性媒体を仕込
み、攪拌しながら重合開始剤を溶解させた重合性単量体
を投入、加熱することにより樹脂粒子を得る方法であ
る。しかしながら、この方法では得られる樹脂微粒子の
粒径分布は広く、カラム充填材、スペーサー、トナー、
発泡体などの精密性が要求される用途では、分級などの
分別操作が必要となり非常に煩雑であった。
2. Description of the Related Art Conventionally, a suspension polymerization method has been known as a method for producing fine resin particles. This method is a method in which an aqueous medium in which a dispersion stabilizer is dissolved is charged into a reaction tank equipped with a stirrer, and a polymerizable monomer in which a polymerization initiator is dissolved is charged with stirring and resin particles are obtained by heating. is there. However, in this method, the particle size distribution of the obtained resin fine particles is wide, and the column filler, the spacer, the toner,
In applications where precision is required, such as foams, sorting operations such as classification are required, which is very complicated.

【0003】特開昭57−102905号公報には、層
流特性を持つモノマー流を機械的振動の励起により小滴
に砕き、これを連続相中で重合槽に移動させ、加熱によ
り重合する方法が開示されている。この方法では、重合
槽の温度を均一にするため十分な攪拌が必要となり、攪
拌が強すぎるとせん断力によりモノマー液滴が分裂し、
得られる樹脂微粒子の粒子径がばらつくことが多かっ
た。
JP-A-57-102905 discloses a method in which a monomer stream having laminar flow characteristics is broken into small droplets by excitation of mechanical vibration, and the droplets are moved to a polymerization tank in a continuous phase and polymerized by heating. Is disclosed. In this method, sufficient stirring is required in order to make the temperature of the polymerization tank uniform, and if the stirring is too strong, the monomer droplet is split by a shear force,
The particle size of the obtained resin fine particles often varied.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記に鑑み、
重合過程においてモノマー液滴を分裂、合着させること
なくシャープな粒径分布をもつ樹脂微粒子の製造方法、
及びその方法によって得られる樹脂微粒子を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above,
A method for producing fine resin particles having a sharp particle size distribution without splitting and coalescing monomer droplets in the polymerization process,
And to provide resin fine particles obtained by the method.

【0005】[0005]

【課題を解決するための手段】本発明の樹脂微粒子の製
造方法は、連続相中に、分散相として重合性単量体から
なる液滴を逐次生成させた後、活性光線を照射し、その
後重合を行うものである。
According to the method of the present invention for producing fine resin particles, droplets composed of a polymerizable monomer are successively formed as a dispersed phase in a continuous phase, and then irradiated with actinic rays. The polymerization is performed.

【0006】本発明で用いられる連続相は、気体、液体
を限定するするものではないが、水のみもしくはアルコ
ール等の水溶性有機溶剤を添加したものが挙げられる。
また、連続相に生成された液滴を分裂、合着させないよ
うに分散安定剤が添加することが好ましく、分散安定剤
としては、例えばポリビニルアルコール、でんぷん、ゼ
ラチン、セルロースおよびその誘導体等が挙げられる。
その他、表面張力調整のため界面活性剤が添加されてい
てもよい。
The continuous phase used in the present invention is not limited to gas or liquid, but may be water alone or a solution to which a water-soluble organic solvent such as alcohol is added.
Further, it is preferable to add a dispersion stabilizer so as to prevent the droplets generated in the continuous phase from splitting and coalescing. Examples of the dispersion stabilizer include polyvinyl alcohol, starch, gelatin, cellulose and derivatives thereof. .
In addition, a surfactant may be added for adjusting the surface tension.

【0007】本発明で用いられる分散相は重合性単量体
からなり、重合性単量体としては、活性光線特に紫外線
により重合可能であれば特に限定されないが、例えば、
アクリル酸誘導体が挙げられる。アクリル酸誘導導体と
しては、イソアミルアクリレート、ラウリルアクリレー
ト、ステアリルアクリレート、ブトキシエチルアクリレ
ート、エトキシジエチレングリコールアクリレートなど
の単官能のもの、1,6ヘキサンジオールジアクリレー
ト、ネオペンチルグリコールジアクリレート、トリメチ
ロールプロパントリアクリレート、テトラメチロールメ
タンテトラアクリレート、ジペンタエリスリトール等の
多官能アクリレートが挙げられる。これらは1種類ある
いは2種類以上を混合して用いてもよい。
The disperse phase used in the present invention is composed of a polymerizable monomer. The polymerizable monomer is not particularly limited as long as it can be polymerized by actinic rays, particularly ultraviolet rays.
Acrylic acid derivatives are mentioned. Acrylic acid-derived conductors include monofunctional ones such as isoamyl acrylate, lauryl acrylate, stearyl acrylate, butoxyethyl acrylate, ethoxydiethylene glycol acrylate, 1,6 hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, Examples include polyfunctional acrylates such as tetramethylol methane tetraacrylate and dipentaerythritol. These may be used alone or in combination of two or more.

【0008】本発明で用いられる分散相には、光重合開
始剤が添加されて用いられる。光重合開始剤としては既
知のものが用いられてよく、例えば2,2−ジメトキシ
−1,2ジフェニルエタン1−オン(チバスペシャリテ
ィーケミカルズ社 イルガキュア651)、1−ヒドロ
キシ−シクロヘキシルフェニルケトン(チバスペシャリ
ティーケミカルズ社 イルガキュア184)、2−ヒド
ロキシ−2−メチル−1−フェニルプロパン1−オン
(チバスペシャリティーケミカルズ社 ダロキュア11
73)、等が挙げられる。また、重合に影響を与えない
範囲において、その他の増感剤、粘度調整剤、溶媒、表
面張力調整のために界面活性剤などが添加されていても
よい。
[0008] A photopolymerization initiator is added to the dispersed phase used in the present invention. Known photopolymerization initiators may be used, for example, 2,2-dimethoxy-1,2 diphenylethane 1-one (Irgacure 651 by Ciba Specialty Chemicals), 1-hydroxy-cyclohexyl phenyl ketone (Ciba Specialty) Tea Chemicals, Irgacure 184), 2-hydroxy-2-methyl-1-phenylpropan-1-one (Ciba Specialty Chemicals, Darocure 11)
73). In addition, other sensitizers, viscosity modifiers, solvents, surfactants for adjusting the surface tension, and the like may be added within a range that does not affect the polymerization.

【0009】液滴を逐次生成させる方法としては、例え
ばノズルやオリフィスなどの開口部から一定流量で供給
される機構が挙げられる。その際、機械的振動などを与
えて分裂を促進する振動ノズル法を用いてもよい。
As a method of sequentially generating droplets, for example, there is a mechanism in which a droplet is supplied at a constant flow rate from an opening such as a nozzle or an orifice. At that time, a vibrating nozzle method of giving a mechanical vibration or the like to promote the division may be used.

【0010】本発明で用いられる活性光線としては、紫
外線が挙げられ、活性光線の光源としては例えば、高圧
水銀灯、超高圧水銀灯、メタルハライドランプ、等が挙
げられる。活性光線の照射は、連続相の比重が分散相の
比重よりも大きい場合は、モノマー液滴は開口部から下
方に沈む間に照射する。照射量としては、液滴が水中で
変形や合着しない程度が好ましい。
The actinic ray used in the present invention includes ultraviolet rays, and the actinic ray source includes, for example, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and a metal halide lamp. When the specific gravity of the continuous phase is greater than the specific gravity of the dispersed phase, the irradiation of the actinic ray is performed while the monomer droplets sink downward from the opening. The irradiation amount is preferably such that the droplets do not deform or coalesce in water.

【0011】本発明の方法によって得られる樹脂微粒子
の粒径は、100〜3000μmの範囲に限定すると、
粒径が均一になるため分別工程を経ることなく製造する
ことができる。本発明の方法によって得られる樹脂微粒
子の粒径の均一性は、数平均径に対し、90%以上の数
の粒子が0.9〜1.1倍の径を有する。なお、100
〜3000μmの樹脂粒子は懸濁重合での作製が困難で
あるため、本発明の製法が非常に有効である。
When the particle size of the resin fine particles obtained by the method of the present invention is limited to the range of 100 to 3000 μm,
Since the particle size becomes uniform, it can be produced without going through a separation step. Regarding the uniformity of the particle diameter of the resin fine particles obtained by the method of the present invention, 90% or more of the particles have a diameter 0.9 to 1.1 times the number average diameter. Note that 100
Since the production of resin particles of up to 3000 μm by suspension polymerization is difficult, the production method of the present invention is very effective.

【0012】本発明の製造方法において、さらに得られ
る樹脂微粒子の径を均一にするため、生成した液滴また
は粒子の径を計測しその結果に対応して液滴の生成条件
を調整するのが好ましい。計測する方法として特に限定
するものではないが、画像処理による方法が挙げられ
る。調整される生成条件としては、流量や振動の周波数
が挙げられる。
In the manufacturing method of the present invention, in order to further uniform the diameter of the obtained resin fine particles, it is necessary to measure the diameter of the generated droplet or particle and adjust the conditions for generating the droplet in accordance with the result. preferable. Although there is no particular limitation on the method of measurement, a method based on image processing may be used. The production conditions to be adjusted include the flow rate and the frequency of vibration.

【0013】[0013]

【発明の実施の形態】以下に実施例を挙げて本発明の態
様を更に詳しく説明するが、本発明はこれら実施例のみ
に限定されるものではない。なお、文中の「部」は「重
量部」を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Note that “parts” in the text indicates “parts by weight”.

【0014】(実施例1)3%のポリビニルアルコール
(日本合成化学社製 GL−03)が添加された水系溶
媒に、重合性単量体としてイソアミルアクリレート50
部、トリメチロールプロパントリアクリレート50部に
重合開始剤として、2,2−ジメトキシ−1,2ジフェ
ニルエタン1−オン(チバスペシャリティーケミカルズ
社製 イルガキュア651)0.5部を添加溶解させた
ものをからなる液滴を逐次生成させた。液滴の生成は、
ピエゾポンプ(日本計器製作所C07H−T6N−0
1)が接続しているノズル(ノズル内径0.3mm)を
用い、ピエゾポンプの振動周波数は325Hzの正弦
波、重合性単量体の流量は2.5cc/分であった。ノ
ズルは重合槽の上部先端に設置され、液滴が重力により
落下する間に高圧水銀灯により30秒光を照射すること
により重合を行い、樹脂微粒子を得た。得られた樹脂微
粒子の数平均粒子径を顕微鏡写真から画像処理で測定し
たところ、600μmであり、±10%範囲に92%の
粒子が入っていた。
(Example 1) Isoamyl acrylate 50 as a polymerizable monomer was added to an aqueous solvent to which 3% polyvinyl alcohol (GL-03 manufactured by Nippon Synthetic Chemical Company) was added.
, 50 parts of trimethylolpropane triacrylate, 0.5 parts of 2,2-dimethoxy-1,2 diphenylethane 1-one (Irgacure 651 manufactured by Ciba Specialty Chemicals) as a polymerization initiator was added and dissolved. Were successively generated. The production of droplets is
Piezo pump (Nihon Keiki Seisakusho C07H-T6N-0)
Using the nozzle connected to 1) (nozzle inner diameter: 0.3 mm), the vibration frequency of the piezo pump was a sine wave of 325 Hz, and the flow rate of the polymerizable monomer was 2.5 cc / min. The nozzle was installed at the upper end of the polymerization tank, and polymerization was performed by irradiating light with a high-pressure mercury lamp for 30 seconds while the droplets were falling by gravity to obtain resin fine particles. When the number average particle diameter of the obtained resin fine particles was measured by image processing from a micrograph, it was 600 μm, and 92% of the particles were contained in a range of ± 10%.

【0015】(実施例2)実施例1の重合性単量体をイ
ソアミルアクリレート50部とテトラメチロールメタン
テトラアクリレート50部に変え、ピエゾポンプの振動
周波数を451Hz、重合性単量体の流量を2.5cc
/分に変更したこと以外は実施例1と同様にして樹脂微
粒子を得た。得られた樹脂微粒子の粒子の数平均粒子径
を測定したところ、500μmであり、±10%範囲に
92%の粒子が入っていた。
Example 2 The polymerizable monomer of Example 1 was changed to 50 parts of isoamyl acrylate and 50 parts of tetramethylol methane tetraacrylate, the vibration frequency of the piezo pump was 451 Hz, and the flow rate of the polymerizable monomer was 2 .5cc
Resin fine particles were obtained in the same manner as in Example 1 except that the rate was changed to /. When the number average particle diameter of the particles of the obtained resin fine particles was measured, it was 500 μm, and 92% of the particles were within the range of ± 10%.

【0016】(実施例3)実施例1において、重合槽の
上部に拡大レンズのついたカメラを設置し、液滴の画像
処理により液滴粒径を測定する機構を設け、その結果を
演算処理し、重合単量体の流量にフィードバックする機
構を設けたこと以外は、実施例1と同様にして樹脂微粒
子を得た。得られた樹脂微粒子の粒子の数平均粒子径を
測定したところ、600μmであり、±10%範囲に9
5%の粒子が入っていた。
(Embodiment 3) In Embodiment 1, a camera with a magnifying lens is installed at the top of the polymerization tank, a mechanism for measuring the droplet diameter by image processing of the droplets is provided, and the result is calculated. Then, resin fine particles were obtained in the same manner as in Example 1 except that a mechanism for feeding back the flow rate of the polymerization monomer was provided. When the number average particle diameter of the obtained resin fine particles was measured, it was 600 μm, and 9
It contained 5% of the particles.

【0017】(比較例1)光を照射しなかったこと以外
は 実施例1と同様にして樹脂微粒子を得た。得られた
樹脂微粒子の粒子の数平均粒子径を測定したところ、6
00μmであり、±10%範囲に73%の粒子が入って
いた。
Comparative Example 1 Resin fine particles were obtained in the same manner as in Example 1 except that no light was irradiated. When the number average particle diameter of the obtained resin fine particles was measured, it was found to be 6
It was 00 μm and contained 73% of particles in the range of ± 10%.

【0018】[0018]

【発明の効果】本発明の樹脂微粒子の製造方法による
と、活性光線を重合性単量体からなる液滴に照射するた
め、重合の際に液滴が合着、分裂することがなく、粒径
分布がシャープな樹脂微粒子を得ることができる。
According to the method for producing resin fine particles of the present invention, since the actinic ray is applied to the droplets composed of the polymerizable monomer, the droplets do not coalesce or split during polymerization, and the droplets are not dispersed. Resin fine particles having a sharp diameter distribution can be obtained.

【0019】また、本発明の方法により得られた樹脂微
粒子は、平均粒径がシャープであるため、カラム充填
材、スペーサー、トナー、発泡体などの精密性が要求さ
れる用途においても使用することができる。
Since the fine resin particles obtained by the method of the present invention have a sharp average particle diameter, they can be used in applications requiring precision, such as column fillers, spacers, toners and foams. Can be.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 連続相中に、分散相として重合性単量体
からなる液滴を逐次生成させた後、活性光線を照射し、
その後重合を行うことを特徴とする樹脂微粒子の製造方
法。
1. After successively forming droplets of a polymerizable monomer as a dispersed phase in a continuous phase, irradiating with an actinic ray,
Thereafter, polymerization is carried out.
【請求項2】 連続相中に、分散相として重合性単量体
からなる液滴を逐次生成させた後、その液滴粒径を測定
し、その結果を演算処理し、分散相の単位時間あたりの
供給量にフィードバックすることを特徴とする請求項1
記載の樹脂微粒子の製造方法。
2. After successively forming droplets composed of a polymerizable monomer as a dispersed phase in a continuous phase, measuring the particle size of the droplets, calculating the result, and calculating the unit time of the dispersed phase. 2. A feedback is made to a supply amount per unit.
The method for producing resin fine particles according to the above.
【請求項3】 平均粒径が100〜3000μm、90
%以上が平均粒径の0.9〜1.1倍であることを特徴
とする請求項1、2記載の方法により得られた樹脂微粒
子。
3. An average particle size of 100 to 3000 μm, 90
% Or more is 0.9 to 1.1 times the average particle diameter, the resin fine particles obtained by the method according to claim 1 or 2.
JP2001128118A 2001-04-25 2001-04-25 Method for producing fine resin particles and fine resin particles Withdrawn JP2002322203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001128118A JP2002322203A (en) 2001-04-25 2001-04-25 Method for producing fine resin particles and fine resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001128118A JP2002322203A (en) 2001-04-25 2001-04-25 Method for producing fine resin particles and fine resin particles

Publications (1)

Publication Number Publication Date
JP2002322203A true JP2002322203A (en) 2002-11-08

Family

ID=18976870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001128118A Withdrawn JP2002322203A (en) 2001-04-25 2001-04-25 Method for producing fine resin particles and fine resin particles

Country Status (1)

Country Link
JP (1) JP2002322203A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013668A1 (en) * 2008-07-31 2010-02-04 積水化学工業株式会社 Polymer particle, conductive particle, anisotropic conductive material and connection structure
JP2011078878A (en) * 2009-10-05 2011-04-21 Fuji Xerox Co Ltd Apparatus and method for production of particulate and particulate produced by the method
US7939578B2 (en) 2007-02-23 2011-05-10 3M Innovative Properties Company Polymeric fibers and methods of making
US8513322B2 (en) 2007-05-31 2013-08-20 3M Innovative Properties Company Polymeric beads and methods of making polymeric beads
US8696975B2 (en) 2007-12-12 2014-04-15 3M Innovative Properties Company Methods of making shaped polymeric materials

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939578B2 (en) 2007-02-23 2011-05-10 3M Innovative Properties Company Polymeric fibers and methods of making
US8513322B2 (en) 2007-05-31 2013-08-20 3M Innovative Properties Company Polymeric beads and methods of making polymeric beads
US8696975B2 (en) 2007-12-12 2014-04-15 3M Innovative Properties Company Methods of making shaped polymeric materials
WO2010013668A1 (en) * 2008-07-31 2010-02-04 積水化学工業株式会社 Polymer particle, conductive particle, anisotropic conductive material and connection structure
CN102112507A (en) * 2008-07-31 2011-06-29 积水化学工业株式会社 Polymer particle, conductive particle, anisotropic conductive material and connection structure
JP5584468B2 (en) * 2008-07-31 2014-09-03 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
KR101609403B1 (en) * 2008-07-31 2016-04-05 세키스이가가쿠 고교가부시키가이샤 Polymer particle, conductive particle, anisotropic conductive material and connection structure
JP2011078878A (en) * 2009-10-05 2011-04-21 Fuji Xerox Co Ltd Apparatus and method for production of particulate and particulate produced by the method

Similar Documents

Publication Publication Date Title
US4623706A (en) Process for preparing uniformly sized polymer particles by suspension polymerization of vibratorily excited monomers in a gaseous or liquid stream
JP5108556B2 (en) Method for producing acrylic resin particles and method for producing resin particles
JPH05194611A (en) Apparatus for producing polymer beads of uniform size
EP1953184A1 (en) Thermally expanded microsphere and process for production thereof
Yasuda et al. Simulation of a particle formation stage in the dispersion polymerization of styrene
JP3635575B2 (en) Monodisperse resin particle production method and production apparatus
JP3344003B2 (en) Method for producing spherical particles
Yang et al. Particle size distribution and morphology of in situ suspension polymerized toner
JP2007204298A (en) Apparatus for producing fine particle and microchannel substrate
CN108203514A (en) The method for producing uniform polymer beads by vibration jet using super-hydrophobic film
JP2010167410A (en) Method for manufacturing hollow particulate, hollow particulate obtained by this method and its dispersion, and antireflection film using the hollow particulate
JP2002322203A (en) Method for producing fine resin particles and fine resin particles
JP7175886B2 (en) controlled particle size distribution
JP5020001B2 (en) Method for producing styrene resin particles
JP5080311B2 (en) Method for producing polystyrene-containing acrylic resin particles
Wang et al. Flow-pattern-altered syntheses of core–shell and hole–shell microparticles in an axisymmetric microfluidic device
JP5080310B2 (en) Method for producing acrylic resin particles
JP6605784B2 (en) Method for classifying solid fine particles
Gao et al. Synthesis of monodisperse polymer microspheres by photopolymerization of microdroplets
Park et al. Ultrasonication-induced and diluent-assisted suspension polymerization for size-controllable synthesis of polydimethylsiloxane droplets
Farzi et al. Miniemulsions using static mixers: A feasibility study using simple in‐line static mixers
JP2005194425A (en) Method for producing fine particle and fine particle
JP2010090241A (en) Method of manufacturing acrylic resin particle
Tarameshlou et al. Synthesis of biocompatible and degradable microspheres based on 2‐hydroxyethyl methacrylate via microfluidic method
JP3178199B2 (en) Method for producing spherical particles

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714