JP2002320841A - Method for controlling gas liquid catalytic reaction and gas generating reaction using solid catalyst by gradient magnetic field - Google Patents

Method for controlling gas liquid catalytic reaction and gas generating reaction using solid catalyst by gradient magnetic field

Info

Publication number
JP2002320841A
JP2002320841A JP2001130774A JP2001130774A JP2002320841A JP 2002320841 A JP2002320841 A JP 2002320841A JP 2001130774 A JP2001130774 A JP 2001130774A JP 2001130774 A JP2001130774 A JP 2001130774A JP 2002320841 A JP2002320841 A JP 2002320841A
Authority
JP
Japan
Prior art keywords
reaction
magnetic field
solid catalyst
gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001130774A
Other languages
Japanese (ja)
Inventor
Nobuko Wakayama
信子 若山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001130774A priority Critical patent/JP2002320841A/en
Publication of JP2002320841A publication Critical patent/JP2002320841A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a controlling method for by which the gas-liquid catalytic reaction using a solid catalyst and the gas generating reaction from a liquid by using a solid catalyst can be controlled by a simple method without depending on the individual reaction conditions and the control can be efficiently performed. SOLUTION: In the gas-liquid catalytic reaction using a solid catalyst and in the gas generating reaction from a liquid, a gradient magnetic field is generated near the interface of the solid catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体触媒を利用す
る気液接触反応の制御方法および固体触媒を利用する気
体発生反応の制御方法に関する。
The present invention relates to a method for controlling a gas-liquid contact reaction using a solid catalyst and a method for controlling a gas generation reaction using a solid catalyst.

【0002】[0002]

【従来の技術】固体触媒を用いる液相と気相の混合相に
おける化学反応は、従来から広く利用され、目的物質を
効率良く製造するために、反応温度、反応圧力、反応時
間、反応物質の濃度などの反応条件や適当な触媒を選ぶ
ことにより化学反応を制御する方法が用いられてきた。
しかし、このような制御方法では、各個別の反応条件を
その都度選択しなければならないという難点があった。
2. Description of the Related Art A chemical reaction in a mixed phase of a liquid phase and a gas phase using a solid catalyst has been widely used in the past, and in order to efficiently produce a target substance, a reaction temperature, a reaction pressure, a reaction time, a reaction time, A method of controlling a chemical reaction by selecting a reaction condition such as a concentration or an appropriate catalyst has been used.
However, such a control method has a drawback in that individual reaction conditions must be selected each time.

【0003】また、液体が触媒界面で反応して気体を生
じる反応では、触媒表面からの気泡除去が、反応の律速
過程になることがあり、とくに浮力が存在しない宇宙環
境で化学反応を利用する場合には、触媒界面に付着した
ままになる気泡が反応継続の大きな障害となっている。
[0003] In a reaction in which a liquid reacts at a catalyst interface to generate a gas, the removal of bubbles from the catalyst surface may be a rate-determining process of the reaction, and a chemical reaction is used particularly in a space environment where buoyancy does not exist. In such a case, air bubbles that remain attached to the catalyst interface are a major obstacle to the continuation of the reaction.

【0004】[0004]

【発明が解決しようとする課題】本発明は、固体触媒を
利用する気液接触反応および固体触媒を利用する液体か
らの気体発生反応の制御を個別の反応条件にとらわれる
ことなく、簡単な方法で制御でき、かつその制御を効率
的に行える制御方法を提供することを目的とする。
An object of the present invention is to control a gas-liquid contact reaction utilizing a solid catalyst and a gas generation reaction from a liquid utilizing a solid catalyst in a simple manner without being restricted to individual reaction conditions. It is an object of the present invention to provide a control method which can be controlled and can perform the control efficiently.

【0005】[0005]

【課題を解決するための手段】本発明者は、液相と気相
の混合相における、固体触媒を用いる化学反応の制御に
ついて研究した結果、気泡を磁気浮力で輸送するように
した場合、上記の化学反応を効率よく制御できることを
見出した。本発明はこの知見に基づきなされたものであ
る。
Means for Solving the Problems The present inventor studied the control of a chemical reaction using a solid catalyst in a mixed phase of a liquid phase and a gaseous phase. It has been found that the chemical reaction of can be controlled efficiently. The present invention has been made based on this finding.

【0006】すなわち、本発明によれば、第一に、固体
触媒を利用する気液接触反応において、該固体触媒の界
面近傍に勾配磁場を発生させた構成とすることを特徴と
する勾配磁場を利用した気液接触反応の制御方法が提供
される。第二に、固体触媒を利用する液体からの気体発
生反応において、該固体触媒の界面近傍に勾配磁場を発
生させた構成とすることを特徴とする勾配磁場を利用し
た気体発生反応の制御方法が提供される。第三に、第一
又は第二の発明において、液体と気泡中の気体の体積磁
化率の差により前記勾配磁場を利用して気泡に磁気力を
印加して、前記気泡を所定の方向へ移動させ、固体触媒
界面における反応を制御することを特徴とする反応の制
御方法が提供される。第四に、第三の発明において、勾
配磁場発生手段が永久磁石又は電磁石であることを特徴
とする反応の制御方法が提供される。第五に、第三の発
明において、勾配磁場発生手段が、電磁石もしくは永久
磁石で発生する磁場中に鉄やステンレスなどの常磁性物
質を配置することを特徴とする反応の制御方法が提供さ
れる。
That is, according to the present invention, first, in a gas-liquid contact reaction utilizing a solid catalyst, a gradient magnetic field characterized by generating a gradient magnetic field near the interface of the solid catalyst is provided. A method for controlling a gas-liquid contact reaction that is utilized is provided. Secondly, in a gas generation reaction from a liquid using a solid catalyst, a method for controlling a gas generation reaction using a gradient magnetic field is characterized in that a gradient magnetic field is generated near an interface of the solid catalyst. Provided. Third, in the first or second invention, a magnetic force is applied to the bubble by using the gradient magnetic field by a difference in volume susceptibility between the liquid and the gas in the bubble to move the bubble in a predetermined direction. And controlling the reaction at the solid catalyst interface. Fourthly, in the third invention, there is provided a reaction control method, wherein the gradient magnetic field generating means is a permanent magnet or an electromagnet. Fifth, in the third invention, there is provided a method for controlling a reaction, wherein the gradient magnetic field generating means arranges a paramagnetic substance such as iron or stainless steel in a magnetic field generated by an electromagnet or a permanent magnet. .

【0007】一般に、位置座標により磁場強度が変化す
る勾配磁場下では磁気力が発生する。単位体積あたりの
物質に作用する磁気力(F)は、下式(1)の通り、体
積磁化率(χ)、磁場強度(H)、磁場勾配(dH/d
X)の積で表される(化学大辞典、4巻、167頁、共立
出版(昭和44年))。 F=χH(dH/dX) (1) (式中、Fは単位体積あたりの磁気力、χは体積磁化
率、Hは磁場強度、dH/dXは磁場勾配を表す。)
Generally, a magnetic force is generated under a gradient magnetic field in which the magnetic field intensity changes according to the position coordinates. The magnetic force (F) acting on a substance per unit volume is represented by the following equation (1): volume susceptibility (χ), magnetic field strength (H), magnetic field gradient (dH / d)
X) (Chemical Encyclopedia, Volume 4, p. 167, Kyoritsu Shuppan (Showa 44)). F = χH (dH / dX) (1) (where F is the magnetic force per unit volume, χ is the volume susceptibility, H is the magnetic field strength, and dH / dX is the magnetic field gradient.)

【0008】本発明者らの検討によれば、重力場では気
体、液体の密度差に由来する浮力が気泡に作用するが、
以下の表1にみられるように、液体と気体(気泡)はそ
の体積磁化率が相違するため、気液混合系において、勾
配磁場をかけると磁気浮力が発生すること、そしてこの
現象を利用すると気泡の移動および制御が可能であるこ
とが判明した。
According to the study of the present inventors, in a gravitational field, buoyancy caused by a difference in density between gas and liquid acts on bubbles.
As shown in Table 1 below, liquid and gas (bubbles) have different volume susceptibilities. Therefore, in a gas-liquid mixed system, when a gradient magnetic field is applied, magnetic buoyancy is generated. It has been found that the movement and control of bubbles is possible.

【0009】[0009]

【表1】 [Table 1]

【0010】表1に示すように、水や有機溶媒など、ほ
とんどの液体は反磁性で、その体積磁化率は負で、磁石
に反発する力が作用する。体積磁化率は密度と質量磁化
率(単位質量あたりの磁化率)の積であるため、気体の
体積磁化率は液体にくらべ小さくなる。例外として酸
化、燃焼に関与する酸素ガスは常磁性で、その体積磁化
率は正(+1.5×10-7e.m.u)で、磁石にひきつけられ
る性質がある。
As shown in Table 1, most liquids such as water and organic solvents are diamagnetic, have a negative volume susceptibility, and a repulsive force acts on the magnet. Since the volume susceptibility is the product of the density and the mass susceptibility (magnetic susceptibility per unit mass), the volume susceptibility of a gas is smaller than that of a liquid. Exceptionally, oxygen gas involved in oxidation and combustion is paramagnetic, has a positive volume susceptibility (+ 1.5 × 10 −7 emu), and has a property of being attracted to magnets.

【0011】図1は、勾配磁場中に、液体および気泡が
共存する場合の気泡の挙動を模式的に示した説明図であ
る。図1(a)は液相中の気泡を示すもので、1は気
泡、2は液体を示し、図1(b)は磁場の強度Hと位置X
の関係を示すグラフである。図1(b)のグラフのX軸
方向と位置は、図1(a)の水平方向とその位置に対応
しており、Xが増加すると磁場強度が減少する勾配磁場
がかけられていることを示す。このような勾配磁場中
で、気泡に作用する磁気浮力は以下の式であらわされ
る。 F=(χG-χL)H(dH/dX) (2) (式中、χG、χLは各々、液体、気体の体積磁化率を表
す。)
FIG. 1 is an explanatory diagram schematically showing the behavior of bubbles when a liquid and bubbles coexist in a gradient magnetic field. FIG. 1 (a) shows bubbles in a liquid phase, 1 shows bubbles, 2 shows a liquid, and FIG. 1 (b) shows the magnetic field strength H and the position X.
6 is a graph showing the relationship of. The X-axis direction and the position of the graph in FIG. 1B correspond to the horizontal direction and the position in FIG. 1A, and the gradient magnetic field in which the magnetic field intensity decreases as X increases is applied. Show. The magnetic buoyancy acting on the bubble in such a gradient magnetic field is expressed by the following equation. F = (χG-χL) H (dH / dX) (2) (where, χG and χL represent the volume susceptibilities of liquid and gas, respectively)

【0012】液体が水や有機溶媒など反磁性の場合、磁
気浮力で気泡は磁場強度が増加する方向(矢印3でしめ
す)へ移動する。この際、気泡の移動する方向は酸素ガ
ス、空気、窒素ガスなど気体の種類には依存しない。体
積磁化率の絶対値はχLがχGにくらべ非常に大きいた
め、式(2)は以下のように近似され、浮力は殆ど液体
に作用する力で表されるためである。 F≒-χLH(dH/dX) (3)
If the liquid is diamagnetic, such as water or an organic solvent, the bubbles move in the direction of increasing magnetic field strength (indicated by arrow 3) due to magnetic buoyancy. At this time, the moving direction of the bubble does not depend on the type of gas such as oxygen gas, air, and nitrogen gas. Since the absolute value of the volume susceptibility ΔL is much larger than ΔG, Equation (2) is approximated as follows, and the buoyancy is almost represented by the force acting on the liquid. F ≒ -χLH (dH / dX) (3)

【0013】なお、先に本発明者らが提案した特許第26
15431号においては、磁場を利用した気泡輸送全般を包
括はしているものの、液相と気相の混合相における、固
体触媒を用いる化学反応の制御への適用については言及
していない。実際の化学産業では、固体触媒を利用し
た、液相と気相の混合相における、各種化合物の合成を
目的とした様々な化学反応が知られている。
[0013] It should be noted that the patent No. 26 has been proposed by the present inventors.
Although No. 15431 covers all the bubble transport using a magnetic field, it does not mention the application to the control of a chemical reaction using a solid catalyst in a mixed phase of a liquid phase and a gas phase. In the actual chemical industry, various chemical reactions for synthesizing various compounds in a mixed phase of a liquid phase and a gas phase using a solid catalyst are known.

【0014】本発明者は、液相と気相の混合相におけ
る、固体触媒を用いる化学反応の制御について研究した
結果、気泡を磁気浮力で輸送するようにした場合、上記
の化学反応を効率よく制御できることを見出した。本発
明はこの知見に基づきなされたものである。
The present inventor has studied the control of a chemical reaction using a solid catalyst in a mixed phase of a liquid phase and a gaseous phase. As a result, when the bubbles are transported by magnetic buoyancy, the above-mentioned chemical reaction can be efficiently performed. I found that I could control it. The present invention has been made based on this finding.

【0015】本発明の対象となる一つの反応は、固体触
媒を利用する気液接触反応であり、液相における固体触
媒を経由する反応で、気泡の輸送を伴うものであればい
ずれのものも包含される。
One reaction that is the subject of the present invention is a gas-liquid contact reaction using a solid catalyst, and any reaction that involves the transport of air bubbles through a solid catalyst in a liquid phase. Included.

【0016】このような反応例としては、たとえば、1,
3-ブタジエンから三段階の反応を経て最終的に1,4-ブタ
ンジオールを得る製造プロセスの第一工程があげられ
る。そのアセトキシル化工程では、Pd-Te系触媒を固定
床として用い、1,3-ブタジエンと酢酸、並びに空気を気
−液−固接触反応させて、1,4-ジアセトキシブテン-2を
得る。反応は70℃、7MPa程度のマイルドな条件で行わ
れる。そのほか、イソブチレンもしくはt-ブチルアル
コールから二段階の反応を経て最終的にメタクリル酸メ
チルを得る製造プロセスがあげられる。反応の第二工程
では、多元系触媒を用い、前工程で得られたメタクロレ
イン(α,β不飽和アルデヒド)にメタノール並びに空
気を加えて、気相−液相−固体(触媒)の三相流動層で
反応させることにより、酸化エステル化してメタクリル
酸メチルを得る。反応は50℃〜100℃程度のマイルドな
条件で行われる。また、合成工程のなかの酸素酸化工程
において、対象液中の溶存酸素濃度を高めるために、エ
アレーションなどの処理を併用して空気や酸素を液中に
注入し、触媒表面には気液が混合した状態で接触するた
め、気泡が付着しては流されるといった状態を繰り返す
反応も本発明の対象とされる。
Examples of such reactions include, for example, 1,
The first step of the production process for finally obtaining 1,4-butanediol from 3-butadiene through a three-step reaction can be mentioned. In the acetoxylation step, 1,3-butadiene, acetic acid, and air are subjected to a gas-liquid-solid contact reaction using a Pd-Te catalyst as a fixed bed to obtain 1,4-diacetoxybutene-2. The reaction is carried out at 70 ° C. under mild conditions of about 7 MPa. In addition, there is a production process in which methyl methacrylate is finally obtained from isobutylene or t-butyl alcohol through a two-step reaction. In the second step of the reaction, methanol and air are added to methacrolein (α, β-unsaturated aldehyde) obtained in the previous step using a multi-component catalyst to form a three-phase gas-liquid-solid-catalyst. The reaction is carried out in a fluidized bed to oxidize and esterify to obtain methyl methacrylate. The reaction is performed under mild conditions of about 50 ° C to 100 ° C. In addition, in the oxygen oxidation step in the synthesis step, air or oxygen is injected into the liquid together with treatment such as aeration to increase the dissolved oxygen concentration in the target liquid, and gas-liquid is mixed on the catalyst surface. The present invention also covers a reaction that repeats a state in which bubbles are attached and then washed away because they come into contact with each other.

【0017】上記のいずれの有機合成の事例において
も、酸素ガスと反応物質である液体と触媒の気−液−固
相の接触反応が行われているが、触媒表面への酸素の供
給速度が律速となっている。言い換えると如何にして触
媒の表面に酸素を供給するかが、反応を速やかに行わせ
るためのポイントとなるものであるが、本発明では前記
したように、このような気液接触反応系に勾配磁場をか
ける構成としたことから、固体触媒上に酸素ガスの気泡
が速やかに移行するため触媒表面への酸素の供給速度が
著しく向上し、反応効率を高めることができる。
In any of the above organic synthesis cases, the contact reaction between oxygen gas and the liquid, which is the reactant, and the gas-liquid-solid phase of the catalyst is carried out, but the supply rate of oxygen to the catalyst surface is low. It is rate-limiting. In other words, how to supply oxygen to the surface of the catalyst is a point for promptly performing the reaction. As described above, in the present invention, such a gas-liquid contact reaction system has a gradient. Since the magnetic field is applied, the oxygen gas bubbles move quickly onto the solid catalyst, so that the supply rate of oxygen to the catalyst surface is significantly improved, and the reaction efficiency can be increased.

【0018】本発明の対象となる他の一つの反応は、液
体が固体触媒界面で反応して気体(気泡)を生じるもの
である。この気体発生反応では、固体触媒表面からの気
泡除去が、反応の律速過程になるものであり、特に浮力
が存在しない宇宙環境で該反応を利用する場合に、触媒
界面に付着した気泡が重大な障害となる。このような場
合、触媒界面から離れると磁場強度が減少するような勾
配磁場をかけることにより、気泡が磁気浮力で効果的に
除去され、気体発生反応が著しく高められる。このよう
な反応の具体例としていは、たとえば、白金触媒を利用
した過酸化水素水の分解などの反応が挙げられる。
Another reaction which is an object of the present invention is one in which a liquid reacts at a solid catalyst interface to produce a gas (bubble). In this gas generation reaction, the removal of bubbles from the surface of the solid catalyst is a rate-determining process of the reaction, and particularly when using the reaction in a space environment where buoyancy does not exist, bubbles attached to the catalyst interface are significant It is an obstacle. In such a case, by applying a gradient magnetic field such that the magnetic field strength decreases as the distance from the catalyst interface decreases, bubbles are effectively removed by magnetic buoyancy, and the gas generation reaction is significantly enhanced. Specific examples of such a reaction include a reaction such as decomposition of a hydrogen peroxide solution using a platinum catalyst.

【0019】本発明において、固体触媒の材質について
は特に制限が無く、一般的に触媒材は何でも用いること
ができる。本発明において、各種の触媒類は担持体に固
定化された固体触媒の形態として扱う。担持体の材質に
は、通常固定化用に用いる素材は中性、酸性、塩基性い
ずれであっても用いることができる。
In the present invention, the material of the solid catalyst is not particularly limited, and generally any catalyst material can be used. In the present invention, various catalysts are treated as a solid catalyst immobilized on a support. Regarding the material of the support, any material that is usually used for immobilization may be neutral, acidic, or basic.

【0020】本発明における勾配磁場の発生手段として
は、各種の手段や材料、すなわち電磁石、超伝導磁石
や、永久磁石、磁性材料を用いることができる。本発明
で用いることのできる磁性材料や永久磁石は、上記の考
え方に則った素材であれば、これらに限定されるもので
はない。フェライト、アルニコ系材料、希土類コバルト
系材料、ネオジウム系材料など利用可能である。永久磁
石は、メッキや塗装などの各種防蝕処理を施すことが望
ましく、その場合には透磁率の高い素材が好適である。
As the means for generating the gradient magnetic field in the present invention, various means and materials, that is, electromagnets, superconducting magnets, permanent magnets, and magnetic materials can be used. The magnetic material and the permanent magnet that can be used in the present invention are not limited to these as long as they are materials based on the above concept. Ferrite, alnico-based materials, rare-earth cobalt-based materials, neodymium-based materials, and the like can be used. The permanent magnet is desirably subjected to various anticorrosion treatments such as plating and painting, and in that case, a material having high magnetic permeability is suitable.

【0021】永久磁石を利用する場合、高温では永久磁
石の磁場が消失しやすいため、比較的低温が望ましい。
発生する磁力は強いほど良いことは言うまでもなく、以
下に述べるような各種磁石材料は、着磁した状態で用い
る。加熱した系で用いる場合には、磁石の素材に応じた
キュリー温度及び、残留磁束密度の温度係数に由来する
熱減磁や、消磁現象を考慮して、耐熱性の高い磁石材料
を選定する必要がある。
When a permanent magnet is used, a relatively low temperature is desirable because the magnetic field of the permanent magnet is easily lost at a high temperature.
Needless to say, the stronger the generated magnetic force, the better. Needless to say, various magnet materials described below are used in a magnetized state. When using in a heated system, it is necessary to select a magnet material with high heat resistance in consideration of the Curie temperature according to the magnet material and the thermal demagnetization and demagnetization phenomena derived from the temperature coefficient of the residual magnetic flux density. There is.

【0022】一例をあげると、フェライト系では最高約
250℃、アルニコ系では最高約450℃、サマリウムコバル
ト系では最高約350℃、ネオジウム系では最高約150℃程
度まで用いることができる。着磁後の自発磁場の強度
は、より強い方が好ましいことは言うまでもない。
To give an example, the maximum value of ferrite is about
It can be used up to about 250 ° C, up to about 450 ° C for alnico, up to about 350 ° C for samarium-cobalt, and up to about 150 ° C for neodymium. Needless to say, it is preferable that the strength of the spontaneous magnetic field after magnetization is higher.

【0023】[0023]

【実施例】次に、本発明を実施例に基き詳細に説明す
る。 実施例1 本発明を図示の一実施例にしたがって説明する。図2は
本発明に係る固体触媒界面への気泡輸送の説明図であ
る。反応物質の気泡1が反応物質である有機液体2中に
存在する。固体触媒4を固定した担持体5は永久磁石6
に接触して存在する。図2(b)は磁場の強度Hと位置
Xの関係を示すグラフで、X軸方向と位置は図2(a)
の水平方向とその位置に対応する。このような場合、触
媒の近傍では、急峻な勾配磁場が発生するので、気泡1
は矢印3でしめすように、磁石(その上にある触媒界
面)に向かって移動し、固体触媒界面に接触して反応が
進行する。この場合、磁場強度と勾配の積は大きい程、
式(2)または(3)により作用する磁場の力も大きく
なり、反応の促進効果もより大きくなる。永久磁石の形
状および種類にも依存するが、ネオジウム系の磁石で
は、その界面近傍では磁場強度と勾配の積H(dH/d
X)が30キロガウス/cmくらいの値となり、気泡に
作用する磁気力もエタノール中で約19ダイン/cm
なる。
Next, the present invention will be described in detail with reference to examples. Embodiment 1 The present invention will be described according to one embodiment shown in the drawings. FIG. 2 is an explanatory view of air bubble transport to the solid catalyst interface according to the present invention. Bubbles 1 of the reactant are present in the organic liquid 2 which is the reactant. The carrier 5 on which the solid catalyst 4 is fixed is a permanent magnet 6
Exists in contact with. FIG. 2B is a graph showing the relationship between the magnetic field strength H and the position X. The X-axis direction and the position are shown in FIG.
In the horizontal direction and its position. In such a case, a steep gradient magnetic field is generated near the catalyst.
Moves toward the magnet (the catalyst interface above it) as indicated by the arrow 3 and contacts the solid catalyst interface, and the reaction proceeds. In this case, the larger the product of the magnetic field strength and the gradient,
The force of the magnetic field acting according to the formula (2) or (3) also increases, and the effect of promoting the reaction also increases. Although depending on the shape and type of the permanent magnet, in the case of a neodymium-based magnet, the product of the magnetic field strength and the gradient H (dH / d) is near the interface.
X) is about 30 kilogauss / cm 2 and the magnetic force acting on the bubbles is about 19 dynes / cm 3 in ethanol.

【0024】実施例2 本発明において、永久磁石上に固体触媒を設置する場
合、複数個の永久磁石を利用することも可能である。そ
の場合は永久磁石同士の吸引をさけるため、図3に示す
ように触媒4を固定した担持体5および永久磁石6の複
合体7を液体中で支持材8を利用して固定することが望
ましい。これらの触媒磁石複合体を集めて反応器に充填
したり、反応流体の流速の早い場合には多数の平行貫通
孔を持ったハニカム状に成型して用いることができる。
通過させる流体の粘性や反応性等によって圧損を考慮し
空隙率の最適化を図って使いこなすことが望ましい。
Embodiment 2 In the present invention, when a solid catalyst is provided on a permanent magnet, a plurality of permanent magnets can be used. In this case, in order to prevent the permanent magnets from being attracted to each other, it is desirable to fix the composite body 7 of the carrier 5 and the permanent magnet 6 to which the catalyst 4 is fixed in the liquid by using the support material 8 as shown in FIG. . These catalyst-magnet composites can be collected and filled into a reactor, or can be used after being molded into a honeycomb shape having a large number of parallel through holes when the flow rate of the reaction fluid is high.
It is desirable to optimize the porosity in consideration of the pressure loss depending on the viscosity and reactivity of the fluid to be passed, and to make full use of the fluid.

【0025】いずれの構成の場合も、永久磁石6は未着
磁の状態で分散や、混合、塗料化、塗工、含侵、展着、
成形、硬化、焼成などの加工工程が行われ、成形が終了
した状態で着磁処理がなされる。これは加工工程中での
磁性粒子相互の磁力による凝集を防ぐためである。ま
た、本発明によって触媒の表面に勾配磁場を形成するよ
うに改良されたこれらの触媒磁石複合体は、通常の回分
式、流通式いずれの方式の反応器でも用いることがで
き、固定床型でも流動床型でも適用することができる。
In each case, the permanent magnet 6 is dispersed, mixed, formed into a paint, coated, impregnated, spread, and unmagnetized.
Processing steps such as molding, hardening, and firing are performed, and a magnetizing process is performed after the molding is completed. This is to prevent magnetic particles from aggregating due to magnetic force during the processing step. In addition, these catalytic magnet composites improved to form a gradient magnetic field on the surface of the catalyst according to the present invention can be used in any of ordinary batch type and flow type reactors, and can be used in a fixed bed type. A fluidized bed type can also be applied.

【0026】実施例3 本発明においては、永久磁石を直接、反応する液体中に
挿入しない場合でも、固体触媒近傍に急峻な勾配磁場を
発生させることが可能である。図4に示すように、ステ
ンレスなど常磁性物質のネット(網)9上に、触媒4ま
たは触媒4を固定した担持体6を設置する。磁場発生装
置として電磁石10を利用する場合、そのギャップ中に
反応容器11を設置し、気液混合相に磁場をかけると、
ネット9上の触媒界面近傍に、局所的に急峻な勾配磁場
が発生し、反応液体中の気泡が容易に触媒界面に引きつ
けられるようになる。局所的な高勾配磁場発生の原理は
高磁気勾配分離と同じである(理化学辞典、第5版、
p.571、岩波書店(1998))。
Embodiment 3 In the present invention, a steep gradient magnetic field can be generated in the vicinity of a solid catalyst even when a permanent magnet is not directly inserted into a reacting liquid. As shown in FIG. 4, a catalyst 4 or a carrier 6 to which the catalyst 4 is fixed is placed on a net 9 made of a paramagnetic substance such as stainless steel. When the electromagnet 10 is used as a magnetic field generator, the reaction vessel 11 is installed in the gap, and a magnetic field is applied to the gas-liquid mixed phase.
A steep gradient magnetic field is locally generated near the catalyst interface on the net 9, and bubbles in the reaction liquid are easily attracted to the catalyst interface. The principle of local high gradient magnetic field generation is the same as high magnetic gradient separation (physical science dictionary, 5th edition,
p.571, Iwanami Shoten (1998)).

【0027】触媒を設置する常磁性物質の形状は、ネッ
ト状のほか、線、板などの形状であっても良い。反応容
器は非磁性の物質で作成し、磁場をかける装置としては
電磁石、超伝導マグネット、永久磁石を目的に応じて、
適宜選択すればよい。
The paramagnetic substance on which the catalyst is provided may be in the form of a wire, a plate, or the like, in addition to a net. The reaction vessel is made of a non-magnetic substance.
What is necessary is just to select suitably.

【0028】実施例4 スペースシャトルのような宇宙空間では浮力が存在しな
いため、一般に気泡を伴う反応の利用が困難である。一
例として、白金触媒を担持したアルミナペレット12
(0.5%Ptアルミナペレット、(株)エヌ・イーケムキ
ャット)による、8%過酸化水素水13の分解反応(2H2
O2→2H2O+O2)をあげる。北海道にある(株)地下無重
力実験センターで実験を実施した。ここでは自由落下す
るカプセル中で10秒間の無重力環境が得られる。図5
(a)にみられるように、触媒表面で酸素ガス気泡の発
生がみられたが、無重力環境になると気泡の発生は停止
した。図6(a)は気泡の垂直移動速度の、触媒表面よ
り0.3cm上の水平位置座標Xに沿った分布である。重力
下では実線、無重力下では破線でしめす。無重力になる
と反応が停止し気泡が発生しない。つぎに図5(b)に
しめすように、容器の外側にU字形永久磁石14を設置し
て、触媒から上方向に離れると磁場強度が増大する勾配
磁場(磁場強度と勾配の積H(dH/dX)が最高で約6
0キロガウス/cm )をかけ、酸素ガス気泡が磁場の力
で触媒界面から除去されるようにした。この場合、無重
力下でも重力場と同様に、気泡が発生し、反応が継続す
ることが確認された。図6(b)に、重力下(実線)、
無重力下(破線)の気泡移動速度の分布を示す。
Embodiment 4 In a space such as a space shuttle, there is no buoyancy.
Therefore, it is generally difficult to utilize a reaction involving bubbles. one
As an example, alumina pellets 12 carrying a platinum catalyst
(0.5% Pt alumina pellets, N.K.
8% hydrogen peroxide solution 13 decomposition reaction (2HTwo
OTwo→ 2HTwoO + OTwo). Underground weightless in Hokkaido
The experiment was performed at the force experiment center. Here it falls freely
10 seconds in a zero gravity environment in a capsule. FIG.
As shown in (a), generation of oxygen gas bubbles on the catalyst surface
Birth was observed, but generation of bubbles stopped in a zero gravity environment
did. FIG. 6 (a) shows the vertical movement speed of the air bubbles from the catalyst surface.
It is a distribution along the horizontal position coordinate X 0.3 cm above. gravity
A solid line is shown below, and a broken line is shown under zero gravity. Become weightless
Reaction stops and no bubbles are generated. Next, in FIG.
As shown, place a U-shaped permanent magnet 14 on the outside of the container.
The gradient where the magnetic field strength increases as the distance from the catalyst increases.
Magnetic field (the product of magnetic field strength and gradient H (dH / dX) is up to about 6
0 kilogauss / cm 2), The oxygen gas bubble is the force of the magnetic field
At the catalyst interface. In this case, no weight
Under force, bubbles are generated and the reaction continues as in the gravity field.
Was confirmed. In FIG. 6B, under gravity (solid line),
The distribution of the bubble moving speed under zero gravity (broken line) is shown.

【0029】[0029]

【発明の効果】本発明方法では、触媒近傍に勾配磁場を
発生させることにより、液体と気体の体積磁化率の差に
より発生する気泡に作用する磁場の力を利用するもので
あるから、個別の反応条件にとらわれることなく、固体
触媒を利用する気液が関与する化学反応を制御すること
ができる。特に気泡の輸送が律速になるような過程で、
本発明の寄与度は高い。また本発明方法は、固体触媒の
近傍もしくは背面側から勾配磁場を与える構成であるの
で、従来から利用されていた装置や、機構に大きな変更
を与えること無く適用ができるという利点がある。更
に、本発明方法は、全体の反応温度が、使用する永久磁
石の耐熱温度以下でさえあれば、触媒の種類や、基質や
生成物、副生物などの材料の種類には影響を受けること
がなく、どのような反応にも適用できるという効果があ
る。
According to the method of the present invention, a gradient magnetic field is generated in the vicinity of the catalyst to utilize the force of the magnetic field acting on the bubbles generated due to the difference in volume susceptibility between the liquid and the gas. It is possible to control a chemical reaction involving a gas-liquid utilizing a solid catalyst, regardless of reaction conditions. Especially in the process where the transport of bubbles becomes the rate limiting,
The contribution of the present invention is high. Further, since the method of the present invention has a configuration in which a gradient magnetic field is applied from the vicinity or the back side of the solid catalyst, there is an advantage that the method and the mechanism conventionally used can be applied without major changes. Further, the method of the present invention can be affected by the type of catalyst, and the type of material such as substrates, products, and by-products, as long as the overall reaction temperature is not higher than the allowable temperature limit of the permanent magnet used. And has the effect of being applicable to any reaction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁場を利用した液体中の気泡輸送の説明図であ
り、(a)は液相中の気泡輸送を示したものであり、
(b)は位置座標Xと磁場強度Hの関係を模式的に表す
グラフである。
FIG. 1 is an explanatory diagram of bubble transport in a liquid using a magnetic field, wherein (a) shows bubble transport in a liquid phase;
(B) is a graph schematically showing the relationship between the position coordinates X and the magnetic field strength H.

【図2】本発明の一実施態様の説明図であり、(a)は
触媒と担持材と永久磁石の位置関係を模式化して表し、
触媒近傍の気泡の挙動を示したものであり、(b)は位
置座標Xと磁場強度Hの関係を模式的に表すグラフであ
る。
FIG. 2 is an explanatory view of one embodiment of the present invention, in which (a) schematically shows a positional relationship among a catalyst, a carrier, and a permanent magnet;
FIG. 4B shows the behavior of bubbles near the catalyst, and FIG. 5B is a graph schematically showing the relationship between the position coordinates X and the magnetic field strength H. FIG.

【図3】本発明の他の実施態様の説明図であり、複数個
の、触媒を固定した担持材と永久磁石の複合体の位置関
係を模式化した図である。
FIG. 3 is an explanatory diagram of another embodiment of the present invention, and is a diagram schematically illustrating a positional relationship between a plurality of composites of a support material on which a catalyst is fixed and a permanent magnet.

【図4】本発明の更に他の実施態様を示す説明図であ
り、永久磁石を直接反応する液体に浸漬することなく、
固体触媒近傍に急峻な勾配磁場を発生する装置を示す図
である。
FIG. 4 is an explanatory view showing still another embodiment of the present invention, in which a permanent magnet is not immersed in a directly reacting liquid,
It is a figure which shows the apparatus which generates a steep gradient magnetic field near a solid catalyst.

【図5】本発明の実施例の説明図であり、(a)は白金
触媒を担持したアルミナペレットによる過酸化水素水の
分解反応の実験装置の配置図を示したものであり、
(b)はU字形永久磁石を使用して、反応容器内に勾配
磁場を発生させ、微小重力環境で反応を継続させるよう
にした実験装置の模式図である。
FIG. 5 is an explanatory view of an embodiment of the present invention, in which (a) shows a layout of an experimental apparatus for a decomposition reaction of a hydrogen peroxide solution using alumina pellets supporting a platinum catalyst,
(B) is a schematic diagram of an experimental apparatus in which a U-shaped permanent magnet is used to generate a gradient magnetic field in a reaction vessel and continue the reaction in a microgravity environment.

【図6】本発明の実施例の説明図であり、(a)は磁石
が設置されていない場合の触媒ペレット上面から0.3c
m上の位置における気泡の輸送速度の重力下(実線)、
微小重力下(破線)の位置分布を示したものであり、
(b)は磁石を設置した場合の実験結果を示すものであ
る。
FIG. 6 is an explanatory view of an embodiment of the present invention. FIG. 6 (a) is 0.3c from the top of the catalyst pellet when no magnet is installed.
m under the gravity of the bubble transport velocity at the position above m (solid line),
It shows the position distribution under microgravity (broken line),
(B) shows an experimental result when a magnet is installed.

【符号の説明】[Explanation of symbols]

1・・気泡 2・・液体 3・・気泡の移動する方向 4・・固体触媒 5・・触媒担持体 6・・永久磁石 7・・触媒磁石複合体 8・・支持材 9・・常磁性物質でできたネット(網) 10・・電磁石 11・・反応容器 12・・Pt触媒を担持したアルミナペレット 13・・過酸化水素水 14・・U字形永久磁石 1. Bubble 2. Liquid 3. Bubble moving direction 4. Solid catalyst 5. Catalyst carrier 6. Permanent magnet 7. Catalyst magnet composite 8. Supporting material 9. Paramagnetic substance Net made of 10 Electromagnets 11 Reactor vessel 12 Alumina pellets carrying Pt catalyst 13 Hydrogen peroxide water 14 U-shaped permanent magnets

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 67/055 C07C 67/055 67/08 67/08 67/39 67/39 69/16 69/16 69/54 69/54 Z Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C07C 67/055 C07C 67/055 67/08 67/08 67/39 67/39 69/16 69/16 69/54 69 / 54 Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】固体触媒を利用する気液接触反応におい
て、該固体触媒の界面近傍に勾配磁場を発生させた構成
とすることを特徴とする勾配磁場を利用した気液接触反
応の制御方法。
1. A method for controlling a gas-liquid contact reaction using a gradient magnetic field, wherein a gradient magnetic field is generated near an interface of the solid catalyst in the gas-liquid contact reaction using a solid catalyst.
【請求項2】固体触媒を利用する液体からの気体発生反
応において、該固体触媒の界面近傍に勾配磁場を発生さ
せた構成とすることを特徴とする勾配磁場を利用した気
体発生反応の制御方法。
2. A method for controlling a gas generation reaction using a gradient magnetic field, wherein a gradient magnetic field is generated near an interface of the solid catalyst in a gas generation reaction from a liquid using a solid catalyst. .
【請求項3】液体と気泡中の気体の体積磁化率の差によ
り前記勾配磁場を利用して気泡に磁気力を印加して、前
記気泡を所定の方向へ移動させ、固体触媒界面における
反応を制御することを特徴とする請求項1又は2記載の
反応の制御方法。
3. A magnetic force is applied to the bubbles by using the gradient magnetic field according to the difference in volume susceptibility between the liquid and the gas in the bubbles, and the bubbles are moved in a predetermined direction to cause a reaction at the solid catalyst interface. 3. The method according to claim 1, wherein the reaction is controlled.
【請求項4】勾配磁場発生手段が永久磁石又は電磁石で
あることを特徴とする請求項3記載の反応の制御方法。
4. The method according to claim 3, wherein the gradient magnetic field generating means is a permanent magnet or an electromagnet.
【請求項5】勾配磁場発生手段が、電磁石もしくは永久
磁石で発生する磁場中に常磁性物質を配置することを特
徴とする請求項3記載の反応の制御方法。
5. The method according to claim 3, wherein the gradient magnetic field generating means arranges a paramagnetic substance in a magnetic field generated by an electromagnet or a permanent magnet.
【請求項6】常磁性物質が鉄又はステンレスであること
を特徴とする請求項3記載の反応の制御方法。
6. The method according to claim 3, wherein the paramagnetic substance is iron or stainless steel.
JP2001130774A 2001-04-27 2001-04-27 Method for controlling gas liquid catalytic reaction and gas generating reaction using solid catalyst by gradient magnetic field Pending JP2002320841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001130774A JP2002320841A (en) 2001-04-27 2001-04-27 Method for controlling gas liquid catalytic reaction and gas generating reaction using solid catalyst by gradient magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001130774A JP2002320841A (en) 2001-04-27 2001-04-27 Method for controlling gas liquid catalytic reaction and gas generating reaction using solid catalyst by gradient magnetic field

Publications (1)

Publication Number Publication Date
JP2002320841A true JP2002320841A (en) 2002-11-05

Family

ID=18979080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001130774A Pending JP2002320841A (en) 2001-04-27 2001-04-27 Method for controlling gas liquid catalytic reaction and gas generating reaction using solid catalyst by gradient magnetic field

Country Status (1)

Country Link
JP (1) JP2002320841A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517745A (en) * 2007-02-05 2010-05-27 エドワーズ リミテッド Method for treating liquid waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517745A (en) * 2007-02-05 2010-05-27 エドワーズ リミテッド Method for treating liquid waste

Similar Documents

Publication Publication Date Title
JP5587200B2 (en) Method for performing chemical reaction using inductively heated heat medium
Houlding et al. Application of alternative energy forms in catalytic reactor engineering
US8569526B2 (en) Method for carrying out oxidation reactions using inductively heated heating medium
US4338169A (en) Process for promoting physical and/or chemical reactions performed in a fluid medium
AU2017256602B2 (en) A method for start-up heating of an ammonia synthesis converter
US8283185B2 (en) Magnetically susceptible particles and apparatuses for mixing the same
CN102120166B (en) Low-temperature cold plasma magnetic fluidized bed reactor
EP3448804B1 (en) A process for producing hydrogen or syngas by methanol cracking
JP2017213519A (en) Gas-liquid reaction device having micronanobubble generator and gas-liquid reaction method using the gas-liquid reaction device
JP2002320841A (en) Method for controlling gas liquid catalytic reaction and gas generating reaction using solid catalyst by gradient magnetic field
Liu et al. Multiscale catalysis under magnetic fields: methodologies, advances, and trends
Šalić et al. NADH oxidation in a microreactor with an oscillating magnetic field
US20120283449A1 (en) Method for carrying out sequential reactions using a heating medium heated by means of induction
Gharib et al. Catalytic Synthesis of α‐Aminonitriles Using Nano Copper Ferrite (CuFe2O4) under Green Conditions
MXPA06002356A (en) Device for starting a liquid/solid reaction in a fluidised bed.
JP2020535393A (en) Devices and methods for immobilizing biomolecules using magnetic particles
US6616730B1 (en) Method and device for activating a physical and/or a chemical reaction in a fluid medium
CN107051544A (en) A kind of AuPd/ loaded nanos magnetic catalyst and preparation method thereof
JaeáKim et al. Alternating magnetic field mediated micro reaction system for palladium-catalyzed coupling reactions
Salic et al. NADH oxidation in a microreactor catalysed by ADH immobilised on [gamma]-Fe 2 O 3 nanoparticles
Atwater et al. Porous cobalt spheres for high temperature gradient magnetically assisted fluidized beds
RU2104767C1 (en) Device for conducting of processes of liquefaction with magnetocontrolled layer of catalyst
Banis et al. An innovative application of super-paramagnetic iron oxide nanoparticles for magnetic separation
RU112072U1 (en) APPARATUS FOR CARRYING OUT PHYSICAL AND CHEMICAL PROCESSES
JP2001205078A (en) Catalytic material with magnet and chemical reaction device using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060425

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060519