JP2002320343A - Non-contact power supply equipment - Google Patents

Non-contact power supply equipment

Info

Publication number
JP2002320343A
JP2002320343A JP2001122530A JP2001122530A JP2002320343A JP 2002320343 A JP2002320343 A JP 2002320343A JP 2001122530 A JP2001122530 A JP 2001122530A JP 2001122530 A JP2001122530 A JP 2001122530A JP 2002320343 A JP2002320343 A JP 2002320343A
Authority
JP
Japan
Prior art keywords
power
power supply
load
contact
supply equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001122530A
Other languages
Japanese (ja)
Inventor
Harumasa Yamamoto
治正 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kiden Kogyo Ltd
Original Assignee
Hitachi Kiden Kogyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kiden Kogyo Ltd filed Critical Hitachi Kiden Kogyo Ltd
Priority to JP2001122530A priority Critical patent/JP2002320343A/en
Publication of JP2002320343A publication Critical patent/JP2002320343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power supply equipment which can make a load uniform within its capability to reduce a power receiving capacity, reduce dimensions of a power receiving part, reduce a ground power receiving equipment capacity, and extend a distance of a power supply section. SOLUTION: This non-contact power supply equipment supplies a power from a ground equipment to a carrier via a power supply line 10 through which a high frequency current flows, and a pickup coil 12 by electromagnetic induction in a non-contact manner. A power accumulating means 4, which is charged by the supplied power and supplies a power to a load 6 when a power consumed by the load 6 exceeds a specified value, is provided in the carrier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非接触給電設備に
関し、特に、非接触給電設備の能力内で負荷を平準化す
ることにより受電容量を下げ、受電部分の小形化、地上
給電設備容量の低減及び給電区間長の増大を図ることが
できる非接触給電設備に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact power supply system, and more particularly, to reducing a power receiving capacity by leveling a load within the capacity of the non-contact power supply system, downsizing a power receiving portion, and reducing a ground power supply system capacity. The present invention relates to a non-contact power supply facility capable of reducing the power consumption and increasing the power supply section length.

【0002】[0002]

【従来の技術】例えば、半導体の製造工場等では、クリ
ーンな環境下で部品等を搬送するために無人搬送車が用
いられるが、この無人搬送車の走行台車への給電を発塵
することなく行うために、非接触で給電を行うようにし
ている。
2. Description of the Related Art For example, in a semiconductor manufacturing plant, an automatic guided vehicle is used to transport parts and the like in a clean environment. However, power is not supplied to a traveling vehicle of the automatic guided vehicle without generating dust. In order to do so, power is supplied in a non-contact manner.

【0003】この非接触給電設備は、1次と2次の結合
に低いトランスと等価であり、負荷から見た電源は、内
部インピーダンスの高い電源で、定格電力以上の負荷を
接続した場合は電源電圧が急激に下がることから、電源
電圧に関係なく必要なトルクに応じて電流制御を行うサ
ーボモータのような負荷は、負荷で消費し得る電力以上
の容量を持つ電源容量が必要になる。このため、非接触
給電設備の受電容量は、走行系サーボモータや移載系サ
ーボモータの最大電力と、制御装置や各種センサで定常
的に消費する電力の総和に駆動余裕を加算した値以上に
選定される。
[0003] This non-contact power supply equipment is equivalent to a transformer having low primary and secondary coupling, and the power supply viewed from the load is a power supply having a high internal impedance. Since the voltage drops sharply, a load such as a servomotor that performs current control according to a required torque irrespective of the power supply voltage needs a power supply capacity having a capacity larger than the power that can be consumed by the load. For this reason, the power receiving capacity of the non-contact power supply equipment should be equal to or greater than the sum of the maximum power of the traveling servomotor and the transfer servomotor, and the sum of the power constantly consumed by the control device and various sensors, plus the drive margin. Selected.

【0004】[0004]

【発明が解決しようとする課題】例えば、半導体工場や
液晶製造工場の工程内あるいは工程間の搬送は、搬送設
備の特性として、搬送車の加速時の消費電力と、搬送物
を移載装置で上下する場合の上昇時の電力とが平均電力
に比較し突出している。この搬送設備は、2分程度のサ
イクルで、荷の積み卸しや移動の一連の作業を繰り返
し、負荷で消費する電力の1サイクルでの平均と瞬時最
大電力の比率は1.5倍から2倍程度の開きがある。こ
のため、従来の非接触給電設備で負荷に電力を常時給電
する場合、受電部分の設備容量は負荷で消費する最大電
流まで確実に動作する必要があり、設備容量は負荷の最
大電力以上の容量が必要となる。
For example, in a semiconductor factory or a liquid crystal manufacturing factory, the transfer within a process or between processes is a characteristic of a transfer facility, in which power consumption at the time of acceleration of a transfer vehicle and a transfer object are transferred by a transfer device. The power at the time of rising and falling and the power at the time of prominence are higher than the average power. This transfer equipment repeats a series of operations such as loading and unloading and moving in a cycle of about 2 minutes, and the ratio of the average power consumed by the load to the instantaneous maximum power in one cycle is 1.5 to 2 times. There is a degree of difference. For this reason, when power is always supplied to the load using conventional wireless power transfer equipment, it is necessary to ensure that the installed capacity of the receiving part operates up to the maximum current consumed by the load, and that the installed capacity is equal to or greater than the maximum power of the load. Is required.

【0005】本発明は、上記従来の非接触給電設備が有
する問題点に鑑み、非接触給電設備の能力内で負荷を平
準化することにより受電容量を下げ、受電部分の小形
化、地上給電設備容量の低減及び給電区間長の増大を図
ることができる非接触給電設備を提供することを目的と
する。
The present invention has been made in view of the above-mentioned problems of the conventional non-contact power supply equipment, to reduce the power reception capacity by leveling the load within the capacity of the non-contact power supply equipment, to reduce the size of the power reception part, and to realize the ground power supply equipment. An object of the present invention is to provide a non-contact power supply equipment capable of reducing the capacity and increasing the length of a power supply section.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の非接触給電設備は、高周波電流を流す給電
線とピックアップコイルを介し、電磁誘導により地上設
備から搬送車に非接触で電力を供給するようにした非接
触給電設備において、搬送車に、供給された電力を充電
し、負荷で消費する電力が規定値を超えたときに該負荷
に電力を供給する電力貯蔵手段を設けたことを特徴とす
る。
In order to achieve the above object, a non-contact power supply equipment of the present invention uses a power supply line through which a high-frequency current flows and a pickup coil to electromagnetically induce electric power from a ground equipment to a carrier without contact. In the non-contact power supply equipment configured to supply power, the carrier is provided with power storage means for charging the supplied power and supplying power to the load when the power consumed by the load exceeds a specified value. It is characterized by the following.

【0007】この非接触給電設備は、搬送車に、供給さ
れた電力を充電し、負荷で消費する電力が規定値を超え
たときに該負荷に電力を供給する電力貯蔵手段を設けた
ことから、非接触給電設備の能力内で負荷を平準化する
ことにより受電容量を下げることができ、これにより、
給電設備のなかで大きな体積と重量を占める受電コイル
の小形化や、地上給電設備容量の低減、あるいは同一の
地上設備容量に対しての給電区間長の増大を図ることが
できる。
This non-contact power supply equipment is provided with a power storage means for charging the supplied power and supplying the power to the load when the power consumed by the load exceeds a specified value. , Leveling the load within the capacity of the contactless power supply can reduce the receiving capacity,
It is possible to reduce the size of the power receiving coil occupying a large volume and weight in the power supply equipment, reduce the ground power supply equipment capacity, or increase the power supply section length for the same ground power capacity.

【0008】この場合において、電力貯蔵手段の蓄電部
材としてコンデンサを使用し、該コンデンサの充電を、
非接触給電設備の受電能力の範囲で定電流以下で行うこ
とができる。
In this case, a capacitor is used as a power storage member of the power storage means, and charging of the capacitor is performed by:
It can be performed at a constant current or less within the range of the power receiving capacity of the non-contact power supply equipment.

【0009】これにより、コンデンサのエネルギー密度
と内部抵抗に適した充電を行うことができる。
As a result, charging suitable for the energy density and internal resistance of the capacitor can be performed.

【0010】[0010]

【発明の実施の形態】以下、本発明の非接触給電設備の
実施の形態を図面に基づいて説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a contactless power supply system according to an embodiment of the present invention.

【0011】図1〜図6に、本発明の非接触給電設備の
一実施例を示す。非接触給電設備は、走行路(図示省
略)に沿って敷設され、高周波電流を流す1次給電線1
0と、搬送車(図示省略)側に設けたピックアップコイ
ル12を介して電磁誘導によって電力の供給を受ける受
電回路1とを備えている。この非接触給電設備は、図2
に示すように、支持体8に支持させた状態で1次給電線
10を敷設し、2次巻線11をE型フェライトコア9に
巻いたピックアップコイル12を1次給電線10に重
ね、1次給電線10に流す高周波電流の磁界を電磁誘導
により2次巻線11に伝達する。なお、受電回路1の交
流出力は、整流・平滑回路2で直流に変換される。
1 to 6 show an embodiment of the non-contact power supply equipment of the present invention. The non-contact power supply equipment is laid along a traveling path (not shown), and is a primary power supply line 1 through which a high-frequency current flows.
0, and a power receiving circuit 1 that receives power supply by electromagnetic induction via a pickup coil 12 provided on a carrier (not shown) side. This non-contact power supply equipment is shown in FIG.
As shown in FIG. 1, the primary feeder 10 is laid in a state where the primary feeder 10 is supported by the support body 8, and the pickup coil 12 in which the secondary winding 11 is wound around the E-type ferrite core 9 is placed on the primary feeder 10. The magnetic field of the high-frequency current flowing through the secondary power supply line 10 is transmitted to the secondary winding 11 by electromagnetic induction. The AC output of the power receiving circuit 1 is converted to DC by the rectifying / smoothing circuit 2.

【0012】受電回路1は、1次給電線10に電流を流
す高周波インバータ等の交流電源、2次のピックアップ
コイル12のインダクタンスと1次と2次の結合で決ま
る内部抵抗、共振コンデンサで共振回路を形成し、受電
する。この受電回路1は、本実施例では、図3に示すよ
うに、可飽和リアクトルにより共振回路の電圧を一定に
抑制する例を示しているが、これに限定することはな
く、負荷電力が小さいとき共振コンデンサの容量をスイ
ッチング素子により回路から切り離し、共振電圧を一定
に維持する低電圧装置でもよい。
The power receiving circuit 1 includes an AC power supply such as a high-frequency inverter for supplying a current to the primary power supply line 10, an internal resistance determined by the inductance of the secondary pickup coil 12 and the primary and secondary coupling, and a resonance circuit including a resonance capacitor. And receive power. In this embodiment, as shown in FIG. 3, the power receiving circuit 1 shows an example in which the voltage of the resonance circuit is suppressed to be constant by the saturable reactor. However, the present invention is not limited to this, and the load power is small. At this time, a low voltage device that keeps the resonance voltage constant by separating the capacitance of the resonance capacitor from the circuit by the switching element may be used.

【0013】ところで、この非接触給電設備は、図1に
示すように、受電回路1の下流側となる整流・平滑回路
2から、直流出力電圧を負荷6に供給する。この場合、
負荷6に電力を供給する回路とは別に、電力貯蔵手段
(回路)を並列に設ける。電力貯蔵手段は、大容量の蓄
電部材(キャパシタ)として電気2重層コンデンサ4を
使用しており、この電気2重層コンデンサ4は、定格電
圧が2V前後の定圧コンデンサを、複数個の直列接続で
使用する。電気2重層コンデンサ4は、定電流充電回路
3で充電され、この電気2重層コンデンサ4に蓄積され
た電荷は昇圧コンバータ5で直流電圧に昇圧変換され
る。なお、電力貯蔵手段は、整流・平滑回路2と負荷6
の中間において、負荷電力のすべてを電力貯蔵手段から
給電することも可能であるが、その場合、電力を貯蔵す
る電気2重層コンデンサ4の容量が大きくなり、装置コ
ストと装置重量の増加を招く。
As shown in FIG. 1, this non-contact power supply equipment supplies a DC output voltage to a load 6 from a rectifying / smoothing circuit 2 downstream of a power receiving circuit 1. in this case,
In addition to a circuit for supplying power to the load 6, a power storage means (circuit) is provided in parallel. The power storage means uses an electric double-layer capacitor 4 as a large-capacity power storage member (capacitor). The electric double-layer capacitor 4 uses a plurality of constant-voltage capacitors having a rated voltage of about 2 V in series connection. I do. The electric double-layer capacitor 4 is charged by the constant current charging circuit 3, and the electric charge stored in the electric double-layer capacitor 4 is boost-converted to a DC voltage by the boost converter 5. The power storage means includes a rectifying / smoothing circuit 2 and a load 6.
It is also possible to supply all of the load power from the power storage means in the middle of the above, but in that case, the capacity of the electric double-layer capacitor 4 for storing power becomes large, which leads to an increase in device cost and device weight.

【0014】次に、本実施例の非接触給電設備の動作を
説明する。
Next, the operation of the non-contact power supply equipment of this embodiment will be described.

【0015】負荷6の消費電力は、搬送装置の場合、次
の3つに大別することができる。
The power consumption of the load 6 can be roughly divided into the following three in the case of a transfer device.

【0016】P1:走行駆動電力 搬送車の車体を駆動するのに要する電力で、加速時に最
も電力を消費する。一定速度で走行中は、車輪の走行抵
抗が小さい場合、路面の走行抵抗と走行速度、車体重量
の積で消費電力が決まる。搬送車の減速中は電力の回生
が発生するが、本実施例では、この回生電力で電気2重
層コンデンサ4を充電することも可能である。なお、汎
用サーボモータを使用した場合は、抵抗で放電し熱に変
えることもできる。
P 1 : traveling drive power This is the power required to drive the vehicle body of the carrier, and consumes the most power during acceleration. During traveling at a constant speed, if the traveling resistance of the wheels is small, the power consumption is determined by the product of the traveling resistance on the road surface, the traveling speed, and the weight of the vehicle body. While the carrier vehicle is decelerating, power regeneration occurs. In this embodiment, the regenerative power can be used to charge the electric double-layer capacitor 4. When a general-purpose servomotor is used, it can be discharged by a resistor and converted into heat.

【0017】P2:移載装置駆動電力 搬送車から荷の積み卸しを行うのに要する電力で、水平
方向の移動と垂直方向(昇降)の移動を行う。昇降の上
げ方向の移動で最大電力を消費する。走行と同様に電力
の回生が発生する。
P 2 : transfer device drive power This is the power required for loading and unloading the load from the carrier, and performs horizontal movement and vertical (elevation) movement. The maximum power is consumed by moving in the up and down directions. Regeneration of electric power occurs as in traveling.

【0018】P3:センサや制御装置で定常的に消費す
る電力 センサや各種の表示・制御装置関係で定常的に消費する
電力であり、走行駆動や移載駆動に対し、数%〜10%
前後程度の電力を消費する。
P 3 : Power steadily consumed by sensors and control devices Power steadily consumed by sensors and various display / control devices, which is several percent to 10% relative to travel driving and transfer driving.
Consumes around the power.

【0019】したがって、負荷6で消費する電力P
Lは、 PL=P1+P2+P3 となる。この負荷6の消費電力を図4に示す。この場
合、13はPLのプロット、14はP1のプロット、15
はP2のプロット、16はP3のプロットを示している。
非接触給電の受電容量のプロットを17とし、これより
も消費電力が大きい場合は、電気2重層コンデンサ4に
貯蔵した電荷を放電する。
Therefore, the power P consumed by the load 6
L is P L = P 1 + P 2 + P 3 . FIG. 4 shows the power consumption of the load 6. In this case, 13 plots P L, 14 are plots of P 1, 15
Indicates a plot of P 2 and 16 indicates a plot of P 3 .
A plot of the power receiving capacity of the non-contact power feeding is set to 17, and when the power consumption is larger than this, the electric charge stored in the electric double layer capacitor 4 is discharged.

【0020】負荷6は直流回路に接続されているため、
負荷6の電力PLは、整流・平滑回路2の電圧Eと負荷
電流Iの積となる。 PL=EIL ここで、E=150Vで一定電圧とした場合、PL=1
50ILとなり電流ILを監視するだけでよく、電流と電
圧の積を評価することがなく、制御回路を簡略化でき
る。
Since the load 6 is connected to a DC circuit,
The power P L of the load 6 is the product of the voltage E of the rectifying / smoothing circuit 2 and the load current I. P L = EI L Here, when E = 150 V and a constant voltage, P L = 1
50I L next to the current need only monitor the I L, without evaluating the product of current and voltage, thereby simplifying the control circuitry.

【0021】一方、電気2重層コンデンサ4の充電条件
は、以下の制約条件で行う。 (1)負荷電力PLは、受電電力の容量制限となるプロ
ット17以下で行う。容量制限をRとすると、 PL<R
On the other hand, the charging condition of the electric double layer capacitor 4 is performed under the following constraint conditions. (1) The load power P L is set at a plot 17 or lower that limits the capacity of the received power. Assuming that the capacity limit is R, P L <R

【0022】(2)電気2重層コンデンサ4の充電は定
電流、あるいはそれ以下で行う。充電電流の制限値I
LIMとすると、充電電流ICは、IC<ILIM、かつ、IC
は、 IC=R−ILE/E この制約は、主として電気2重層コンデンサ4のエネル
ギー密度と内部抵抗に依存する。
(2) The electric double layer capacitor 4 is charged at a constant current or less. Limit value I of charging current
If LIM , the charging current I C is I C <I LIM and I C
I C = R−I L E / E This constraint mainly depends on the energy density and the internal resistance of the electric double layer capacitor 4.

【0023】(3)電気2重層コンデンサ4を直列接続
し、各コンデンサには並列に電圧制限回路を設け、一定
電圧以上にコンデンサの電圧が上昇した場合、充電電圧
をバイパスする定電圧ダイオード、あるいは相当する回
路を設ける。このバイパス回路の動作電圧をEVZ、コン
デンサの直列接続数nとすると、充電時に電気2重層コ
ンデンサ4の両端にかかる電圧VCAPは、 VCAP<nEVZ に制限する。この制約条件は、これ以上の電圧が過度的
に、あるいは定常的にかかった場合、電気2重層コンデ
ンサ4の電気2重層が壊れ、電解液が電気分解されガス
の発生、寿命の低下を引き起こす。電気2重層コンデン
サ4の電圧が上記条件に到達したとき、電気2重層コン
デンサ4の充電が終了したことを示す。このとき、電気
2重層コンデンサに蓄積されたエネルギーQは、電気2
重層コンデンサ4の静電容量をCとすると、 Q=nCEVZ 2/2となる。
(3) An electric double layer capacitor 4 is connected in series, and a voltage limiting circuit is provided in parallel with each capacitor. When the voltage of the capacitor rises above a certain voltage, a constant voltage diode that bypasses the charging voltage, or Provide a corresponding circuit. Assuming that the operating voltage of this bypass circuit is E VZ and the number n of capacitors connected in series, the voltage V CAP applied across the electric double-layer capacitor 4 during charging is limited to V CAP <nE VZ . This constraint condition is that when a voltage higher than this is applied excessively or constantly, the electric double layer of the electric double layer capacitor 4 is broken, the electrolytic solution is electrolyzed, gas is generated, and the life is shortened. When the voltage of the electric double layer capacitor 4 reaches the above condition, it indicates that the charging of the electric double layer capacitor 4 has been completed. At this time, the energy Q stored in the electric double layer capacitor is
When the capacitance of the layered capacitor 4 is C, the Q = nCE VZ 2/2.

【0024】次に、電気2重層コンデンサ4の放電を行
う昇圧コンバータ5の動作について説明する。電気2重
層コンデンサ4に蓄積されるエネルギーQは先に述べた
値であるが、充電されたエネルギーを効率良く放電する
ためには、放電終止電圧を下げる必要がある。例えば、
電気2重層コンデンサ4の放電終止電圧ESをEVZに対
し50%まで放電した場合は蓄積エネルギーの75%、
30%まで放電した場合は蓄積エネルギーの91%まで
放電できる。電気2重層コンデンサ4は、単独ではEVZ
=2V前後と低いため、直列に接続されたコンデンサの
放電終止電圧は、30%まで放電した場合でも昇圧コン
バータ5が効率良く動作するように、接続数nを選ぶ必
要がある。例えば、昇圧コンバータ5の動作電圧が10
Vまで動作可能であるとしても、 0.3nEVZ>10 n>17 となる。
Next, the operation of boost converter 5 for discharging electric double layer capacitor 4 will be described. The energy Q stored in the electric double-layer capacitor 4 has the value described above. However, in order to discharge the charged energy efficiently, it is necessary to lower the discharge end voltage. For example,
When the discharge end voltage E S of the electric double layer capacitor 4 is discharged to 50% of E VZ , 75% of the stored energy
When the discharge is performed up to 30%, the discharge can be performed up to 91% of the stored energy. The electric double layer capacitor 4 can be used alone as E VZ
= 2V, which is as low as about 2V, it is necessary to select the number of connections n so that the boost converter 5 operates efficiently even when the discharge end voltage of the capacitors connected in series is discharged to 30%. For example, if the operating voltage of the boost converter 5 is 10
Even if operation is possible up to V, 0.3 nE VZ > 10 n> 17.

【0025】昇圧コンバータ5の基本回路は、図6に示
す回路で実現することができる。インダクタ18、ダイ
オード19、スイッチング素子20及びコンデンサ21
で構成される回路は周知であり、電圧の昇圧比は、スイ
ッチングの周期Tに対するスイッチング素子20の動作
時間Tonの比で決定される。昇圧比を大きくとった場
合、インダクタ18にエネルギーを蓄積する時間T
onは、コンデンサ21が充電されないためコンデンサ2
1に流れるリップル電流は昇圧比を上げるに従い増加す
る。したがって、電気2重層コンデンサ4の直列数n
は、先に述べた制約よりも、昇圧コンバータ5のリップ
ルを減らすように、整流・平滑回路2の出力電圧Eにn
VZを近づけ、かつ、各コンデンサに並列接続されたバ
イパス回路のコストが許容される範囲で最大の直列数に
するのが妥当な設計となる。
The basic circuit of the boost converter 5 can be realized by the circuit shown in FIG. Inductor 18, diode 19, switching element 20, and capacitor 21
Is well known, and the voltage step-up ratio is determined by the ratio of the operation time T on of the switching element 20 to the switching period T. When the boost ratio is increased, the time T for storing energy in the inductor 18 is obtained.
On indicates that the capacitor 2 is not charged because the capacitor 21 is not charged.
The ripple current flowing in 1 increases as the step-up ratio increases. Therefore, the series number n of the electric double-layer capacitor 4
Is to reduce the output voltage E of the rectifying / smoothing circuit 2 by n so as to reduce the ripple of the boost converter 5 more than the above-mentioned constraint.
A reasonable design is to make E VZ close and to maximize the number of series in a range where the cost of the bypass circuit connected in parallel to each capacitor is acceptable.

【0026】昇圧コンバータ5の動作開始電圧は、負荷
電流検知手段7によって、整流・平滑回路2の出力電圧
Eを監視し、この電圧が負荷の増加により規定の値より
も下がった場合、この電圧を規定電圧に近づけるよう制
御することで、受電回路1のピックアップコイル12で
供給できない電力を電気2重層コンデンサ4から供給す
ることができる。これにより、図5に示すように、図4
の運転に対応する電気2重層コンデンサ4の充電の電力
22及び放電電力23を得ることができる。なお、負荷
電流検知手段7は、シャント抵抗器、ホールCT等の直
流電流検出器を用いることができ、この出力をAD変換
したものと、整流・平滑回路2の出力電圧の値、あるい
はこの電圧をAD変換した観測値との積を演算すること
で負荷の消費する電力を得ることができる。
The output voltage E of the rectifying / smoothing circuit 2 is monitored by the load current detecting means 7 for the operation start voltage of the boost converter 5. If this voltage falls below a prescribed value due to an increase in the load, this voltage is output. Is controlled so as to be close to the specified voltage, power that cannot be supplied by the pickup coil 12 of the power receiving circuit 1 can be supplied from the electric double-layer capacitor 4. As a result, as shown in FIG.
, The electric power 22 and the electric power 23 for charging of the electric double-layer capacitor 4 corresponding to the operation of. The load current detecting means 7 may be a DC current detector such as a shunt resistor, a Hall CT, or the like. By calculating the product of the A and the observed value, the power consumed by the load can be obtained.

【0027】この場合、電気2重層コンデンサ4の充
電、放電は搬送車のいかなる運転サイクルに於いてもそ
の収支バランスがとれていなくてはならない。1サイク
ルの運転中に、電気2重層コンデンサ4が放電終止電圧
に到達すると、搬送車は運転することができない。これ
を回避するためには、ピックアップコイル12の受電能
力を、運転のサイクル平均電力以上にし、動作マージン
を確保する。また、別の方法として、電気2重層コンデ
ンサ4の放電状況を監視し、そのまま運転を続ければ放
電終止電圧に到達することが予想されるとき、一時的に
機械の動作速度を下げる、あるいは加速運転であるなら
ば加速を中止して等速運転に移行すること等で電力の消
費をなくすることで、電気2重層コンデンサ4の放電終
止を回避することができる。
In this case, the charge and discharge of the electric double-layer capacitor 4 must be balanced in any operation cycle of the carrier. If the electric double layer capacitor 4 reaches the discharge end voltage during one cycle of operation, the carrier cannot operate. In order to avoid this, the power receiving capacity of the pickup coil 12 is set to be equal to or more than the average power of the operation cycle, and an operation margin is secured. As another method, when the discharge state of the electric double layer capacitor 4 is monitored and it is expected that the discharge end voltage will be reached if the operation is continued as it is, the operating speed of the machine is temporarily reduced, or the acceleration operation is performed. If, the acceleration is stopped and the operation is shifted to the constant speed operation to eliminate the power consumption, so that the termination of the discharge of the electric double layer capacitor 4 can be avoided.

【0028】[0028]

【発明の効果】本発明の非接触給電設備によれば、搬送
車に、供給された電力を充電し、負荷で消費する電力が
規定値を超えたときに該負荷に電力を供給する電力貯蔵
手段を設けたことから、非接触給電設備の能力内で負荷
を平準化することにより受電容量を下げることができ、
これにより、給電設備のなかで大きな体積と重量を占め
る受電コイルの小形化や、地上給電設備容量の低減、あ
るいは同一の地上設備容量に対しての給電区間長の増大
を図ることができる。
According to the non-contact power supply equipment of the present invention, the electric power is supplied to the carrier, and the electric power is supplied to the load when the electric power consumed by the load exceeds a specified value. By providing the means, it is possible to reduce the receiving capacity by leveling the load within the capacity of the non-contact power supply equipment,
As a result, it is possible to reduce the size of the power receiving coil that occupies a large volume and weight in the power supply equipment, reduce the ground power supply equipment capacity, or increase the power supply section length for the same ground equipment capacity.

【0029】また、電力貯蔵手段の蓄電部材としてコン
デンサを使用し、該コンデンサの充電を、非接触給電設
備の受電能力の範囲で定電流以下で行うことにより、コ
ンデンサのエネルギー密度と内部抵抗に適した充電を行
うことができる。
Further, by using a capacitor as a power storage member of the power storage means and charging the capacitor at a constant current or less within the range of the power receiving capacity of the non-contact power supply equipment, it is suitable for the energy density and internal resistance of the capacitor. Can be charged.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非接触給電設備の一実施例を示す説明
図である。
FIG. 1 is an explanatory view showing one embodiment of a non-contact power supply equipment of the present invention.

【図2】同実施例の非接触給電設備を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing the wireless power supply equipment of the embodiment.

【図3】受電回路の一例を示す回路図である。FIG. 3 is a circuit diagram illustrating an example of a power receiving circuit.

【図4】運転時の消費電力を示すグラフである。FIG. 4 is a graph showing power consumption during operation.

【図5】図4の運転に対応するコンデンサの充放電電力
を示すグラフである。
FIG. 5 is a graph showing charge / discharge power of a capacitor corresponding to the operation of FIG.

【図6】昇圧コンバータの一例を示す回路図である。FIG. 6 is a circuit diagram illustrating an example of a boost converter.

【符号の説明】[Explanation of symbols]

1 受電回路 2 整流・平滑回路 3 定電流充電回路 4 電気2重層コンデンサ 5 昇圧コンバータ 6 負荷 7 負荷電流検知手段 8 支持体 9 コア 10 給電線 11 2次巻線 12 ピックアップコイル REFERENCE SIGNS LIST 1 power receiving circuit 2 rectifying / smoothing circuit 3 constant current charging circuit 4 electric double layer capacitor 5 boost converter 6 load 7 load current detecting means 8 support 9 core 10 power supply line 11 secondary winding 12 pickup coil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高周波電流を流す給電線とピックアップ
コイルを介し、電磁誘導により地上設備から搬送車に非
接触で電力を供給するようにした非接触給電設備におい
て、搬送車に、供給された電力を充電し、かつ負荷で消
費する電力が規定値を超えたときに該負荷に電力を供給
する電力貯蔵手段を設けたことを特徴とする非接触給電
設備。
1. A non-contact power supply system in which power is supplied from a ground facility to a carrier in a non-contact manner by electromagnetic induction through a power supply line through which a high-frequency current flows and a pickup coil. And a power storage means for supplying power to the load when the power consumed by the load exceeds a specified value.
【請求項2】 電力貯蔵手段の蓄電部材としてコンデン
サを使用し、該コンデンサの充電を、非接触給電設備の
受電能力の範囲で定電流以下で行うことを特徴とする請
求項1記載の非接触給電設備。
2. A non-contact type battery according to claim 1, wherein a capacitor is used as a power storage member of the power storage means, and the capacitor is charged at a constant current or less within a range of the power receiving capacity of the non-contact power supply equipment. Power supply equipment.
JP2001122530A 2001-04-20 2001-04-20 Non-contact power supply equipment Pending JP2002320343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001122530A JP2002320343A (en) 2001-04-20 2001-04-20 Non-contact power supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001122530A JP2002320343A (en) 2001-04-20 2001-04-20 Non-contact power supply equipment

Publications (1)

Publication Number Publication Date
JP2002320343A true JP2002320343A (en) 2002-10-31

Family

ID=18972227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001122530A Pending JP2002320343A (en) 2001-04-20 2001-04-20 Non-contact power supply equipment

Country Status (1)

Country Link
JP (1) JP2002320343A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538791A (en) * 2006-05-29 2009-11-12 テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム Sealing apparatus and method for producing a sealed package of injectable food
CN113997794A (en) * 2020-07-28 2022-02-01 细美事有限公司 Device and method for managing electric power of article transport vehicle
WO2022168430A1 (en) * 2021-02-08 2022-08-11 村田機械株式会社 Power receiving device and contactless power feeding system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538791A (en) * 2006-05-29 2009-11-12 テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム Sealing apparatus and method for producing a sealed package of injectable food
US8844250B2 (en) 2006-05-29 2014-09-30 Tetra Laval Holdings & Finance S.A. Sealing device and method for producing sealed packages of a pourable food product
CN113997794A (en) * 2020-07-28 2022-02-01 细美事有限公司 Device and method for managing electric power of article transport vehicle
KR20220014078A (en) * 2020-07-28 2022-02-04 세메스 주식회사 Apparatus for managing power of article transport vehicle in article transport system
KR102654165B1 (en) * 2020-07-28 2024-04-02 세메스 주식회사 Apparatus for managing power of article transport vehicle in article transport system
WO2022168430A1 (en) * 2021-02-08 2022-08-11 村田機械株式会社 Power receiving device and contactless power feeding system

Similar Documents

Publication Publication Date Title
KR102295112B1 (en) System for automated guided vehicle
Kutkut et al. Design considerations for charge equalization of an electric vehicle battery system
US6157165A (en) Battery apparatus and control system therefor
US20160001662A1 (en) Buffering energy storage systems for reduced grid and vehicle battery stress for in-motion wireless power transfer systems
US6512351B2 (en) Power supply circuit of mobile unit supplied with power without contact, and mobile unit
KR20130001233A (en) Charge equalization system for batteries
CN1653670A (en) Single stage power converter for contact-less energy transfer
CN104619628A (en) Drive control device for drive system including vertical carrier machine
US20220410725A1 (en) Method of operating an electric vehicle and electric vehicle
JP2011234551A (en) Non-contact charging system
JP2010187471A (en) Non-contact power receiving apparatus and automated guided vehicle
JP2005094862A (en) Contactless power feeding method and apparatus
JP2002369415A (en) Noncontact power feeding facility
JP5718676B2 (en) Non-contact charging method and non-contact charging device
CN114901508A (en) Method for operating an electric vehicle and electric vehicle
JP2002320343A (en) Non-contact power supply equipment
JP2011062037A (en) Contactless charging system
JP2010088160A (en) Non-contact point power supply facility
JP2012115112A (en) Booster circuit and lifting/lowering device
JP2001025104A (en) Electric vehicle and running system thereof
JP7043296B2 (en) Capacitor unit, power receiving device and automatic guided vehicle
JP2004254461A (en) Contactless power supply apparatus
CN212231143U (en) Dynamic wireless charging system of electric trolley
WO2020196785A1 (en) Power receiving device, moving body, wireless power transmission system, and moving body system
WO2020203690A1 (en) Power receiving device, mobile object, and wireless power transmission system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060529