JP2002318373A - Optical material and method for manufacturing optical material - Google Patents

Optical material and method for manufacturing optical material

Info

Publication number
JP2002318373A
JP2002318373A JP2001124779A JP2001124779A JP2002318373A JP 2002318373 A JP2002318373 A JP 2002318373A JP 2001124779 A JP2001124779 A JP 2001124779A JP 2001124779 A JP2001124779 A JP 2001124779A JP 2002318373 A JP2002318373 A JP 2002318373A
Authority
JP
Japan
Prior art keywords
substance
optical material
refractive index
fine particles
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001124779A
Other languages
Japanese (ja)
Inventor
Tomokazu Yada
智一 彌田
Jiro Abe
二朗 阿部
Kaori Kamata
香織 鎌田
Takamaro Kakehi
鷹麿 筧
Norishige Shichiri
徳重 七里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001124779A priority Critical patent/JP2002318373A/en
Publication of JP2002318373A publication Critical patent/JP2002318373A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical material which has an optical switching function such as turning ON/OFF light and which can be widely used to various application including optical communication device such as optical filter and optical waveguide. SOLUTION: The optical material is obtained by three-dimensionally and periodically arranging polyviologen whose refractive index varies reversibly by applying or cancelling an electric field and fine particles consisting of a substance B whose refractive index does not change. The optical material has a photonic band gap function.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学フィルター、
光導波路等の光通信用素子をはじめとする光制御素子に
適用できるフォトニックバンドギャップ機能を有する光
学材料及びその製造方法に関するものである。
[0001] The present invention relates to an optical filter,
The present invention relates to an optical material having a photonic band gap function applicable to an optical control element such as an optical communication element such as an optical waveguide, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】屈折率が3次元で周期的に変化する誘電
体からなる材料は、その周期が光の波長オーダーである
場合、光に対する干渉作用を示し、特定の周波数領域の
光の通過を禁止する。この禁止帯はフォトニックバンド
ギャップと呼ばれ、光の通過を禁止する効果を利用した
材料は、フォトニックバンドギャップ材料と呼ばれる。
このような材料の典型的な構造としては、屈折率の異な
る材料を3次元で周期的に配置したものがあり、特定の
波長領域の光の透過性を抑制する機能をもつ。一般的に
は、低屈折率である空隙と高屈折率の3次元格子からな
る誘電体の構造が知られている。
2. Description of the Related Art A material made of a dielectric material whose refractive index changes periodically in three dimensions exhibits an interference effect on light when its period is on the order of the wavelength of light, and blocks the passage of light in a specific frequency range. Ban. This bandgap is called a photonic bandgap, and a material utilizing the effect of inhibiting the passage of light is called a photonic bandgap material.
As a typical structure of such a material, there is a structure in which materials having different refractive indexes are periodically arranged in three dimensions, and has a function of suppressing light transmittance in a specific wavelength region. Generally, a dielectric structure including a low refractive index void and a high refractive index three-dimensional lattice is known.

【0003】その他の構造としては、シリコン層等の半
導体とシリコン酸化膜等の絶縁体のように屈折率差の大
きい材料を積層した構造が挙げられる。フォトニックバ
ンドギャップ材料の製造方法としては、通常オートクロ
ーニング法(Electron.Lett.33,1
4,1260,1997)が用いられる。これは、基板
上に電子線リソグラフの手法を用いて2次元パターンを
作成し、その上にバイアススパッタ法と呼ばれる手法を
用いて、2次元パターンの形状を保持しながら屈折率の
異なる材料を交互に積層して3次元化していく方法であ
る。しかしながらこの方法では、多くの煩雑な手順が必
要であり、時間がかかるという問題があった。
As another structure, there is a structure in which a material having a large difference in refractive index such as a semiconductor such as a silicon layer and an insulator such as a silicon oxide film is laminated. As a method for producing a photonic bandgap material, an autocloning method (Electron. Lett. 33, 1) is usually used.
4, 1260, 1997). In this method, a two-dimensional pattern is created on a substrate by using an electron beam lithography technique, and materials having different refractive indices are alternately formed while maintaining the shape of the two-dimensional pattern using a technique called bias sputtering. This is a method of three-dimensionally stacking layers. However, this method has a problem that many complicated procedures are required and it takes time.

【0004】これに対し、特開2000−233998
号公報には、コロイド結晶からなるテンプレートを用い
てコロイド結晶内に格子材料を電気化学的に形成した
後、コロイド粒子を除去することで周期性を有するフォ
トニックバンドギャップ材料を製造する方法が記述され
ている。この製造方法は上記手法と比較してより簡易に
製造することができるが、1種類の粒径のコロイド粒子
から製造されたフォトニックバンドギャップ材料につい
ては、特定の波長の光の制御しか出来ないため、複数の
波長の光の制御や、光のON/OFFといった光スイッ
チ機能を持つものではなかった。このような光のON/
OFFといった光スイッチ機能を付与した動的光学素子
は、光学的フィルター、光導波路のような光通信用素子
をはじめ多くの用途に広く応用できる可能性があるもの
であった。
On the other hand, Japanese Patent Laid-Open No. 2000-233998
Describes a method of manufacturing a periodic photonic bandgap material by electrochemically forming a lattice material in a colloidal crystal using a template made of a colloidal crystal and then removing the colloidal particles. Have been. This manufacturing method can be more easily manufactured as compared with the above method, but the photonic band gap material manufactured from one type of colloid particles can only control light of a specific wavelength. Therefore, it does not have an optical switch function such as control of light of a plurality of wavelengths and ON / OFF of light. ON / OFF of such light
A dynamic optical element provided with an optical switch function such as OFF has a possibility of being widely applicable to many uses including an optical communication element such as an optical filter and an optical waveguide.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記に鑑み、
電場の印加及び解除による光スイッチ機能をもつ、フォ
トニックバンドギャップ光学材料及びその製造方法を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above,
An object of the present invention is to provide a photonic bandgap optical material having an optical switching function by applying and releasing an electric field, and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明の光学材料は、電
場の印加及び解除により屈折率が可逆的に変化する物質
Aが、3次元で周期的に配列してなり、フォトニックバ
ンドギャップ機能を有するものである。
The optical material according to the present invention comprises a substance A, whose refractive index changes reversibly by application and release of an electric field, periodically arranged in three dimensions, and has a photonic band gap function. It has.

【0007】本発明で用いられる物質Aとしては、電場
の印加及び解除により屈折率が可逆的に変化するもので
あれば特に限定されず、有機物でも無機物でもよく、例
えばポリマーの酸化還元反応による構造変化等を利用す
ることができる。好ましくは共役系成分からなる高分子
が挙げられる。また、電流を流したときに可逆的に酸化
還元反応を起こし、その価数や構造が変化することによ
り屈折率が変化するポリビオローゲン、ポリチオフェ
ン、ポリピロール、ポリアニリン、ポリフェニレンビニ
レン等も好適に用いられる。以下に、例としてポリビオ
ローゲンのビオローゲン部位の酸化還元反応スキームを
示す。本発明の光学材料は、上記のような物質Aからな
るので、電場の印加及び解除による光スイッチ機能をも
つ。
The substance A used in the present invention is not particularly limited as long as the refractive index is reversibly changed by application and release of an electric field, and may be an organic substance or an inorganic substance. Changes and the like can be used. Preferably, a polymer comprising a conjugated component is used. Further, polyviologen, polythiophene, polypyrrole, polyaniline, polyphenylenevinylene, and the like, which cause a reversible oxidation-reduction reaction when a current is applied and change the valence or structure to change the refractive index, are also preferably used. Hereinafter, as an example, a redox reaction scheme of a viologen site of polyviologen is shown. Since the optical material of the present invention is composed of the substance A as described above, it has an optical switching function by applying and releasing an electric field.

【0008】[0008]

【化1】 Embedded image

【0009】また、本発明の光学材料は、電場の印加及
び解除により屈折率が可逆的に変化する物質Aと、屈折
率が変化しない物質Bとが3次元で周期的に配列してな
るものであってもよい。
Further, the optical material of the present invention comprises a substance A whose refractive index changes reversibly by application and release of an electric field and a substance B whose refractive index does not change are periodically arranged in three dimensions. It may be.

【0010】本発明で用いられる物質Bとしては、電場
の印加及び解除により屈折率が変化しないか、その変化
が無視できるほどに小さいものであれば特に限定され
ず、有機物でも無機物でもよい。また、物質Bは空気
(空洞)であってもよい。物質Aと物質Bとの屈折率差
は特に限定されないが、その差が大きいほど光の制御が
行いやすい。物質Bが空気である場合には物質Aとの屈
折率差が大きくなり、光の遮蔽効果が大きくなる。
The substance B used in the present invention is not particularly limited as long as the refractive index does not change by application and release of an electric field or the change is so small as to be negligible, and may be an organic substance or an inorganic substance. The substance B may be air (cavity). The refractive index difference between the substance A and the substance B is not particularly limited, but the larger the difference is, the easier it is to control light. When the substance B is air, the difference in the refractive index from the substance A increases, and the light shielding effect increases.

【0011】物質Aと物質Bが3次元で周期的に配列し
た構造とは、例えば、物質Aと物質Bが3次元的に交互
に並んだ構造であれば特に限定されるものではなく、例
えば、物質Aが3次元的に積み上げられた球状微粒子で
あり、物質Bがその隙間を埋めるマトリックスとなって
いる場合や、その反対の場合がある。また、1層目に棒
状の物質Aと物質Bを交互に同一方向に平面上に並べ、
その上に物質Aと物質Bを交互に1層目と垂直方向に並
べ、これを繰り返して積み上げた構造等が挙げられる。
配列のピッチは、光の制御を行うという点から0.1〜
5μm、好ましくは0.1〜3μm、さらに好ましくは
0.2〜1μmである。
The structure in which the substance A and the substance B are periodically arranged in three dimensions is not particularly limited as long as the substance A and the substance B are arranged three-dimensionally and alternately. There is a case where the substance A is three-dimensionally stacked spherical fine particles and the substance B is a matrix which fills the gap, and vice versa. In the first layer, rod-shaped substances A and B are alternately arranged on the plane in the same direction,
A structure in which the substance A and the substance B are alternately arranged on the first layer in the vertical direction, and this is repeated and stacked is mentioned.
The pitch of the array is 0.1 to 0.1 in terms of controlling light.
It is 5 μm, preferably 0.1 to 3 μm, more preferably 0.2 to 1 μm.

【0012】本発明の光学材料の形態としては、特に限
定されず、フィルム、各種成形体、微粒子等が挙げられ
る。
The form of the optical material of the present invention is not particularly limited, and examples thereof include films, various molded products, and fine particles.

【0013】電極上に微粒子を3次元で周期的に配列さ
せた後、電場の印加及び解除により屈折率が可逆的に変
化する物質Aを構成する単量体からなる溶液に浸漬し、
電極に電位を印加して重合を行うことにより、微粒子間
に電場の印加及び解除により屈折率が可逆的に変化する
物質Aを形成することを特徴とする光学材料の製造方法
もまた本発明の一つである。
After the fine particles are periodically arranged in three dimensions on the electrode, the particles are immersed in a solution comprising a monomer constituting the substance A whose refractive index changes reversibly by application and release of an electric field,
The present invention also provides a method for producing an optical material, which comprises forming a substance A whose refractive index changes reversibly by applying and releasing an electric field between fine particles by applying a potential to an electrode to perform polymerization. One.

【0014】電極上に微粒子を3次元的に配列させる方
法としては、公知の方法を利用することができ、例え
ば、LB法を用いて液面に微粒子の層を形成し、これを
基板上に写し取る方法や、微粒子を分散させた溶液を調
整し、この溶液中に基板を浸漬させ、溶媒を徐々に蒸発
させる方法、微粒子を分散させた溶液中に基板を浸漬
し、基板を一定速度で引き上げる方法、微粒子を分散さ
せた溶液をマイクログラビアコーターを用いて基板上に
塗工し、溶媒を乾燥させる方法等が挙げられる。
As a method of three-dimensionally arranging the fine particles on the electrode, a known method can be used. For example, a layer of fine particles is formed on the liquid surface by using the LB method, and this is formed on the substrate. A method of copying or preparing a solution in which fine particles are dispersed, immersing the substrate in this solution, gradually evaporating the solvent, immersing the substrate in the solution in which the fine particles are dispersed, and pulling up the substrate at a constant speed And a method in which a solution in which fine particles are dispersed is coated on a substrate using a microgravure coater, and the solvent is dried.

【0015】上記微粒子としては、特に限定されず、公
知のものをいずれも使用できる。例えば、シリカ、アル
ミナ、チタニア等の無機微粒子、ポリスチレン、ポリメ
チルメタクリレートのような有機微粒子、金、銀等の金
属微粒子、各種メッキ微粒子、有機無機複合微粒子いず
れも使用することが出来る。有機微粒子については、未
架橋のものでも架橋されているものでもよい。
The fine particles are not particularly limited, and any known fine particles can be used. For example, inorganic fine particles such as silica, alumina and titania, organic fine particles such as polystyrene and polymethyl methacrylate, metal fine particles such as gold and silver, various plating fine particles, and organic-inorganic composite fine particles can be used. The organic fine particles may be uncrosslinked or crosslinked.

【0016】物質Aを構成する単量体としては、電極に
電位を印加し、重合もしくは共重合により上記した物質
Aを構成する単量体であれば特に限定されるものではな
い。本発明の方法は、電極に電位を印加して重合を行う
電解還元重合を行うことを特徴としている。この方法を
用いることにより、印加電位の大きさや時間の調整で物
質Aの膜厚を制御することができる。
The monomer constituting substance A is not particularly limited as long as it is a monomer constituting substance A by applying a potential to an electrode and polymerizing or copolymerizing the substance. The method of the present invention is characterized by performing electrolytic reduction polymerization in which polymerization is performed by applying a potential to an electrode. By using this method, the thickness of the substance A can be controlled by adjusting the magnitude of the applied potential and the time.

【0017】本発明の光学材料の製造方法において、さ
らに微粒子を除去することで、微粒子の占めていた部分
を空気(空洞)に置き換えた光学材料を得ることが出来
る。微粒子を除去する方法としては、選択的に微粒子の
みを溶解する溶剤で溶解させる方法、酸エッチング等、
物質Aの機能に影響を与えない方法であれば特に制限さ
れない。
In the method for producing an optical material according to the present invention, by further removing fine particles, an optical material in which a portion occupied by the fine particles is replaced with air (cavity) can be obtained. As a method of removing fine particles, a method of selectively dissolving with a solvent that selectively dissolves only fine particles, acid etching,
The method is not particularly limited as long as it does not affect the function of the substance A.

【0018】[0018]

【発明の実施の形態】以下に実施例を挙げて本発明の態
様を更に詳しく説明するが、本発明はこれら実施例のみ
に限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0019】(実施例1)電場の印加及び解除で屈折率
が変化しない物質Bとして、ポリスチレンからなる平均
粒径220nmの微粒子(未架橋タイプ)を用いた。ポ
リスチレン微粒子の5%メタノール分散液中にITO基
板を垂直に固定し、室温下メタノールの蒸発を行い、ポ
リスチレン微粒子を3次元で周期的に配列した積層体を
基板状に作製した。ポリスチレン微粒子薄膜をテンプレ
ートとし、0.1M臭化カリウム水溶液中、0.02M
の4−シアノピリジニウム塩の電解還元重合を行い、内
部にポリスチレン微粒子配列構造をもつポリビオローゲ
ンフォトニックバンドギャップ薄膜材料を得た。この薄
膜のSEM写真を図1に示す。0〜−1100mVの電
位範囲において、ポリビオローゲン中のビオローゲン部
位は上述した式に示すようにカチオンラジカル生成を含
む2段階の酸化還元反応を示し、電場の印加及び解除で
屈折率が変化する。得られたポリビオローゲンフォトニ
ックバンドギャップ材料の光吸収スペクトルを測定した
ところ、ストップバンドは535nmから555nmま
で可逆的なシフトが確認された。結果を図2に示す。
(Example 1) Fine particles (uncrosslinked type) of polystyrene having an average particle diameter of 220 nm were used as the substance B whose refractive index does not change when an electric field is applied or released. An ITO substrate was vertically fixed in a 5% methanol dispersion of polystyrene fine particles, and methanol was evaporated at room temperature to produce a laminate in which the polystyrene fine particles were periodically arranged in three dimensions. Using a polystyrene fine particle thin film as a template, 0.02M in 0.1M aqueous potassium bromide solution
Was subjected to electrolytic reduction polymerization of 4-cyanopyridinium salt to obtain a polyviologen photonic band gap thin film material having a polystyrene fine particle array structure therein. FIG. 1 shows an SEM photograph of this thin film. In the potential range of 0 to -1100 mV, the viologen site in the polyviologen exhibits a two-stage oxidation-reduction reaction including cation radical generation as shown in the above formula, and the refractive index changes with application and release of an electric field. When the light absorption spectrum of the obtained polyviologen photonic band gap material was measured, a reversible shift of the stop band from 535 nm to 555 nm was confirmed. The results are shown in FIG.

【0020】(実施例2)実施例1で得られたポリビオ
ローゲンフォトニックバンドギャップ材料をトルエンに
浸漬し、超音波で振動させ、内部のポリスチレン微粒子
を溶解させ、微粒子部分を空洞にした構造をもつポリビ
オローゲンフォトニックバンドギャップ材料2を得た。
得られたポリビオローゲンフォトニックバンドギャップ
材料2の光吸収スペクトルを測定したところ、ストップ
バンドは535nmから555nmまで可逆的なシフト
が確認された。結果は図2と同様であった。
(Example 2) The polyviologen photonic band gap material obtained in Example 1 was immersed in toluene and vibrated by ultrasonic waves to dissolve the polystyrene fine particles inside, thereby forming a hollow fine particle portion. A polyviologen photonic band gap material 2 was obtained.
When the light absorption spectrum of the obtained polyviologen photonic bandgap material 2 was measured, a reversible shift of the stop band from 535 nm to 555 nm was confirmed. The results were the same as in FIG.

【0021】[0021]

【発明の効果】本発明の光学材料は、電場の印加及び解
除により屈折率が可逆的に変化する物質Aを有している
ため、光のON/OFFといった光スイッチ機能を持
ち、光学的フィルター、光導波路のような光通信用素子
をはじめ多くの用途に広く応用することができる。
Since the optical material of the present invention has a substance A whose refractive index changes reversibly by application and release of an electric field, it has an optical switch function such as ON / OFF of light and an optical filter. It can be widely applied to many uses including optical communication devices such as optical waveguides.

【0022】本発明の光学材料の製造方法は、電極に電
位を印加して重合を行う電解還元重合を行うことを特徴
としているので、印加電位の大きさや時間の調整で物質
Aの膜厚を制御することができる。
The method for producing an optical material of the present invention is characterized by performing electrolytic reduction polymerization in which polymerization is performed by applying a potential to an electrode. Therefore, the thickness of the substance A is adjusted by adjusting the magnitude of the applied potential and the time. Can be controlled.

【0023】[0023]

【図面の簡単な説明】[Brief description of the drawings]

【図1】微粒子充填ポリビオローゲン薄膜からなるフォ
トニックバンドギャップを有する薄膜材料の断面のSE
M写真
FIG. 1 shows the SE of a cross section of a thin film material having a photonic band gap composed of a polyviologen thin film filled with fine particles.
M photo

【図2】実施例で得られたポリビオローゲンフォトニッ
クバンドギャップ材料の光吸収スペクトルのストップバ
ンドの変化を示したグラフを示す。
FIG. 2 is a graph showing a change in a stop band of a light absorption spectrum of a polyviologen photonic band gap material obtained in an example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 6/12 N Z (72)発明者 筧 鷹麿 大阪府三島郡島本町百山2−1 積水化学 工業株式会社内 (72)発明者 七里 徳重 大阪府三島郡島本町百山2−1 積水化学 工業株式会社内 Fターム(参考) 2H047 NA02 PA00 QA05 RA08 2H079 AA02 AA12 BA01 CA05 DA07 DA27 EA21 JA05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02B 6/12 NZ (72) Inventor Takamaro Takamaro 2-1 Hyakuyama, Shimamotocho, Mishima-gun, Osaka Sekisui Chemical Within Industrial Co., Ltd. (72) Inventor Tokushige Shichiri 2-1 Momoyama, Shimamotocho, Mishima-gun, Osaka Sekisui Chemical Co., Ltd. F-term (reference) 2H047 NA02 PA00 QA05 RA08 2H079 AA02 AA12 BA01 CA05 DA07 DA27 EA21 JA05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電場の印加及び解除により屈折率が可逆
的に変化する物質Aが、3次元で周期的に配列してな
り、フォトニックバンドギャップ機能を有することを特
徴とする光学材料。
1. An optical material characterized in that a substance A whose refractive index changes reversibly by application and release of an electric field is periodically arranged three-dimensionally and has a photonic band gap function.
【請求項2】 電場の印加及び解除により屈折率が可逆
的に変化する物質Aと、屈折率が変化しない物質Bとが
3次元で周期的に配列してなり、フォトニックバンドギ
ャップ機能を有することを特徴とする請求項1記載の光
学材料。
2. A substance A whose refractive index changes reversibly by application and release of an electric field and a substance B whose refractive index does not change are periodically arranged in three dimensions, and have a photonic band gap function. The optical material according to claim 1, wherein:
【請求項3】 物質Aがポリビオローゲン、ポリチオフ
ェン、ポリピロール、ポリアニリン、ポリフェニレンビ
ニレンから選ばれる少なくとも一つの共役系成分からな
る高分子であることを特徴とする請求項1、2記載の光
学材料。
3. The optical material according to claim 1, wherein the substance A is a polymer comprising at least one conjugated component selected from polyviologen, polythiophene, polypyrrole, polyaniline, and polyphenylenevinylene.
【請求項4】 物質Bの形状が粒径0.1〜5μmの微
粒子であることを特徴とする請求項2、3記載の光学材
料。
4. The optical material according to claim 2, wherein the shape of the substance B is fine particles having a particle size of 0.1 to 5 μm.
【請求項5】 電極上に微粒子を3次元で周期的に配列
させた後、電場の印加及び解除により屈折率が可逆的に
変化する物質Aを構成する単量体からなる溶液に浸漬
し、電極に電位を印加して重合を行うことにより、微粒
子間に電場の印加及び解除により屈折率が可逆的に変化
する物質Aを形成することを特徴とする光学材料の製造
方法。
5. After arranging fine particles periodically on the electrode in a three-dimensional manner, the particles are immersed in a solution comprising a monomer constituting the substance A whose refractive index changes reversibly by application and release of an electric field, A method for producing an optical material, comprising forming a substance A whose refractive index changes reversibly by applying and releasing an electric field between fine particles by applying a potential to an electrode to perform polymerization.
【請求項6】 さらに、微粒子を除去することを特徴と
する請求項5記載の光学材料の製造方法。
6. The method according to claim 5, further comprising removing fine particles.
JP2001124779A 2001-04-23 2001-04-23 Optical material and method for manufacturing optical material Pending JP2002318373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001124779A JP2002318373A (en) 2001-04-23 2001-04-23 Optical material and method for manufacturing optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001124779A JP2002318373A (en) 2001-04-23 2001-04-23 Optical material and method for manufacturing optical material

Publications (1)

Publication Number Publication Date
JP2002318373A true JP2002318373A (en) 2002-10-31

Family

ID=18974108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001124779A Pending JP2002318373A (en) 2001-04-23 2001-04-23 Optical material and method for manufacturing optical material

Country Status (1)

Country Link
JP (1) JP2002318373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070258673A1 (en) * 2006-05-08 2007-11-08 El-Sherif Mahmoud A On-fiber tunable bragg gratings for DWDM applications
JP2011524021A (en) * 2008-05-30 2011-08-25 オパラックス インコーポレーテッド Variable Bragg stack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070258673A1 (en) * 2006-05-08 2007-11-08 El-Sherif Mahmoud A On-fiber tunable bragg gratings for DWDM applications
US8805136B2 (en) * 2006-05-08 2014-08-12 Photonics On-Fiber Devices, Inc. On-fiber tunable Bragg gratings for DWDM applications
JP2011524021A (en) * 2008-05-30 2011-08-25 オパラックス インコーポレーテッド Variable Bragg stack
US8861072B2 (en) 2008-05-30 2014-10-14 Opalux Incorporated Tunable Bragg stack
US9310630B2 (en) 2008-05-30 2016-04-12 Opalux Incorporation Tunable bragg stack

Similar Documents

Publication Publication Date Title
Chen et al. Soft optical metamaterials
EP2291708B1 (en) Tunable bragg stack
Ke et al. Controllable fabrication of two-dimensional patterned VO2 nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance
Wang et al. Mechanical chameleon through dynamic real-time plasmonic tuning
Yue et al. Tunable one-dimensional photonic crystals from soft materials
Vasilantonakis et al. Three‐dimensional metallic photonic crystals with optical bandgaps
Zhang et al. A new approach to hybrid nanocomposite materials with periodic structures
Park et al. Electrically tunable soft-solid block copolymer structural color
JP4715321B2 (en) OPTICAL COMPOSITION FOR MULTICOLOR DISPLAY AND MANUFACTURING METHOD THEREOF
Duan et al. General synthesis of 2D ordered hollow sphere arrays based on nonshadow deposition dominated colloidal lithography
Cho et al. High‐contrast optical modulation from strain‐induced nanogaps at 3D heterogeneous interfaces
Yoon et al. Optically pumped surface-emitting lasing using self-assembled block-copolymer-distributed Bragg reflectors
US20120206805A1 (en) Nanowire grid polarizers and methods for fabricating the same
Jiang et al. Multicolor pattern generation in photonic bandgap composites
JP2015500515A (en) Reflective polarizing plate
Lin et al. Graphene multilayer photonic metamaterials: fundamentals and applications
KR101902659B1 (en) Translucent construction element for solar light management comprising surface coated with interrupted metallic layer
Jin et al. Lasing and amplified spontaneous emission in a polymeric inverse opal photonic crystal resonating cavity
Zeng et al. Programmable color in a free-standing photonic microgel film with ultra-fast response
Giordano et al. Self-organized tailoring of faceted glass nanowrinkles for organic nanoelectronics
Ko et al. Multilevel absorbers via the integration of undoped and tungsten-doped multilayered vanadium dioxide thin films
Yang et al. Optical device based on a nanopillar array by the pattern transfer of an anodic aluminum oxide membrane
JP4263683B2 (en) Method for manufacturing antireflection film
JP2002318373A (en) Optical material and method for manufacturing optical material
C de Castro et al. Silica Nanoparticle/Polymer Film-Based Soft Mechanochromic Devices for Detecting Mechanical Deformation and Stress Cycles in Varied Environments