JP2002313401A - Fuel cell and method of feeding hydrogen and oxygen to fuel cell - Google Patents

Fuel cell and method of feeding hydrogen and oxygen to fuel cell

Info

Publication number
JP2002313401A
JP2002313401A JP2001114086A JP2001114086A JP2002313401A JP 2002313401 A JP2002313401 A JP 2002313401A JP 2001114086 A JP2001114086 A JP 2001114086A JP 2001114086 A JP2001114086 A JP 2001114086A JP 2002313401 A JP2002313401 A JP 2002313401A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
oxygen
electrode
brown gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001114086A
Other languages
Japanese (ja)
Inventor
Masahiro Mori
正弘 森
Naotake Kawamura
尚武 河村
Teruhiro Tatsuno
彰宏 龍野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FULLERENE KK
Original Assignee
FULLERENE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FULLERENE KK filed Critical FULLERENE KK
Priority to JP2001114086A priority Critical patent/JP2002313401A/en
Publication of JP2002313401A publication Critical patent/JP2002313401A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell forming a completely closed cycle having brown gas as a supply source of hydrogen and oxygen. SOLUTION: The brown gas (H+O) generated by a brown gas generator 10 is separated into hydrogen and oxygen by an oxygen separator 13, the separated hydrogen is supplied to the negative electrode of the fuel cell 15, and the oxygen is supplied to a positive electrode to take out a dc current.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ブラウンガスを水素及
び酸素の供給源とする完全密閉サイクル形の燃料電池に
関するもので、特に、ブラウンガスから分離した水素を
水素吸蔵合金に吸蔵し、触媒膜の一方に酸素極、他方に
水素極を配置し、触媒の作用で水素極と酸素極との間に
直流電流を発生させるようにした燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a completely closed cycle fuel cell using brown gas as a source of hydrogen and oxygen, and more particularly, to a method of storing hydrogen separated from brown gas in a hydrogen storage alloy to form a catalyst. The present invention relates to a fuel cell in which an oxygen electrode is disposed on one side of the membrane and a hydrogen electrode is disposed on the other side, and a direct current is generated between the hydrogen electrode and the oxygen electrode by the action of a catalyst.

【0002】[0002]

【従来の技術】燃料の水素を酸素と反応させて電気を起
こし、モーターを駆動する燃料電池車は、有害な排ガス
や騒音が殆ど発生しないため究極のエコカーと言われて
いるが、純水素を燃料にすると、爆発、液化、水素脆性
などの大きな問題がある。現時点ではガソリン系燃料や
メタノールから水素を取り出し圧縮タンクなどに水素を
直接蓄える方式が盛んに研究されているものの、メタノ
ールやガソリンを燃料にすると排ガスによって環境を汚
染する。また、空気中の酸素を酸化剤にすると水中では
使用できない。近年、カーボンナノチューブ、カーボン
ナノファイバー、フラーレン等の炭素系材料が、軽量で
水素を多量に吸蔵することから次世代のエネルギー貯蔵
手法とされているものの、一定の容器に高密度に充填す
ることが困難であった。例えば、カーボンナノチュー
ブ、カーボンナノファイバーは材料自体の体積当たりの
水素吸蔵量が10kg/mで充填率が50%としたと
き、実際の吸蔵量は5kg/mになってしまう。
2. Description of the Related Art Fuel cell vehicles, which generate electricity by reacting hydrogen in fuel with oxygen to drive a motor, are said to be the ultimate eco-cars because they emit almost no harmful exhaust gas or noise. The use of fuel has major problems such as explosion, liquefaction, and hydrogen embrittlement. At present, a method of extracting hydrogen from gasoline-based fuel or methanol and storing hydrogen directly in a compression tank or the like has been actively studied, but using methanol or gasoline as a fuel pollutes the environment with exhaust gas. If oxygen in the air is used as the oxidizing agent, it cannot be used in water. In recent years, carbon-based materials such as carbon nanotubes, carbon nanofibers, and fullerenes have become the next-generation energy storage method because they are lightweight and occlude a large amount of hydrogen. It was difficult. For example, carbon nanotubes and carbon nanofibers have a hydrogen storage capacity of 10 kg / m 3 per volume of the material itself and a filling rate of 50%, and the actual storage capacity is 5 kg / m 3 .

【0003】燃料電池は、触媒膜の一方に酸素極、他方
に陰極(水素極)を配置し、酸素極側に空気を送り、陰
極側に水素を送り込むと、水素は触媒の作用で水素イオ
ン(H)に変わり、電子(e)を放出する。この電
子eが陽極(空気極)に向って外部の回路に流れる際
に直流電流が発生する。広く知られている燃料電池にお
いては、カチオン交換膜の片面に正極としての多孔性電
極、他面に負極としての多孔性電極が、それぞれ一体に
接合され、純酸素もしくは空気が電池外部から正極に供
給され、水素が電池外部から負極に供給されて、次の反
応により発電される。 正極:O+4H++4e−→2HO (1) 負極:2H → 4H++4e− (2) 水電解セルにおいては、カチオン交換膜の両面に、主と
して白金電極が一体に接合され、その片方の電極が陰極
となり、他方の電極が陽極となり、次の反応により、水
の電解が起こる。 陽極:2HO→O+4H++4e− (3) 陰極:4H++4e−→2H (4)
[0003] In a fuel cell, an oxygen electrode is arranged on one side of a catalyst film and a cathode (hydrogen electrode) is arranged on the other side. When air is sent to the oxygen electrode side and hydrogen is sent to the cathode side, hydrogen is converted into hydrogen ions by the action of a catalyst. (H + ) and emits electrons (e ). When the electrons e flow to an external circuit toward the anode (air electrode), a direct current is generated. In a well-known fuel cell, a porous electrode as a positive electrode on one side of a cation exchange membrane and a porous electrode as a negative electrode on the other side are integrally bonded, and pure oxygen or air is supplied from the outside of the cell to the positive electrode. The hydrogen is supplied from the outside of the battery to the negative electrode, and power is generated by the following reaction. Positive electrode: O 2 + 4H ++ 4e− → 2H 2 O (1) Negative electrode: 2H 2 → 4H ++ 4e− (2) In a water electrolysis cell, a platinum electrode is mainly joined integrally on both sides of a cation exchange membrane, and one of the electrodes is The other electrode becomes the anode, and the next reaction causes the electrolysis of water. Anode: 2H 2 O → O 2 + 4H ++ 4e− (3) Cathode: 4H ++ 4e− → 2H 2 (4)

【0004】このような燃料電池は、水素の供給及び循
環系が必須であるため、電池系が一般に複雑かつ大がか
りになる。この点を解決するためのひとつの手段は、負
極材料に水素貯蔵合金を用いることである。水電解セル
は、その反応によって水素及び酸素が発生するが、その
用途によっては、酸素のみが利用され、水素が不要なこ
とがある。この場合にも、上述の水電解セルの陰極を、
水素貯蔵合金を主体にした電極で構成すれは、陽極では
(1)式の反応が起こり、陰極では次の反応により水素
が発生しないことになる。 陰極:XH++M+Xe−→MHx(M:水素貯蔵合金) (5)
[0004] Since such a fuel cell requires a supply and circulation system of hydrogen, the cell system is generally complicated and large. One means for solving this problem is to use a hydrogen storage alloy as a negative electrode material. In a water electrolysis cell, hydrogen and oxygen are generated by the reaction, but depending on the application, only oxygen is used and hydrogen may not be required. Also in this case, the cathode of the above-mentioned water electrolysis cell is
When the electrode is mainly composed of a hydrogen storage alloy, the reaction of the formula (1) occurs at the anode, and no hydrogen is generated at the cathode by the following reaction. Cathode: XH ++ M + Xe- → MHx (M: hydrogen storage alloy) (5)

【0005】一方、ブラウンガスは、高度の電気分解技
術による水の解離作用で発生する水素と酸素の混合ガス
であって、ガス溶接、ガス切断等に実用されている。こ
のブラウンガスは燃焼方程式2H・+O・→2H・Oの
ように反応し、燃焼後に水蒸気に戻るので、既存の化石
燃料と異なりの煤が出ないだけでなく、二酸化炭素等の
環境発生物質を排出しない。ブラウンガス発生機は、水
中でプラズマアークを照射することで、通常1リッター
の水で約1860リッターのブラウンガスを生産する。
逆にブラウンガスを密閉圧力容器内でスパークによって
燃焼させると内破(Implosion)持続の短時間、圧力最
高値に達し、直ちに圧力降下をおこし、低圧の内爆と同
時に体積の減少が起こりながら真空を形成させる。すな
わち、再び水1リッターが生成され、残りの体積は真空
状態になる。
On the other hand, brown gas is a mixed gas of hydrogen and oxygen generated by the dissociation of water by advanced electrolysis technology, and is used for gas welding, gas cutting and the like. This brown gas reacts as shown in the combustion equation 2H • + O • → 2H • O and returns to water vapor after combustion, so not only does it emit soot unlike existing fossil fuels, it also removes environmentally harmful substances such as carbon dioxide. Do not emit. By irradiating a plasma arc in water, a brown gas generator usually produces about 1860 liters of brown gas with 1 liter of water.
Conversely, when brown gas is burned by a spark in a sealed pressure vessel, the pressure reaches a maximum value for a short period of time during which implosion persists, immediately causing a pressure drop. Is formed. That is, one liter of water is generated again, and the remaining volume is in a vacuum state.

【0006】[0006]

【発明が解決しようとする課題】上記のように、従来の
メタノールまたは化石燃料を利用する燃料電池は、環境
を汚染する廃棄物の発生が免れず、純水素を燃料とする
と爆発のおそれがある等の問題があった。本発明は、燃
料電池の触媒である担持炭素材料としてフラーレン類を
用い、環境を整える(触媒膜に電流を流す、光照射等)
ことにより、白金を用いなくとも触媒機能を発揮するよ
うにした燃料電池を提供することを目的とする。
As described above, a conventional fuel cell using methanol or fossil fuel is inevitable to generate waste that pollutes the environment, and there is a risk of explosion when using pure hydrogen as fuel. And so on. The present invention uses fullerenes as a supported carbon material that is a catalyst of a fuel cell and prepares an environment (such as passing an electric current through a catalyst film and light irradiation).
Accordingly, it is an object of the present invention to provide a fuel cell that exhibits a catalytic function without using platinum.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、ブラウンガスを燃料電池の水素および酸
素の供給源としたものである。また、ブラウンガスから
分離した水素を水素吸蔵合金に吸蔵し、触媒膜の一方に
酸素極、他方に水素極を配置し、触媒の作用で水素極と
酸素極との間に直流電流を発生させるようにした燃料電
池であり、触媒膜に光を照射し、または通電することに
より、そのエネルギーを利用して触媒能力を高めるよう
にする。さらに、ブラウンガスジェネレーター、酸素セ
パレーター及び燃料電池を配管ラインで接続して完全密
閉サイクル形とした燃料電池である。触媒膜に光を照射
し、または通電することにより、そのエネルギーを利用
して触媒能力を高めるようにする。また、ブラウンガス
ジェネレーターによって発生させたブラウンガスを酸素
セパレーターにより水素と酸素に分離し、分離された水
素を燃料電池の負極に供給すると共に、正極に酸素を供
給することからなる燃料電池に水素と酸素を供給する方
法にかかるものである。
In order to achieve the above object, the present invention uses brown gas as a source of hydrogen and oxygen for a fuel cell. In addition, hydrogen separated from brown gas is stored in a hydrogen storage alloy, and an oxygen electrode is disposed on one side of the catalyst film and a hydrogen electrode is disposed on the other side. By irradiating the catalyst film with light or energizing the fuel cell, the energy is used to enhance the catalytic ability. Further, the fuel cell is a completely sealed cycle type in which a brown gas generator, an oxygen separator, and a fuel cell are connected by a piping line. When the catalyst film is irradiated with light or energized, its energy is used to enhance the catalytic ability. In addition, the brown gas generated by the brown gas generator is separated into hydrogen and oxygen by an oxygen separator, and the separated hydrogen is supplied to the anode of the fuel cell and oxygen is supplied to the fuel cell. The present invention relates to a method for supplying oxygen.

【0008】[0008]

【発明の実施の態様】本発明は、ブラウンガスを水素及
び酸素の供給源とする完全密閉サイクル形の燃料電池に
かかるもので、詳しくは、ブラウンガスから分離した水
素を水素吸蔵合金に吸蔵し、触媒膜の一方に酸素極、他
方に水素極を配置し、触媒の作用で水素極と酸素極との
間に直流電流を発生させるものである図1は、本発明を
実施する装置の概略を示すもので、ブラウンガスジェネ
レーター10によって発生させたブラウンガス(H+
O)を酸素セパレーター13により水素と酸素に分離
し、分離された水素をヘッダー14から燃料電池15の
負極に供給すると共に、酸素供給管16を経て正極に酸
素を供給することにより直流電流を取り出す。すなわ
ち、この燃料電池は、触媒膜の一方に酸素極、他方に陰
極(水素極)を配置し、酸素極側に空気を送り、陰極側
に水素を送り込むと、水素は触媒の作用で水素イオン
(H)に変わり、電子(e)を放出する。この電子
が陽極(空気極)に向って外部の回路に流れる際に
直流電流が発生する。燃料電池としては、メタノール直
接型、固体高分子型、燐酸型、フラーレン触媒型など各
種の形式のものが使用されるが、。なお、図1中、11
はブラウンガスジェネレーターの電気分解電源、17は
燃料電池15内に設けた気液分離スクリーン、18は水
(蒸気)のリターンパイプ、19は水還戻用ポンプ、2
0は負荷、21は次電池、22は充電回路である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a completely closed cycle fuel cell using brown gas as a source of hydrogen and oxygen. More specifically, the present invention relates to a hydrogen storage alloy in which hydrogen separated from brown gas is stored in a hydrogen storage alloy. 1 in which an oxygen electrode is disposed on one of the catalyst films and a hydrogen electrode is disposed on the other, and a direct current is generated between the hydrogen electrode and the oxygen electrode by the action of a catalyst. FIG. And the brown gas (H +) generated by the brown gas generator 10
O) is separated into hydrogen and oxygen by an oxygen separator 13, the separated hydrogen is supplied from the header 14 to the negative electrode of the fuel cell 15, and a direct current is extracted by supplying oxygen to the positive electrode via the oxygen supply pipe 16. . In other words, in this fuel cell, an oxygen electrode is arranged on one side of the catalyst membrane, and a cathode (hydrogen electrode) is arranged on the other side. When air is sent to the oxygen side and hydrogen is sent to the cathode side, hydrogen is converted into hydrogen ions by the action of the catalyst. (H + ) and emits electrons (e ). When the electrons e flow to an external circuit toward the anode (air electrode), a direct current is generated. As the fuel cell, various types such as a direct methanol type, a solid polymer type, a phosphoric acid type, and a fullerene catalyst type are used. In FIG. 1, 11
Is a brown gas generator electrolysis power supply, 17 is a gas-liquid separation screen provided in the fuel cell 15, 18 is a water (steam) return pipe, 19 is a water return pump, 2
0 is a load, 21 is a next battery, and 22 is a charging circuit.

【0009】フラーレン触媒型燃料電池の場合には、正
極に公知の酸素電極もしくは空気電極を用い、負極にフ
ラーレン類の電極を用いる。フラーレン電極への水素の
吸蔵は、電極を構成する前でも後でもよい。電池系は密
閉系にし、放電によってフラーレン中の水素が消費され
たら廃棄するような一次電池タイプにすることも、電池
に水素供給口を設け、水素を電池外部から間欠的に供給
して、繰り返し放電することもできる。このようにすれ
は、複雑で大ががりな循環系を常時電池に付設しておか
なくてもすむという点で、極めて便利である。また、フ
ラ−レン電極への水素の補給は、酸素電極(正極)とし
て、例えば、白金触媒を担持したカーボンナノチュ−ブ
を主体とする材料で構成し、いわゆる水素電極としても
機能するような電極を用い、この正極に酸素もしくは空
気を供給する代わりに、電池外部から水素を供給し、こ
の正極とカーボンナノチュ−ブ電極(負極)との間に通
電すれば、負電極に水素がに吸蔵される。
In the case of a fullerene catalyst fuel cell, a known oxygen electrode or air electrode is used as a positive electrode, and a fullerene-like electrode is used as a negative electrode. The storage of hydrogen in the fullerene electrode may be performed before or after forming the electrode. The battery system may be a closed system, and the primary battery type may be discarded if the hydrogen in the fullerenes is consumed by discharging. It can also be discharged. This is extremely convenient in that a complicated and large circulating system need not always be attached to the battery. For replenishing hydrogen to the fullerene electrode, the oxygen electrode (positive electrode) is made of, for example, a material mainly composed of a carbon nanotube carrying a platinum catalyst, and functions as a so-called hydrogen electrode. Using an electrode, instead of supplying oxygen or air to this positive electrode, hydrogen is supplied from the outside of the battery, and if electricity is supplied between this positive electrode and the carbon nanotube electrode (negative electrode), hydrogen is supplied to the negative electrode. Occluded.

【0010】また、環境を整えるものとして、触媒膜に
光を照射し、または通電することにより、そのエネルギ
ーを利用して触媒能力を高めるようにす。環境を整える
電力は発生した電力の一部を用いる。このように、燃料
電池の触媒に、白金を用いず、或いは極少量担持したフ
ラーレン類(フラーレン、金属内包フラーレン、多層カ
ーボンナノチューブ、ナノグラファイバー、カーボンナ
ノボーン、カーボンナノカプセルなど)を用いる。な
お、水素吸蔵合金としては、LaNi、MmNixA
lyMnz(Mm:ミッシュメタル)、TiNi系等が
知られているが、これらの水素貯蔵合金を上述の目的に
使用した場合、すなわち強酸性を示すカチオン交換膜に
一体に接合した際、一般にその腐食がおこり、現実には
使用不能である。
[0010] In order to prepare the environment, the catalyst film is irradiated with light or energized so as to utilize the energy to enhance the catalytic ability. A part of generated electric power is used for electric power for preparing the environment. Thus, fullerenes (fullerene, metal-encapsulated fullerene, multi-walled carbon nanotube, nanographite, carbon nanobone, carbon nanocapsule, etc.) which does not use platinum or use a very small amount are used for the catalyst of the fuel cell. In addition, as the hydrogen storage alloy, LaNi 5 , MmNixA
lyMnz (Mm: misch metal), TiNi type and the like are known. When these hydrogen storage alloys are used for the above-mentioned purpose, that is, when they are integrally joined to a cation exchange membrane showing strong acidity, the corrosion generally occurs. And it is unusable in reality.

【0011】[0011]

【実施例】[実施例1] ブラウンガスを水素及び酸素
の供給源とする完全密閉サイクル形の燃料電池とした。
ブラウンガスから分離した水素を燃料電池内の水素吸蔵
合金に吸蔵し、触媒膜の一方に酸素極、他方に水素極を
配置し、触媒の作用で水素極と酸素極との間に直流電流
を発生させる。燃料電池の触媒に、白金を用いず、或い
は極少量担持したフラーレン類(フラーレン、金属内包
フラーレン、多層カーボンナノチューブ、ナノグラファ
イバー、カーボンナノボーン、カーボンナノカプセルな
ど)を用いる。触媒膜の一方に酸素極、他方に水素極を
配置し、触媒の作用で水素極と酸素極との間に直流電流
を発生させるが、フラーレン類の触媒機能を発揮させ
る。その際、セパレータ内部に光源を設け、環境を整え
るため触媒に光、特に青色発光ダイオードにより照射す
ると、フラーレンは、活性酸素を発生しやすい等の性質
をもつため、水素の分解、水の合成において、優れた触
媒機能を発生する。
EXAMPLES Example 1 A completely closed cycle type fuel cell using brown gas as a source of hydrogen and oxygen was prepared.
Hydrogen separated from brown gas is stored in the hydrogen storage alloy in the fuel cell, an oxygen electrode is placed on one side of the catalyst film, and a hydrogen electrode is placed on the other side.A direct current is applied between the hydrogen and oxygen electrodes by the action of the catalyst. generate. Fullerenes (fullerene, metal-encapsulated fullerene, multi-walled carbon nanotube, nanographite, carbon nanobone, carbon nanocapsule, etc.) which does not use platinum or use a very small amount are used as a catalyst of the fuel cell. An oxygen electrode is disposed on one side of the catalyst film, and a hydrogen electrode is disposed on the other side. A direct current is generated between the hydrogen electrode and the oxygen electrode by the action of the catalyst, but the fullerenes exhibit a catalytic function. At that time, when a light source is provided inside the separator and the catalyst is irradiated with light, particularly a blue light emitting diode, to adjust the environment, fullerene has properties such as easy generation of active oxygen. Generates excellent catalytic function.

【0012】[実施例2] 実施例1において、触媒膜
に通電する。フラーレンは通電により、白色発光するこ
とが知られており、通電するだけで環境が整えられ、そ
のエネルギーを利用して触媒能力を高める。また、環境
を整える電力は発生した電力の一部を用いる。このよう
にすると、白金を全く用いとも触媒機能が得られ、白金
の一酸化炭素被毒による特性劣化も起こらず、長く使用
できる。
[Example 2] In Example 1, electricity is supplied to the catalyst film. It is known that fullerene emits white light when energized, and the environment is adjusted only by energizing, and the energy is used to enhance the catalytic ability. In addition, a part of generated power is used as power for conditioning the environment. In this way, even if platinum is used at all, a catalytic function can be obtained, and there is no deterioration in characteristics due to the poisoning of platinum with carbon monoxide, and the platinum can be used for a long time.

【0013】[0013]

【発明の効果】以上説明したように、本発明の燃料電池
は、ブラウンガスを水素と酸素に分離して使用するた
め、強酸性の固体高分子イオン導電体を用いる場合のよ
うな腐食を全く受けないので、サイクル寿命のきわめて
長い燃料電池が得られる。また、原料である水は、水素
原子の量は極めて多く、ブラウンガスは爆発しない。さ
らに、ブラウンガスジェネレーターと燃料電池とを一体
化したので、低コストで信頼性の高い装置を提供するこ
とができる。
As described above, since the fuel cell of the present invention uses brown gas separated into hydrogen and oxygen, it does not undergo any corrosion as in the case of using a strongly acidic solid polymer ion conductor. Therefore, a fuel cell having an extremely long cycle life can be obtained. Water, which is a raw material, has an extremely large amount of hydrogen atoms, and brown gas does not explode. Furthermore, since the brown gas generator and the fuel cell are integrated, a low-cost and highly reliable device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明燃料電池の構成を示す図である。FIG. 1 is a diagram showing a configuration of a fuel cell of the present invention.

【符号の説明】[Explanation of symbols]

10 ブラウンガスジェネレーター 11 電気分解
電源 12 水タンク 13 酸素セパ
レーター 14 ヘッダー 15 燃料電池 16 酸素供給管 17 気液分離
スクリーン 18 リターンパイプ 19 水還戻用
ポンプ 20 負荷 21 2次電池 22 充電回路
DESCRIPTION OF SYMBOLS 10 Brown gas generator 11 Electrolysis power supply 12 Water tank 13 Oxygen separator 14 Header 15 Fuel cell 16 Oxygen supply pipe 17 Gas-liquid separation screen 18 Return pipe 19 Water return pump 20 Load 21 Secondary battery 22 Charging circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 龍野 彰宏 横浜市瀬谷区本郷2−15−17 ステージ日 高202 Fターム(参考) 4G040 BA03 BB03 4G069 AA02 AA03 BA08B BA48C BC75B CC32 DA06 EB19 4G140 BA03 BB03 4K021 AA01 CA15 5H027 AA02 BA11 BC01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Akihiro Tatsuno 2-15-17 Hongo, Seya-ku, Yokohama Stage 202 F Stage (reference) 4G040 BA03 BB03 4G069 AA02 AA03 BA08B BA48C BC75B CC32 DA06 EB19 4G140 BA03 BB03 4K021 AA01 CA15 5H027 AA02 BA11 BC01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ブラウンガスを水素および酸素の供給源
とした燃料電池。
1. A fuel cell using brown gas as a source of hydrogen and oxygen.
【請求項2】 ブラウンガスから分離した水素を水素吸
蔵合金に吸蔵し、触媒膜の一方に酸素極、他方に水素極
を配置し、触媒の作用で水素極と酸素極との間に直流電
流を発生させるようにした燃料電池。
2. Hydrogen separated from brown gas is stored in a hydrogen storage alloy, an oxygen electrode is disposed on one side of the catalyst film, and a hydrogen electrode is disposed on the other side of the catalyst film. Fuel cell.
【請求項3】 触媒膜に光を照射し、または通電するこ
とにより、そのエネルギーを利用して触媒能力を高める
ようにした請求項2記載の燃料電池。
3. The fuel cell according to claim 2, wherein the catalyst film is irradiated with light or energized to utilize the energy to enhance the catalytic ability.
【請求項4】 ブラウンガスジェネレーター、酸素セパ
レーター及び燃料電池を配管ラインで接続して完全密閉
サイクル形とした燃料電池。
4. A completely closed cycle type fuel cell in which a brown gas generator, an oxygen separator, and a fuel cell are connected by a piping line.
【請求項5】 ブラウンガスジェネレーターによって発
生させたブラウンガス(H+O)を酸素セパレーターに
より水素と酸素に分離し、分離された水素を燃料電池の
負極に供給すると共に、正極に酸素を供給することから
なる燃料電池に水素と酸素を供給する方法。
5. A method in which brown gas (H + O) generated by a brown gas generator is separated into hydrogen and oxygen by an oxygen separator, and the separated hydrogen is supplied to a negative electrode of a fuel cell and oxygen is supplied to a positive electrode of the fuel cell. A method for supplying hydrogen and oxygen to a fuel cell.
JP2001114086A 2001-04-12 2001-04-12 Fuel cell and method of feeding hydrogen and oxygen to fuel cell Pending JP2002313401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001114086A JP2002313401A (en) 2001-04-12 2001-04-12 Fuel cell and method of feeding hydrogen and oxygen to fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001114086A JP2002313401A (en) 2001-04-12 2001-04-12 Fuel cell and method of feeding hydrogen and oxygen to fuel cell

Publications (1)

Publication Number Publication Date
JP2002313401A true JP2002313401A (en) 2002-10-25

Family

ID=18965217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001114086A Pending JP2002313401A (en) 2001-04-12 2001-04-12 Fuel cell and method of feeding hydrogen and oxygen to fuel cell

Country Status (1)

Country Link
JP (1) JP2002313401A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092059A1 (en) * 2003-04-18 2004-10-28 Japan Techno Co., Ltd. Fuel for fuel battery, fuel battery, and power generating method using same
JP2006176340A (en) * 2004-12-20 2006-07-06 Jipangu Energy:Kk Station system for supplying hydrogen gas
JP2007066831A (en) * 2005-09-02 2007-03-15 Toyota Auto Body Co Ltd Fuel cell
JP2013220681A (en) * 2012-04-13 2013-10-28 Ihi Corp Auxiliary power system for aircraft

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092059A1 (en) * 2003-04-18 2004-10-28 Japan Techno Co., Ltd. Fuel for fuel battery, fuel battery, and power generating method using same
JPWO2004092059A1 (en) * 2003-04-18 2006-07-06 日本テクノ株式会社 Fuel for fuel cell, fuel cell and power generation method using the same
JP2006176340A (en) * 2004-12-20 2006-07-06 Jipangu Energy:Kk Station system for supplying hydrogen gas
JP2007066831A (en) * 2005-09-02 2007-03-15 Toyota Auto Body Co Ltd Fuel cell
JP2013220681A (en) * 2012-04-13 2013-10-28 Ihi Corp Auxiliary power system for aircraft

Similar Documents

Publication Publication Date Title
US6773470B2 (en) Suspensions for use as fuel for electrochemical fuel cells
KR102319109B1 (en) Hybrid sodium-carbon dioxide secondary battery capable of obtaining energy storage along with high value-added product by electrochemical carbon dioxide reduction and secondary battery system comprising the same
KR20090095023A (en) Hydrogen tamping apparatus
JP2002313401A (en) Fuel cell and method of feeding hydrogen and oxygen to fuel cell
US8318366B2 (en) Hydrogen generator and fuel cell using the same
US20080268310A1 (en) Hydrogen generating apparatus and fuel cell system using the same
JP3795912B2 (en) Fuel cell system
JP5140496B2 (en) Electrolyte solution for hydrogen generator and hydrogen generator
US20090075137A1 (en) Filter, hydrogen generator and fuel cell power generation system having the same
JP2002252002A (en) Fuel cell
JP5228200B2 (en) Fuel cartridge and fuel cell power generation system including the same
JP2003217643A (en) Method and device of power generation
US20130088184A1 (en) Battery device utilizing oxidation and reduction reactions to produce electric potential
KR102485476B1 (en) Hydrogen supply system for fuel cell and method thereof
JP2002056852A (en) Electric energy generating system
JP2016051521A (en) Fuel cell system
US20090263690A1 (en) Apparatus for generating hydrogen and fuel cell power generation system having the same
US20090263692A1 (en) Electrode cartridge, hydrogen generating apparatus and fuel cell power generation system having the same
JP2004349029A (en) Fuel cell system
JP2002098009A (en) Vehicle traveling mechanism and vehicle loaded with it
US7037622B2 (en) Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
JP2002050375A (en) Liquid fuel cell
CN1311583C (en) Suspensions for use as fuel for electrochemical fuel cells
JP2023140042A (en) Electrolytic apparatus and driving method of electrolytic apparatus
JP2006156264A (en) Hybrid battery