JP2002313375A - Fuel cell power generating facility and turbine power generating facility - Google Patents

Fuel cell power generating facility and turbine power generating facility

Info

Publication number
JP2002313375A
JP2002313375A JP2001109470A JP2001109470A JP2002313375A JP 2002313375 A JP2002313375 A JP 2002313375A JP 2001109470 A JP2001109470 A JP 2001109470A JP 2001109470 A JP2001109470 A JP 2001109470A JP 2002313375 A JP2002313375 A JP 2002313375A
Authority
JP
Japan
Prior art keywords
fuel cell
air
fuel
unit
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001109470A
Other languages
Japanese (ja)
Inventor
Masaharu Watabe
正治 渡部
Tadashi Tsuji
正 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001109470A priority Critical patent/JP2002313375A/en
Publication of JP2002313375A publication Critical patent/JP2002313375A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To generate the electric energy with a high power generating efficiency even when a certain rate of air flow necessary for power generation is supplied in a facility in which a plurality of fuel cell parts are arranged in series. SOLUTION: Fuel cell parts 11a, 11b, 11c are arranged in series in such a way that the air electrode exhausting parts 12a and 12b are independent of fuel electrode exhausting parts 13a and 13b, and mixers 15a and 15b are provided to introduce the air into the air electrode exhausting parts 12a and 12b, and a fresh air is fed from the mixers 15a and 15b to the fuel cell parts 11b and 11c situated downstream for refilling the oxygen and also making the cooling, and even in the case a certain rate of air flow necessary for power generation is supplied in the facility in which a plurality of fuel cell parts 11a, 11b, 11c are arranged in series, the temperature of the working fluid and the oxygen concentration in the fuel cell parts 11a, 11b, 11c can be made optimum, and it is possible to generate the electric energy with a high power generating efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池発電設備
及び燃料電池発電設備とタービンとを組み合わせて発電
を行うタービン発電設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation facility and a turbine power generation facility for generating power by combining a fuel cell power generation facility with a turbine.

【0002】[0002]

【従来の技術】燃料電池(FC)発電設備は、空気と燃
料ガスとを電解質を介して電気化学反応させて発電を行
う装置で、高い発電効率で電気エネルギーを発生させる
ことができる。また、FC発電設備は、空気と燃料ガス
とを電気化学反応させて発電を行うFC発電部や排出ガ
スから回収利用できる熱エネルギーをも発生させること
もできる。従って、熱エネルギーをガスタービンのトッ
ピングサイクルや蒸気タービンのボトミングサイクルに
より回収して発電に利用することが種々検討され、FC
発電設備、ガスタービン及び蒸気タービンを組み合わせ
た複合発電設備(タービン発電設備)が省エネルギー効
率の高い設備として期待されている。
2. Description of the Related Art A fuel cell (FC) power generation system is a device for generating power by causing an electrochemical reaction between air and fuel gas through an electrolyte, and can generate electric energy with high power generation efficiency. Further, the FC power generation equipment can also generate heat energy that can be recovered and used from an FC power generation unit that generates power by performing an electrochemical reaction between air and a fuel gas, or from exhaust gas. Accordingly, various studies have been made to recover heat energy by a gas turbine topping cycle or a steam turbine bottoming cycle and use it for power generation.
A combined power generation facility (turbine power generation facility) combining a power generation facility, a gas turbine, and a steam turbine is expected as a facility with high energy saving efficiency.

【0003】[0003]

【発明が解決しようとする課題】このようなタービン発
電設備では、FC発電部を直列に配置して前段FC発電
部から排出される排出ガスを後段FC発電部に供給して
発電することが考えられている。しかし、後段側のFC
発電部に供給される排出ガスは前段FC発電部での反応
により温度が上昇して徐々に高温となると共に酸素が減
少する。従って、作動最適温度範囲が広いFC発電部を
用いたり、作動以外に冷却のための空気を含めて大量の
空気を供給する、即ち、発電に必要な流量以上の流量を
供給する等の手段を講じる必要がある。このため、FC
発電設備、ガスタービン及び蒸気タービンを組み合わせ
たタービン設備では、高い発電効率で電気エネルギーを
発生させる特徴を生かすために、空気や燃料を供給する
ための動力性能を上げたり、温度変化による発電損失の
少ないFC発電部の開発を行う必要がある等の課題が存
在し、実用化には至っていないのが現状であった。
In such a turbine power generation facility, it is considered that FC power generation units are arranged in series, and exhaust gas discharged from the first-stage FC power generation unit is supplied to the second-stage FC power generation unit to generate power. Have been. However, the second stage FC
The temperature of the exhaust gas supplied to the power generation unit rises due to the reaction in the first-stage FC power generation unit, gradually increases to a high temperature, and oxygen decreases. Therefore, means such as using an FC power generation unit having a wide optimum operating temperature range or supplying a large amount of air including air for cooling other than operation, that is, supplying a flow rate higher than the flow rate necessary for power generation, etc. Need to take. For this reason, FC
Power generation equipment, gas turbines, and turbine equipment combined with steam turbines, in order to take advantage of the characteristics of generating electric energy with high power generation efficiency, increase the power performance for supplying air and fuel, and reduce power generation loss due to temperature changes. There are problems such as the need to develop a small number of FC power generation units, and at present, they have not been put into practical use.

【0004】本発明は上記状況に鑑みてなされたもの
で、燃料電池発電部を直列に配置した設備で発電に必要
な流量の空気を供給した場合であっても、各燃料電池発
電部での作動流体の温度及び酸素濃度を最適にすること
ができる燃料電池発電設備を提供することを目的とす
る。
[0004] The present invention has been made in view of the above situation, and even when air is supplied at a flow rate required for power generation in a facility in which fuel cell power generation units are arranged in series, each fuel cell power generation unit is provided with a fuel cell power generation unit. It is an object of the present invention to provide a fuel cell power generation facility capable of optimizing the temperature and oxygen concentration of a working fluid.

【0005】また、本発明は上記状況に鑑みてなされた
もので、燃料電池発電部を直列に配置した設備で発電に
必要な流量の空気を供給した場合であっても、各燃料電
池発電部での作動流体の温度及び酸素濃度を最適にする
ことができる燃料電池発電設備を備えたタービン設備を
提供することを目的とする。
Further, the present invention has been made in view of the above situation, and even when air is supplied at a flow rate required for power generation in a facility in which fuel cell power generation units are arranged in series, each fuel cell power generation unit is provided. It is an object of the present invention to provide a turbine equipment provided with a fuel cell power generation equipment capable of optimizing the temperature and oxygen concentration of a working fluid in a fuel cell.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明の燃料電池発電設備の構成は、空気と燃料ガス
とを電解質を介して電気化学反応させて発電する燃料電
池部を有する燃料電池発電設備において、空気極排気部
と燃料極排気部とを独立させて複数の燃料電池部を直列
に配置し、燃料電池部の間における空気極排気部に空気
を導入する導入手段を備えたことを特徴とする。
According to a first aspect of the present invention, there is provided a fuel cell power generation system comprising: a fuel cell having a fuel cell unit for generating power by performing an electrochemical reaction between air and a fuel gas via an electrolyte; In the battery power generation equipment, the air electrode exhaust unit and the fuel electrode exhaust unit are independently arranged, a plurality of fuel cell units are arranged in series, and an introduction unit for introducing air to the air electrode exhaust unit between the fuel cell units is provided. It is characterized by the following.

【0007】また、上記目的を達成するための本発明の
燃料電池発電設備の構成は、空気と燃料ガスとを電解質
を介して電気化学反応させて発電する燃料電池部を有す
る燃料電池発電設備において、空気極排気部と燃料極排
気部とを独立させて複数の燃料電池部を直列に配置し、
燃料電池部の間における空気極排気部に空気を導入する
導入手段を備え、燃料電池部の間における空気極排気部
に導入手段から導入される空気に見合った排気を抽出す
る抽出手段を備えたことを特徴とする。
In order to achieve the above object, a fuel cell power generation system according to the present invention is provided in a fuel cell power generation system having a fuel cell unit for generating power by performing an electrochemical reaction between air and fuel gas via an electrolyte. A plurality of fuel cell units are arranged in series with the cathode exhaust unit and the anode exhaust unit being independent,
Introducing means for introducing air to the air electrode exhaust section between the fuel cell sections, and extracting means for extracting exhaust corresponding to the air introduced from the introducing means to the air electrode exhaust section between the fuel cell sections. It is characterized by the following.

【0008】そして、最上流側の燃料電池部に導入され
る燃料ガスとの間で熱交換を行う燃料ガス予熱手段を燃
料電池部の間における燃料極排気部に備えたことを特徴
とする。また、導入手段に導入される空気との間で熱交
換を行う空気予熱手段を燃料電池部の間における燃料極
排気部に備えたことを特徴とする。また、抽出手段から
抽出された排気と最上流側の燃料電池部に導入される空
気との間で熱交換を行う第2空気予熱手段を備えたこと
を特徴とする。
The fuel gas preheating means for exchanging heat with the fuel gas introduced into the fuel cell section on the most upstream side is provided in the fuel electrode exhaust section between the fuel cell sections. Further, an air preheating means for performing heat exchange with air introduced into the introduction means is provided in the fuel electrode exhaust part between the fuel cell units. Further, a second air preheating means for exchanging heat between the exhaust gas extracted from the extraction means and the air introduced into the fuel cell on the most upstream side is provided.

【0009】また、上記目的を達成するための本発明の
燃料電池発電設備の構成は、空気と燃料ガスとを電解質
を介して電気化学反応させて発電する燃料電池部を有す
る燃料電池発電設備において、空気極排気部と燃料極排
気部とを独立させて複数の燃料電池部を直列に配置し、
燃料電池部の間における空気極排気部に空気を導入する
導入手段を備え、燃料電池部の間における空気極排気部
に導入手段から導入される空気に見合った排気を抽出す
る抽出手段を備え、導入手段に導入される空気との間で
熱交換を行う空気予熱手段を燃料電池部の間における燃
料極排気部に備え、抽出手段から抽出された排気と最上
流側の燃料電池部に導入される空気との間で熱交換を行
う第2空気予熱手段を備え、第2空気予熱手段で熱交換
された抽出排気と最上流側の燃料電池部に導入される燃
料ガスとの間で熱交換を行う第2燃料ガス予熱手段を備
え、最上流側の燃料電池部に導入される燃料ガスの通路
における第2燃料ガス予熱手段の後流側に最下流側の燃
料電池部の排気との間で熱交換を行う第3燃料ガス予熱
手段を備えたことを特徴とする。
In order to achieve the above object, the structure of the fuel cell power generation equipment according to the present invention is directed to a fuel cell power generation equipment having a fuel cell part for generating power by performing an electrochemical reaction between air and fuel gas through an electrolyte. A plurality of fuel cell units are arranged in series with the cathode exhaust unit and the anode exhaust unit being independent,
An introduction unit for introducing air to the cathode exhaust unit between the fuel cell units, and an extraction unit for extracting exhaust corresponding to the air introduced from the introduction unit to the cathode exhaust unit between the fuel cell units, Air preheating means for exchanging heat with the air introduced into the introduction means is provided in the fuel electrode exhaust section between the fuel cell sections, and the exhaust gas extracted from the extraction means and introduced into the most upstream fuel cell section. Second air preheating means for exchanging heat with the air flowing therethrough, and heat exchange between the extracted exhaust gas heat-exchanged by the second air preheating means and the fuel gas introduced into the fuel cell unit on the most upstream side. And a second fuel gas preheating means for performing the following steps: between the downstream of the second fuel gas preheating means and the exhaust of the most downstream fuel cell section in the passage of the fuel gas introduced into the most upstream fuel cell section. Equipped with third fuel gas preheating means for heat exchange And it features.

【0010】上記目的を達成するための本発明のタービ
ン発電設備の構成は、空気と燃料ガスとを電解質を介し
て電気化学反応させて発電する燃料電池部と、吸入空気
を圧縮して燃料電池部に導入する圧縮機及び電力を出力
する発電機を燃料電池部の排気により作動させるガスタ
ービンからなるタービン発電部とからなるタービン発電
設備において、空気極排気部と燃料極排気部とを独立さ
せて複数の燃料電池部を直列に配置し、燃料電池部の間
における空気極排気部に空気を導入する導入手段を備え
たことを特徴とする。
[0010] To achieve the above object, the construction of the turbine power generation equipment according to the present invention comprises a fuel cell unit for generating electricity by performing an electrochemical reaction between air and a fuel gas through an electrolyte, and a fuel cell unit for compressing intake air to generate a fuel cell. In a turbine power generation facility comprising a gas turbine and a turbine power generation unit comprising a gas turbine which operates a compressor to be introduced into the unit and a generator for outputting electric power by exhaust of the fuel cell unit, the air electrode exhaust unit and the fuel electrode exhaust unit are made independent. A plurality of fuel cell sections arranged in series, and an introduction means for introducing air to an air electrode exhaust section between the fuel cell sections is provided.

【0011】また、上記目的を達成するための本発明の
タービン発電設備の構成は、空気と燃料ガスとを電解質
を介して電気化学反応させて発電する燃料電池部と、吸
入空気を圧縮して燃料電池部に導入する圧縮機及び電力
を出力する発電機を燃料電池部の排気により作動させる
ガスタービンからなるタービン発電部とからなるタービ
ン発電設備において、空気極排気部と燃料極排気部とを
独立させて複数の燃料電池部を直列に配置し、燃料電池
部の間における空気極排気部に空気を導入する導入手段
を備え、燃料電池部の間における空気極排気部に導入手
段から導入される空気に見合った排気を抽出する抽出手
段を備えたことを特徴とする。
In order to achieve the above object, the construction of the turbine power generation equipment according to the present invention comprises a fuel cell unit for generating electricity by electrochemically reacting air and fuel gas through an electrolyte, and a compressor for compressing intake air. In a turbine power generation facility comprising a compressor introduced into the fuel cell unit and a turbine power generation unit comprising a gas turbine which operates a generator for outputting electric power by exhausting the fuel cell unit, an air electrode exhaust unit and a fuel electrode exhaust unit are connected to each other. A plurality of fuel cell units are independently arranged in series, and an introduction unit is provided for introducing air to the cathode exhaust unit between the fuel cell units, and is introduced from the introduction unit to the cathode exhaust unit between the fuel cell units. Extraction means for extracting exhaust gas corresponding to the air.

【0012】[0012]

【発明の実施の形態】以下図面に基づいて本発明のター
ビン発電設備を説明する。図1乃至図5には本発明の実
施形態例に係る燃料電池発電設備を備えたタービン発電
設備の概略系統を示してある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a turbine power generation system according to the present invention. 1 to 5 show a schematic system of a turbine power generation facility having a fuel cell power generation facility according to an embodiment of the present invention.

【0013】図に示した各実施形態例におけるタービン
発電設備は、圧縮機1及び燃焼器2及びタービン3を有
する燃焼タービン(ガスタービン)4と、燃焼タービン
の排気との間で蒸気を発生させる蒸気発生手段(排熱回
収ボイラ)5と、排熱回収ボイラ5で発生した蒸気が作
動流体となって導入される蒸気タービン系6とで構成さ
れている。そして、ガスタービン4の圧縮機1からの圧
縮空気が燃料電池(FC)発電設備の作動空気として供
給され、FC発電設備の排出ガスが燃焼器2に導入され
て熱回収される。
The turbine power generation equipment in each embodiment shown in the drawings generates steam between a combustion turbine (gas turbine) 4 having a compressor 1, a combustor 2 and a turbine 3, and an exhaust of the combustion turbine. It comprises a steam generating means (exhaust heat recovery boiler) 5 and a steam turbine system 6 into which steam generated by the exhaust heat recovery boiler 5 is introduced as a working fluid. Then, compressed air from the compressor 1 of the gas turbine 4 is supplied as working air for a fuel cell (FC) power generation facility, and exhaust gas from the FC power generation facility is introduced into the combustor 2 to recover heat.

【0014】尚、以下に示した各実施形態例では、FC
発電設備とガスタービン4とを組み合わせ、FC発電設
備の作動空気をガスタービン4の圧縮機1から供給し、
FC発電設備からの排出ガスを燃焼器2で回収するよう
にしたタービン発電設備を例に挙げて説明してあるが、
FC発電設備に供給される作動空気の供給源及びFC発
電設備から排出される排出ガスの導入先は図示例に限定
されるものではなく、他の任意の系統とすることも可能
である。
In each of the embodiments described below, the FC
The power generation equipment and the gas turbine 4 are combined, and the working air of the FC power generation equipment is supplied from the compressor 1 of the gas turbine 4,
Although a description is given of an example of a turbine power generation facility in which exhaust gas from the FC power generation facility is collected by the combustor 2,
The supply source of the working air supplied to the FC power generation equipment and the introduction destination of the exhaust gas discharged from the FC power generation equipment are not limited to the illustrated example, but may be any other systems.

【0015】図1に基づいて本発明の第1実施形態例に
係るFC発電設備7を備えたタービン発電設備10を説
明する。
Referring to FIG. 1, a turbine power plant 10 including an FC power plant 7 according to a first embodiment of the present invention will be described.

【0016】図に示したタービン発電設備10のガスタ
ービン4は圧縮機1及び燃焼器2及びタービン3を有し
ている。圧縮機1で圧縮された空気はFC発電設備7の
作動空気として供給され、FC発電設備7の排出ガスが
燃焼器2に導入される。燃焼器2には排出ガスと共に燃
料fcが導入され、燃焼器2の燃焼ガスがタービン3で膨
張される。タービン3には発電機8が連結され、タービ
ン3の作動により発電が行われる。タービン3の排気は
排熱回収ボイラ5に送られ、熱回収されて煙突STCKから
大気に放出される。排熱回収ボイラ5で発生した蒸気は
蒸気タービン系6に送られて仕事が行われる。
A gas turbine 4 of a turbine power plant 10 shown in FIG. 1 includes a compressor 1, a combustor 2, and a turbine 3. The air compressed by the compressor 1 is supplied as working air for the FC power generation facility 7, and the exhaust gas from the FC power generation facility 7 is introduced into the combustor 2. Fuel fc is introduced into the combustor 2 together with the exhaust gas, and the combustion gas in the combustor 2 is expanded in the turbine 3. A generator 8 is connected to the turbine 3, and power is generated by the operation of the turbine 3. The exhaust gas of the turbine 3 is sent to an exhaust heat recovery boiler 5, where the heat is recovered and released from the stack STCK to the atmosphere. The steam generated in the exhaust heat recovery boiler 5 is sent to a steam turbine system 6 to perform work.

【0017】FC発電設備7は、空気と燃料ガスfとを
電解質を介して電気化学反応させて発電を行う燃料電池
部11a,11b,11cが直列に配置されて構成され
ている。そして、燃料電池部11aと燃料電池部11b
の空気極と燃料極との間はそれぞれ空気極排気部12a
と燃料極排気部13aとで連通し、燃料電池部11bと
燃料電池部11cの空気極と燃料極との間はそれぞれ空
気極排気部12bと燃料極排気部13bとで連通してい
る。更に、燃料電池部11cの空気極と燃料極とは排出
ガス通路12c,13cにより燃焼器2につながってい
る。
The FC power generation equipment 7 is configured by arranging fuel cell units 11a, 11b and 11c for generating power by electrochemically reacting air and fuel gas f through an electrolyte. Then, the fuel cell unit 11a and the fuel cell unit 11b
Between the air electrode and the fuel electrode of the air electrode exhaust portion 12a
The fuel cell unit 11b and the fuel cell unit 11c communicate with each other, and the air electrode and the fuel electrode of the fuel cell unit 11b and the fuel cell unit 11c communicate with each other through the air electrode exhaust unit 12b and the fuel electrode exhaust unit 13b. Further, the air electrode and the fuel electrode of the fuel cell unit 11c are connected to the combustor 2 by exhaust gas passages 12c and 13c.

【0018】尚、燃料電池部11は2つを直列に配置し
たり4つ以上を直列に配置することが可能である。ま
た、排出ガス通路12c,13cの排出ガスを燃焼部で
燃焼させ、燃焼後の排出ガスを燃焼器2につなげるよう
にすることも可能である。
It should be noted that two fuel cell units 11 can be arranged in series, or four or more fuel cell units 11 can be arranged in series. Further, it is also possible that the exhaust gas in the exhaust gas passages 12c and 13c is burned in the combustion section, and the burned exhaust gas is connected to the combustor 2.

【0019】燃料電池部11aの燃料極には燃料ガスf
が作動用燃料として導入され、空気極には圧縮機1で圧
縮された圧縮空気が熱交換器14(熱媒体は燃料電池部
11の排出ガス等適宜適用される)により昇温されて空
気導入路19から作動用空気として導入される。燃料電
池部11aに導入されて作動を終えた燃料ガスf及び圧
縮空気は空気極排気部12a及び燃料極排気部13aか
ら燃料電池部11bに送られ、燃料電池部11bを作動
させた後空気極排気部12b及び燃料極排気部13bか
ら燃料電池部11cに送られる。燃料電池部11cで作
動を終えた排出ガスは排出ガス通路12c,13cから
燃焼器2に導入され、燃焼燃料fcと共に燃焼器2で燃焼
されてタービン3に導入されて膨張される。
The fuel electrode f of the fuel cell section 11a has a fuel gas f
Is introduced as the operating fuel, and the compressed air compressed by the compressor 1 is heated to the air electrode by the heat exchanger 14 (the heat medium is appropriately applied to the exhaust gas of the fuel cell unit 11 or the like) to introduce air. Air is introduced from the passage 19 as working air. The fuel gas f and the compressed air that have been introduced into the fuel cell unit 11a and have finished operating are sent from the cathode exhaust unit 12a and the anode exhaust unit 13a to the fuel cell unit 11b, and after operating the fuel cell unit 11b, the cathode The gas is sent from the exhaust unit 12b and the fuel electrode exhaust unit 13b to the fuel cell unit 11c. The exhaust gas that has been operated in the fuel cell unit 11c is introduced into the combustor 2 from the exhaust gas passages 12c and 13c, burned in the combustor 2 together with the combustion fuel fc, introduced into the turbine 3, and expanded.

【0020】空気極排気部12a及び空気極排気部12
bには導入手段としての混合器15a及び混合器15b
がそれぞれ備えられ、燃料極排気部13a及び燃料極排
気部13bには空気予熱手段としての空気予熱器16a
及び空気予熱器16bがそれぞれ備えられている。圧縮
機1で圧縮された空気の一部が空気導入路19から分岐
する分岐路20を通って空気予熱器16a及び空気予熱
器16bに送られ、空気予熱器16a及び空気予熱器1
6bで所定温度に予熱されて混合器15a及び混合器1
5bに予熱圧縮空気が導入される。混合器15a及び混
合器15bの上流側における空気極排気部12a及び空
気極排気部12bには抽出手段としての抽出路17a及
び抽出路17bが分岐してそれぞれ設けられ、抽出路1
7a及び抽出路17bは排出ガス通路12cにつながっ
ている。抽出路17a及び抽出路17bからは、混合器
15a及び混合器15bに導入される予熱圧縮空気に見
合った量の排出ガスが抽出されて排出ガス通路12cに
送られる。
Cathode exhaust unit 12a and cathode exhaust unit 12
b, a mixer 15a and a mixer 15b as introduction means
Are provided in the anode exhaust section 13a and the anode exhaust section 13b, respectively.
And an air preheater 16b. A part of the air compressed by the compressor 1 is sent to the air preheater 16a and the air preheater 16b through a branch passage 20 branched from the air introduction passage 19, and the air preheater 16a and the air preheater 1
6b, the mixture is preheated to a predetermined temperature,
Preheated compressed air is introduced into 5b. An extraction path 17a and an extraction path 17b as extraction means are provided in a branched manner in the cathode exhaust section 12a and the cathode exhaust section 12b on the upstream side of the mixers 15a and 15b, respectively.
7a and the extraction path 17b are connected to the exhaust gas path 12c. From the extraction passages 17a and 17b, an amount of exhaust gas corresponding to the preheated compressed air introduced into the mixers 15a and 15b is extracted and sent to the exhaust gas passage 12c.

【0021】上記構成のタービン発電設備10では、ガ
スタービン4の圧縮機1からの圧縮空気が熱交換器14
で予熱されて空気導入路19からFC発電設備7の作動
空気として供給される。また、燃料ガスfがFC発電設
備7の作動用燃料として供給される。FC発電設備7で
作動を終えた作動空気及び作動用燃料の排出ガスは排出
ガス通路12c,13cから燃焼器2に導入され、排出
ガスは燃焼燃料fcと共に燃焼器2で燃焼される。燃焼器
2の燃焼ガスはタービン3に導入され、膨張された後排
気される。タービン3の排気は排熱回収ボイラ5に送ら
れ、排熱回収ボイラ5で発生した蒸気は蒸気タービン系
6に送られて仕事が行われる。タービン3の作動により
発電機8が作動されて発電が行われると共に、FC発電
設備7で発電が行われる。
In the turbine power plant 10 having the above configuration, the compressed air from the compressor 1 of the gas turbine 4 is supplied to the heat exchanger 14.
And is supplied from the air introduction path 19 as working air for the FC power generation equipment 7. The fuel gas f is supplied as fuel for operating the FC power generation facility 7. The exhaust gas of the working air and the working fuel that has finished operating in the FC power generation facility 7 is introduced into the combustor 2 from the exhaust gas passages 12c and 13c, and the exhaust gas is burned in the combustor 2 together with the combustion fuel fc. Combustion gas from the combustor 2 is introduced into the turbine 3 and exhausted after being expanded. The exhaust gas of the turbine 3 is sent to an exhaust heat recovery boiler 5, and the steam generated in the exhaust heat recovery boiler 5 is sent to a steam turbine system 6 to perform work. The generator 8 is operated by the operation of the turbine 3 to generate power, and the FC power generation facility 7 generates power.

【0022】空気導入路19からの圧縮空気及び燃料ガ
スfは、FC発電設備7の燃料電池部11aに導入され
て燃料電池部11aを作動させる。燃料電池部11aを
作動させた圧縮空気及び燃料ガスfは空気極排気部12
a及び燃料極排気部13aから燃料電池部11bに導入
される。一方、圧縮機1で圧縮された空気の一部が分岐
路20を通って空気予熱器16aで予熱され(燃料極排
気部13aの燃料ガスfが冷却され)、予熱された圧縮
空気が空気極排気部12aの混合器15aに導入され
る。同時に、混合器15aに導入される予熱圧縮空気の
量に見合った量の排出ガスが抽出路17aから抽出さ
れ、抽出された排出ガスは排出ガス通路12cに送られ
る。
The compressed air and the fuel gas f from the air introduction path 19 are introduced into the fuel cell unit 11a of the FC power generation facility 7 to operate the fuel cell unit 11a. The compressed air and fuel gas f that have operated the fuel cell unit 11a are
a and the fuel electrode exhaust portion 13a to the fuel cell portion 11b. On the other hand, a part of the air compressed by the compressor 1 passes through the branch passage 20 and is preheated by the air preheater 16a (the fuel gas f of the fuel electrode exhaust portion 13a is cooled), and the preheated compressed air is converted to the air electrode. It is introduced into the mixer 15a of the exhaust part 12a. At the same time, an amount of exhaust gas corresponding to the amount of preheated compressed air introduced into the mixer 15a is extracted from the extraction passage 17a, and the extracted exhaust gas is sent to the exhaust gas passage 12c.

【0023】混合器15aから空気極排気部12aに予
熱圧縮空気が送られることにより、燃料電池部11aを
作動させた燃焼後の空気(酸素が減少した空気:窒素)
に新たな空気が混合されて酸素が補給されると共に、燃
料電池部11aを作動させて高温となった空気に新たな
空気が混合されて温度が低下される。また、混合器15
aに導入される量に合わせて排出ガスが抽出路17aか
ら燃焼後の空気が抽出されることにより、全体の空気量
がバランスされる。
The preheated compressed air is sent from the mixer 15a to the cathode exhaust unit 12a, so that the burned air (air with reduced oxygen: nitrogen) that operates the fuel cell unit 11a.
Is mixed with new air to supply oxygen, and the fuel cell unit 11a is operated to mix new air with the hot air to lower the temperature. In addition, the mixer 15
The exhaust gas is extracted from the extraction path 17a in accordance with the amount introduced into the exhaust gas 17a, so that the total amount of air is balanced.

【0024】例えば、圧縮空気及び燃料ガスfの作動温
度が950 ℃が最適である燃料電池部11aの場合、950
℃に調整された圧縮空気及び燃料ガスfが燃料電池部1
1aに導入され、作動後には、例えば、1050℃に空気及
び燃料ガスfが昇温することになる。燃料極排気部13
aでは、空気予熱器16aで燃料ガスfが熱交換される
ことで、燃料ガスfの温度が、例えば、950 ℃に低下さ
れる。また、空気極排気部12aでは、混合器15aに
予熱圧縮空気が導入されることで、空気の温度が、例え
ば、950 ℃に低下されると共に酸素が補給される。従っ
て、所望の温度に制御された燃料ガスf及び所望の温度
に制御されて酸素が補給された空気が燃料電池部11b
に送られる。
For example, in the case of the fuel cell unit 11a in which the operating temperature of the compressed air and the fuel gas f is optimally 950 ° C.,
℃ compressed air and fuel gas f
After operation, the air and the fuel gas f are heated to, for example, 1050 ° C. Fuel electrode exhaust 13
In a, the temperature of the fuel gas f is reduced to, for example, 950 ° C. by heat exchange of the fuel gas f in the air preheater 16a. In the cathode exhaust unit 12a, the preheated compressed air is introduced into the mixer 15a, so that the temperature of the air is reduced to, for example, 950 ° C. and oxygen is supplied. Therefore, the fuel gas f controlled to the desired temperature and the air controlled to the desired temperature and supplemented with oxygen are supplied to the fuel cell unit 11b.
Sent to

【0025】また、燃料電池部11bを作動させた空気
及び燃料ガスfは、空気極排気部12b及び燃料極排気
部13bから燃料電池部11cに導入される。また、圧
縮機1で圧縮された空気の一部が分岐路20を通って空
気予熱器16bで予熱され(燃料極排気部13bの燃料
ガスfが冷却され)、予熱された圧縮空気が空気極排気
部12bの混合器15bに導入される。同時に、混合器
15bに導入される予熱圧縮空気の量に見合った量の排
出ガスが抽出路17bから抽出され、抽出された排出ガ
スは排出ガス通路12cに送られる。
The air and the fuel gas f that have operated the fuel cell unit 11b are introduced into the fuel cell unit 11c from the cathode exhaust unit 12b and the anode exhaust unit 13b. Further, a part of the air compressed by the compressor 1 passes through the branch passage 20 and is preheated by the air preheater 16b (the fuel gas f of the fuel electrode exhaust part 13b is cooled), and the preheated compressed air is converted to the air electrode. It is introduced into the mixer 15b of the exhaust part 12b. At the same time, an amount of exhaust gas corresponding to the amount of preheated compressed air introduced into the mixer 15b is extracted from the extraction passage 17b, and the extracted exhaust gas is sent to the exhaust gas passage 12c.

【0026】前述と同様に、混合器15bから空気極排
気部12bに予熱圧縮空気が送られることにより、燃料
電池部11bを作動させた燃焼後の空気(酸素が減少し
た空気:窒素)に新たな空気が混合されて酸素が補給さ
れると共に、燃料電池部11bを作動させて高温となっ
た空気に新たな空気が混合されて温度が低下される。ま
た、混合器15bに導入される量に合わせて排出ガスが
抽出路17bから燃焼後の空気が抽出されることによ
り、全体の空気量がバランスされる。
In the same manner as described above, the preheated compressed air is sent from the mixer 15b to the cathode exhaust unit 12b, so that the burned air (air: nitrogen with reduced oxygen: nitrogen) that operates the fuel cell unit 11b is newly added. The fresh air is mixed and replenished with oxygen, and the fresh air is mixed with the hot air by operating the fuel cell unit 11b to lower the temperature. In addition, the exhaust gas is extracted from the extraction passage 17b in accordance with the amount introduced into the mixer 15b, and the air after combustion is extracted, so that the entire air amount is balanced.

【0027】そして、作動用の空気及び燃料ガスfの作
動温度が950 ℃が最適である燃料電池部11bの場合、
950 ℃に温度が低下された空気及び燃料ガスfが燃料電
池部11bに導入され、作動後には、例えば、1050℃に
空気及び燃料ガスfが昇温することになる。燃料極排気
部13bでは、空気予熱器16bで燃料ガスfが再び熱
交換されることで、燃料ガスfの温度が、例えば、950
℃に低下される。また、空気極排気部12bでは、混合
器15bに予熱圧縮空気導入されることで、空気の温度
が、例えば、950 ℃に低下されると共に酸素が補給され
る。従って、所望の温度に制御された燃料ガスf及び所
望の温度に制御されて酸素が補給された空気が燃料電池
部11cに送られる。
Then, in the case of the fuel cell unit 11b in which the operating temperature of the operating air and the fuel gas f is optimally 950 ° C.,
The air and the fuel gas f whose temperature has been reduced to 950 ° C. are introduced into the fuel cell unit 11b, and after the operation, the temperature of the air and the fuel gas f rises to, for example, 1050 ° C. In the fuel electrode exhaust portion 13b, the temperature of the fuel gas f is reduced to, for example, 950 by the heat exchange of the fuel gas f again in the air preheater 16b.
° C. In the cathode exhaust unit 12b, preheated compressed air is introduced into the mixer 15b, so that the temperature of the air is reduced to, for example, 950 ° C. and oxygen is supplied. Therefore, the fuel gas f controlled to the desired temperature and the air controlled to the desired temperature and supplemented with oxygen are sent to the fuel cell unit 11c.

【0028】燃料電池部11cを作動させた空気及び燃
料ガスfは、排出ガスとして排出ガス通路12c,13
cから燃焼器2に送られる。
The air and fuel gas f that have operated the fuel cell unit 11c are discharged as exhaust gas into exhaust gas passages 12c and 13c.
c to the combustor 2.

【0029】従って、直列に配置された燃料電池部11
a,11b,11cには、略同一の条件(温度・量及び
酸素濃度)の作動用の空気及び燃料ガスfが送られるこ
とになり、下流側の燃料電池部11b,11cの作動用
や冷却用としての空気を見越して過剰の空気を上流側燃
料電池部11aに導入する必要がなくなる。また、燃料
電池部11a,11b,11cの作動温度差を小さくす
ることができ、作動最適温度範囲が狭い燃料電池部を適
用して発電損失を抑えることができる。
Therefore, the fuel cell units 11 arranged in series
Air, fuel gas f for operation under substantially the same conditions (temperature, amount, and oxygen concentration) are sent to a, 11b, 11c, and operation and cooling of the downstream fuel cell units 11b, 11c are performed. There is no need to introduce excess air into the upstream fuel cell unit 11a in anticipation of service air. In addition, the difference in operating temperature between the fuel cell units 11a, 11b, and 11c can be reduced, and power generation loss can be suppressed by using a fuel cell unit that has a narrow optimal operating temperature range.

【0030】上述したタービン発電設備10は、燃料電
池部11a,11b,11cを直列に配置して燃料ガス
fの経路と空気の経路とを直列に配置し、混合器15及
び空気予熱器16でそれぞれの経路の冷却を行うように
したことにより、燃料電池部11a,11b,11c内
で発生する温度上昇を低減することが可能となる。ま
た、下流側の燃料電池部11b,11cの作動用や冷却
用としての空気を見越した過剰な空気を上流側燃料電池
部11aに導入する必要がないので、作動用の燃料ガス
f及び空気を減少させることが可能となり、発電システ
ムとして補器動力の削減、あるいは、排ガス損失の低減
が可能となる。更に、混合器15から空気極排気部12
に予熱圧縮空気を混合して下流側の燃料電池部11にフ
レッシュな空気を供給するようにしたので、酸素消費に
よる性能低下を抑制することができる。
In the above-mentioned turbine power generation facility 10, the fuel cell sections 11a, 11b, 11c are arranged in series, the path of the fuel gas f and the path of air are arranged in series, and the mixer 15 and the air preheater 16 By performing the cooling of each path, it is possible to reduce the temperature rise generated in the fuel cell units 11a, 11b, 11c. In addition, since it is not necessary to introduce excessive air into the upstream fuel cell unit 11a in anticipation of air for operating and cooling the downstream fuel cell units 11b and 11c, the fuel gas f and air for operation are removed. It is possible to reduce the power of auxiliary equipment or reduce the exhaust gas loss as a power generation system. Further, the cathode 15 is exhausted from the mixer 15
Is mixed with the preheated compressed air to supply fresh air to the fuel cell unit 11 on the downstream side, so that a decrease in performance due to oxygen consumption can be suppressed.

【0031】このため、複数の燃料電池部11を直列に
配置した設備で発電に必要な流量の空気を供給した場合
であっても、各燃料電池部11での作動流体の温度及び
酸素濃度を最適にすることができ、FC発電設備7、ガ
スタービン4及び蒸気タービン系6を組み合わせ、高い
発電効率で電気エネルギーを発生させる特徴を最大限に
生かすことが可能となる。
For this reason, even when air is supplied at a flow rate required for power generation in a facility in which a plurality of fuel cell units 11 are arranged in series, the temperature and oxygen concentration of the working fluid in each fuel cell unit 11 are maintained. It can be optimized, and the feature of generating electric energy with high power generation efficiency by combining the FC power generation equipment 7, the gas turbine 4, and the steam turbine system 6 can be maximized.

【0032】図2に基づいて本発明の第2実施形態例に
係るFC発電設備21を備えたタービン発電設備22を
説明する。尚、図1に示したFC発電設備7及びタービ
ン発電設備10と同一構成部材には同一符号を付して重
複する説明は省略してある。
Referring to FIG. 2, a description will be given of a turbine power plant 22 having an FC power plant 21 according to a second embodiment of the present invention. Note that the same components as those of the FC power generation facility 7 and the turbine power generation facility 10 shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

【0033】図2に示したタービン発電設備22のFC
発電設備21は、図1に示したFC発電設備7の空気予
熱器16a,16bに代えて燃料極排出部13a,13
bに燃料ガス予熱手段としての燃料予熱器23a,23
bを設けた構成となっている。そして、燃料ガスfが燃
料予熱器23b,23aにより排出燃料ガスとの間で熱
交換されて予熱され、最上流側の燃料電池部11aに供
給される。また、混合器15a,15bには圧縮機1か
らの圧縮空気が分岐路20を通って直接混合されて排出
ガスにフレッシュな空気が供給される。
The FC of the turbine power plant 22 shown in FIG.
The power generation equipment 21 includes fuel electrode discharge units 13a, 13b instead of the air preheaters 16a, 16b of the FC power generation equipment 7 shown in FIG.
b, fuel preheaters 23a and 23 as fuel gas preheating means;
b is provided. Then, the fuel gas f is preheated by exchanging heat with the exhaust fuel gas by the fuel preheaters 23b and 23a, and is supplied to the fuel cell unit 11a on the most upstream side. Further, the compressed air from the compressor 1 is directly mixed into the mixers 15a and 15b through the branch passage 20, and fresh air is supplied to the exhaust gas.

【0034】従って、第1実施形態例と同様に、FC発
電設備21を備えたタービン発電設備22では、直列に
配置された燃料電池部11a,11b,11cには、略
同一の条件の作動用の空気及び燃料ガスfが送られ、過
剰の空気を上流側燃料電池部11aに導入する必要がな
くなり、排ガス損失の低減が可能となると共に、酸素消
費による性能低下を抑制することができ、FC発電設備
21、ガスタービン4及び蒸気タービン系6を組み合わ
せ、高い発電効率で電気エネルギーを発生させる特徴を
最大限に生かすことが可能となる。
Therefore, similarly to the first embodiment, in the turbine power generation equipment 22 provided with the FC power generation equipment 21, the fuel cell units 11a, 11b, 11c arranged in series are operated under substantially the same conditions. Air and the fuel gas f are sent, so that it is not necessary to introduce excess air into the upstream fuel cell unit 11a, and it is possible to reduce exhaust gas loss and suppress performance degradation due to oxygen consumption. By combining the power generation facility 21, the gas turbine 4, and the steam turbine system 6, it is possible to maximize the feature of generating electric energy with high power generation efficiency.

【0035】図3に基づいて本発明の第3実施形態例に
係るFC発電設備25を備えたタービン発電設備26を
説明する。尚、図2に示したFC発電設備21及びター
ビン発電設備22と同一構成部材には同一符号を付して
重複する説明は省略してある。
Referring to FIG. 3, a turbine power plant 26 having an FC power plant 25 according to a third embodiment of the present invention will be described. Note that the same components as those of the FC power generation facility 21 and the turbine power generation facility 22 shown in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted.

【0036】図3に示したタービン発電設備26のFC
発電設備25は、図2に示したFC発電設備21の構成
に加えて、抽出路17a,17bから抽出された排出ガ
スと最上流側の燃料電池部11aに導入される圧縮空気
との間で熱交換を行う第2空気予熱手段としての第2空
気予熱器27a,27bを空気導入路19に設けた構成
になっている。そして、最上流側の燃料電池部11aに
導入される圧縮空気は、第2空気予熱器27b,27a
により抽出路17a,17bから抽出された排出ガスと
の間で熱交換されて予熱され、所定の温度に制御された
圧縮空気が燃料電池部11aに導入される。
The FC of the turbine power plant 26 shown in FIG.
In addition to the configuration of the FC power generation facility 21 shown in FIG. 2, the power generation facility 25 is provided between the exhaust gas extracted from the extraction passages 17a and 17b and the compressed air introduced into the fuel cell unit 11a on the most upstream side. Second air preheaters 27 a and 27 b as second air preheating means for performing heat exchange are provided in the air introduction path 19. The compressed air introduced into the fuel cell unit 11a on the most upstream side is supplied to the second air preheaters 27b and 27a.
Thus, heat is exchanged with the exhaust gas extracted from the extraction passages 17a and 17b to preheat, and compressed air controlled to a predetermined temperature is introduced into the fuel cell unit 11a.

【0037】従って、第1、第2実施形態例と同様に、
FC発電設備25を備えたタービン発電設備26では、
直列に配置された燃料電池部11a,11b,11cに
は、略同一の条件の作動用の空気及び燃料ガスfが送ら
れ、過剰の空気を上流側燃料電池部11aに導入する必
要がなくなり、排ガス損失の低減が可能となると共に、
酸素消費による性能低下を抑制することができ、FC発
電設備25、ガスタービン4及び蒸気タービン系6を組
み合わせ、高い発電効率で電気エネルギーを発生させる
特徴を最大限に生かすことが可能となる。
Therefore, similarly to the first and second embodiments,
In the turbine power generation equipment 26 having the FC power generation equipment 25,
The operating air and the fuel gas f under substantially the same conditions are sent to the fuel cell units 11a, 11b, 11c arranged in series, so that it is not necessary to introduce excess air into the upstream fuel cell unit 11a. As well as reducing exhaust gas loss,
Performance degradation due to oxygen consumption can be suppressed, and the feature of generating electric energy with high power generation efficiency by combining the FC power generation facility 25, the gas turbine 4, and the steam turbine system 6 can be maximized.

【0038】図4に基づいて本発明の第4実施形態例に
係るFC発電設備29を備えたタービン発電設備30を
説明する。尚、図1、図3に示したFC発電設備7,2
5及びタービン発電設備10,26と同一構成部材には
同一符号を付して重複する説明は省略してある。
A turbine power plant 30 having an FC power plant 29 according to a fourth embodiment of the present invention will be described with reference to FIG. The FC power generation facilities 7, 2 shown in FIGS.
5 and the same components as those of the turbine power generation facilities 10 and 26 are denoted by the same reference numerals, and redundant description is omitted.

【0039】図4に示したタービン発電設備30のFC
発電設備29は、図1に示したFC発電設備7の構成に
加えて、図3に示したFC発電設備25と同様に、抽出
路17a,17bから抽出された排出ガスと最上流側の
燃料電池部11aに導入される圧縮空気との間で熱交換
を行う第2空気予熱手段としての第2空気予熱器27
a,27bを空気導入路19に設けた構成になってい
る。そして、最上流側の燃料電池部11aに導入される
圧縮空気は、第2空気予熱器27b,27aにより抽出
路17a,17bから抽出された排出ガスとの間で熱交
換されて予熱され、所定の温度に制御された圧縮空気が
燃料電池部11aに導入される。
The FC of the turbine power plant 30 shown in FIG.
The power generation facility 29 includes, in addition to the configuration of the FC power generation facility 7 shown in FIG. 1, the exhaust gas extracted from the extraction passages 17a and 17b and the fuel on the most upstream side, similarly to the FC power generation facility 25 shown in FIG. Second air preheater 27 as second air preheating means for performing heat exchange with compressed air introduced into battery unit 11a
a, 27 b are provided in the air introduction path 19. The compressed air introduced into the fuel cell unit 11a on the most upstream side is preheated by heat exchange between the exhaust gas extracted from the extraction passages 17a and 17b by the second air preheaters 27b and 27a, and is preheated. Compressed air controlled to the temperature is introduced into the fuel cell unit 11a.

【0040】従って、第1乃至第3実施形態例と同様
に、FC発電設備29を備えたタービン発電設備30で
は、直列に配置された燃料電池部11a,11b,11
cには、略同一の条件の作動用の空気及び燃料ガスfが
送られ、過剰の空気を上流側燃料電池部11aに導入す
る必要がなくなり、排ガス損失の低減が可能となると共
に、酸素消費による性能低下を抑制することができ、F
C発電設備29、ガスタービン4及び蒸気タービン系6
を組み合わせ、高い発電効率で電気エネルギーを発生さ
せる特徴を最大限に生かすことが可能となる。
Therefore, similarly to the first to third embodiments, in the turbine power plant 30 provided with the FC power plant 29, the fuel cell units 11a, 11b, 11
In operation c, the operating air and fuel gas f under substantially the same conditions are sent, so that it is not necessary to introduce excess air into the upstream fuel cell unit 11a, so that exhaust gas loss can be reduced and oxygen consumption can be reduced. Performance can be suppressed, and F
C power generation equipment 29, gas turbine 4, and steam turbine system 6
It is possible to make the most of the feature of generating electric energy with high power generation efficiency.

【0041】図5に基づいて本発明の第5実施形態例に
係るFC発電設備32を備えたタービン発電設備33を
説明する。尚、図4に示したFC発電設備29及びター
ビン発電設備30と同一構成部材には同一符号を付して
重複する説明は省略してある。
Referring to FIG. 5, a turbine power generation facility 33 having an FC power generation facility 32 according to a fifth embodiment of the present invention will be described. Note that the same components as those of the FC power generation facility 29 and the turbine power generation facility 30 shown in FIG. 4 are denoted by the same reference numerals, and redundant description is omitted.

【0042】図5に示したタービン発電設備33のFC
発電設備32は、図4に示したFC発電設備29の構成
に加えて、第2空気予熱器27a,27bで熱交換され
た抽出排気の抽出路17には第2燃料ガス予熱手段とし
ての第2燃料予熱器34が設けられている。第2燃料予
熱器34では、第2空気予熱器27a,27bで熱交換
された抽出排気と最上流側の燃料電池部11aに導入さ
れる燃料ガスfとの間で熱交換(燃料予熱)が行われ
る。最上流側の燃料電池部11aに導入される燃料ガス
fの通路Fにおける第2燃料予熱器34の後流側は第3
燃料ガス予熱手段としての第3燃料予熱器35が設けら
れ、第3燃料予熱器35では最下流側の燃料電池部11
cの排気との間で第2燃料予熱器34で予熱された燃料
ガスfが更に予熱され、所定の温度に制御された燃料ガ
スfが燃料電池部11aに導入される。
The FC of the turbine power generation equipment 33 shown in FIG.
In addition to the configuration of the FC power generation facility 29 shown in FIG. 4, the power generation facility 32 includes a second fuel gas preheating means as a second fuel gas preheating means in the extraction path 17 of the extracted exhaust gas heat-exchanged by the second air preheaters 27a and 27b. A two-fuel preheater 34 is provided. In the second fuel preheater 34, heat exchange (fuel preheating) is performed between the extracted exhaust gas heat-exchanged in the second air preheaters 27a and 27b and the fuel gas f introduced into the fuel cell unit 11a on the most upstream side. Done. The downstream side of the second fuel preheater 34 in the passage F of the fuel gas f introduced into the fuel cell section 11a on the
A third fuel preheater 35 is provided as fuel gas preheating means, and the third fuel preheater 35 includes a fuel cell unit 11 on the most downstream side.
The fuel gas f preheated by the second fuel preheater 34 is further preheated with the exhaust gas of c, and the fuel gas f controlled to a predetermined temperature is introduced into the fuel cell unit 11a.

【0043】従って、第1乃至第4実施形態例と同様
に、FC発電設備32を備えたタービン発電設備34で
は、直列に配置された燃料電池部11a,11b,11
cには、略同一の条件の作動用の空気及び燃料ガスfが
送られ、過剰の空気を上流側燃料電池部11aに導入す
る必要がなくなり、排ガス損失の低減が可能となると共
に、酸素消費による性能低下を抑制することができ、F
C発電設備32、ガスタービン4及び蒸気タービン系6
を組み合わせ、高い発電効率で電気エネルギーを発生さ
せる特徴を最大限に生かすことが可能となる。
Therefore, similarly to the first to fourth embodiments, in the turbine power generation facility 34 including the FC power generation facility 32, the fuel cell units 11a, 11b, 11
In operation c, the operating air and fuel gas f under substantially the same conditions are sent, so that it is not necessary to introduce excess air into the upstream fuel cell unit 11a, so that exhaust gas loss can be reduced and oxygen consumption can be reduced. Performance can be suppressed, and F
C power generation facility 32, gas turbine 4, and steam turbine system 6
It is possible to make the most of the feature of generating electric energy with high power generation efficiency.

【0044】[0044]

【発明の効果】本発明の燃料電池発電設備は、空気と燃
料ガスとを電解質を介して電気化学反応させて発電する
燃料電池部を有する燃料電池発電設備において、空気極
排気部と燃料極排気部とを独立させて複数の燃料電池部
を直列に配置し、燃料電池部の間における空気極排気部
に空気を導入する導入手段を備えたので、導入手段によ
り燃料電池部の間に空気を導入することで、後流側の燃
料電池部に新たな空気が混合されて酸素が補給されると
共に冷却が行える。このため、過剰の空気を上流側の燃
料電池部に導入する必要がなくなり、発電システムとし
て補器動力の削減、あるいは、排ガス損失の低減が可能
となり、酸素消費による性能低下を抑制することができ
る。従って、複数の燃料電池部を直列に配置した設備で
発電に必要な流量の空気を供給した場合であっても、各
燃料電池部での作動流体の温度及び酸素濃度を最適にす
ることができ、高い発電効率で電気エネルギーを発生さ
せる特徴を最大限に生かすことが可能となる。
According to the fuel cell power generation equipment of the present invention, there is provided a fuel cell power generation equipment having a fuel cell part for generating electricity by performing an electrochemical reaction between air and fuel gas through an electrolyte. And a plurality of fuel cell sections arranged in series independently of each other, and an introduction means for introducing air to the cathode exhaust section between the fuel cell sections is provided. With the introduction, new air is mixed into the downstream fuel cell unit to replenish oxygen and perform cooling. For this reason, it is not necessary to introduce excess air into the fuel cell section on the upstream side, and it is possible to reduce auxiliary power or reduce exhaust gas loss as a power generation system, and to suppress performance degradation due to oxygen consumption. . Therefore, even when air is supplied at a flow rate necessary for power generation in a facility in which a plurality of fuel cell units are arranged in series, the temperature and oxygen concentration of the working fluid in each fuel cell unit can be optimized. In addition, it is possible to make the most of the feature of generating electric energy with high power generation efficiency.

【0045】また、本発明の燃料電池発電設備は、空気
と燃料ガスとを電解質を介して電気化学反応させて発電
する燃料電池部を有する燃料電池発電設備において、空
気極排気部と燃料極排気部とを独立させて複数の燃料電
池部を直列に配置し、燃料電池部の間における空気極排
気部に空気を導入する導入手段を備え、燃料電池部の間
における空気極排気部に導入手段から導入される空気に
見合った排気を抽出する抽出手段を備えたので、導入手
段により燃料電池部の間に空気を導入すると共に抽出手
段により導入される空気に見合った排気を抽出すること
で、全体の空気量をバランスさせた状態で後流側の燃料
電池部に新たな空気が混合されて酸素が補給されると共
に冷却が行える。このため、過剰の空気を上流側の燃料
電池部に導入する必要がなくなり、発電システムとして
補器動力の削減、あるいは、排ガス損失の低減が可能と
なり、酸素消費による性能低下を抑制することができ
る。従って、複数の燃料電池部を直列に配置した設備で
発電に必要な流量の空気を供給した場合であっても、各
燃料電池部での作動流体の温度及び酸素濃度を最適にす
ることができ、高い発電効率で電気エネルギーを発生さ
せる特徴を最大限に生かすことが可能となる。
Further, according to the fuel cell power generation equipment of the present invention, there is provided a fuel cell power generation equipment having a fuel cell part for generating electricity by electrochemically reacting air and fuel gas via an electrolyte, and A plurality of fuel cell units arranged in series independently of each other, and introducing means for introducing air to the cathode exhaust unit between the fuel cell units; and introducing means to the cathode exhaust unit between the fuel cell units. Since extraction means for extracting exhaust corresponding to the air introduced from is provided, by introducing air between the fuel cell units by the introduction means and extracting exhaust corresponding to the air introduced by the extraction means, New air is mixed into the downstream fuel cell unit while the total amount of air is balanced, and oxygen is supplied and cooling is performed. For this reason, it is not necessary to introduce excess air into the fuel cell section on the upstream side, so that it is possible to reduce auxiliary power or reduce exhaust gas loss as a power generation system, and suppress performance degradation due to oxygen consumption. . Therefore, even when air is supplied at a flow rate necessary for power generation in a facility in which a plurality of fuel cell units are arranged in series, the temperature and oxygen concentration of the working fluid in each fuel cell unit can be optimized. In addition, it is possible to make the most of the feature of generating electric energy with high power generation efficiency.

【0046】また、本発明の燃料電池発電設備は、空気
と燃料ガスとを電解質を介して電気化学反応させて発電
する燃料電池部を有する燃料電池発電設備において、空
気極排気部と燃料極排気部とを独立させて複数の燃料電
池部を直列に配置し、燃料電池部の間における空気極排
気部に空気を導入する導入手段を備え、燃料電池部の間
における空気極排気部に導入手段から導入される空気に
見合った排気を抽出する抽出手段を備え、導入手段に導
入される空気との間で熱交換を行う空気予熱手段を燃料
電池部の間における燃料極排気部に備え、抽出手段から
抽出された排気と最上流側の燃料電池部に導入される空
気との間で熱交換を行う第2空気予熱手段を備え、第2
空気予熱手段で熱交換された抽出排気と最上流側の燃料
電池部に導入される燃料ガスとの間で熱交換を行う第2
燃料ガス予熱手段を備え、最上流側の燃料電池部に導入
される燃料ガスの通路における第2燃料ガス予熱手段の
後流側に最下流側の燃料電池部の排気との間で熱交換を
行う第3燃料ガス予熱手段を備えたので、導入手段によ
り燃料電池部の間に空気を導入すると共に抽出手段によ
り導入される空気に見合った排気を抽出し、空気予熱手
段、第2空気予熱手段、第2燃料ガス予熱手段及び第3
燃料ガス予熱手段により作動用の空気及び燃料を予熱す
ることで、全体の空気量をバランスさせた状態で後流側
の燃料電池部に新たな空気が混合されて酸素が補給され
ると共に冷却が行え、作動用の空気及び燃料を所定温度
に制御することができる。このため、作動用の空気及び
燃料を最適な温度に制御して過剰の空気を上流側の燃料
電池部に導入する必要がなくなり、発電システムとして
補器動力の削減、あるいは、排ガス損失の低減が可能と
なり、酸素消費による性能低下を抑制することができ
る。従って、複数の燃料電池部を直列に配置した設備で
発電に必要な流量の空気を供給した場合であっても、各
燃料電池部での作動流体の温度及び酸素濃度を最適にす
ることができ、高い発電効率で電気エネルギーを発生さ
せる特徴を最大限に生かすことが可能となる。
Further, according to the fuel cell power generation equipment of the present invention, there is provided a fuel cell power generation equipment having a fuel cell part for generating power by electrochemically reacting air and fuel gas through an electrolyte through an electrolyte. A plurality of fuel cell units arranged in series independently of each other, and introducing means for introducing air to the cathode exhaust unit between the fuel cell units; and introducing means to the cathode exhaust unit between the fuel cell units. Extraction means for extracting exhaust corresponding to the air introduced from the air supply means, and an air preheating means for exchanging heat with air introduced to the introduction means is provided in the fuel electrode exhaust section between the fuel cell sections, A second air preheating means for performing heat exchange between the exhaust gas extracted from the means and air introduced into the fuel cell unit on the most upstream side;
A second heat exchange between the extracted exhaust gas heat-exchanged by the air preheating means and the fuel gas introduced into the fuel cell unit on the most upstream side;
A fuel gas preheating means is provided, and heat exchange is performed between the exhaust of the fuel cell section on the downstream side and the downstream side of the second fuel gas preheating means in the passage of the fuel gas introduced into the fuel cell section on the most upstream side. Since the third fuel gas preheating means is provided, air is introduced between the fuel cell units by the introduction means, and exhaust gas corresponding to the air introduced by the extraction means is extracted, and the air preheating means and the second air preheating means are provided. , A second fuel gas preheating means and a third fuel gas preheating means.
By preheating the operating air and fuel by the fuel gas preheating means, new air is mixed into the downstream fuel cell unit while the total air amount is balanced, oxygen is supplied, and cooling is performed. It is possible to control the operating air and fuel to a predetermined temperature. For this reason, it is not necessary to control the operating air and fuel to optimal temperatures and introduce excess air into the fuel cell section on the upstream side, and as a power generation system, it is possible to reduce auxiliary machine power or reduce exhaust gas loss. This makes it possible to suppress performance degradation due to oxygen consumption. Therefore, even when air is supplied at a flow rate necessary for power generation in a facility in which a plurality of fuel cell units are arranged in series, the temperature and oxygen concentration of the working fluid in each fuel cell unit can be optimized. In addition, it is possible to make the most of the feature of generating electric energy with high power generation efficiency.

【0047】また、本発明のタービン発電設備は、空気
と燃料ガスとを電解質を介して電気化学反応させて発電
する燃料電池部と、吸入空気を圧縮して燃料電池部に導
入する圧縮機及び電力を出力する発電機を燃料電池部の
排気により作動させるガスタービンからなるタービン発
電部とからなるタービン発電設備において、空気極排気
部と燃料極排気部とを独立させて複数の燃料電池部を直
列に配置し、燃料電池部の間における空気極排気部に空
気を導入する導入手段を備えたので、導入手段により燃
料電池部の間に空気を導入することで、後流側の燃料電
池部に新たな空気が混合されて酸素が補給されると共に
冷却が行える。このため、過剰の空気を上流側の燃料電
池部に導入する必要がなくなり、発電システムとして補
器動力の削減、あるいは、排ガス損失の低減が可能とな
り、酸素消費による性能低下を抑制することができる。
従って、複数の燃料電池部を直列に配置した設備で発電
に必要な流量の空気を供給した場合であっても、各燃料
電池部での作動流体の温度及び酸素濃度を最適にするこ
とができ、高い発電効率で電気エネルギーを発生させる
特徴を最大限に生かしたタービン発電設備とすることが
可能となる。
Further, the turbine power generation equipment of the present invention comprises a fuel cell unit for generating electricity by causing an electrochemical reaction between air and fuel gas through an electrolyte, a compressor for compressing intake air and introducing the compressed air into the fuel cell unit. In a turbine power generation facility consisting of a gas turbine that operates a generator that outputs electric power by exhausting a fuel cell unit, a plurality of fuel cell units are formed by making an air electrode exhaust unit and a fuel electrode exhaust unit independent. The fuel cell unit is arranged in series, and has an introduction means for introducing air to the air electrode exhaust unit between the fuel cell units. By introducing air between the fuel cell units by the introduction unit, the fuel cell unit on the downstream side is provided. Is mixed with fresh air to supply oxygen and cool. For this reason, it is not necessary to introduce excess air into the fuel cell section on the upstream side, and it is possible to reduce auxiliary power or reduce exhaust gas loss as a power generation system, and to suppress performance degradation due to oxygen consumption. .
Therefore, even when air is supplied at a flow rate necessary for power generation in a facility in which a plurality of fuel cell units are arranged in series, the temperature and oxygen concentration of the working fluid in each fuel cell unit can be optimized. In addition, it is possible to provide a turbine power generation facility that maximizes the characteristics of generating electric energy with high power generation efficiency.

【0048】また、本発明のタービン発電設備は、空気
と燃料ガスとを電解質を介して電気化学反応させて発電
する燃料電池部と、吸入空気を圧縮して燃料電池部に導
入する圧縮機及び電力を出力する発電機を燃料電池部の
排気により作動させるガスタービンからなるタービン発
電部とからなるタービン発電設備において、空気極排気
部と燃料極排気部とを独立させて複数の燃料電池部を直
列に配置し、燃料電池部の間における空気極排気部に空
気を導入する導入手段を備え、燃料電池部の間における
空気極排気部に導入手段から導入される空気に見合った
排気を抽出する抽出手段を備えたので、導入手段により
燃料電池部の間に空気を導入すると共に抽出手段により
導入される空気に見合った排気を抽出することで、全体
の空気量をバランスさせた状態で後流側の燃料電池部に
新たな空気が混合されて酸素が補給されると共に冷却が
行える。このため、過剰の空気を上流側の燃料電池部に
導入する必要がなくなり、発電システムとして補器動力
の削減、あるいは、排ガス損失の低減が可能となり、酸
素消費による性能低下を抑制することができる。従っ
て、複数の燃料電池部を直列に配置した設備で発電に必
要な流量の空気を供給した場合であっても、各燃料電池
部での作動流体の温度及び酸素濃度を最適にすることが
でき、高い発電効率で電気エネルギーを発生させる特徴
を最大限に生かしたタービン発電設備とすることが可能
となる。
Further, the turbine power generation equipment of the present invention comprises a fuel cell unit for generating electricity by causing an electrochemical reaction between air and fuel gas via an electrolyte, a compressor for compressing intake air and introducing the compressed air into the fuel cell unit. In a turbine power generation facility consisting of a gas turbine that operates a generator that outputs electric power by exhausting a fuel cell unit, a plurality of fuel cell units are formed by making an air electrode exhaust unit and a fuel electrode exhaust unit independent. Introducing means for arranging in series and introducing air to the air electrode exhaust section between the fuel cell sections, and extracting exhaust corresponding to the air introduced from the introducing means to the air electrode exhaust section between the fuel cell sections. Since the extraction means is provided, air is introduced between the fuel cell units by the introduction means and exhaust gas corresponding to the air introduced by the extraction means is extracted, so that the total amount of air is balanced. Mixed new air to the fuel cell portion of the wake side while being oxygen can be performed cooled while being replenished. For this reason, it is not necessary to introduce excess air into the fuel cell section on the upstream side, and it is possible to reduce auxiliary power or reduce exhaust gas loss as a power generation system, and to suppress performance degradation due to oxygen consumption. . Therefore, even when air is supplied at a flow rate necessary for power generation in a facility in which a plurality of fuel cell units are arranged in series, the temperature and oxygen concentration of the working fluid in each fuel cell unit can be optimized. In addition, it is possible to provide a turbine power generation facility that maximizes the characteristics of generating electric energy with high power generation efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態例に係る燃料電池発電設
備を備えたタービン発電設備の概略系統図。
FIG. 1 is a schematic system diagram of a turbine power generation facility including a fuel cell power generation facility according to a first embodiment of the present invention.

【図2】本発明の第2実施形態例に係る燃料電池発電設
備を備えたタービン発電設備の概略系統図。
FIG. 2 is a schematic system diagram of a turbine power plant equipped with a fuel cell power plant according to a second embodiment of the present invention.

【図3】本発明の第3実施形態例に係る燃料電池発電設
備を備えたタービン発電設備の概略系統図。
FIG. 3 is a schematic system diagram of a turbine power plant equipped with a fuel cell power plant according to a third embodiment of the present invention.

【図4】本発明の第4実施形態例に係る燃料電池発電設
備を備えたタービン発電設備の概略系統図。
FIG. 4 is a schematic system diagram of a turbine power plant equipped with a fuel cell power plant according to a fourth embodiment of the present invention.

【図5】本発明の第5実施形態例に係る燃料電池発電設
備を備えたタービン発電設備の概略系統図。
FIG. 5 is a schematic system diagram of a turbine power plant equipped with a fuel cell power plant according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 燃焼器 3 タービン 4 燃焼タービン(ガスタービン) 5 蒸気発生手段(排熱回収ボイラ) 6 蒸気タービン系 7,21,25,29,32 燃料電池(FC)発電設
備 8 発電機 10,22,26,30,33 タービン発電設備 11a,11b,11c 燃料電池部 12a,12b 空気極排気部 13a,13b 燃料極排気部 12c,13c 排出ガス通路 14 熱交換器 15a,15b 混合器 16a,16b 空気予熱器 17a,17b 排出路 19 空気導入路 20 分岐路 23a,23b 燃料予熱器 27a,27b 第2空気予熱器 34 第2燃料予熱器 35 第3燃料予熱器
DESCRIPTION OF SYMBOLS 1 Compressor 2 Combustor 3 Turbine 4 Combustion turbine (Gas turbine) 5 Steam generation means (Exhaust heat recovery boiler) 6 Steam turbine system 7, 21, 25, 29, 32 Fuel cell (FC) power generation equipment 8 Generator 10, 22, 26, 30, 33 Turbine power generation equipment 11a, 11b, 11c Fuel cell unit 12a, 12b Air electrode exhaust unit 13a, 13b Fuel electrode exhaust unit 12c, 13c Exhaust gas passage 14 Heat exchanger 15a, 15b Mixer 16a, 16b Air preheater 17a, 17b Discharge path 19 Air introduction path 20 Branch path 23a, 23b Fuel preheater 27a, 27b Second air preheater 34 Second fuel preheater 35 Third fuel preheater

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H027 BC11 DD02  ──────────────────────────────────────────────────続 き The continuation of the front page F term (reference) 5H027 BC11 DD02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 空気と燃料ガスとを電解質を介して電気
化学反応させて発電する燃料電池部を有する燃料電池発
電設備において、空気極排気部と燃料極排気部とを独立
させて複数の燃料電池部を直列に配置し、燃料電池部の
間における空気極排気部に空気を導入する導入手段を備
えたことを特徴とする燃料電池発電設備。
In a fuel cell power generation facility having a fuel cell unit for generating power by performing an electrochemical reaction between air and a fuel gas via an electrolyte, a plurality of fuel cells are provided by independently providing an air electrode exhaust unit and a fuel electrode exhaust unit. A fuel cell power generation facility comprising: battery units arranged in series; and introduction means for introducing air into an air electrode exhaust unit between the fuel cell units.
【請求項2】 空気と燃料ガスとを電解質を介して電気
化学反応させて発電する燃料電池部を有する燃料電池発
電設備において、空気極排気部と燃料極排気部とを独立
させて複数の燃料電池部を直列に配置し、燃料電池部の
間における空気極排気部に空気を導入する導入手段を備
え、燃料電池部の間における空気極排気部に導入手段か
ら導入される空気に見合った排気を抽出する抽出手段を
備えたことを特徴とする燃料電池発電設備。
2. A fuel cell power generation system having a fuel cell unit for generating electricity by electrochemically reacting air and fuel gas via an electrolyte, wherein a plurality of fuel cells are provided by independently providing an air electrode exhaust unit and a fuel electrode exhaust unit. The battery unit is arranged in series, and an introduction means for introducing air to the cathode exhaust unit between the fuel cell units is provided, and the exhaust corresponding to the air introduced from the introduction unit to the cathode exhaust unit between the fuel cell units is provided. Fuel cell power generation equipment, characterized by comprising extraction means for extracting water.
【請求項3】 請求項1もしくは請求項2において、最
上流側の燃料電池部に導入される燃料ガスとの間で熱交
換を行う燃料ガス予熱手段を燃料電池部の間における燃
料極排気部に備えたことを特徴とする燃料電池発電設
備。
3. A fuel electrode exhaust section between fuel cells according to claim 1, wherein fuel gas preheating means for performing heat exchange with fuel gas introduced into the fuel cell section on the most upstream side is provided. A fuel cell power generation facility characterized in that:
【請求項4】 請求項1もしくは請求項2において、導
入手段に導入される空気との間で熱交換を行う空気予熱
手段を燃料電池部の間における燃料極排気部に備えたこ
とを特徴とする燃料電池発電設備。
4. The fuel exhaust system according to claim 1, further comprising an air preheating unit for exchanging heat with air introduced into the introduction unit, in the fuel electrode exhaust unit between the fuel cell units. Fuel cell power generation equipment.
【請求項5】 請求項2において、抽出手段から抽出さ
れた排気と最上流側の燃料電池部に導入される空気との
間で熱交換を行う第2空気予熱手段を備えたことを特徴
とする燃料電池発電設備。
5. The apparatus according to claim 2, further comprising second air preheating means for performing heat exchange between the exhaust gas extracted from the extraction means and air introduced into the fuel cell unit on the most upstream side. Fuel cell power generation equipment.
【請求項6】 空気と燃料ガスとを電解質を介して電気
化学反応させて発電する燃料電池部を有する燃料電池発
電設備において、空気極排気部と燃料極排気部とを独立
させて複数の燃料電池部を直列に配置し、燃料電池部の
間における空気極排気部に空気を導入する導入手段を備
え、燃料電池部の間における空気極排気部に導入手段か
ら導入される空気に見合った排気を抽出する抽出手段を
備え、導入手段に導入される空気との間で熱交換を行う
空気予熱手段を燃料電池部の間における燃料極排気部に
備え、抽出手段から抽出された排気と最上流側の燃料電
池部に導入される空気との間で熱交換を行う第2空気予
熱手段を備え、第2空気予熱手段で熱交換された抽出排
気と最上流側の燃料電池部に導入される燃料ガスとの間
で熱交換を行う第2燃料ガス予熱手段を備え、最上流側
の燃料電池部に導入される燃料ガスの通路における第2
燃料ガス予熱手段の後流側に最下流側の燃料電池部の排
気との間で熱交換を行う第3燃料ガス予熱手段を備えた
ことを特徴とする燃料電池発電設備。
6. A fuel cell power generation system having a fuel cell unit for generating power by performing an electrochemical reaction between air and a fuel gas through an electrolyte, wherein a plurality of fuels are provided by independently providing an air electrode exhaust unit and a fuel electrode exhaust unit. The battery unit is arranged in series, and an introduction means for introducing air to the cathode exhaust unit between the fuel cell units is provided, and the exhaust corresponding to the air introduced from the introduction unit to the cathode exhaust unit between the fuel cell units is provided. Extraction means for extracting air, and an air preheating means for exchanging heat with air introduced into the introduction means is provided in the fuel electrode exhaust section between the fuel cell sections, and the exhaust gas extracted from the extraction means and the most upstream Second air preheating means for exchanging heat with the air introduced into the fuel cell section on the side, and the extracted exhaust heat exchanged by the second air preheating means and introduced into the fuel cell section on the most upstream side Second heat exchange with fuel gas A fuel gas preheating means, and a second fuel gas passage for introducing the fuel gas into the fuel cell section on the most upstream side.
A fuel cell power generation facility comprising: a third fuel gas preheating unit that performs heat exchange between the downstream side of the fuel gas preheating unit and exhaust gas from a fuel cell unit on the most downstream side.
【請求項7】 空気と燃料ガスとを電解質を介して電気
化学反応させて発電する燃料電池部と、吸入空気を圧縮
して燃料電池部に導入する圧縮機及び電力を出力する発
電機を燃料電池部の排気により作動させるガスタービン
からなるタービン発電部とからなるタービン発電設備に
おいて、空気極排気部と燃料極排気部とを独立させて複
数の燃料電池部を直列に配置し、燃料電池部の間におけ
る空気極排気部に空気を導入する導入手段を備えたこと
を特徴とするタービン発電設備。
7. A fuel cell unit for generating electricity by causing an electrochemical reaction between air and a fuel gas through an electrolyte, a compressor for compressing intake air and introducing the compressed air into the fuel cell unit, and a generator for outputting electric power. In a turbine power generation facility including a gas turbine that is operated by exhausting a battery unit, a plurality of fuel cell units are arranged in series with an air electrode exhaust unit and a fuel electrode exhaust unit being independent, and a fuel cell unit is provided. A turbine power generation facility comprising an introduction means for introducing air to an air electrode exhaust portion between the two.
【請求項8】 空気と燃料ガスとを電解質を介して電気
化学反応させて発電する燃料電池部と、吸入空気を圧縮
して燃料電池部に導入する圧縮機及び電力を出力する発
電機を燃料電池部の排気により作動させるガスタービン
からなるタービン発電部とからなるタービン発電設備に
おいて、空気極排気部と燃料極排気部とを独立させて複
数の燃料電池部を直列に配置し、燃料電池部の間におけ
る空気極排気部に空気を導入する導入手段を備え、燃料
電池部の間における空気極排気部に導入手段から導入さ
れる空気に見合った排気を抽出する抽出手段を備えたこ
とを特徴とするタービン発電設備。
8. A fuel cell unit for generating electricity by causing an electrochemical reaction between air and a fuel gas through an electrolyte, a compressor for compressing intake air and introducing it to the fuel cell unit, and a generator for outputting electric power. In a turbine power generation facility including a gas turbine that is operated by exhausting a battery unit, a plurality of fuel cell units are arranged in series with an air electrode exhaust unit and a fuel electrode exhaust unit being independent, and a fuel cell unit is provided. And an extracting means for extracting exhaust gas corresponding to the air introduced from the introducing means to the air electrode exhaust section between the fuel cell sections. And turbine power generation equipment.
JP2001109470A 2001-04-09 2001-04-09 Fuel cell power generating facility and turbine power generating facility Withdrawn JP2002313375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001109470A JP2002313375A (en) 2001-04-09 2001-04-09 Fuel cell power generating facility and turbine power generating facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001109470A JP2002313375A (en) 2001-04-09 2001-04-09 Fuel cell power generating facility and turbine power generating facility

Publications (1)

Publication Number Publication Date
JP2002313375A true JP2002313375A (en) 2002-10-25

Family

ID=18961407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001109470A Withdrawn JP2002313375A (en) 2001-04-09 2001-04-09 Fuel cell power generating facility and turbine power generating facility

Country Status (1)

Country Link
JP (1) JP2002313375A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510642A (en) * 2006-11-20 2010-04-02 エーエーセーテー ベスローテン フェンノートシャップ System comprising a high temperature fuel cell
WO2012165467A1 (en) * 2011-06-03 2012-12-06 株式会社村田製作所 Fuel cell module
JP2014089846A (en) * 2012-10-29 2014-05-15 Central Research Institute Of Electric Power Industry Heat and electricity cogeneration type adjustment power supply, and heat and electricity cogeneration system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510642A (en) * 2006-11-20 2010-04-02 エーエーセーテー ベスローテン フェンノートシャップ System comprising a high temperature fuel cell
WO2012165467A1 (en) * 2011-06-03 2012-12-06 株式会社村田製作所 Fuel cell module
US9350030B2 (en) 2011-06-03 2016-05-24 Murata Manufacturing Co., Ltd. Fuel cell module
JP2014089846A (en) * 2012-10-29 2014-05-15 Central Research Institute Of Electric Power Industry Heat and electricity cogeneration type adjustment power supply, and heat and electricity cogeneration system

Similar Documents

Publication Publication Date Title
EP1804322B1 (en) Combined power generation equipment
EP2800186B1 (en) Fuel cell hybrid system
Grillo et al. Hybrid systems for distributed power generation based on pressurisation and heat recovering of an existing 100 kW molten carbonate fuel cell
JPH09129255A (en) Power generating system for combined cycle of indirect combustion gas turbine and doubled fuel cell
JP2006147575A (en) Recuperative atmospheric-pressure sofc/gas turbine hybrid cycle
US6989209B2 (en) Power generation method
JP2005038817A (en) Fuel cell/normal pressure turbine/hybrid system
JPH11297336A (en) Composite power generating system
JPH06103629B2 (en) Combined fuel cell power generation facility
CN112803039A (en) Combined heat and power device and method
KR100405142B1 (en) Electric power system for Fuel Cell generation
JP2002313375A (en) Fuel cell power generating facility and turbine power generating facility
JP2004022230A (en) Fuel cell compound gas turbine system
JPH11238520A (en) Fuel cell power generating apparatus
Liese et al. Performance comparison of internal reforming against external reforming in a SOFC, gas turbine hybrid system
JP4209015B2 (en) Solid electrolyte fuel cell combined power plant system
JP4745479B2 (en) Combined power plant
US20100285381A1 (en) Method and apparatus for operating a fuel cell in combination with an orc system
JP2004071488A (en) Fuel cell power generation facility, turbine power generation facility, gas engine power generation facility, and combined power generation facility
JP5123453B2 (en) Turbine power generation equipment
JP3835996B2 (en) Fuel cell combined cycle
Archer et al. Power generation by combined fuel cell and gas turbine systems
JP2005044571A (en) Hybrid type fuel cell system
JPS5828177A (en) Fuel-cell generation plant
JP2001076750A (en) High temperature fuel cell facility

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701