JP2002311074A - Leakage current measurement method for capacitor - Google Patents

Leakage current measurement method for capacitor

Info

Publication number
JP2002311074A
JP2002311074A JP2001109588A JP2001109588A JP2002311074A JP 2002311074 A JP2002311074 A JP 2002311074A JP 2001109588 A JP2001109588 A JP 2001109588A JP 2001109588 A JP2001109588 A JP 2001109588A JP 2002311074 A JP2002311074 A JP 2002311074A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
leakage current
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001109588A
Other languages
Japanese (ja)
Inventor
Yoshibumi Hara
義文 原
Kazuo Kanetsuki
一雄 鐘築
Yasuhiko Miyamoto
康彦 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001109588A priority Critical patent/JP2002311074A/en
Publication of JP2002311074A publication Critical patent/JP2002311074A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To shorten charging time before a leakage current measuring operation in leakage current measurement of a capacitor. SOLUTION: During charging before leakage current measurement of a capacitor 4, a charging voltage where an alternating voltage va is superimposed on a direct voltage Vp of a measuring direct current power source 1 is applied to converge a dielectric absorption current in a short time, so that a true leakage current is measured in a short time. During the discharge of an electric charge of the capacitor 4, the alternating voltage va with no direct current component is applied to converge a leakage current of dielectric absorption in a short time, and during charging before leakage current measurement, a charging voltage where the alternating voltage va is superimposed on the opposite direct voltage vm of a measuring negative direct current power source 10 is applied to converge a dielectric absorption current in a short time, so that a true leakage current in the opposite direction is also measured in a short time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンデンサに直流
電圧を印加して測定する漏れ電流の測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a leakage current by applying a DC voltage to a capacitor.

【0002】[0002]

【従来の技術】コンデンサの良否を判別するための特性
検査の一つとして、直流電圧を印加して1分後の漏れ電
流を測定する項目がある。コンデンサを形成する絶縁物
の材質によって、その電圧印加後の漏れ電流Ioの時間
に対する特性は、図3のA曲線のように、すばやく収束
するものとB曲線のように、測定タイミングとなるま
で、ゆっくりと電流が増えて行くものがある。B曲線の
ようになるものは、その絶縁物の性質がもつ誘電吸収現
象の収束が遅いために、見かけ上、その誘電吸収電流の
時定数が大きくなると考えられる。B曲線のような性質
を持つコンデンサでは、漏れ電流を測定するための事前
の充電時間が長時間となるため、この特性を検査する生
産機械においては、生産タクトが長くなるため、コンデ
ンサの生産効率が低くなり、コストアップとなる。
2. Description of the Related Art As one of the characteristic tests for determining the quality of a capacitor, there is an item for measuring a leakage current one minute after a DC voltage is applied. Depending on the material of the insulator forming the capacitor, the characteristic of the leakage current Io with respect to time after voltage application is such that it quickly converges as shown by the curve A in FIG. Some currents slowly increase. It is considered that the time constant of the dielectric absorption current is apparently increased in the case of the curve B because the dielectric absorption phenomenon of the insulator has a slow convergence. In a capacitor having a characteristic such as a B curve, the pre-charging time for measuring the leakage current becomes long, and in a production machine for inspecting this characteristic, the production tact becomes long, so that the production efficiency of the capacitor becomes long. And the cost increases.

【0003】従来、この課題を解決するために、特開平
10−115651号公報に記載された方法では、漏れ
電流測定前の充電期間中に、一旦、測定電圧Vcよりも
高い電圧Vhをコンデンサに印加した後、印加電圧を測
定電圧Vcまで降下させ、放電方向に逆誘電吸収電流を
発生させて、この逆誘電吸収電流とコンデンサの充電に
より生じる充電方向の電流を相殺させて、誘電吸収電流
が収束した状態に早期に移行させることにより、真の漏
れ電流を早期に測定する方法が提案され、実用化されて
いる。
Conventionally, in order to solve this problem, in a method described in Japanese Patent Application Laid-Open No. Hei 10-115651, a voltage Vh higher than the measured voltage Vc is temporarily applied to a capacitor during a charging period before measuring a leakage current. After the voltage is applied, the applied voltage is reduced to the measurement voltage Vc, and a reverse dielectric absorption current is generated in the discharge direction. The reverse dielectric absorption current and the current in the charge direction generated by charging the capacitor are canceled out, so that the dielectric absorption current is reduced. A method of early measuring the true leakage current by shifting the state to the converged state early has been proposed and put into practical use.

【0004】[0004]

【発明が解決しようとする課題】前記、従来の方法は、
充電電圧を測定電圧より高くして、ある一定時間充電す
ることにより、測定電圧印加時には、逆の誘電吸収電流
を発生させることにより充電時間短縮をするものであ
る。コンデンサの材質の種類により、その中には、誘電
吸収の時定数が非常に長いものがある。その場合、充電
電圧値が絶対定格を超える充電電圧を印加しないと充電
時間効果が不十分となる。しかし、絶対定格を超えて電
圧印加はできないので、充電時間を短くできる効果に限
界がある。また、逆方向の漏れ電流を測定するとき、あ
るいは、コンデンサの誘電正接(tanδ)等の他の特
性を検査するときは、コンデンサに溜まった電荷を放電
する必要がある。その方法としては、コンデンサの両端
を抵抗等を介して短絡する方法が一般的である。この場
合、同様に誘電吸収現象により、放電特性は、ゆっくり
としていて、長い時間がかかるが、その放電をすばやく
する方法は開示されていない。
SUMMARY OF THE INVENTION The above-mentioned conventional method comprises:
The charging time is shortened by increasing the charging voltage to be higher than the measurement voltage and charging the battery for a certain period of time to generate a reverse dielectric absorption current when the measurement voltage is applied. Depending on the type of capacitor material, some of them have very long dielectric absorption time constants. In this case, the charging time effect becomes insufficient unless a charging voltage whose charging voltage value exceeds the absolute rating is applied. However, since a voltage cannot be applied beyond the absolute rating, the effect of shortening the charging time is limited. In addition, when measuring the leakage current in the reverse direction or when inspecting other characteristics such as the dielectric loss tangent (tan δ) of the capacitor, it is necessary to discharge the electric charge accumulated in the capacitor. As a method thereof, a method of short-circuiting both ends of a capacitor via a resistor or the like is general. In this case, also due to the dielectric absorption phenomenon, the discharge characteristics are slow and take a long time, but no method for making the discharge quick is disclosed.

【0005】[0005]

【課題を解決するための手段】本発明は、前記問題点を
解決するため、コンデンサの漏れ電流を測定するための
シーケンスを以下のようにする。第1ステップでは、測
定用の直流電圧にあらかじめコンデンサの品種毎に測定
し、決めておいた直流分無しの振幅、周波数の交流電圧
を重畳させた充電電圧を、あらかじめコンデンサの品種
毎に測定し、決めておいたTa秒印加し、交流電圧が零
となるタイミングで、前記交流電圧をOFFし、第2ス
テップでは、測定用の直流電圧に切り替え、コンデンサ
の品種毎に測定し、決めておいたTb秒間、測定用の直
流電圧を印加したまま、測定待ちをする。第3ステップ
では、漏れ電流計測器により、測定時間となるTc秒間
で漏れ電流を測定する。以上の3つのステップで検査の
実行が完了する。前記第2ステップを実行することによ
り誘電吸収現象を早期に収束させることができるため、
合計の検査時間(Ta+Tb+Tc)を短縮できる。
According to the present invention, in order to solve the above-mentioned problems, a sequence for measuring a leakage current of a capacitor is as follows. In the first step, a DC voltage for measurement is measured in advance for each type of capacitor, and a charging voltage obtained by superimposing an AC voltage having a predetermined amplitude and frequency without DC component is measured in advance for each type of capacitor. The predetermined voltage is applied for Ta seconds, and at the timing when the AC voltage becomes zero, the AC voltage is turned off. In the second step, the voltage is switched to the DC voltage for measurement and measured for each capacitor type. The measurement is waited for Tb seconds while the DC voltage for measurement is applied. In the third step, the leakage current is measured by the leakage current measuring device in Tc seconds, which is the measurement time. The execution of the inspection is completed by the above three steps. Since the dielectric absorption phenomenon can be converged early by performing the second step,
The total inspection time (Ta + Tb + Tc) can be reduced.

【0006】次に、コンデンサの放電のための第4ステ
ップに入る。この期間中は、あらかじめコンデンサの品
種毎に測定し、決めておいたTd秒間、あらかじめコン
デンサの品種毎に測定し、決めておいた直流分無しの振
幅、周波数の交流電圧を印加することにより、早期に誘
電吸収の漏れ電流を収束させ、交流電圧が零となるタイ
ミングで、前記交流電圧をOFFすることで放電を終了
する。
Next, a fourth step for discharging the capacitor is started. During this period, by preliminarily measuring for each capacitor type, measuring for each predetermined capacitor type for Td seconds, and applying a predetermined AC voltage and amplitude having no DC component, Discharge is terminated by turning off the AC voltage at a timing when the AC voltage becomes zero, by converging the leakage current of the dielectric absorption at an early stage.

【0007】次に、逆方向の漏れ電流を測定するステッ
プに入る。第5ステップでは、上記と逆方向の測定用の
直流電圧に、あらかじめ決めておいた振幅、周波数の交
流電圧を重畳させた充電電圧を、あらかじめ決めておい
たTa時間以上印加し、同様に誘電吸収現象を早期に収
束させる。第6、第7ステップを上記第2、第3ステッ
プと同様実行することにより、逆方向の漏れ電流を測定
する合計時間を短縮できる。
Next, a step of measuring a reverse leakage current is started. In the fifth step, a charging voltage obtained by superimposing an AC voltage having a predetermined amplitude and frequency on a DC voltage for measurement in a direction opposite to the above direction is applied for a predetermined Ta time or more. Converge the absorption phenomenon early. By performing the sixth and seventh steps in the same manner as in the second and third steps, the total time for measuring the leakage current in the reverse direction can be reduced.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の発明
は、コンデンサに直流電圧を印加して、その漏れ電流を
測定するコンデンサの漏れ電流測定方法において、第1
ステップで、測定用の直流電圧に交流電圧を重畳させた
充電電圧を、コンデンサの品種毎に決められるTa秒間
印加し、交流電圧が零となるタイミングで、前記交流電
圧をOFFし、第2ステップでは、測定用の直流電圧に
切り替え、コンデンサの品種毎に決められるTb秒間、
測定用の直流電圧を印加したまま測定待ちを行い、第3
ステップで、漏れ電流計測器により、漏れ電流を測定す
るようにしたことを特徴とするものであって、誘電吸収
の時定数の大きなコンデンサにおいては、測定用の直流
電圧のみで充電する場合に比べ、第1ステップと第2ス
テップの合計時間の方が短時間で充電完了するという作
用を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention according to claim 1 of the present invention relates to a capacitor leakage current measuring method for applying a DC voltage to a capacitor and measuring its leakage current.
A charging voltage obtained by superimposing an AC voltage on a DC voltage for measurement is applied for Ta seconds determined for each type of capacitor, and the AC voltage is turned off at a timing when the AC voltage becomes zero; Then, switch to the DC voltage for measurement, and for Tb seconds determined for each capacitor type,
Waiting for measurement while applying DC voltage for measurement,
In the step, the leakage current is measured by a leakage current measuring device, which is characterized in that a capacitor having a large time constant of dielectric absorption is compared with a case where only a DC voltage for measurement is used for charging. Has the effect that charging is completed in a shorter time in the total time of the first step and the second step.

【0009】請求項2に記載の発明は、コンデンサに直
流電圧を印加して、その漏れ電流を測定するコンデンサ
の漏れ電流測定方法において、漏れ電流の検査完了後
に、コンデンサの品種毎に決められるTd秒間、直流分
無しの交流電圧を印加してコンデンサの放電を行うこと
を特徴とするものであって、誘電吸収の時定数の大きな
コンデンサにおいて、交流電圧を印加せず、コンデンサ
の両端を抵抗を経由して短絡する場合に比べ、短時間で
放電完了するという作用を有する。
According to a second aspect of the present invention, there is provided a capacitor leakage current measuring method for measuring a leakage current by applying a DC voltage to a capacitor, wherein Td determined for each type of the capacitor after completion of the leakage current inspection. It is characterized by applying an AC voltage with no DC component for 2 seconds to discharge the capacitor.In a capacitor with a large time constant of dielectric absorption, the AC voltage is not applied and the resistance of both ends of the capacitor is changed. This has the effect that the discharge is completed in a short time as compared with the case where the short circuit occurs via the switch.

【0010】請求項3に記載の発明は、コンデンサに正
負の直流電圧を印加して、その正逆の漏れ電流を測定す
るコンデンサの漏れ電流測定方法において、第1ステッ
プで、測定用の正の直流電圧に交流電圧を重畳させた充
電電圧を、コンデンサの品種毎に決められるTa秒間印
加し、交流電圧が零となるタイミングで、前記交流電圧
をOFFし、第2ステップでは、測定用の直流電圧に切
り替え、コンデンサの品種毎に決められるTb秒間、測
定用の直流電圧を印加したまま測定待ちを行い、第3ス
テップで、漏れ電流計測器により、正の漏れ電流を測定
し、第4ステップでコンデンサの品種毎に決められるT
d秒間、直流分無しの交流電圧を印加してコンデンサの
放電を行うようにし、第5ステップで、測定用の負の直
流電圧に交流電圧を重畳させた充電電圧を、コンデンサ
の品種毎に決められるTa秒間印加し、交流電圧が零と
なるタイミングで、前記交流電圧をOFFし、第6ステ
ップでは、測定用の直流電圧に切り替え、コンデンサの
品種毎に決められるTb秒間、測定用の直流電圧を印加
したまま測定待ちを行い、第7ステップで、漏れ電流計
測器により、正の漏れ電流を測定するようにしたことを
特徴とするコンデンサの漏れ電流測定方法であって、誘
電吸収の時定数の大きなコンデンサにおいては、測定用
の直流電圧のみで充電する場合に比べ、第1ステップと
第2ステップの合計時間、および第5ステップと第6ス
テップの合計時間、および第4ステップの放電時間が短
時間で完了するという作用を有する。
According to a third aspect of the present invention, there is provided a method for measuring a leakage current of a capacitor, in which positive and negative DC voltages are applied to the capacitor to measure the positive and negative leakage currents. A charging voltage in which an AC voltage is superimposed on a DC voltage is applied for Ta seconds determined for each type of capacitor, and the AC voltage is turned off at a timing when the AC voltage becomes zero. Switch to voltage, wait for measurement while applying DC voltage for measurement for Tb seconds determined for each capacitor type, measure the positive leakage current with a leakage current measuring instrument in the third step, and perform the fourth step T determined for each capacitor type
The capacitor is discharged by applying an AC voltage having no DC component for d seconds, and in a fifth step, a charging voltage obtained by superimposing an AC voltage on a negative DC voltage for measurement is determined for each capacitor type. The AC voltage is turned off at the timing when the AC voltage becomes zero, and is switched to the DC voltage for measurement in the sixth step, and the DC voltage for measurement is switched for Tb seconds determined for each type of capacitor. And measuring the positive leakage current with a leakage current measuring device in a seventh step, wherein the time constant of dielectric absorption is measured. The total time of the first step and the second step and the total time of the fifth step and the sixth step are different from the case where the capacitor having a large value is charged with only the DC voltage for measurement. And has the effect of discharge time of the fourth step is completed in a short time.

【0011】以下、本発明の実施の形態について、第1
図、第5図を用いて説明する。
Hereinafter, the first embodiment of the present invention will be described.
This will be described with reference to FIGS.

【0012】図1は本発明の第1の実施形態におけるコ
ンデンサの漏れ電流測定に用いられる漏れ電流測定装置
のブロック図、図5は本発明の第2の実施形態における
コンデンサの漏れ電流測定装置のブロック図である。
FIG. 1 is a block diagram of a leakage current measuring device used for measuring a leakage current of a capacitor according to a first embodiment of the present invention. FIG. 5 is a block diagram of a leakage current measuring device of a capacitor according to a second embodiment of the present invention. It is a block diagram.

【0013】4は被検査物のコンデンサで、1は測定用
正直流電源で、10は測定用負直流電源、2は漏れ電流
測定器で、前記コンデンサ4の漏れ電流を測定する。6
は交流電源で、7は変圧器で、前記コンデンサ4に交流
電圧を測定用の直流電圧に重畳させる作用を行う。交流
電圧が重畳されることにより、誘電吸収の時定数の大き
なコンデンサにおいて、充電の時間が短時間で行えるよ
うになるとともに、漏れ電流測定後の直流電圧を零ボル
トにして、放電する際の時間短縮も行えるようになる。
8は半導体リレーで、前記交流電圧が、零ボルトとなる
タイミングで、交流電圧のON−OFFを制御する作用
を有する。SW1、SW2、SW3、SW4、SW5
は、制御リレー接点で、漏れ電流測定装置のタイミング
を制御する作用を有する。
Reference numeral 4 denotes a capacitor to be inspected, 1 denotes a positive DC power supply for measurement, 10 denotes a negative DC power supply for measurement, and 2 denotes a leak current measuring device for measuring the leak current of the capacitor 4. 6
Is an AC power supply, and 7 is a transformer, which acts to superimpose an AC voltage on the capacitor 4 on a DC voltage for measurement. The superimposition of the AC voltage allows a capacitor having a large time constant of dielectric absorption to be charged in a short time, and to set the DC voltage after the leakage current measurement to zero volt to discharge the capacitor. You can also shorten it.
Reference numeral 8 denotes a semiconductor relay which has an operation of controlling ON / OFF of the AC voltage at a timing when the AC voltage becomes zero volt. SW1, SW2, SW3, SW4, SW5
Is a control relay contact having the function of controlling the timing of the leakage current measuring device.

【0014】以下、本発明の一実施の形態におけるコン
デンサの漏れ電流測定方法について、図面を参照しなが
ら説明する。
Hereinafter, a method of measuring a leakage current of a capacitor according to an embodiment of the present invention will be described with reference to the drawings.

【0015】図1は、本実施形態におけるコンデンサ漏
れ電流測定装置の回路ブロック図を示す。図2は、図1
に示すコンデンサの漏れ電流測定装置の動作タイミング
図である。図1において、1は測定用正直流電源、2は
漏れ電流測定器、3はシールドケーブル、4は被検査物
のコンデンサ、4a,4bはその電極、5a,5bはコ
ンデンサの電極に接触するための測定プローブ(電
針)、6は交流電源、7は変圧器、8は半導体リレー、
9は制御用直流電源である。SW1、SW2、SW3は
別置きのプログラマブルコントローラ(図示せず)によ
ってタイミングを制御されるリレー接点、R1はコンデ
ンサの充電電流の制限抵抗である。
FIG. 1 is a circuit block diagram of a capacitor leakage current measuring device according to this embodiment. FIG. 2 shows FIG.
5 is an operation timing chart of the capacitor leakage current measuring device shown in FIG. In FIG. 1, 1 is a positive DC power supply for measurement, 2 is a leak current measuring device, 3 is a shielded cable, 4 is a capacitor of an inspection object, 4a and 4b are electrodes thereof, and 5a and 5b are electrodes of the capacitor. Measurement probe (electric needle), 6 is an AC power supply, 7 is a transformer, 8 is a semiconductor relay,
Reference numeral 9 denotes a control DC power supply. SW1, SW2, and SW3 are relay contacts whose timings are controlled by a separate programmable controller (not shown), and R1 is a limiting resistor for charging current of the capacitor.

【0016】図4は、漏れ電流測定中における、図3の
曲線Bで示すコンデンサの場合の流入電流特性曲線を示
す。60秒後の漏れ電流Ioが検査の判定の電流値であ
る。
FIG. 4 shows an inflow current characteristic curve for the capacitor shown by the curve B in FIG. 3 during leakage current measurement. The leakage current Io after 60 seconds is the current value for the judgment of the inspection.

【0017】以下、これらの図を用いて、動作を説明す
る。測定用直流電源1の電圧Vp(V)が抵抗R1と変
圧器7を経由してコンデンサ4に測定用プローブ5a,
6bを介して印加され、コンデンサ4への流入電流i
(A)が、漏れ電流測定器2に流れこむ事により測定さ
れる。ここで、抵抗R1は電流iの最大値を制限するた
めのものである。抵抗R1と変圧器7の内部抵抗の合計
は最大で1MΩ程度で、コンデンサ4の絶縁抵抗1〜数
10GΩに比べ、無視できる。なお、(絶縁抵抗)=
(印加電圧Vp)/(漏れ電流i)で計算される値であ
る。また、漏れ電流Ioは1nA程度以下であって、非
常に小さいので、ノイズの影響を受けやすい。シールド
ケーブル3を測定プローブ5aのすぐ近くまで配線し
て、ノイズの影響を低減している。交流電源6は、数1
0〜数KHzの周波数の正弦波交流を出力する。半導体
リレー8は、トライアックとフォトカプラなどの半導体
部品を使用し、入力側と出力側が絶縁され、入力側の直
流電圧をON−OFFすることにより、出力側の交流電
流が零アンペアの時に、その交流電圧をON−OFFす
ることができるものである。従って、リレー接点SW1
をONすると、図2のように、変圧器7の1次側に電圧
が印加されて、変圧器7の2次側に、交流電圧vaが発
生し、測定用直流電圧Vpに重畳された電圧Eが、コン
デンサ4に印加される。また、リレー接点SW1をOF
Fすると、半導体リレー8の働きにより、図2に示すΔ
1秒遅れて交流電圧が零となった時から交流電圧va
が無くなる。
The operation will be described below with reference to these figures. The voltage Vp (V) of the DC power supply 1 for measurement is connected to the capacitor 4 via the resistor R1 and the transformer 7 and the measurement probe 5a,
6b, the current i flowing into the capacitor 4
(A) is measured by flowing into the leakage current measuring device 2. Here, the resistor R1 is for limiting the maximum value of the current i. The total of the resistance R1 and the internal resistance of the transformer 7 is about 1 MΩ at the maximum, and is negligible as compared with the insulation resistance of the capacitor 4 of 1 to several tens GΩ. In addition, (insulation resistance) =
It is a value calculated by (applied voltage Vp) / (leakage current i). Further, the leakage current Io is about 1 nA or less, which is very small, so that it is easily affected by noise. The shielded cable 3 is wired close to the measurement probe 5a to reduce the influence of noise. AC power supply 6 is
A sine wave alternating current having a frequency of 0 to several KHz is output. The semiconductor relay 8 uses a semiconductor component such as a triac and a photocoupler. The input side and the output side are insulated, and the input side DC voltage is turned on and off. The AC voltage can be turned on and off. Therefore, the relay contact SW1
Is turned on, a voltage is applied to the primary side of the transformer 7 as shown in FIG. E is applied to the capacitor 4. Also, set the relay contact SW1 to OF
F, the action of the semiconductor relay 8 causes Δ shown in FIG.
T When the AC voltage becomes zero with a delay of 1 second, the AC voltage va
Disappears.

【0018】さて、このように構成された、漏れ電流の
測定手順を、図2と図4により説明する。
Now, the procedure for measuring the leakage current configured as described above will be described with reference to FIGS.

【0019】第1ステップでは、リレー接点SW1とS
W2をONし、この状態をT1秒間続ける。するとコン
デンサ4には、交流が重畳された電圧Eが印加される。
最初は、制限抵抗R1とコンデンサ4の容量によって決
まる時定数で、コンデンサ4に充電電流と交流電流が重
畳した電流iが流れ、このときの時間特性は図4におけ
るC曲線となる。一方、リレー接点SW1をOFFのま
まにしておくと、その波形はB曲線となる。
In the first step, the relay contacts SW1 and S
The W2 turned ON, continuing this state T 1 seconds. Then, the voltage E on which AC is superimposed is applied to the capacitor 4.
Initially, a current i in which the charging current and the AC current are superimposed flows through the capacitor 4 with a time constant determined by the limiting resistor R1 and the capacitance of the capacitor 4, and the time characteristic at this time is a curve C in FIG. On the other hand, when the relay contact SW1 is kept OFF, the waveform becomes a B curve.

【0020】T1秒経過後、リレー接点SW1をOFF
し、第2ステップに入る。電流iの時間特性は、図4の
ように過渡的に電流が変動するが、リレー接点SW1を
開始時点からずっとOFFにしておいた従来のB曲線の
場合に比べ、Δiの分の電流値が小さくなって、すばや
く真の漏れ電流Ioに近づいている。上記変動の安定ま
での時間T2秒が経過するまで、リレー接点SW1をO
FFし、リレー接点SW2はONのままとし、直流電圧
印加を続ける。前記の時間T1秒、T2秒及び、交流電源
の周波数と振幅は、コンデンサの絶縁材料と容量値など
の品種により、検査時間短縮のための効果的な値がある
ので、これを実験によりあらかじめ決めておく。
After 1 second has elapsed, the relay contact SW1 is turned off.
And enters the second step. As for the time characteristic of the current i, the current fluctuates transiently as shown in FIG. 4, but the current value of Δi is smaller than that of the conventional B curve in which the relay contact SW1 is kept OFF from the start. It becomes small and quickly approaches the true leakage current Io. Until the time T 2 seconds to stabilize the fluctuation has elapsed, the relay contact SW1 O
FF is performed, the relay contact SW2 is kept ON, and DC voltage application is continued. The above-mentioned time T 1 second, T 2 second, and the frequency and amplitude of the AC power supply have effective values for shortening the inspection time depending on the type of the insulating material and the capacitance value of the capacitor. Decide in advance.

【0021】T2秒経過後、第3ステップに入る。リレ
ー接点SW3をONすることにより、漏れ電流測定器2
に測定開始を合図して、計測を開始する。計測終了後、
リレー接点SW2とSW3をOFFする。測定終了は、
漏れ電流測定器2の完了信号(図示せず)または、本実
施例のようにタイマ(T3)で決定する。
After a lapse of T 2 seconds, a third step is entered. By turning on the relay contact SW3, the leakage current measuring device 2
The start of measurement is signaled to start the measurement. After the measurement,
The relay contacts SW2 and SW3 are turned off. The measurement ends
It is determined by a completion signal (not shown) of the leak current measuring device 2 or by a timer (T 3 ) as in the present embodiment.

【0022】次に、本発明の第2の実施形態として、前
記漏れ電流測定で、一旦蓄えられた誘電吸収による電荷
の放電を、すばやく行う例の説明と、第3の実施形態と
して、正、逆方向の漏れ電流測定を高速に行う検査装置
の説明を図5と図6により行う。
Next, as a second embodiment of the present invention, a description will be given of an example in which a charge is discharged quickly by dielectric absorption once stored in the leakage current measurement, and a third embodiment will be described. A description will be given of an inspection apparatus which performs high-speed measurement of leakage current in the reverse direction with reference to FIGS.

【0023】図5は、コンデンサの正逆の漏れ電流の検
査装置のブロック図である。図6はその動作タイミング
図である、図7は、図6の第4ステップの部分拡大図
で、コンデンサの放電電圧特性を説明するための図であ
る。
FIG. 5 is a block diagram of an apparatus for inspecting the forward and reverse leakage current of a capacitor. FIG. 6 is an operation timing chart, and FIG. 7 is a partially enlarged view of the fourth step in FIG. 6, for explaining the discharge voltage characteristics of the capacitor.

【0024】図5において、図1と同じ番号、記号の構
成部は、図1に示す構成部と同じ機能、性能を有する構
成部である。10は逆方向の漏れ電流を測定するための
測定用負直流電源である。SW4、SW5はプログラマ
ブルコントローラ(図示せず)により制御される制御リ
レーである。R1、R2、R3は、夫々正の充電電流制
限抵抗、放電電流制限抵抗、負の充電電流制限抵抗であ
る。
In FIG. 5, components having the same numbers and symbols as those in FIG. 1 are components having the same functions and performances as the components shown in FIG. Reference numeral 10 is a negative DC power supply for measurement for measuring leakage current in the reverse direction. SW4 and SW5 are control relays controlled by a programmable controller (not shown). R1, R2, and R3 are a positive charging current limiting resistor, a discharging current limiting resistor, and a negative charging current limiting resistor, respectively.

【0025】さて、このように構成された、本発明の漏
れ電流の測定手順を、図6と図7により説明する。
Now, the procedure for measuring the leakage current according to the present invention thus configured will be described with reference to FIGS.

【0026】第1ステップから第3ステップは、図1、
図2と全く同じなので説明を省略する。第4ステップで
は、リレー接点SW2、SW3をOFFするとともに、
リレー接点SW4をONする。するとコンデンサ4に
は、直流電圧分が零の交流電圧vaが印加される。最初
は、被電電流制限抵抗R2とコンデンサ4の容量によっ
て決まる時定数で、コンデンサ4の電荷が放電される。
このときのコンデンサ4の両端の電圧Erの時間特性は
図7のD曲線となる。T4秒後に、リレー接点SW4を
OFFすると、コンデンサ4の誘電吸収現象のために残
ったわずかな電圧voが現れる。この値は、交流電圧を
印加せず、従来のように単にコンデンサ4の両端を抵抗
R2で短絡して放電させた場合に比べ、時間T4の長さ
にもよるが、数分の1に低減される。
The first to third steps are performed as shown in FIG.
The description is omitted because it is exactly the same as FIG. In the fourth step, while turning off the relay contacts SW2 and SW3,
Turn on the relay contact SW4. Then, the AC voltage va whose DC voltage component is zero is applied to the capacitor 4. First, the charge of the capacitor 4 is discharged with a time constant determined by the current-limiting resistor R2 and the capacitance of the capacitor 4.
At this time, the time characteristic of the voltage Er across the capacitor 4 is a curve D in FIG. T after 4 seconds, OFF the relay contact SW4 Then, appears a slight voltage vo that remained for dielectric absorption phenomenon of the capacitor 4. This value does not apply an AC voltage, as in the prior art simply compared with the case where discharged by short-circuiting both ends of the capacitor 4 by the resistors R2, depending on the length of time T 4, the fraction of Reduced.

【0027】第5ステップから、逆方向の漏れ電流測定
ステップに入る。まず、リレー接点SW4のみONで他
のリレー接点SW1、SW2、SW5はOFFにしてお
く。
From the fifth step, a reverse leakage current measuring step is started. First, only the relay contact SW4 is turned on, and the other relay contacts SW1, SW2, and SW5 are turned off.

【0028】T5秒待ち(T5は零でもよい)、再びリレ
ー接点SW1をONすると同時にSW5をONする。す
ると、コンデンサ4には直流電圧Vmによる第1ステッ
プと逆方向の電流と交流電流を重畳した充電電流が流れ
る。コンデンサ4への交流電圧印加は、前記第1ステッ
プと同様に、誘電吸収現象の収束を早める効果がある。
[0028] T 5 seconds for (T 5 may be zero), to ON the turned ON at the same time SW5 the relay contacts SW1 again. Then, a charging current in which the alternating current and the current in the direction opposite to the first step by the DC voltage Vm are superimposed flows through the capacitor 4. The application of the AC voltage to the capacitor 4 has the effect of accelerating the convergence of the dielectric absorption phenomenon, as in the first step.

【0029】T1秒経過後、リレー接点SW1をOFF
することにより、第6ステップに入る。前記電流の変動
の安定までの時間T2秒が経過するまで、リレー接点S
W1をOFFし、リレー接点SW5はONのままとし、
負の直流電圧印加を続ける。上記、時間T1、T2及び、
交流電源の周波数と振幅は前記の第1、第2ステップと
同じ数値でよい。
After 1 second elapses, the relay contact SW1 is turned off.
Then, the process enters the sixth step. Until the time T 2 seconds to stabilize the fluctuation of the current has passed, the relay contact S
W1 is turned off, the relay contact SW5 is kept on,
Continue applying negative DC voltage. The time T 1 , T 2 and
The frequency and amplitude of the AC power supply may be the same numerical values as in the first and second steps.

【0030】T2秒経過後、第7ステップに入る。リレ
ー接点SW3をONすることにより、漏れ電流測定器2
に測定開始を合図して、測定を開始する。測定終了後、
リレー接点SW3とSW5をOFFする。測定終了は、
漏れ電流計測器2の完了信号(図示せず)または、本発
明のようにタイマ(T3)で決定する。
After a lapse of T 2 seconds, a seventh step is entered. By turning on the relay contact SW3, the leakage current measuring device 2
The start of measurement is signaled to start the measurement. After the measurement,
The relay contacts SW3 and SW5 are turned off. The measurement ends
It is determined by a completion signal (not shown) of the leak current measuring device 2 or a timer (T 3 ) as in the present invention.

【0031】測定完了後、第8ステップに入る。リレー
接点SW1とSW4をONして、第4ステップと同様
に、コンデンサ4に蓄えられた電荷を速やかに放電させ
る。
After the measurement is completed, an eighth step is entered. The relay contacts SW1 and SW4 are turned on, and the electric charge stored in the capacitor 4 is quickly discharged as in the fourth step.

【0032】本実施形態では、正負の漏れ電流を連続し
て測定した例を述べた。さらに続けてコンデンサの特性
検査として、コンデンサの容量値や、誘電正接(tan
δ)等の測定を連続してする必要がある場合、漏れ電流
検査を行った影響をなくすため、その開始以前に、前記
の第8ステップを入れておくことが非常に有効となる。
In this embodiment, an example in which positive and negative leakage currents are continuously measured has been described. Subsequently, as a characteristic test of the capacitor, the capacitance value of the capacitor and the dielectric loss tangent (tan) are determined.
When it is necessary to continuously perform the measurement such as δ), it is very effective to perform the above-described eighth step before the start of the measurement in order to eliminate the influence of the leakage current test.

【0033】[0033]

【発明の効果】コンデンサの良否を判別するための特性
の一つである漏れ電流測定は、直流電圧をコンデンサに
印加して、数秒で真の値に達するものが多い中で、コン
デンサを形成する絶縁物の材質によって、その絶縁物の
性質がもつ誘電吸収現象の収束が遅いために、その電圧
印加後、数十秒〜数分間たって、ようやく真の値となる
ものがある。また、測定終了後、この充電電圧を放電す
る時も同様に、放電時間が長くかかる。このような性質
を持つコンデンサでは、漏れ電流を測定するための事前
の充電時間及び放電時間が長く必要となるため、結果と
してコンデンサの検査の時間が長くなって、生産性が低
い。
According to the leakage current measurement, which is one of the characteristics for judging the quality of a capacitor, a DC voltage is applied to the capacitor, and in many cases, the capacitor reaches a true value in a few seconds. Depending on the material of the insulator, the dielectric absorption phenomenon of the insulator has a slow convergence, so that the value of the insulator finally becomes a true value several tens seconds to several minutes after the application of the voltage. Also, when the charging voltage is discharged after the measurement is completed, the discharging time is similarly long. A capacitor having such a property requires a long charging time and a long discharging time for measuring a leakage current. As a result, the time required for testing the capacitor is prolonged, resulting in low productivity.

【0034】以上のように、本発明によれば、このよう
な特性を持つコンデンサにおいて、直流電圧に交流電圧
を重畳して、充電することにより、誘電吸収現象をすば
やく収束させることができるので、短時間で漏れ電流測
定が可能となる。また、放電時においても、交流電圧を
印加しながら放電することで、漏れ電流測定後のコンデ
ンサに蓄えられた誘電吸収現象による充電電荷を短時間
で放電させる事ができるので、コンデンサの検査時間を
短くできる。その結果、コンデンサの生産性を大きく向
上させることができる。
As described above, according to the present invention, in the capacitor having such characteristics, the dielectric absorption phenomenon can be quickly converged by superposing the AC voltage on the DC voltage and charging the capacitor. Leakage current can be measured in a short time. In addition, even during discharging, by discharging while applying an AC voltage, it is possible to discharge in a short time the charge due to the dielectric absorption phenomenon stored in the capacitor after the leakage current measurement, so that the capacitor inspection time is reduced. Can be shortened. As a result, the productivity of the capacitor can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態におけるコンデンサの
漏れ電流測定装置のブロック図
FIG. 1 is a block diagram of a capacitor leakage current measuring device according to a first embodiment of the present invention.

【図2】図1に示すコンデンサの漏れ電流測定装置のタ
イミング図
FIG. 2 is a timing chart of the leakage current measuring device for a capacitor shown in FIG. 1;

【図3】被検査物のコンデンサに直流電圧を印加したと
きのコンデンサに流れる電流特性図
FIG. 3 is a characteristic diagram of a current flowing through a capacitor when a DC voltage is applied to the capacitor to be inspected;

【図4】コンデンサに流れる電流特性図FIG. 4 is a characteristic diagram of a current flowing through a capacitor.

【図5】本発明の第2の実施形態におけるコンデンサの
漏れ電流測定装置のブロック図
FIG. 5 is a block diagram of a capacitor leakage current measuring device according to a second embodiment of the present invention.

【図6】図5に示すコンデンサの漏れ電流測定装置の動
作タイミング図
FIG. 6 is an operation timing chart of the capacitor leakage current measuring device shown in FIG. 5;

【図7】図6における放電ステップの拡大図FIG. 7 is an enlarged view of a discharge step in FIG. 6;

【符号の説明】[Explanation of symbols]

1 測定用正直流電源 2 漏れ電流測定器 4 被検査物のコンデンサ 6 交流電源 7 変圧器 8 半導体リレー 10 測定用負直流電源 SW1、SW2、SW3、SW4、SW5 リレー接点 R1、R2、R3 抵抗 Reference Signs List 1 Positive DC power supply for measurement 2 Leakage current measuring device 4 Capacitor of inspection object 6 AC power supply 7 Transformer 8 Semiconductor relay 10 Negative DC power supply for measurement SW1, SW2, SW3, SW4, SW5 Relay contact R1, R2, R3 Resistance

フロントページの続き (72)発明者 宮本 康彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G028 BB06 2G036 AA21 AA27 BB02 CA10 5E082 MM35 Continued on the front page (72) Inventor Yasuhiko Miyamoto 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F term (reference) 2G028 BB06 2G036 AA21 AA27 BB02 CA10 5E082 MM35

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 コンデンサに直流電圧を印加して、その
漏れ電流を測定するコンデンサの漏れ電流測定方法にお
いて、第1ステップで、測定用の直流電圧に交流電圧を
重畳させた充電電圧を、コンデンサの品種毎に決められ
るTa秒間印加し、交流電圧が零となるタイミングで、
前記交流電圧をOFFし、第2ステップでは、測定用の
直流電圧に切り替え、コンデンサの品種毎に決められる
Tb秒間、測定用の直流電圧を印加したまま測定待ちを
行い、第3ステップで、漏れ電流計測器により、漏れ電
流を測定するようにしたことを特徴とするコンデンサの
漏れ電流測定方法。
In a capacitor leakage current measuring method for applying a DC voltage to a capacitor and measuring the leakage current, in a first step, a charging voltage obtained by superimposing an AC voltage on a DC voltage for measurement is supplied to the capacitor. Is applied for Ta seconds determined for each product type, and when the AC voltage becomes zero,
The AC voltage is turned off, and in the second step, the measurement is switched to the DC voltage for measurement, and the measurement is waited while the DC voltage for measurement is applied for Tb seconds determined for each type of capacitor. A method for measuring leakage current of a capacitor, wherein the leakage current is measured by a current measuring device.
【請求項2】 コンデンサに直流電圧を印加して、その
漏れ電流を測定するコンデンサの漏れ電流測定方法にお
いて、漏れ電流の検査完了後に、コンデンサの品種毎に
決められるTd秒間、直流分無しの交流電圧を印加して
コンデンサの放電を行うことを特徴とするコンデンサの
漏れ電流測定方法。
2. A capacitor leakage current measuring method for applying a DC voltage to a capacitor and measuring its leakage current, wherein after the leakage current inspection is completed, an alternating current without a DC component for Td seconds determined for each capacitor type. A method for measuring leakage current of a capacitor, comprising discharging a capacitor by applying a voltage.
【請求項3】 コンデンサに正負の直流電圧を印加し
て、その正逆の漏れ電流を測定するコンデンサの漏れ電
流測定方法において、第1ステップで、測定用の正の直
流電圧に交流電圧を重畳させた充電電圧を、コンデンサ
の品種毎に決められるTa秒間印加し、交流電圧が零と
なるタイミングで、前記交流電圧をOFFし、第2ステ
ップでは、測定用の直流電圧に切り替え、コンデンサの
品種毎に決められるTb秒間、測定用の直流電圧を印加
したまま測定待ちを行い、第3ステップで、漏れ電流計
測器により、正の漏れ電流を測定し、第4ステップでコ
ンデンサの品種毎に決められるTd秒間、直流分無しの
交流電圧を印加してコンデンサの放電を行うようにし、
第5ステップで、測定用の負の直流電圧に交流電圧を重
畳させた充電電圧を、コンデンサの品種毎に決められる
Ta秒間印加し、交流電圧が零となるタイミングで、前
記交流電圧をOFFし、第6ステップでは、測定用の直
流電圧に切り替え、コンデンサの品種毎に決められるT
b秒間、測定用の直流電圧を印加したまま測定待ちを行
い、第7ステップで、漏れ電流計測器により、正の漏れ
電流を測定するようにしたことを特徴とするコンデンサ
の漏れ電流測定方法。
3. A method for measuring a leakage current of a capacitor, in which positive and negative DC voltages are applied to a capacitor to measure a reverse leakage current thereof, wherein an AC voltage is superimposed on a positive DC voltage for measurement in a first step. The applied charging voltage is applied for Ta seconds determined for each type of capacitor, and the AC voltage is turned off at a timing when the AC voltage becomes zero. In the second step, the voltage is switched to a DC voltage for measurement, and the type of capacitor is changed. Wait for measurement while applying DC voltage for measurement for Tb seconds determined every time, measure positive leakage current by leakage current measuring device in the third step, and decide for each capacitor type in the fourth step For Td seconds, an AC voltage without a DC component is applied to discharge the capacitor,
In a fifth step, a charging voltage obtained by superimposing an AC voltage on a negative DC voltage for measurement is applied for Ta seconds determined for each type of capacitor, and the AC voltage is turned off at a timing when the AC voltage becomes zero. In the sixth step, the voltage is switched to the DC voltage for measurement, and T is determined for each type of capacitor.
A method for measuring a leakage current of a capacitor, comprising: performing a measurement wait while applying a DC voltage for measurement for b seconds; and measuring a positive leakage current with a leakage current measuring device in a seventh step.
【請求項4】 半導体リレーにより交流電圧が零となる
タイミングで、前記交流電圧をOFFするようにしたこ
とを特徴とする請求項1、3記載のコンデンサの漏れ電
流測定方法。
4. The capacitor leakage current measuring method according to claim 1, wherein the AC voltage is turned off at a timing when the AC voltage becomes zero by a semiconductor relay.
【請求項5】 変圧器を介して交流電圧を直流電圧と重
畳させたことを特徴とする請求項1、3記載のコンデン
サの漏れ電流測定方法。
5. The method for measuring a leakage current of a capacitor according to claim 1, wherein an AC voltage and a DC voltage are superimposed via a transformer.
JP2001109588A 2001-04-09 2001-04-09 Leakage current measurement method for capacitor Pending JP2002311074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001109588A JP2002311074A (en) 2001-04-09 2001-04-09 Leakage current measurement method for capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001109588A JP2002311074A (en) 2001-04-09 2001-04-09 Leakage current measurement method for capacitor

Publications (1)

Publication Number Publication Date
JP2002311074A true JP2002311074A (en) 2002-10-23

Family

ID=18961502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001109588A Pending JP2002311074A (en) 2001-04-09 2001-04-09 Leakage current measurement method for capacitor

Country Status (1)

Country Link
JP (1) JP2002311074A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191064A (en) * 2007-02-07 2008-08-21 Produce:Kk Electric characteristic inspection device provided with active probe
WO2008147694A1 (en) * 2007-05-24 2008-12-04 Electro Scientific Industries, Inc. Capacitive measurements with fast recovery current return
KR101024892B1 (en) 2008-03-31 2011-04-01 가부시키가이샤 도쿄 웰드 Condenser leakage current measuring method and condenser leakage current measuring apparatus
US8054085B2 (en) 2008-03-31 2011-11-08 Electro Scientific Industries, Inc. Programmable gain trans-impedance amplifier overload recovery circuit
KR101114939B1 (en) 2008-10-15 2012-03-06 가부시키가이샤 도쿄 웰드 Condenser leakage current measuring method and condenser leakage current measuring apparatus
CN102553254A (en) * 2012-02-15 2012-07-11 黄勇 Steering engine simulation running debugger
JP2013057545A (en) * 2011-09-07 2013-03-28 Hioki Ee Corp Measuring device
JP2013186098A (en) * 2012-03-12 2013-09-19 Hioki Ee Corp Resistance measurement device and resistance measurement method
CN108802554A (en) * 2018-06-13 2018-11-13 中车株洲电力机车有限公司 A kind of capacity fall off method for detecting abnormality and system, computer equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191064A (en) * 2007-02-07 2008-08-21 Produce:Kk Electric characteristic inspection device provided with active probe
WO2008147694A1 (en) * 2007-05-24 2008-12-04 Electro Scientific Industries, Inc. Capacitive measurements with fast recovery current return
US7940058B2 (en) 2007-05-24 2011-05-10 Electro Scientific Industries, Inc. Capacitive measurements with fast recovery current return
KR101024892B1 (en) 2008-03-31 2011-04-01 가부시키가이샤 도쿄 웰드 Condenser leakage current measuring method and condenser leakage current measuring apparatus
US8054085B2 (en) 2008-03-31 2011-11-08 Electro Scientific Industries, Inc. Programmable gain trans-impedance amplifier overload recovery circuit
US8686739B2 (en) 2008-03-31 2014-04-01 Electro Scientific Industries, Inc. Programmable gain trans-impedance amplifier overload recovery circuit
KR101114939B1 (en) 2008-10-15 2012-03-06 가부시키가이샤 도쿄 웰드 Condenser leakage current measuring method and condenser leakage current measuring apparatus
JP2013057545A (en) * 2011-09-07 2013-03-28 Hioki Ee Corp Measuring device
CN102553254A (en) * 2012-02-15 2012-07-11 黄勇 Steering engine simulation running debugger
JP2013186098A (en) * 2012-03-12 2013-09-19 Hioki Ee Corp Resistance measurement device and resistance measurement method
CN108802554A (en) * 2018-06-13 2018-11-13 中车株洲电力机车有限公司 A kind of capacity fall off method for detecting abnormality and system, computer equipment
WO2019237704A1 (en) * 2018-06-13 2019-12-19 中车株洲电力机车有限公司 Method and system for detecting leakage abnormality of capacitor, and computer device

Similar Documents

Publication Publication Date Title
JP2002311074A (en) Leakage current measurement method for capacitor
JP2003172757A (en) Insulation inspection device and insulation inspection method of circuit board
JP2000301352A (en) Resistance welding electric source apparatus
JPH0943302A (en) Insulation test method and its device
JP2006084249A (en) Method and apparatus for inspecting insulation
JP4764694B2 (en) Withstand voltage test equipment
JP2003107118A (en) Quality determination method of capacitor
US20110193562A1 (en) Semiconductor test system and relay driving test method therefor
JP2001091562A (en) Device for inspecting circuit board
JPH10115651A (en) Inspection method for leak current characteristic of capacitor
JPH0785094B2 (en) Voltage difference measuring method and measuring apparatus therefor
JP2017219352A (en) Power supply device for insulation inspection
JP2011226782A (en) Inspection device and inspection method
JP6541456B2 (en) Test equipment
JPH05256886A (en) Instrument and method for measuring contact resistance
JPH08306574A (en) Screening method of multilayer ceramic capacitor
JPH09152455A (en) Internal defect detector and method thereof for laminated ceramic capacitor
KR100299938B1 (en) Capacitor charging method
JP2007305623A (en) Method of quickly charging capacitor
JP3446680B2 (en) Insulation resistance measuring device for capacitive electronic components
JPH09330855A (en) Method for cleaning laminated ceramic capacitor
JP4244791B2 (en) Capacitor pass / fail judgment method and pass / fail judgment device
JP2003273181A (en) Circuit and method for measuring contact resistance of probe
JP2023176617A (en) Test device and degradation determination method of contract relay
RU2054687C1 (en) Electrical machine phase winding tester