JP2002310877A - Adsorption rate measuring device - Google Patents

Adsorption rate measuring device

Info

Publication number
JP2002310877A
JP2002310877A JP2001109741A JP2001109741A JP2002310877A JP 2002310877 A JP2002310877 A JP 2002310877A JP 2001109741 A JP2001109741 A JP 2001109741A JP 2001109741 A JP2001109741 A JP 2001109741A JP 2002310877 A JP2002310877 A JP 2002310877A
Authority
JP
Japan
Prior art keywords
adsorbent
pressure
flow rate
measuring
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001109741A
Other languages
Japanese (ja)
Inventor
Hitoshi Nakamura
仁志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2001109741A priority Critical patent/JP2002310877A/en
Publication of JP2002310877A publication Critical patent/JP2002310877A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device for easily measuring a parameter to be used as an index of a gas adsorption rate in adsorbent. SOLUTION: The adsorption rate measuring device is provided with a pressure vessel with adsorbent having an adsorbent housing means housing the adsorbent in an interior, a pressure producing means applying pressure by measuring object gas to the pressure vessel with adsorbent, and a pressure feeding means feeding the measuring object gas pressure produced by the pressure producing means to the pressure vessel with adsorbent. It is characterized by that it is provided with a gas flow rate measuring means measuring a time series change of flow rate of the measurement object gas flowing between the pressure vessel with adsorbent and the pressure producing means, and a calculating means calculating the adsorption rate of the adsorbent from the gas flow rate measured by the gas flow rate measuring means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスを吸着する吸
着剤におけるガス吸着速度を測定する吸着速度測定装置
に属する。さらに詳細には、圧力変化によるガス積算吸
着量の時間的変化を測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorption speed measuring device for measuring a gas adsorption speed of an adsorbent for adsorbing gas. More specifically, the present invention relates to an apparatus for measuring a temporal change of a gas integrated adsorption amount due to a pressure change.

【0002】[0002]

【従来の技術】ガスを吸着する吸着剤の吸着速度を測定
する方法には、定圧容量法・流通式重量法・吸着破過曲
線法などが知られている(最新吸着技術便覧―プロセス
・材料・設計―NTS Inc.)。
2. Description of the Related Art As a method for measuring the adsorption speed of an adsorbent for adsorbing a gas, there are known a constant pressure capacity method, a flow-type weight method, an adsorption breakthrough curve method, and the like. -Design-NTS Inc.).

【0003】定圧容量法は、吸着前後における吸着ガス
の圧力、容積および温度を測定して吸着剤に存在する吸
着ガスのモル数の差から吸着量を求めるものである。実
際の吸着量測定では、温度と圧力を一定にして容積の時
間的変化を求める。
[0003] In the constant pressure capacity method, the pressure, volume and temperature of an adsorbed gas before and after adsorption are measured, and the amount of adsorption is determined from the difference in the number of moles of the adsorbed gas present in the adsorbent. In the actual measurement of the amount of adsorption, the temperature and pressure are kept constant, and the temporal change in the volume is obtained.

【0004】流通式重量法は、圧力や濃度を一定にして
吸着剤試料外部に気体を流し、吸着剤の重量の増加から
直接吸着量を測定する方法である。
The flow-type weight method is a method in which a gas is flowed outside an adsorbent sample while keeping the pressure and concentration constant, and the amount of adsorption is directly measured from an increase in the weight of the adsorbent.

【0005】吸着破過曲線法は、吸着層出口における時
系列ガス濃度を測定し、この濃度曲線の型から粒子内有
効拡散係数を求める方法である。
[0005] The adsorption breakthrough curve method is a method of measuring the time-series gas concentration at the outlet of the adsorption layer and obtaining the effective diffusion coefficient in particles from the type of the concentration curve.

【0006】[0006]

【発明が解決しようとする課題】このように吸着剤に対
する各種のガス吸着を測定する方法があるが、各々欠点
がある。即ち定圧容量法には、圧力および吸着剤周囲の
死容積を正確に測定しなければならないという欠点があ
る。一方流通式重量法には、全圧が大気圧以外での測定
が困難であり、一般に測定誤差も大きいという問題点が
ある。更に、吸着破過曲線法は、できるだけ短い時間間
隔でガス濃度を測定する必要があり、その測定には工夫
が必要である。
As described above, there are methods for measuring the adsorption of various gases to an adsorbent, but each has a drawback. That is, the constant pressure capacity method has a disadvantage that the pressure and the dead volume around the adsorbent must be accurately measured. On the other hand, the flow-type gravimetric method has a problem that it is difficult to measure the total pressure at a pressure other than the atmospheric pressure, and that a measurement error is generally large. Further, in the adsorption breakthrough curve method, it is necessary to measure the gas concentration at a time interval as short as possible, and the measurement requires a device.

【0007】[0007]

【課題を解決するための手段】かかる課題を達成するた
め、本発明者は鋭意検討した結果、吸着剤を層状に配置
し、その上下に設けたチャンバの圧力を意図的に変化さ
せ、チャンバへのガス流入量の時系列変化を測定するこ
とで、圧力変化による吸着剤のガス吸着速度を、安価か
つ簡便に測定できることを見出した。
Means for Solving the Problems In order to achieve the above object, the present inventors have made intensive studies and as a result, arranged the adsorbent in layers, intentionally changed the pressure of chambers provided above and below the adsorbent, and changed the pressure to the chamber. By measuring the time-series change of the gas inflow amount, it was found that the gas adsorption speed of the adsorbent due to the pressure change can be measured inexpensively and easily.

【0008】即ち本発明は、吸着剤を収納する吸着剤収
納手段を備えた吸着剤入圧力容器と、該吸着剤入圧力容
器に測定対象ガスによる圧力を与えるための圧力発生手
段と、該圧力発生手段で発生した圧力を該吸着剤入圧力
容器に供給する圧力供給手段を持ち、吸着剤入圧力容器
と圧力発生手段との間を流れる測定対象ガスの流量を測
定するガス流量測定手段と、該ガス流量測定手段で測定
したガス流量の時系列変化から該吸着剤の吸着速度を演
算する演算手段を持つことを特徴とする吸着速度測定装
置を提供するものである。
That is, the present invention provides an adsorbent-containing pressure vessel provided with adsorbent storage means for storing an adsorbent, a pressure generating means for applying pressure to the adsorbent-containing pressure vessel by a gas to be measured, Gas flow rate measuring means for measuring a flow rate of a gas to be measured flowing between the adsorbent-containing pressure vessel and the pressure generating means, comprising a pressure supply means for supplying pressure generated by the generating means to the adsorbent-containing pressure vessel, It is an object of the present invention to provide an adsorption speed measuring apparatus, comprising an arithmetic means for calculating an adsorption speed of the adsorbent from a time-series change of a gas flow rate measured by the gas flow rate measuring means.

【0009】また本発明は、かかる吸着剤収納手段が吸
着剤を層状に配置することができ、吸着剤の温度を測定
するための吸着剤温度測定手段を有する。かかる吸着剤
入圧力容器は、該吸着剤収納手段の上下に同体積の空間
を持ち、かかる圧力供給手段は、上記圧力発生手段で発
生した圧力を、任意の圧力に調整する圧力調整手段を備
える。
In the present invention, the adsorbent storage means can arrange the adsorbents in layers, and has adsorbent temperature measuring means for measuring the temperature of the adsorbent. Such an adsorbent-containing pressure vessel has spaces of equal volume above and below the adsorbent storage means, and the pressure supply means includes pressure adjusting means for adjusting the pressure generated by the pressure generating means to an arbitrary pressure. .

【0010】圧力調整手段によって任意に調整された圧
力は、測定対象ガス供給タンクに蓄えられ、閉じられて
いた圧力供給用電磁弁をスイッチによって開にすること
によって、吸着剤入圧力容器の上下に設けたチャンバの
圧力を意図的に変化させる。
The pressure arbitrarily adjusted by the pressure adjusting means is stored in the gas supply tank to be measured, and the solenoid valve for pressure supply which has been closed is opened by a switch to raise and lower the pressure vessel with the adsorbent. The pressure of the provided chamber is intentionally changed.

【0011】かかる演算手段は、吸着剤入圧力容器の上
下に設けたチャンバの圧力を意図的に変化させた時にお
ける、該ガス流量測定手段で測定した、該吸着剤収納手
段に吸着剤がある場合の時系列ガス流量1と、該吸着剤
収納手段に吸着剤がない場合の時系列ガス流量2を保存
し、該時系列ガス流量1と該時系列ガス流量2との差の
積算演算を行う機能を含むことを特徴とする。
The arithmetic means includes an adsorbent in the adsorbent accommodating means, which is measured by the gas flow rate measuring means when a pressure in a chamber provided above and below the adsorbent-containing pressure vessel is intentionally changed. The time-series gas flow rate 1 in the case and the time-series gas flow rate 2 when the adsorbent is not present in the adsorbent storage means are stored, and the integration calculation of the difference between the time-series gas flow rate 1 and the time-series gas flow rate 2 is performed. It is characterized by including a function to perform.

【0012】[0012]

【発明の実施の形態】本発明の吸着速度測定装置は、図
1に示すように、吸着剤を収納する吸着剤収納手段を備
えた吸着剤入圧力容器(1)と、該吸着剤入圧力容器に
測定対象ガスによる圧力を与えるための圧力発生手段
(2)と、該圧力発生手段で発生した圧力を該吸着剤入
圧力容器に供給する圧力供給手段(3)を持ち、吸着剤
入圧力容器と圧力発生手段との間を流れる測定対象ガス
の流量を測定するガス流量測定手段(4)と、該ガス流
量測定手段で測定したガス流量から該吸着剤の吸着速度
を演算する演算手段(5)から構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, an adsorption rate measuring apparatus according to the present invention comprises an adsorbent pressure vessel (1) provided with adsorbent storage means for storing an adsorbent; A pressure generating means (2) for applying pressure to the container by the gas to be measured; and a pressure supply means (3) for supplying the pressure generated by the pressure generating means to the pressure vessel containing the adsorbent. Gas flow measuring means (4) for measuring the flow rate of the gas to be measured flowing between the container and the pressure generating means, and calculating means (calculating the adsorption rate of the adsorbent from the gas flow rate measured by the gas flow measuring means ( 5).

【0013】吸着剤入圧力容器(1)は、図2に示すよ
うに、吸着剤(1a)を収納するための吸着剤収納手段
(1b)が、容器内部の体積を2等分するように配置さ
れている。吸着剤収納手段(1b)は、一般的には顆粒
状の吸着剤が、メッシュ構造や不織布など吸着剤は透過
しないが圧力は容易に透過することのできる構造体で挟
み込む構造となっていることが望ましく、この構造体に
よって吸着剤(1a)を層状に配置できることが特徴で
ある。また、吸着剤収納手段(1b)は、吸着剤の温度
を測定するための吸着剤温度測定手段(1c)として、
熱電対やサーミスタのような比較的応答速度の早い温度
検出センサが取り付けられている。
As shown in FIG. 2, the adsorbent-containing pressure vessel (1) is configured such that an adsorbent storage means (1b) for storing the adsorbent (1a) divides the volume inside the container into two equal parts. Are located. The adsorbent storage means (1b) generally has a structure in which a granular adsorbent is sandwiched by a structure that does not transmit an adsorbent such as a mesh structure or a nonwoven fabric but can easily transmit pressure. It is characterized in that the adsorbent (1a) can be arranged in layers by this structure. The adsorbent storage means (1b) serves as an adsorbent temperature measuring means (1c) for measuring the temperature of the adsorbent.
A temperature detection sensor such as a thermocouple or a thermistor having a relatively fast response speed is attached.

【0014】吸着剤入圧力容器(1)は実際に測定する
圧力に耐えうるだけの十分な機械的強度を持つものであ
れば良く、望ましくはステンレス製で内面を電解研磨法
などの表面性を高めた加工を施し、ガス流動性を改善し
たものがよい。圧力発生手段(2)は、測定対象ガスに
測定したい所望の圧力が余裕を持って与えられるもので
あれば良く、例えば圧力ボンベやオイルフリー構造のコ
ンプレッサ、オイルフリー構造の真空ポンプなどが挙げ
られる。
The adsorbent-filled pressure vessel (1) may be any as long as it has sufficient mechanical strength to withstand the pressure to be actually measured, and is desirably made of stainless steel and has an inner surface having a surface property such as an electrolytic polishing method. It is preferable to improve the gas fluidity by performing enhanced processing. The pressure generating means (2) may be any as long as a desired pressure to be measured can be given to the gas to be measured with a margin, and examples thereof include a pressure cylinder, a compressor having an oil-free structure, and a vacuum pump having an oil-free structure. .

【0015】圧力供給手段(3)は、吸着剤入圧力容器
(1)と圧力発生手段(2)の間に位置し、圧力発生手
段(2)で発生した圧力を、任意の圧力に調整する圧力
調整手段を備えている。圧力調整手段の好適な具体的方
法としては、図3に示すように、2次側の圧力を一定に
保つ機能を持つ圧力調整弁(3a)と、急激な圧力変化
に対して十分な測定対象ガスを吸着剤入圧力容器に供給
するための測定対象ガス供給用タンク(3b)と、急激
な圧力変化を生じさせるための圧力供給用電磁弁(3
c)と、圧力供給用電磁弁を開閉するための操作部とし
てスイッチ(3d)がある。圧力調整手段によって任意
に調整された圧力は、測定対象ガス供給タンクに蓄えら
れ、閉じられていた圧力供給用電磁弁(3c)をスイッ
チ(3d)によって開にすることによって、吸着剤入り
圧力容器の上下に設けたチャンバの圧力を意図的に変化
させる。ガス流量測定手段(4)は、吸着剤入圧力容器
(1)の上下に設けたチャンバの圧力を意図的に変化さ
せた時の測定対象ガスの流量を測定する。測定流量を時
々刻々電気信号などを用いて外部出力する機能を持ち、
マスフローメータのようにガス流路の圧力損失が小さく
測定精度が高いものが好ましい。
The pressure supply means (3) is located between the adsorbent-containing pressure vessel (1) and the pressure generation means (2), and adjusts the pressure generated by the pressure generation means (2) to an arbitrary pressure. A pressure adjusting means is provided. As a preferred specific method of the pressure adjusting means, as shown in FIG. 3, a pressure adjusting valve (3a) having a function of keeping the pressure on the secondary side constant, and a sufficient measurement object for a sudden pressure change A tank (3b) for supplying a gas to be measured for supplying gas to the pressure vessel containing the adsorbent, and a solenoid valve (3) for supplying pressure to cause a sudden change in pressure.
c) and a switch (3d) as an operation unit for opening and closing the pressure supply solenoid valve. The pressure arbitrarily adjusted by the pressure adjusting means is stored in the gas supply tank to be measured, and the closed pressure supply solenoid valve (3c) is opened by the switch (3d) to open the pressure vessel containing the adsorbent. The pressures of the chambers provided above and below are intentionally changed. The gas flow rate measuring means (4) measures the flow rate of the gas to be measured when the pressures of chambers provided above and below the adsorbent-containing pressure vessel (1) are intentionally changed. It has a function to output the measured flow rate from time to time using an electric signal, etc.,
It is preferable that the pressure loss in the gas flow path is small and the measurement accuracy is high, such as a mass flow meter.

【0016】演算手段(5)は、ガス流量測定手段
(4)で測定した、吸着剤収納手段(1b)に吸着剤が
存在する場合の時系列ガス流量1と、吸着剤収納手段
(1b)に吸着剤が存在しない場合の時系列ガス流量2
をメモリなどのデータ保存媒体に保存し、それぞれの圧
力供給用電磁弁(3c)を開状態にした時刻を0時刻と
して合わせた上で、0時刻からの経過時間毎に時系列ガ
ス流量1と該時系列ガス流量2との差の積算演算を行う
機能を持つ。かかる演算を行う機能を持つものとして、
パーソナルコンピュータ、DSPなどが望ましい。かか
る演算の結果、吸着剤による測定対象ガスの時系列吸着
量データが計算され、その時系列吸着量データから吸着
速度時定数・飽和吸着量などが計算できる機能を持つ。
The arithmetic means (5) comprises a time-series gas flow rate 1 when the adsorbent is present in the adsorbent storage means (1b), measured by the gas flow rate measurement means (4), and an adsorbent storage means (1b). Time-series gas flow rate 2 when no adsorbent is present
Is stored in a data storage medium such as a memory, and the time when each of the pressure supply solenoid valves (3c) is opened is set to 0, and the time-series gas flow rate 1 and It has a function of performing an integration calculation of the difference from the time-series gas flow rate 2. With the function of performing such calculations,
A personal computer, a DSP or the like is desirable. As a result of the calculation, the time-series adsorption amount data of the gas to be measured by the adsorbent is calculated, and the time-series adsorption amount data and the adsorption speed time constant / saturated adsorption amount can be calculated from the time-series adsorption amount data.

【0017】[0017]

【実施例】測定対象ガスとして窒素を用いたゼオライト
の吸着速度の測定を行った。吸着剤入圧力容器には、内
径φ100mm、高さ50mmのステンレス製圧力容器
を用いた。この圧力容器の上面及び下面にはガス供給用
穴が空いており、圧力供給手段から測定用ガスが供給さ
れるようになっている。また、この圧力容器の内部中央
には、吸着剤収納手段として2枚の不織布が固定できる
ようになっており、不織布の間に粒状ゼオライトを層状
に敷詰めた。さらに、吸着剤の温度を測定するためK型
熱電対の先端を粒状ゼオライトに接触させた。
EXAMPLES The adsorption rate of zeolite was measured using nitrogen as the gas to be measured. As the adsorbent-containing pressure vessel, a stainless steel pressure vessel having an inner diameter of 100 mm and a height of 50 mm was used. Gas supply holes are formed in the upper and lower surfaces of the pressure vessel, so that a measurement gas is supplied from the pressure supply means. Further, two nonwoven fabrics can be fixed as an adsorbent storage means in the center of the inside of the pressure vessel, and granular zeolite is spread in layers between the nonwoven fabrics. Further, the tip of a K-type thermocouple was brought into contact with the granular zeolite to measure the temperature of the adsorbent.

【0018】測定対象ガス供給タンクは、吸着剤入圧力
容器の容積と比較して十分大きい容積を持つ圧力容器を
準備した。ガス流量測定手段としては、マスフローメー
タを用い、マスフローメータで測定されるガス流量の瞬
時値を、演算手段であるパーソナルコンピュータに約1
0m秒毎に送信するようにした。
As the gas supply tank to be measured, a pressure vessel having a volume sufficiently larger than the volume of the pressure vessel containing the adsorbent was prepared. As the gas flow rate measuring means, a mass flow meter is used, and the instantaneous value of the gas flow rate measured by the mass flow meter is transmitted to a personal computer, which is an arithmetic means, for about 1 hour.
It was sent every 0 msec.

【0019】測定を開始する前には吸着剤入圧力容器内
部を窒素ガスで置換し、0.0MPaGに保持してお
く。圧力供給用電磁弁を予め閉にしておき、圧力発生手
段として用いた窒素ボンベに付属されている圧力調整弁
で2次側圧力が0.1MPaGとなるように調整した。
圧力供給用電磁弁を開にすることにより、吸着剤入圧力
容器内部の圧力はほぼ瞬間的に0.1MPaGに上昇さ
せる。
Before the measurement is started, the inside of the pressure vessel containing the adsorbent is replaced with nitrogen gas and kept at 0.0 MPaG. The pressure supply solenoid valve was closed in advance, and the secondary pressure was adjusted to 0.1 MPaG by a pressure adjustment valve attached to the nitrogen cylinder used as the pressure generating means.
By opening the pressure supply solenoid valve, the pressure inside the adsorbent-containing pressure vessel is increased almost instantaneously to 0.1 MPaG.

【0020】図4に本装置で測定した測定データ例を示
す。時系列ガス流量1は、吸着剤収納手段である2枚の
不織布の間に吸着剤を充填した場合のマスフローメータ
の出力、時系列ガス流量2は、吸着剤収納手段である2
枚の不織布の間に吸着剤を充填しない場合のマスフロー
メータの出力を示す。また、各時刻毎に時系列ガス流量
1から時系列ガス流量2を引いた差の流量を積算した時
系列データを積算吸着量として示す。積算吸着量は、使
用したゼオライトにおける圧力が0.0MPaから0.
1MPaに変化したときの吸着速度を表す指標の1つと
する事ができる。
FIG. 4 shows an example of measurement data measured by this apparatus. The time-series gas flow rate 1 is the output of the mass flow meter when the adsorbent is filled between the two nonwoven fabrics serving as the adsorbent storage means, and the time-series gas flow rate 2 is the adsorbent storage means 2
4 shows the output of a mass flow meter when the adsorbent is not filled between two nonwoven fabrics. In addition, time-series data obtained by integrating the flow rate obtained by subtracting the time-series gas flow rate 2 from the time-series gas flow rate 1 at each time is shown as an integrated adsorption amount. The accumulated amount of adsorption is from 0.0 MPa to 0.
It can be used as one of the indexes indicating the adsorption speed when the pressure changes to 1 MPa.

【図面の簡単な説明】[Brief description of the drawings]

【図1】吸着速度測定装置の構成図。FIG. 1 is a configuration diagram of an adsorption speed measuring device.

【図2】吸着剤入圧力容器の説明図。FIG. 2 is an explanatory view of an adsorbent-containing pressure vessel.

【図3】圧力調整手段の説明図。FIG. 3 is an explanatory diagram of a pressure adjusting unit.

【図4】本発明の吸着速度測定装置の好適な実施例。FIG. 4 shows a preferred embodiment of the adsorption rate measuring device of the present invention.

【符号の説明】[Explanation of symbols]

(1) 吸着剤入圧力容器 (1a) 吸着剤 (1b) 吸着剤収納手段 (1c) 温度検出手段 (2) 圧力発生手段 (3) 圧力調整手段 (3a) 圧力調整弁 (3b) 測定対象ガス供給タンク (3c) 圧力供給用電磁弁 (3d) スイッチ (4) ガス流量測定手段 (5) 演算手段 (1) Adsorbent-filled pressure vessel (1a) Adsorbent (1b) Adsorbent storage means (1c) Temperature detection means (2) Pressure generation means (3) Pressure adjustment means (3a) Pressure adjustment valve (3b) Gas to be measured Supply tank (3c) Solenoid valve for pressure supply (3d) Switch (4) Gas flow measurement means (5) Calculation means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 内部に吸着剤を収納する吸着剤収納手段
を有する吸着剤入圧力容器、該吸着剤入圧力容器に測定
対象ガスによる圧力を与える圧力発生手段、該圧力発生
手段で発生した測定対象ガス圧力を該吸着剤入圧力容器
に供給する圧力供給手段を備え、該吸着剤入圧力容器と
該圧力発生手段との間を流れる測定対象ガスの流量の時
系列的変化を測定するガス流量測定手段と、該ガス流量
測定手段で測定したガス流量から該吸着剤の吸着速度を
演算する演算手段を備えることを特徴とする吸着速度測
定装置。
1. An adsorbent-filled pressure vessel having an adsorbent storage means for storing an adsorbent therein, a pressure generating means for applying a pressure of a gas to be measured to the adsorbent-containing pressure vessel, and a measurement generated by the pressure generating means. A gas supply unit for supplying a target gas pressure to the adsorbent-containing pressure vessel, and a gas flow rate for measuring a time-series change in a flow rate of a measurement target gas flowing between the adsorbent-containing pressure container and the pressure generating means; An adsorption speed measuring device comprising: a measuring means; and a calculating means for calculating an adsorption speed of the adsorbent from a gas flow rate measured by the gas flow rate measuring means.
【請求項2】 該吸着剤収納手段が、吸着剤を層状に配
置する手段であり、該吸着剤の温度を測定するための吸
着剤温度測定手段を有することを特徴とする請求項1記
載の吸着速度測定装置。
2. The adsorbent storage means according to claim 1, wherein said adsorbent storage means is means for arranging the adsorbent in a layered form, and has adsorbent temperature measuring means for measuring the temperature of said adsorbent. Adsorption rate measuring device.
【請求項3】 該吸着剤収納手段が、上下に同体積の空
間を備えるように該吸着剤入圧力容器の中間に位置し、
該空間内の温度を測定するための容器内温度測定手段を
有することを特徴とする請求項1、2記載の吸着速度測
定装置。
3. The adsorbent storage means is positioned in the middle of the adsorbent-containing pressure vessel so as to have a space of equal volume up and down,
3. The adsorption velocity measuring device according to claim 1, further comprising an in-vessel temperature measuring means for measuring a temperature in the space.
【請求項4】 該圧力供給手段が、該圧力発生手段で発
生した圧力を任意の圧力に調整する圧力調整手段を備え
ていることを特徴とする請求項1〜3記載の吸着速度測
定装置。
4. The adsorption speed measuring apparatus according to claim 1, wherein said pressure supply means includes a pressure adjusting means for adjusting the pressure generated by said pressure generating means to an arbitrary pressure.
【請求項5】 該演算手段が、該ガス流量測定手段で測
定した該吸着剤収納手段に吸着剤がある場合の時系列ガ
ス流量1と、該吸着剤収納手段に吸着剤がない場合の時
系列ガス流量2を記憶する機能と、該時系列ガス流量1
と該時系列ガス流量2との差の積算演算を行う機能を含
むことを特徴とする請求項1〜4記載の吸着速度測定装
置。
5. The time-series gas flow rate 1 when the adsorbent is present in the adsorbent storage means measured by the gas flow rate measurement means and the time when the adsorbent is not present in the adsorbent storage means. A function of storing the series gas flow 2 and the time series gas flow 1
5. The adsorption velocity measuring apparatus according to claim 1, further comprising a function of performing an integration operation of a difference between the flow rate and the time-series gas flow rate 2.
JP2001109741A 2001-04-09 2001-04-09 Adsorption rate measuring device Pending JP2002310877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001109741A JP2002310877A (en) 2001-04-09 2001-04-09 Adsorption rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001109741A JP2002310877A (en) 2001-04-09 2001-04-09 Adsorption rate measuring device

Publications (1)

Publication Number Publication Date
JP2002310877A true JP2002310877A (en) 2002-10-23

Family

ID=18961641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001109741A Pending JP2002310877A (en) 2001-04-09 2001-04-09 Adsorption rate measuring device

Country Status (1)

Country Link
JP (1) JP2002310877A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133395A (en) * 2015-01-20 2016-07-25 国立大学法人信州大学 Method for measuring absorption rate
CN112666042A (en) * 2020-11-17 2021-04-16 广西电网有限责任公司电力科学研究院 Novel experiment device for detecting performance of adsorbent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133395A (en) * 2015-01-20 2016-07-25 国立大学法人信州大学 Method for measuring absorption rate
CN112666042A (en) * 2020-11-17 2021-04-16 广西电网有限责任公司电力科学研究院 Novel experiment device for detecting performance of adsorbent

Similar Documents

Publication Publication Date Title
US20040134258A1 (en) Method and apparatus to measure gas amounts adsorbed on a powder sample
US7237428B2 (en) Fuel gauge for hydrogen storage media
Joy Methods and techniques for the determination of specific surface by gas adsorption
US20150362400A1 (en) Device and method for differentiating a gas in a sample
US5637810A (en) Apparatus and method for efficient determination of equilibrium adsorption isotherms at low pressures
JP2008261859A (en) Gas adsorption measuring device
CN101391170A (en) Low-temperature swing adsorption device
JP2002310877A (en) Adsorption rate measuring device
JP2021523356A (en) System and dynamic capacitance method for surface characterization of porous solid and powder materials using fluidized gas
JP6037760B2 (en) Adsorption characteristic measuring device
US20230168171A1 (en) High throughput high resolution gas sorption screening
CN101701900B (en) Device and method for testing absorbance by electric quantity method
CN203534928U (en) Experimental device for testing adsorption/desorption performance of adsorbing working substance pair
CN107894472B (en) Method for measuring hydrogen isotope mixed gas separation factor of separation material
US11169014B2 (en) Bidirectional pycnometer
JP6161640B2 (en) Apparatus and method for measuring a sorption process by calorimetry
CN109799163B (en) Refrigerating device for physical adsorption instrument and physical adsorption instrument without using refrigerant
CN207133152U (en) A kind of device of acetylene absorption measurement
CN110702578A (en) Volumetric method isobaric adsorption tester
Mouahid et al. Supercritical adsorption of nitrogen on EcoSorb-activated carbon at temperatures up to 383 K and pressures up to 2 MPa
CN109490139A (en) A kind of device and method based on physical adsorption appearance test material real density
JP7211205B2 (en) Device for detecting deterioration of hydrogen storage alloy, method for detecting deterioration thereof, and hydrogen absorption and desorption system
Fischer et al. Multiple sample setup for testing the hydrothermal stability of adsorbents in thermal energy storage applications
CN210803224U (en) Volumetric method isobaric adsorption tester
JPS626140A (en) Measuring instrument for adsorption rate