JP2002310750A - Electromagnetic flowmeter - Google Patents

Electromagnetic flowmeter

Info

Publication number
JP2002310750A
JP2002310750A JP2001116868A JP2001116868A JP2002310750A JP 2002310750 A JP2002310750 A JP 2002310750A JP 2001116868 A JP2001116868 A JP 2001116868A JP 2001116868 A JP2001116868 A JP 2001116868A JP 2002310750 A JP2002310750 A JP 2002310750A
Authority
JP
Japan
Prior art keywords
conductivity
flow rate
electrodes
electrode
electromagnetic flowmeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001116868A
Other languages
Japanese (ja)
Inventor
Takashi Arai
崇 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2001116868A priority Critical patent/JP2002310750A/en
Publication of JP2002310750A publication Critical patent/JP2002310750A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize an electromagnetic flowmeter by which a flow rate value can be measured easily in a short time, by a method wherein the conductivity of a fluid is measured by using electrodes used to measure an electromotive force, and an error in the flow rate value is corrected on the basis of the conductivity of the fluid. SOLUTION: The electromagnetic flowmeter is constituted in such a way that a magnetic field is generated by an excitation coil installed at the outside of a measuring pipe, and that the flow rate value of the fluid flowing inside the measuring pipe is measured by detecting the electromotive force generated across the electrodes installed inside the measuring pipe. The electromagnetic flowmeter is provided with a means by which a constant current is supplied across the electrodes, by which the conductivity of the fluid is measured and by which the error due to the conductivity in the flow rate value is corrected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電磁流量計に係り、
特に導管の面間距離の短縮化(短面間化)に関するもの
である。
The present invention relates to an electromagnetic flow meter,
In particular, the present invention relates to shortening of the distance between the surfaces of the conduit (shortening of the surfaces).

【0002】[0002]

【従来の技術】電磁流量計の測定原理は、JIS B7
554「電磁流量計」に記載されているように、測定管
に直角に磁界をかけ、測定管の内面に設けた一対の電極
間から起電力を測定し、その測定値から管内の流量を求
めるものである。このときの流量と測定値との関係は次
式の通りである。
2. Description of the Related Art The measurement principle of an electromagnetic flowmeter is based on JIS B7.
As described in 554 “Electromagnetic flowmeter”, a magnetic field is applied to the measurement tube at right angles, an electromotive force is measured between a pair of electrodes provided on the inner surface of the measurement tube, and the flow rate in the tube is obtained from the measured value. Things. The relationship between the flow rate and the measured value at this time is as follows.

【0003】 Q=πDE/(4kB) …(1) ここに、Q:体積流量(m/S) π:円周率 D:測定管の内径(m) E:起電力(V) k:定数 B:磁束密度(T)Q = πDE / (4 kB) (1) where, Q: volume flow rate (m 3 / S) π: pi D: inner diameter of measurement tube (m) E: electromotive force (V) k: Constant B: magnetic flux density (T)

【0004】このような原理に基づく従来の電磁流量計
の一例を図3に示す。図は要部構成図であり、円筒状の
測定管1の外周面には磁界を発生するための励磁コイル
3が取り付けられている。この励磁コイル3はハウジン
グ4により覆われている。測定管1にはまた、発生する
起電力を検出するための一対の電極2a,2bが配置さ
れている。
FIG. 3 shows an example of a conventional electromagnetic flow meter based on such a principle. The figure is a main part configuration diagram. An excitation coil 3 for generating a magnetic field is attached to an outer peripheral surface of a cylindrical measurement tube 1. This exciting coil 3 is covered by a housing 4. The measurement tube 1 is also provided with a pair of electrodes 2a and 2b for detecting the generated electromotive force.

【0005】流量演算回路5は、電極2a,2bで検出
した起電力をもとに上記(1)式に基づいて演算により
流量を求める。
The flow rate calculating circuit 5 calculates the flow rate based on the above equation (1) based on the electromotive force detected by the electrodes 2a and 2b.

【0006】電磁流量計はこのようにして測定管1内を
流れる流体の流量を測定することができるが、起電力の
測定値は流体の導電率の影響を受ける。導電率の影響を
受けにくくし高精度を維持するためには、ある一定以上
の面間寸法(単に面間とも言う)Lが必要である。
[0006] The electromagnetic flow meter can measure the flow rate of the fluid flowing in the measuring tube 1 in this manner, but the measured value of the electromotive force is affected by the conductivity of the fluid. In order to make the device less susceptible to the influence of the electrical conductivity and maintain high accuracy, a certain inter-plane dimension L (also simply referred to as “plane-to-plane”) is required.

【0007】図4は測定管の面間Lを変えたときの導電
率と流量値のスパン誤差の関係を示すものである。図か
ら明らかなように、流量測定値が導電率(μS/cm)
に影響されにくく、そして高精度に維持されるために
は、面間Lをある一定以上の長さにする必要があること
が分かる。
FIG. 4 shows the relationship between the conductivity and the span error of the flow rate value when the distance L between the surfaces of the measuring tube is changed. As is clear from the figure, the measured flow rate is the conductivity (μS / cm).
It can be seen that it is necessary to make the distance L between the surfaces longer than a certain value in order to be hardly affected by the deviation and to maintain high accuracy.

【0008】[0008]

【発明が解決しようとする課題】このように従来の電磁
流量計ではある一定以上の面間が必要であり、それ以下
の面間寸法には容易に短面間化できないという課題があ
った。
As described above, the conventional electromagnetic flowmeter requires a certain distance between the surfaces, and has a problem that the distance between the surfaces cannot be easily shortened to a smaller dimension.

【0009】例えば、測定管1に流れる流体の導電率
が、20μS/cm〜2000μS/cmの範囲内で変
化する場合、スパン誤差を±1%以内に抑えるには面間
Lが1.5Dは必要であり、それ以下に短くはできなか
った。
For example, if the conductivity of the fluid flowing through the measuring tube 1 changes within the range of 20 μS / cm to 2000 μS / cm, the distance L between the surfaces must be 1.5D to suppress the span error to within ± 1%. It was necessary and could not be shorter.

【0010】本発明の目的は、上記の課題を解決するも
ので、起電力を測定するための電極を利用して流体導電
率を測定し、その流体導電率から流量値の誤差を補正す
ることにより容易に短面間化を図り得るようにした電磁
流量計を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to measure a fluid conductivity using an electrode for measuring an electromotive force, and to correct an error in a flow value from the fluid conductivity. It is another object of the present invention to provide an electromagnetic flowmeter capable of easily shortening the distance between the surfaces.

【0011】[0011]

【課題を解決するための手段】このような目的を達成す
るために、請求項1の発明は、測定管の外部に設けられ
た励磁コイルにより磁界を発生させ、前記測定管に設け
られた電極間に生ずる起電力を検出することにより測定
管内に流れる流体の流量を測定するように構成された電
磁流量計において、前記電極間に定電流を供給して流体
導電率を測定し、前記流量の導電率による誤差を補正す
る手段を備えたことを特徴とする。
In order to achieve the above object, according to the present invention, a magnetic field is generated by an exciting coil provided outside a measuring tube, and an electrode provided on the measuring tube is provided. In an electromagnetic flowmeter configured to measure a flow rate of a fluid flowing in a measurement tube by detecting an electromotive force generated between the electrodes, a constant current is supplied between the electrodes to measure a fluid conductivity, and the flow rate of the fluid is measured. It is characterized by comprising means for correcting an error due to conductivity.

【0012】本発明では、起電力測定用の電極を利用し
て流体導電率も測定し、測定した流体導電率から流量値
の誤差を補正する。このような流量値の補正により、容
易に短面間化が可能となる。
In the present invention, the fluid conductivity is also measured using an electrode for measuring the electromotive force, and an error in the flow value is corrected from the measured fluid conductivity. Such correction of the flow value makes it possible to easily shorten the distance between the surfaces.

【0013】この場合、請求項2のように、流体導電率
の測定は流量測定時に間欠的または一定周期で行われる
ように構成することができる。
In this case, the fluid conductivity can be measured intermittently or periodically at the time of measuring the flow rate.

【0014】また、流体導電率は、請求項3のように、
2つの電極により電極間の接液抵抗を測定し、 σ=2/(Rabd) ここに、σ :流体導電率 Rab:接液抵抗 d :電極径 なる関係式に基づいて求めるように構成することもでき
る。
In addition, the fluid conductivity is as follows:
The liquid contact resistance between the electrodes is measured using two electrodes, and σ = 2 / (R ab d) where σ: fluid conductivity R ab : liquid contact resistance d: electrode diameter It can also be configured.

【0015】あるいはまた流体導電率は、請求項4のよ
うに、2つの電極とアース電極の3つの電極により電極
とアース電極間の各接液抵抗をそれぞれ測定し、 σac=1/(Rac×d) σbc=1/(Rbc×d) ここに、σac,σbc:各電極とアース電極間の流体
導電率 Rac,Rbc:各電極とアース電極間の接液抵抗 d :電極径 なる関係式に基づいて求めるように構成することもでき
る。この場合は、測定管中で導電率の分布が異なってい
てもより正確に導電率を求めることができ、スパン誤差
の補正もより正確に行われる。
Alternatively, the fluid conductivity is determined by measuring each liquid contact resistance between the electrode and the ground electrode by using three electrodes, ie, two electrodes and a ground electrode, according to claim 4, and σ ac = 1 / (R ac × d) σ bc = 1 / (R bc × d) where σ ac , σ bc : fluid conductivity between each electrode and the ground electrode R ac , R bc : liquid contact resistance between each electrode and the ground electrode d: electrode diameter It can be configured to be obtained based on the following relational expression. In this case, the conductivity can be obtained more accurately even if the distribution of the conductivity differs in the measurement tube, and the span error can be corrected more accurately.

【0016】[0016]

【発明の実施の形態】以下図面を用いて本発明を詳しく
説明する。図1は本発明に係る電磁流量計の一実施例を
示す要部構成図である。図1において、図3と同等部分
には同一符号を付し、その説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a main part configuration diagram showing one embodiment of an electromagnetic flow meter according to the present invention. In FIG. 1, the same parts as those in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted.

【0017】図において、Rabは電極2a,2b間の
接液抵抗である。10は定電流源である。S1およびS
2は連動ON/OFFスイッチである。20はスイッチ
S1,S2を駆動するための信号(導電率測定制御信
号)を発生するスイッチ駆動回路である。5aは従来と
同様の流量演算機能と本発明特有のスパン誤差補正の演
算機能を有する流量演算回路である。なお、励磁コイル
およびその駆動回路は図示を省略してある。
In the figure, Rab is the liquid contact resistance between the electrodes 2a and 2b. Reference numeral 10 denotes a constant current source. S1 and S
2 is an interlocking ON / OFF switch. Reference numeral 20 denotes a switch drive circuit that generates a signal (conductivity measurement control signal) for driving the switches S1 and S2. Reference numeral 5a denotes a flow rate calculation circuit having a flow rate calculation function similar to the conventional one and a span error correction calculation function unique to the present invention. The illustration of the excitation coil and its drive circuit is omitted.

【0018】スイッチS1は定電流源10と電極2aの
間に接続され、スイッチS2は電極2bとコモンライン
間に接続されている。定電流源10は負側がコモンライ
ンに接続され、正側がスイッチS1に接続されている。
The switch S1 is connected between the constant current source 10 and the electrode 2a, and the switch S2 is connected between the electrode 2b and the common line. The constant current source 10 has a negative side connected to the common line and a positive side connected to the switch S1.

【0019】このような構成において、流体の流量測定
時はスイッチS1,S2を共にOFFにし、流体導電率
測定時はスイッチS1,S2を共にONにする。流体導
電率測定時は、定電流源10からの電流が、図中に矢印
で示すように、スイッチS1、電極2a、接液抵抗R
ab、電極2b、スイッチS2を経由してコモンライン
へと流れる。流量演算回路5はこのときの電極2a,2
b間に生じた電圧を測定する。
In such a configuration, both switches S1 and S2 are turned off when measuring the flow rate of the fluid, and both switches S1 and S2 are turned on when measuring the fluid conductivity. At the time of measuring the fluid conductivity, the current from the constant current source 10 is switched by the switch S1, the electrode 2a, and the liquid contact resistance R as indicated by an arrow in the figure.
The current flows to the common line via ab , the electrode 2b, and the switch S2. The flow rate calculation circuit 5 determines the electrodes 2a, 2
The voltage generated between b is measured.

【0020】接液抵抗Rabは、電極2a,2b間に生
じた電圧と定電流源10の電流(既知)から求められ、
導電率とは次の関係にある。 σ=2/(Rabd) …(2) ここに、σ:流体導電率 d:電極径(電極2a,2b共に同一径)
The liquid contact resistance Rab is determined from the voltage generated between the electrodes 2a and 2b and the current (known) of the constant current source 10,
The electrical conductivity has the following relationship. σ = 2 / (R ab d) (2) where σ: fluid conductivity d: electrode diameter (both electrodes 2a and 2b have the same diameter)

【0021】流量演算回路5は、(2)式の演算により
流体導電率を算出し、別途測定した流量値に対して、図
4に示す関係からスパン誤差を補正する。これにより面
間Lに応じて流量値のスパン誤差を補正することができ
る。なお、この流体導電率測定は流量測定時に割込んで
一定間隔でその測定動作を行なうようにしてある。
The flow rate calculation circuit 5 calculates the fluid conductivity by the calculation of the equation (2), and corrects the span error with respect to the flow rate value measured separately from the relationship shown in FIG. Thereby, the span error of the flow rate value can be corrected according to the distance L between the surfaces. The measurement of the fluid conductivity is interrupted at the time of measuring the flow rate, and the measuring operation is performed at regular intervals.

【0022】以上のようにして、面間Lを1.5D以下
に短縮したとしても流量値を容易に高精度に求めること
ができる。
As described above, even if the distance L between the surfaces is reduced to 1.5 D or less, the flow rate value can be easily obtained with high accuracy.

【0023】図2は本発明の他の実施例図である。図1
と基本的に異なるところは、測定管1の2箇所で導電率
を測定するようにした点である。スイッチS21は3接
点スイッチであり、導電率測定時には定電流源10を電
極2a側かまたは電極2b側に接続され、流量測定時に
はいずれの電極側にも接続されない。また、スイッチS
22はアース電極2cとアースとの間に接続されたON
/OFFスイッチであり、導電率測定時にはON、流量
測定時はOFFとなる。これらスイッチS21,S22
はスイッチ駆動回路20により駆動される。
FIG. 2 shows another embodiment of the present invention. FIG.
The difference from the first embodiment is that the conductivity is measured at two points of the measuring tube 1. The switch S21 is a three-contact switch. The constant current source 10 is connected to the electrode 2a or the electrode 2b when measuring the conductivity, and is not connected to any electrode when measuring the flow rate. Also, switch S
22 is an ON connected between the ground electrode 2c and the ground.
This is an / OFF switch, which is ON when measuring the conductivity and OFF when measuring the flow rate. These switches S21, S22
Are driven by the switch drive circuit 20.

【0024】このような構成において、流体導電率測定
時にはスイッチS21とS22を駆動して電極とアース
間の2箇所で導電率を測定する。電極2a,2c間の導
電率σacを測定する場合はスイッチS21をa側に接
続し、電極2b,2c間の導電率σbcを測定する場合
はスイッチS21をb側に接続する。
In such a configuration, when measuring the fluid conductivity, the switches S21 and S22 are driven to measure the conductivity at two points between the electrode and the ground. When measuring the conductivity σ ac between the electrodes 2a and 2c, the switch S21 is connected to the a side, and when measuring the conductivity σ bc between the electrodes 2b and 2c, the switch S21 is connected to the b side.

【0025】導電率σacと接液抵抗Racおよび導電
率σbcと接液抵抗Rbcとの間にはそれぞれ次の関係
がある。 σac=1/(Rac×d) σbc=1/(Rbc×d) ここに、d:電極径(電極2a,2b,2c共に同一
径)
The following relationship exists between the conductivity σ ac and the wetted resistance R ac and between the conductivity σ bc and the wetted resistance R bc . σ ac = 1 / (R ac × d) σ bc = 1 / (R bc × d) where d: electrode diameter (electrodes 2a, 2b, 2c have the same diameter)

【0026】これにより測定管の2箇所で導電率
σac,σbcがそれぞれ測定され、測定管中で導電率
の分布が異なっていてもより正確に導電率を求めること
ができ、スパン誤差の補正もより正確に行われる。この
ため、図1よりもさらに高精度に流量値を求めることが
できる。
As a result, the electric conductivities σ ac and σ bc are measured at two points of the measuring tube, and the electric conductivity can be obtained more accurately even if the distribution of electric conductivity is different in the measuring tube. Correction is also performed more accurately. Thus, the flow rate value can be obtained with higher accuracy than in FIG.

【0027】なお、本発明は上記実施例に限定されるこ
となく、その本質から逸脱しない範囲で更に多くの変
更、変形をも含むものである。
The present invention is not limited to the above-described embodiment, but includes many more changes and modifications without departing from the essence thereof.

【0028】[0028]

【発明の効果】以上説明したように本発明によれば、流
量を測定するための電極を利用して流体導電率を測定
し、その流体伝導率からの流量値の誤差を補正できるた
め、容易に短面間化を実現することができるという効果
がある。
As described above, according to the present invention, the fluid conductivity is measured by using the electrodes for measuring the flow rate, and the error of the flow rate value from the fluid conductivity can be corrected. In addition, there is an effect that it is possible to realize a reduction in the length between the surfaces.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電磁流量計の一実施例を示す構成
図である。
FIG. 1 is a configuration diagram showing one embodiment of an electromagnetic flow meter according to the present invention.

【図2】本発明の他の実施例図である。FIG. 2 is another embodiment of the present invention.

【図3】従来の電磁流量計の一例を示す構成図である。FIG. 3 is a configuration diagram illustrating an example of a conventional electromagnetic flow meter.

【図4】流量値のスパン誤差と導電率の関係を示す図で
ある。
FIG. 4 is a diagram showing a relationship between a flow rate value span error and conductivity.

【符号の説明】[Explanation of symbols]

1 測定管 2a,2b,2c 電極 5a 流量演算回路 10 定電流源 20 スイッチ駆動回路 S1,S2,S21 スイッチ DESCRIPTION OF SYMBOLS 1 Measurement tube 2a, 2b, 2c Electrode 5a Flow rate calculation circuit 10 Constant current source 20 Switch drive circuit S1, S2, S21 Switch

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】測定管の外部に設けられた励磁コイルによ
り磁界を発生させ、前記測定管に設けられた電極間に生
ずる起電力を検出することにより測定管内に流れる流体
の流量を測定するように構成された電磁流量計におい
て、 前記電極間に定電流を供給して流体導電率を測定し、前
記流量の導電率による誤差を補正する手段を備えたこと
を特徴とする電磁流量計。
A magnetic field is generated by an excitation coil provided outside a measuring tube, and an electromotive force generated between electrodes provided in the measuring tube is detected to measure a flow rate of a fluid flowing in the measuring tube. The electromagnetic flowmeter according to any one of claims 1 to 3, further comprising means for supplying a constant current between the electrodes to measure a fluid conductivity, and correcting an error caused by the conductivity of the flow rate.
【請求項2】前記流体導電率の測定は流量測定時に間欠
的または一定周期で行われるように構成したことを特徴
とする請求項1記載の電磁流量計。
2. The electromagnetic flowmeter according to claim 1, wherein the measurement of the fluid conductivity is performed intermittently or at a constant cycle when measuring the flow rate.
【請求項3】前記流体導電率は、2つの電極により電極
間の接液抵抗を測定し、 σ=2/(Rabd) ここに、σ :流体導電率 Rab:接液抵抗 d :電極径 なる関係式に基づいて求めるように構成されたことを特
徴とする請求項1または2記載の電磁流量計。
3. The fluid conductivity is obtained by measuring a liquid contact resistance between two electrodes by using two electrodes. Σ = 2 / (R ab d) where σ: fluid conductivity R ab : liquid contact resistance d: The electromagnetic flowmeter according to claim 1, wherein the electromagnetic flowmeter is configured to be obtained based on a relational expression of an electrode diameter.
【請求項4】前記流体導電率は、2つの電極とアース電
極の3つの電極により電極とアース電極間の各接液抵抗
をそれぞれ測定し、 σac=1/(Rac×d) σbc=1/(Rbc×d) ここに、σac,σbc:各電極とアース電極間の流体
導電率 Rac,Rbc:各電極とアース電極間の接液抵抗 d :電極径 なる関係式に基づいて求めるように構成されたことを特
徴とする請求項1または2記載の電磁流量計。
4. The fluid conductivity is determined by measuring each liquid contact resistance between an electrode and an earth electrode by using three electrodes of two electrodes and an earth electrode, and σ ac = 1 / (R ac × d) σ bc = 1 / ( Rbc × d) where σ ac , σ bc : fluid conductivity between each electrode and the ground electrode R ac , R bc : liquid contact resistance between each electrode and the ground electrode d: electrode diameter The electromagnetic flowmeter according to claim 1, wherein the electromagnetic flowmeter is configured to be determined based on an equation.
JP2001116868A 2001-04-16 2001-04-16 Electromagnetic flowmeter Pending JP2002310750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001116868A JP2002310750A (en) 2001-04-16 2001-04-16 Electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001116868A JP2002310750A (en) 2001-04-16 2001-04-16 Electromagnetic flowmeter

Publications (1)

Publication Number Publication Date
JP2002310750A true JP2002310750A (en) 2002-10-23

Family

ID=18967530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001116868A Pending JP2002310750A (en) 2001-04-16 2001-04-16 Electromagnetic flowmeter

Country Status (1)

Country Link
JP (1) JP2002310750A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219372A (en) * 2003-01-17 2004-08-05 Yokogawa Electric Corp Electromagnetic flowmeter
JP2015011035A (en) * 2013-07-01 2015-01-19 クローネ メステヒニーク ゲゼルシヤフト ミツト ベシユレンクテル ハフツングKrohne Messtechnik GmbH Electromagnetic-inductive flow meter and method for operating the same
DE102022203021A1 (en) 2022-03-28 2023-09-28 Siemens Aktiengesellschaft Method for determining the fill level of a pipe, evaluation unit, flow measuring system and computer program product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219372A (en) * 2003-01-17 2004-08-05 Yokogawa Electric Corp Electromagnetic flowmeter
JP2015011035A (en) * 2013-07-01 2015-01-19 クローネ メステヒニーク ゲゼルシヤフト ミツト ベシユレンクテル ハフツングKrohne Messtechnik GmbH Electromagnetic-inductive flow meter and method for operating the same
EP2821756B1 (en) * 2013-07-01 2023-07-05 Krohne Messtechnik GmbH Magnetic-inductive flow measuring apparatus and method for operating a magnetic-inductive flow measuring apparatus
DE102022203021A1 (en) 2022-03-28 2023-09-28 Siemens Aktiengesellschaft Method for determining the fill level of a pipe, evaluation unit, flow measuring system and computer program product

Similar Documents

Publication Publication Date Title
JP3263296B2 (en) Electromagnetic flow meter
US9658089B2 (en) Electromagnetic flowmeter with voltage-amplitude conductivity-sensing function for a liquid in a tube
JP4755382B2 (en) Magnetic induction flow measuring device
JP2007315813A5 (en)
RU2413182C2 (en) Magnetic inductive flow metre
CN111426357A (en) Magnetic flowmeter assembly with zero flow measurement capability
DK1536211T3 (en) Method for operating a magnetic inductive flow meter
CN114829883A (en) Method for operating a magnetically inductive flow meter
CN111426356A (en) Magnetic flow meter assembly with independent coil drive and control system
JP2002310750A (en) Electromagnetic flowmeter
RU2343554C1 (en) Electronic unit of field instrument and field instrument (versions)
JP4063817B2 (en) Magnetic induction flow measuring device and measuring method for magnetic induction flow measuring device
JPH0694738A (en) Current meter
JPH10170317A (en) Electromagnetic flowmeter
JP4493010B2 (en) Flow rate / residual chlorine concentration measuring instrument and tap water flow rate / residual chlorine concentration measurement method
JP4160797B2 (en) Magnetic induction flow meter
JP4446223B2 (en) Electromagnetic flow meter
JPS6111611Y2 (en)
JPH0634700Y2 (en) Conductivity meter measurement circuit
JP2751269B2 (en) Electromagnetic flow meter
JP3325452B2 (en) Electromagnetic flow meter
EP4067832A1 (en) An electromagnetic flowmeter with a plurality of coils
JP3244341B2 (en) Electromagnetic flow meter
KR20170024685A (en) Electromagnetic flow meter
TWI495852B (en) Electromagnetic Flowmeter with Voltage-Amplitude Conductivity-Sensing Function