JP2002308646A - Wollastonite-based glass ceramic fired at low temperature and method of producing the same - Google Patents

Wollastonite-based glass ceramic fired at low temperature and method of producing the same

Info

Publication number
JP2002308646A
JP2002308646A JP2001111767A JP2001111767A JP2002308646A JP 2002308646 A JP2002308646 A JP 2002308646A JP 2001111767 A JP2001111767 A JP 2001111767A JP 2001111767 A JP2001111767 A JP 2001111767A JP 2002308646 A JP2002308646 A JP 2002308646A
Authority
JP
Japan
Prior art keywords
weight
fine powder
wollastonite
glass
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001111767A
Other languages
Japanese (ja)
Other versions
JP4756254B2 (en
Inventor
Masatoshi Sato
昌利 佐藤
Tatsuaki Nakano
達明 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto City
Original Assignee
Kyoto City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto City filed Critical Kyoto City
Priority to JP2001111767A priority Critical patent/JP4756254B2/en
Publication of JP2002308646A publication Critical patent/JP2002308646A/en
Application granted granted Critical
Publication of JP4756254B2 publication Critical patent/JP4756254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a wollastonite-based glass ceramic fired at a low temperature, which is obtained by using, as a raw material, waste glass (soda-lime glass) typified by used bottles and firing at a low firing temperature range and which has excellent electrical insulation and mechanical strengths. SOLUTION: The wollastonite-based glass ceramic fired at a low temperature is obtained by using a fine powder of soda-lime glass as a main raw material and firing at a temperature range of 825 to 900 deg.C, and contains wollastonite as a crystal, and as main components, SiO2 , CaO, Na2 O and B2 O3 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ソーダ石灰ガラス
微粉末を主原料とするワラストナイト系低温焼成ガラス
セラミックス及びその製造法に関し、本発明に係るワラ
ストナイト系低温焼成ガラスセラミックスは、電気絶縁
材料、例えば、電子機器等の回路基板や小型絶縁部品に
用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wollastonite-based low-temperature fired glass ceramic using soda-lime glass fine powder as a main material and a method for producing the same. It is used for an insulating material, for example, a circuit board of an electronic device or a small insulating component.

【0002】[0002]

【従来の技術】周知のとおり、電子機器等の回路基板や
小型絶縁部品に汎用されている優れた電気絶縁性と機械
的強度を有する所謂「ファインセラミックス」は、通
常、1200〜1600℃という高温で焼成されている。製品コ
スト削減のためにファインセラミックス製造業界におい
ては、焼成温度を下げる研究・開発が1980年代から行わ
れているが、最近では低温焼成セラミックスの開発は、
CO2 排出量削減に貢献できるので、地球温暖化防止の立
場から重要視されている。
2. Description of the Related Art As is well known, so-called "fine ceramics" having excellent electrical insulation properties and mechanical strength, which are widely used for circuit boards and small insulating parts of electronic equipment, etc., usually have a high temperature of 1200 to 1600 ° C. It has been fired. In the fine ceramics manufacturing industry, research and development to lower the firing temperature has been conducted since the 1980s to reduce product costs.
It is considered important from the standpoint of preventing global warming because it can contribute to reducing CO 2 emissions.

【0003】即ち、1980年代には、1000℃近傍で焼成で
きるセラミックスとしてアルミナとホウケイ酸ガラスと
の複合系(例えば、鉛ホウケイ酸系結晶化ガラス、アル
ミノ・カルシウム・ホウケイ酸系結晶化ガラス及びホウ
ケイ酸系非晶質ガラスなど)や結晶化ガラス系(例え
ば、コーディライト系:2MgO・2Al2O3・5SiO2 及びβ−
スポジュメン系:Li2O・Al203 ・4SiO2 など)が提案さ
れている。
That is, in the 1980s, as a ceramic which can be fired at around 1000 ° C., a composite of alumina and borosilicate glass (for example, lead borosilicate crystallized glass, alumino-calcium borosilicate crystallized glass and borosilicate glass) acid amorphous glass, etc.) or crystallized glass-based (e.g., cordierite-based: 2MgO · 2Al 2 O 3 · 5SiO 2 and β-
Spodumene system: such as Li 2 O · Al 2 0 3 · 4SiO 2) has been proposed.

【0004】近年に至っては、特開平10-120436 号公報
にはSiO2:40〜70重量%、CaO :20〜35重量%、 MgO :
11〜30重量%、Al2O3 :0.5 〜10重量%、SrO :0〜10
重量%、ZnO :0〜10重量%、TiO2:0〜10重量%及び
Na2O:0〜3重量%の組成を有する結晶性ガラス粉末を
用いた850 〜950 ℃の温度範囲において焼成できるディ
オプサイド系低温焼成ガラスセラミック材料が提案され
ており、特開平11-106252 号公報にはSiO2:40〜70重量
%、Al2O3 :0〜30重量%、B2O3:3〜25重量%、Na
2O:0〜5重量%、K2O :0〜5重量%、CaO :5〜30
重量%、SrO :0〜30重量%及びBaO :0〜30重量%の
組成を有する結晶性ガラス粉末と長石系結晶粉末とを用
いた850 〜900 ℃の温度範囲において焼成できるアノー
サイト系乃至ワラストナイト系低温焼成ガラスセラミッ
ク材料が提案されている。
In recent years, JP-A-10-120436 discloses that SiO 2 : 40 to 70% by weight, CaO: 20 to 35% by weight, MgO:
11-30 wt%, Al 2 O 3: 0.5 ~10 wt%, SrO: 0
Wt%, ZnO: 0 wt%, TiO 2: 0 wt% and
A diopside-based low-temperature fired glass-ceramic material which can be fired in a temperature range of 850 to 950 ° C. using crystalline glass powder having a composition of Na 2 O: 0 to 3% by weight has been proposed. No. the publication SiO 2: 40 to 70 wt%, Al 2 O 3: 0~30 wt%, B 2 O 3: 3~25 wt%, Na
2 O: 0 to 5 wt%, K 2 O: 0~5 wt%, CaO: 5 to 30
Anorthite-based or sinterable in a temperature range of 850 to 900 ° C. using a crystalline glass powder having a composition of 0 to 30% by weight, SrO: 0 to 30% by weight, and BaO: 0 to 30% by weight. Lastnite low temperature fired glass-ceramic materials have been proposed.

【0005】なお、850 〜900 ℃の温度範囲において焼
成することにより、回路基板や小型絶縁部品などに適用
できる優れた電気絶縁性と機械的強度を有する低温焼成
ファインセラミックスを得る場合には、前出公報にも見
られるとおり、複数の原料を所定配合割合にて組み合せ
て溶融し特定組成のガラスを合成した後、該ガラスを微
粉砕したガラス微粉末(一般「フリット」と呼ばれてい
る)を用いる必要がある。
In order to obtain low-temperature fired fine ceramics having excellent electrical insulation properties and mechanical strength applicable to circuit boards and small insulating parts by firing at a temperature in the range of 850 to 900 ° C. As can be seen from the publication, a plurality of raw materials are combined at a predetermined compounding ratio and melted to synthesize a glass having a specific composition, and then the glass is finely pulverized (generally called “frit”). Must be used.

【0006】一方、タイルやブロックなどのセラミック
建材製造業界においては、特開2000-351664 号公報に開
示されているように空きびんを代表例とする廃ガラス
(通常、ソーダ石灰ガラス)を廃物利用の見地から活用
すべく、粘土や長石などに廃ガラスを粉砕した微粉末を
上限70重量%まで配合し、該配合物を所要形状に成形
し、該成形物を1000℃にて焼成してタイルやブロックが
製造されており、該タイルやブロックは市販されてい
る。
On the other hand, in the ceramic building material manufacturing industry such as tiles and blocks, as disclosed in Japanese Patent Application Laid-Open No. 2000-351664, waste glass (typically, soda-lime glass) represented by empty bottles is used as waste. In order to utilize from the point of view, fine powder obtained by pulverizing waste glass with clay or feldspar is compounded up to 70% by weight, and the compound is formed into a required shape, and the formed material is fired at 1000 ° C and tiled. And blocks are manufactured, and the tiles and blocks are commercially available.

【0007】[0007]

【発明が解決しようとする課題】近時、容器包装リサイ
クル法が施行されるに伴い、都市ごみとして回収される
空きびんなどの廃ガラス量は急速に増加しつつある。ガ
ラスびんの製造に当り、その原料の約70%は回収された
空きびんなどの廃ガラスがガラスびんの原料として再利
用されてはいるが、着色ガラスや混砕カレット(回収途
中で割れて粉々になり着色ガラスと無色ガラスが混在し
ているもの)は大半が再利用されずに廃棄されているの
が現状である。
Recently, with the enforcement of the Containers and Packaging Recycling Law, the amount of waste glass such as empty bottles collected as municipal waste is rapidly increasing. In the production of glass bottles, about 70% of the raw materials are recycled glass waste, such as collected empty bottles, which are reused as raw materials for glass bottles. At present, colored glass and colorless glass are mixed), but most of them are discarded without being reused.

【0008】本発明者は、永年にわたり、再利用されず
に廃棄されている廃ガラスの再利用を命題として、所謂
リサイクル技術手段を確立すべく、種々検討を進めてき
た。
The inventor of the present invention has been conducting various studies for many years to establish so-called recycling technical means with the proposition of reusing waste glass discarded without being reused for many years.

【0009】そして、本発明者は、ファインセラミック
製造業界においては、優れた電気絶縁性と機械的強度を
有する低温焼成ファインセラミックスを得る場合には、
前記のとおり、複数の原料を所定配合割合にて組み合わ
せて溶融し特定組成のガラスを合成した後、該ガラスを
微粉砕したガラス微粉末(フリット)が用いられている
ため、製造コストが非常に高くついている事実に着目し
た。
In the fine ceramics manufacturing industry, the present inventor has found that when obtaining a low-temperature fired fine ceramics having excellent electric insulation and mechanical strength,
As described above, after combining and melting a plurality of raw materials at a predetermined mixing ratio to synthesize a glass having a specific composition, a glass fine powder (frit) obtained by pulverizing the glass is used. We paid attention to the fact that it was expensive.

【0010】そこで、本発明者は、空きびんに代表され
る廃ガラス(ソーダ石灰ガラス)を原料とし、しかも、
可及的に低い焼成温度範囲において優れた電気絶縁性と
機械的強度を有する低温焼成ファインセラミックスが得
られる製造技術を提供することを技術的課題として研究
を行った。
Therefore, the present inventor uses waste glass (soda lime glass) represented by an empty bottle as a raw material,
The research was conducted to provide a manufacturing technique for obtaining a low-temperature fired fine ceramics having excellent electrical insulation and mechanical strength in a firing temperature range as low as possible.

【0011】本発明者は、廃ガラス(ソーダ石灰ガラ
ス)を対象として前記技術的課題を達成すべく、数多く
の系統的な実験を進める内に、ソーダ石灰ガラス微粉末
に特定配合割合をもって水酸化カルシウム微粉末とメタ
ホウ酸カルシウム微粉末とを混合して焼成する場合には
825 〜900 ℃という低い温度範囲において結晶としてワ
ラストナイトのみを含んでおり、優れた電気絶縁性と機
械的強度を有するワラストナイト系低温焼成ガラスセラ
ミックスが得られるという刮目すべき新知見を得、当該
技術的課題を達成したのである。
The inventor of the present invention carried out a number of systematic experiments in order to achieve the above-mentioned technical object for waste glass (soda lime glass). When mixing and baking calcium fine powder and calcium metaborate fine powder
In the low temperature range of 825 to 900 ° C, it contains only wollastonite as a crystal, and a remarkable new finding that a wollastonite-based low-temperature fired glass ceramic having excellent electrical insulation and mechanical strength can be obtained. This achieved the technical task.

【0012】[0012]

【課題を解決するための手段】前記技術的課題は、次の
通りの本発明によって解決できる。
The technical problem can be solved by the present invention as described below.

【0013】即ち、本発明は、ソーダ石灰ガラス微粉末
を主原料とし、且つ、825 〜900 ℃の温度範囲において
焼成してなる結晶としてワラストナイトのみを含んでい
ると共にSiO2、CaO、Na2O及びB2O3を主成分とするワラス
トナイト系低温焼成ガラスセラミックスである(発明
1)。
[0013] That is, the present invention comprises only wollastonite as a crystal obtained by firing at a temperature in the range of 825 to 900 ° C, using soda-lime glass fine powder as a main raw material, and containing SiO 2 , CaO, Na It is a wollastonite-based low-temperature fired glass ceramic mainly containing 2 O and B 2 O 3 (Invention 1).

【0014】また、本発明は、前記発明1における主成
分であるSiO2、CaO、Na2O及びB2O3の量が、それぞれ、重
量部にて85部、48〜56部、15部及び22〜33部であるワラ
ストナイト系低温焼成ガラスセラミックスである(発明
2)。
The present invention also relates to the first aspect of the present invention, wherein the amounts of the main components of SiO 2 , CaO, Na 2 O and B 2 O 3 are 85 parts by weight, 48 to 56 parts and 15 parts by weight, respectively. And 22 to 33 parts of wollastonite low-temperature fired glass ceramics (Invention 2).

【0015】また、本発明は、ソーダ石灰ガラス微粉末
にCaO を含む化合物の微粉末とB2O3を含む化合物の微粉
末とを混合し、該混合物を所要形状にプレス成形し、該
成形物を825 〜900 ℃の温度範囲にて焼成することを特
徴とする結晶としてワラストナイトのみを含んでいると
共にSiO2、CaO、Na2O及びB2O3を主成分とするワラストナ
イト系低温焼成ガラスセラミックスの製造法である(発
明3)。
The present invention also provides a method of mixing fine powder of a compound containing CaO and fine powder of a compound containing B 2 O 3 with fine powder of soda-lime glass, press-forming the mixture into a required shape, The product is calcined in a temperature range of 825 to 900 ° C., and contains only wollastonite as a crystal and wollastonite containing SiO 2 , CaO, Na 2 O and B 2 O 3 as main components. This is a method for producing a low-temperature fired glass ceramic (Invention 3).

【0016】また、本発明は、前記発明3におけるCaO
を含む化合物の微粉末が水酸化カルシウム微粉末、B2O3
を含む化合物の微粉末がメタホウ酸カルシウム微粉末で
あるワラストナイト系低温焼成ガラスセラミックスの製
造法である(発明4)。
The present invention also relates to the CaO according to the third aspect.
Is fine powder of calcium hydroxide, B 2 O 3
This is a method for producing wollastonite-based low-temperature fired glass ceramics in which the fine powder of the compound containing is calcium metaborate fine powder (Invention 4).

【0017】また、本発明は、前記発明4におけるソー
ダ石灰ガラス微粉末の配合割合が46.4〜71.9重量%、水
酸化カルシウム微粉末の配合割合が3.7 〜17.9重量%、
メタホウ酸カルシウム微粉末の配合割合が14.2〜45.2重
量%であるワラストナイト系低温焼成ガラスセラミック
スの製造法である(発明5)。
In the present invention, the compounding ratio of the fine powder of soda lime glass is 46.4 to 71.9% by weight, the compounding ratio of the fine powder of calcium hydroxide is 3.7 to 17.9% by weight, and
This is a method for producing wollastonite-based low-temperature fired glass ceramics in which the mixing ratio of calcium metaborate fine powder is 14.2 to 45.2% by weight (Invention 5).

【0018】本発明の構成をより詳しく説明すれば次の
とおりである。
The configuration of the present invention will be described in more detail as follows.

【0019】先ず、本発明に係るワラストナイト系低温
焼成ガラスセラミックスは、825 〜900 ℃の温度範囲に
おいて焼成された結晶としてワラストナイト(CaO ・Si
O2)のみを含んでいるものである(後出、図1参照)。
First, the wollastonite-based low-temperature fired glass ceramics according to the present invention is made of wollastonite (CaO.Si) as a crystal fired in a temperature range of 825 to 900 ° C.
O 2 ) alone (see FIG. 1 below).

【0020】焼成温度が825 ℃未満では焼成による緻密
化が不十分で、焼成収縮率が小さいが、焼成温度850 ℃
を越えるとかさ密度が大きくなり緻密化する。なお、焼
成温度が900 ℃を越えると溶融してしまう。
If the firing temperature is lower than 825 ° C., the densification by firing is insufficient, and the firing shrinkage is small, but the firing temperature is 850 ° C.
Exceeding the bulk density increases the density. If the sintering temperature exceeds 900 ° C., it will be melted.

【0021】また、本発明に係るワラストナイト系低温
焼成ガラスセラミックスの主成分はSiO2、CaO、Na2O及びB
2O3であり、それぞれの代表的な量は、重量部にて、85
部、48〜56部、15部及び22〜33部であるが、各量は出発
物である各原料の配合割合によって変動する。
The wollastonite low-temperature fired glass ceramics according to the present invention is mainly composed of SiO 2 , CaO, Na 2 O and B
2 O 3 with typical amounts of 85 parts by weight
Parts, 48 to 56 parts, 15 parts, and 22 to 33 parts, and each amount varies depending on the mixing ratio of each starting material.

【0022】本発明に係るワラストナイト系低温焼成ガ
ラスセラミックスの比誘電率は5.0〜6.3 、体積抵抗率
は室温において1×1011Ω・cm以上、250 ℃において1
×10 6 〜1×107 Ω・cmであって、かさ密度は2.3 〜2.
5g/cm3 、曲げ強さは80〜105 MPa であり、回路基板や
小型絶縁部品などに実用可能な電気絶縁性と機械的強度
を具備している。
The wollastonite low-temperature firing gas according to the present invention
The relative permittivity of glass ceramics is 5.0-6.3, volume resistivity
Is 1 × 10 at room temperature11Ω · cm or more, 1 at 250 ° C
× 10 6~ 1 × 107Ωcm, and bulk density is 2.3-2.
5g / cmThreeThe bending strength is 80 to 105 MPa,
Electrical insulation and mechanical strength that can be used for small insulating parts
Is provided.

【0023】次に、本発明に係るワラストナイト系低温
焼成ガラスセラミックスの製造法に使用する各原料とそ
の配合割合について説明する。
Next, each raw material used in the method for producing the wollastonite-based low-temperature fired glass ceramics according to the present invention and the mixing ratio thereof will be described.

【0024】ソーダ石灰ガラス微粉末としては、ソーダ
石灰ガラス製の空きびんなどの廃ガラスを微粉砕したメ
ディアン径3〜20μm の微粉末を用いる。
As the soda-lime glass fine powder, a fine powder having a median diameter of 3 to 20 μm obtained by finely pulverizing waste glass such as an empty bottle made of soda-lime glass is used.

【0025】CaO を含む化合物としては、メディアン径
3〜20μm の水酸化カルシウム(Ca(OH)2)微粉末、酸
化カルシウム(CaO )微粉末、ケイ酸カルシウム(CaO
・mSiO2・n H2O )微粉末等が用いられるが、水酸化カ
ルシウム微粉末が入手性や取扱い性などの点から好まし
い。ソーダ石灰ガラス微粉末中のSiO2、CaO に水酸化カ
ルシウム等のCa成分を加えることによってワラストナイ
ト結晶(CaO ・SiO2)が析出する。なお、ケイ酸カルシ
ウムとしてはセメント質の建築廃材を使用することもで
きる。
Examples of the compound containing CaO include fine powder of calcium hydroxide (Ca (OH) 2 ), fine powder of calcium oxide (CaO), and fine powder of calcium silicate (CaO) having a median diameter of 3 to 20 μm.
・ MSiO 2 .n H 2 O) Fine powders and the like are used, but calcium hydroxide fine powders are preferred from the viewpoint of availability and handleability. By adding Ca components such as calcium hydroxide to SiO 2 and CaO in the soda-lime glass fine powder, wollastonite crystals (CaO.SiO 2 ) are precipitated. In addition, cementitious construction waste material can also be used as calcium silicate.

【0026】B2O3を含む化合物としては、メディアン径
3〜20μm のメタホウ酸カルシウム(CaO ・B2O3・4H
2O)微粉末、無水ホウ酸(B2O3)微粉末、コレマナイト
(2CaO・3B2O3 ・5H2O)微粉末、合成ホウ酸カルシウム
(CaO ・B2O3)微粉末等が用いられるが、メタホウ酸カ
ルシウム微粉末が入手性や取扱い性などの点から好まし
い。B2O3成分はガラス相の融点を下げてワラストナイト
析出温度を下げている。B2O3が不足すると、ソーダ石灰
ガラスからデビトライト(Na2O・3CaO・6SiO2 )結晶が
析出する。
Compounds containing B 2 O 3 include calcium metaborate (CaO.B 2 O 3 .4H) having a median diameter of 3 to 20 μm.
2 O) fine powder, boric anhydride (B 2 O 3 ) fine powder, colemanite (2CaO.3B 2 O 3 .5H 2 O) fine powder, synthetic calcium borate (CaO.B 2 O 3 ) fine powder, etc. Although it is used, calcium metaborate fine powder is preferred from the viewpoint of availability and handleability. The B 2 O 3 component lowers the melting point of the glass phase and lowers the wollastonite deposition temperature. If B 2 O 3 is insufficient, debitrite (Na 2 O.3CaO.6SiO 2 ) crystals are precipitated from soda-lime glass.

【0027】各原料の配合割合は重要であり、ソーダ石
灰ガラス微粉末の配合割合は46.4〜71.9重量%の範囲か
ら選ばれ、46.4重量%未満の場合には相対的に水酸化カ
ルシウムとメタホウ酸カルシウムとの割合が増加するか
ら、ガラスの融点が低下して焼成体が軟化変形しやすく
なるので、好ましくない。また、71.9重量%を越える場
合には焼成体中に残留するガラス相が多くなって機械的
強度が劣るので、好ましくない。廃物利用の観点から50
重量%以上を配合することが望ましく、目的物の物性か
らすれば、50.2〜66.2重量%が特に好ましい。
The mixing ratio of each raw material is important. The mixing ratio of the soda-lime glass fine powder is selected from the range of 46.4 to 71.9% by weight, and if it is less than 46.4% by weight, calcium hydroxide and metaborate are relatively used. Since the proportion with calcium increases, the melting point of the glass decreases, and the fired body is easily softened and deformed. On the other hand, if the content exceeds 71.9% by weight, the glass phase remaining in the fired body increases and the mechanical strength is poor, so that it is not preferable. 50 from the viewpoint of waste utilization
It is desirable to mix at least 5% by weight, and in view of the physical properties of the desired product, 50.2 to 66.2% by weight is particularly preferred.

【0028】水酸化カルシウム微粉末の配合割合は3.7
〜17.9重量%の範囲から選ばれ、3.7 重量%未満の場合
には相対的にメタホウ酸カルシウムの割合が増加するか
ら、ガラスの融点が低下して軟化変形或いは発泡するの
で、好ましくない。また、17.9重量%を越える場合には
相対的にメタホウ酸カルシウムの割合が減少するから、
ガラスの融点が上昇して焼成体中に残留するガラス相が
多くなって機械的強度が劣るので、好ましくない。目的
物の物性からすれば、50〜17.9重量%が特に好ましい。
The mixing ratio of the calcium hydroxide fine powder is 3.7
If the amount is less than 3.7% by weight, the proportion of calcium metaborate relatively increases, so that the melting point of the glass is lowered and softening deformation or foaming is not preferred. When the content exceeds 17.9% by weight, the proportion of calcium metaborate relatively decreases.
It is not preferable because the melting point of the glass increases and the glass phase remaining in the fired body increases, resulting in poor mechanical strength. In view of the physical properties of the target substance, 50 to 17.9% by weight is particularly preferable.

【0029】メタホウ酸カルシウム微粉末の配合割合は
14.2〜45.2重量%の範囲から選ばれ、14.2重量%未満の
場合には相対的にメタホウ酸カルシウムの割合が減少す
るから、ガラスの融点が上昇して焼成体中に残留するガ
ラス相が多くなり、機械的強度が劣るので、好ましくな
い。また、45.2重量%を越えると相対的にメタホウ酸カ
ルシウムの割合が増加するから、ガラスの融点が低下し
て軟化変形或いは発泡するので、好ましくない。目的物
の物性からすれば、15.9〜39.8重量%が特に好ましい。
The mixing ratio of the calcium metaborate fine powder is
It is selected from the range of 14.2 to 45.2% by weight. If it is less than 14.2% by weight, the proportion of calcium metaborate relatively decreases, so the melting point of the glass increases and the glass phase remaining in the fired body increases. However, it is not preferable because the mechanical strength is inferior. On the other hand, if it exceeds 45.2% by weight, the proportion of calcium metaborate relatively increases, so that the melting point of the glass is lowered and softening deformation or foaming is not preferred. In view of the physical properties of the target product, 15.9 to 39.8% by weight is particularly preferable.

【0030】なお、アルミナ等のセラミックス粉末を始
め廃品となった碍子製品や廃品となった本発明に係る焼
成体製品等を粉砕したセラミックス微粉砕物を骨材とし
て添加することにより、焼成体寸法を安定させることが
できる。
By adding, as an aggregate, a finely pulverized ceramic material obtained by pulverizing ceramic powder such as alumina powder, a discarded insulator product or a discarded fired body product according to the present invention as an aggregate, the size of the fired body is reduced. Can be stabilized.

【0031】[0031]

【発明の実施の形態】以下、本発明の代表的な実施の形
態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, representative embodiments of the present invention will be described.

【0032】実施の形態1.Embodiment 1

【0033】ソーダ石灰ガラスとして都市ごみとして回
収された透明ガラス空きびんのジェットミル微粉砕物
(メディアン径 6.4μm の粒子を多く含む3〜20μm の
微粉末)を使用し、CaO を含む化合物の微粉末として水
酸化カルシウム微粉末(メディアン径3〜20μm )を使
用し、B2O3を含む化合物の微粉末としてメタホウ酸カル
シウム微粉末(メディアン径3〜20μm )を使用した。
Using a jet mill finely pulverized transparent glass bottle collected as municipal waste as soda-lime glass (a fine powder of 3 to 20 μm containing a large amount of particles having a median diameter of 6.4 μm), a fine powder of a compound containing CaO is used. Fine powder of calcium hydroxide (median diameter 3 to 20 μm) was used as the powder, and fine powder of calcium metaborate (median diameter 3 to 20 μm) was used as the fine powder of the compound containing B 2 O 3 .

【0034】前記ソーダ石灰ガラス微粉末57.5重量%に
水酸化カルシウム微粉末14.9重量%とメタホウ酸カルシ
ウム微粉末27.6重量%とを加え、エタノールを媒体とし
た湿式ボールミル混合の後、該混合物を20メッシュにて
造粒し、圧力30MPa にて所要形状に金型プレス成形して
成形品を得た。
To 57.5% by weight of the soda-lime glass fine powder, 14.9% by weight of calcium hydroxide fine powder and 27.6% by weight of calcium metaborate fine powder were added. After mixing in a wet ball mill using ethanol as a medium, the mixture was added to 20 mesh. And press-molded into a required shape at a pressure of 30 MPa to obtain a molded product.

【0035】次いで、前記成形品を200 ℃/h で昇温
し、温度800 〜900 ℃で5分間保持して焼成して焼成温
度800 ℃における焼成体、焼成温度825 ℃における焼成
体、焼成温度850 ℃における焼成体(後出、図2に示す
LT32)、焼成温度875 ℃における焼成体、焼成温度875
℃における焼成体及焼成温度び900 ℃における焼成体を
作製した。
Next, the molded article was heated at a rate of 200 ° C./h, held at a temperature of 800 to 900 ° C. for 5 minutes, and fired to obtain a fired body at a fired temperature of 800 ° C., a fired body at a fired temperature of 825 ° C., and a fired temperature. Fired body at 850 ° C (shown in Fig. 2
LT32), fired body at firing temperature 875 ° C, firing temperature 875
A sintered body at a temperature of 900 ° C. and a sintered body at a temperature of 900 ° C. were prepared.

【0036】ソーダ石灰ガラス微粉末と水酸化カルシウ
ム微粉末とメタホウ酸カルシウム微粉末との原料配合割
合から算出した前記各焼成体の組成割合はSiO2が48.13
重量%、Na2Oが8.23重量%、CaO が31.32 重量%及びB2
O3が12.33 重量%であり、SiO2とNa2Oとの合計量を100
とする組成割合は約85.00 重量部のSiO2及び約15.00重
量部のNa2Oに対して約56.00 重量部のCaO と約22.00 重
量部のB2O3である。
The composition ratio of each fired body calculated from the raw material mixing ratio of the soda-lime glass fine powder, the calcium hydroxide fine powder, and the calcium metaborate fine powder is such that the SiO 2 content is 48.13.
% By weight, 8.23% by weight of Na 2 O, 31.32% by weight of CaO and B 2
O 3 is 12.33% by weight, and the total amount of SiO 2 and Na 2 O is 100
The composition ratio is about 85.00 parts by weight of SiO 2 and about 15.00 parts by weight of Na 2 O, about 56.00 parts by weight of CaO and about 22.00 parts by weight of B 2 O 3 .

【0037】焼成温度800 ℃,825 ℃,850 ℃,875
℃,900 ℃での各焼成体をX線回折したところ、800 ℃
焼成体ではワラストナイト(CaO ・SiO2)とデビトライ
ト(Na 2O・3CaO・6SiO2 )であったが、焼成温度825 ℃
以上の焼成体はワラストナイトのみとなっており、ワラ
ストナイト系低温焼成ガラスセラミックスが得られてい
た。850 ℃焼成体(LT32)のX線回折パターンを図1に
示す。なお、X線回折には全自動X線回折装置(型番:
MXP3:株式会社マック・サイエンス製)を使用し、JCPD
S (Joint Committee on Powder Diffraction Standard
s )PDF (PowderDiffraction File ) No.10-489及びN
o.29-372 及びNo.27-88を基準パターンとした。
Baking temperature 800 ° C, 825 ° C, 850 ° C, 875
X-ray diffraction of each fired body at 800 ℃ and 900 ℃
Wollastonite (CaO.SiO)Two) And debit retry
To (Na TwoO ・ 3CaO ・ 6SiOTwo ), But firing temperature 825 ℃
The above fired body is only wollastonite,
Stonite-based low-temperature fired glass ceramics have been obtained.
Was. Figure 1 shows the X-ray diffraction pattern of the 850 ° C fired body (LT32)
Show. In addition, a fully automatic X-ray diffractometer (model number:
MXP3: Mac Science Co., Ltd.)
S (Joint Committee on Powder Diffraction Standard
s) PDF (PowderDiffraction File) No.10-489 and N
o.29-372 and No.27-88 were used as reference patterns.

【0038】焼成温度850 ℃焼成体(LT32)における機
械的強度、緻密さ及び電気絶縁性を、JIS R1601 に準拠
する曲げ強さ(MPa )、JIS C2141 に準拠する吸水率
(%)、かさ密度(g /cm3 )、1MHz における比誘電
率及び体積抵抗率(Ω・cm)により測定した。結果を表
1に示す。
The mechanical strength, compactness and electrical insulation of the sintered body (LT32) at a firing temperature of 850 ° C. are determined by measuring the bending strength (MPa) according to JIS R1601, the water absorption (%) according to JIS C2141, and the bulk density. (G / cm 3 ), measured by relative dielectric constant and volume resistivity (Ω · cm) at 1 MHz. Table 1 shows the results.

【0039】[0039]

【表1】 [Table 1]

【0040】磁器のかさ密度が2.33g /cm3 ,曲げ強さ
が80MPa ,比誘電率が5.6 ,室温での体積抵抗率が109
Ω・cm,250 ℃での体積抵抗率が106 であり、ソーダ石
灰ガラスのかさ密度が2.47g /cm3 ,曲げ強さが50MPa
,比誘電率が6.8 ,室温での体積抵抗率が>1012Ω・c
m,250 ℃での体積抵抗率が106 Ω・cmであるから、磁
器以上の電気絶縁性と機械的強度とが得られている。
The bulk density of the porcelain is 2.33 g / cm 3 , the bending strength is 80 MPa, the relative permittivity is 5.6, and the volume resistivity at room temperature is 10 9
Ω · cm, volume resistivity at 250 ℃ 10 6 , soda lime glass bulk density 2.47g / cm 3 , bending strength 50MPa
, Relative permittivity 6.8, volume resistivity at room temperature> 10 12 Ω · c
Since m and the volume resistivity at 250 ° C. are 10 6 Ω · cm, electrical insulation and mechanical strength superior to those of porcelain are obtained.

【0041】また、SiO2に対するCaO の配合重量比及び
CaO に対するB2O3の配合重量比は、焼成体(LT32)にお
いて、それぞれCaO /SiO2=31.32 重量%/48.13 重量
%=0.65、B2O3/CaO =12.33 重量%/31.32 重量%=
0.39であり、ワラストナイト結晶が低温で析出して焼成
体において高い収縮率が得られている。
The mixing weight ratio of CaO to SiO 2 and
The mixing weight ratios of B 2 O 3 to CaO are as follows: CaO / SiO 2 = 31.32% by weight / 48.13% by weight = 0.65 and B 2 O 3 /CaO=12.33% by weight / 31.32% by weight in the fired body (LT32), respectively.
0.39, indicating that wollastonite crystals were precipitated at a low temperature and a high shrinkage rate was obtained in the fired body.

【0042】また、850 ℃焼成体(LT32)であるワラス
トナイト系低温焼成ガラスセラミックスは、図2のかさ
密度と焼成温度との関係グラフに示すように、焼成温度
850℃で緻密化してかさ密度が最大となり、焼成温度900
℃までかさ密度は略一定であった。また、図3に示す1
0%フッ酸による20秒エッチング処理後における走査電
子顕微鏡写真(×5000倍)より針状の微細なワラストナ
イト結晶が無数に析出しているのが確認できた。
The wollastonite-based low-temperature fired glass ceramics, which is a 850 ° C. fired body (LT32), has a firing temperature as shown in FIG.
Densified at 850 ° C to maximize bulk density, firing temperature 900
The bulk density was almost constant up to ° C. Also, as shown in FIG.
Scanning electron micrographs (× 5000) after the etching treatment with 0% hydrofluoric acid for 20 seconds confirmed that countless fine needle-like wollastonite crystals were precipitated.

【0043】本実施の形態によればソーダ石灰ガラス微
粉末57.5重量%に水酸化カルシウム微粉末14.9重量%と
メタホウ酸カルシウム微粉末27.6重量%とを加えて混合
して焼成したので、主成分であるSiO2、CaO、Na2O及びB2O
3の量が、それぞれ、重量部にて85部、56部、15部及び2
2部の焼成温度825 ℃以上にて結晶としてワラストナイ
トのみを含んでいる電気絶縁性と機械的強度とに優れた
ワラストナイト系低温焼成ガラスセラミックスを得るこ
とができる。
According to the present embodiment, 14.9% by weight of calcium hydroxide fine powder and 27.6% by weight of calcium metaborate fine powder are added to 57.5% by weight of soda-lime glass fine powder and mixed and fired. Some SiO 2 , CaO, Na 2 O and B 2 O
The amounts of 3 are 85 parts, 56 parts, 15 parts and 2 parts by weight, respectively.
A wollastonite-based low-temperature fired glass ceramic containing only wollastonite as a crystal and having excellent electrical strength and mechanical strength can be obtained at a firing temperature of 825 ° C. or higher for two parts.

【0044】なお、一般に汎用されているガラスびんの
代表的なガラス組成は、73.07 重量%SiO2,1.93重量%
Al2O3 ,0.03重量%Fe2O3 ,11.13 重量%CaO ,0.07重
量%MgO ,12.49 重量%Na2O,0.94重量%K2O ,0.32重
量%SO3 ,0.01重量%TiO2及びその他となっており、こ
の廃ガラスびんを使用すればよく、本実施の形態におい
てはソーダ石灰ガラスとして当該廃ガラスびんを使用し
た。
A typical glass composition of a glass bottle generally used is 73.07% by weight of SiO 2 , 1.93% by weight.
Al 2 O 3 , 0.03 wt% Fe 2 O 3 , 11.13 wt% CaO, 0.07 wt% MgO, 12.49 wt% Na 2 O, 0.94 wt% K 2 O, 0.32 wt% SO 3 , 0.01 wt% TiO 2 and others This waste glass bottle may be used, and in this embodiment, the waste glass bottle is used as soda-lime glass.

【0045】また、空きびんのジェットミル粉砕物と水
酸化カルシウム粉末とメタホウ酸カルシウム微粉末との
混合物をメディアン径 6.4μm の粒子を多く含むメディ
アン径3〜20μm の微粉末とした後に処理するようにし
てもよい。
Further, a mixture of the crushed jet mill of the empty bottle, the calcium hydroxide powder and the calcium metaborate fine powder is converted into a fine powder having a median diameter of 3 to 20 μm containing a large amount of particles having a median diameter of 6.4 μm, and then treated. It may be.

【0046】実施の形態2.Embodiment 2

【0047】実施の形態1と同様にして、ソーダ石灰ガ
ラス微粉末60.2重量%、水酸化カルシウム微粉末10.8重
量%及びメタホウ酸カルシウム微粉末28.9重量%により
前記各焼成温度の焼成体(図2に示すLT22)を作製し、
ソーダ石灰ガラス微粉末55.2重量%、水酸化カルシウム
微粉末5.0 重量%及びメタホウ酸カルシウム微粉末39.8
重量%により前記各焼成温度の焼成体(図2に示すLT2
3)を作製し、ソーダ石灰ガラス微粉末52.9重量%、水
酸化カルシウム微粉末8.9 重量%及びメタホウ酸カルシ
ウム微粉末38.2重量%により前記各焼成温度の焼成体
(図2に示すLT33)を作製した。
In the same manner as in Embodiment 1, 60.2% by weight of soda-lime glass fine powder, 10.8% by weight of calcium hydroxide fine powder and 28.9% by weight of calcium metaborate fine powder were fired at the above firing temperatures (see FIG. 2). LT22) as shown
Soda lime glass fine powder 55.2% by weight, calcium hydroxide fine powder 5.0% by weight and calcium metaborate fine powder 39.8
By weight%, the fired body at each of the above firing temperatures (LT2 shown in FIG. 2)
3) was prepared, and fired bodies (LT33 shown in FIG. 2) at the above firing temperatures were manufactured using 52.9% by weight of soda-lime glass fine powder, 8.9% by weight of calcium hydroxide fine powder, and 38.2% by weight of fine powder of calcium metaborate. .

【0048】前記各焼成体についてX線回折したとこ
ろ、いずれも焼成温度825 ℃以上の焼成体において、ワ
ラストナイトのみとなっており、ワラストナイト系低温
焼成ガラスセラミックスが得られていた。
X-ray diffraction of each of the fired bodies indicated that only the wollastonite was obtained in the fired body at a firing temperature of 825 ° C. or higher, and a wollastonite-based low-temperature fired glass ceramic was obtained.

【0049】前記各焼成体のかさ密度と焼成温度との関
係を示す図2より、いずれも焼成温度850 ℃焼成体にお
いて最も緻密となっており、表1より焼成温度850 ℃に
おける各焼成体では磁器と同等の機械的強度が得られて
いると共に、磁器以上の電気絶縁性が得られている。
From FIG. 2 showing the relationship between the bulk density and the firing temperature of each of the fired bodies, all of the fired bodies at 850 ° C. have the highest density. The same mechanical strength as that of porcelain is obtained, and the electrical insulation property of porcelain is higher than that of porcelain.

【0050】また、SiO2に対するCaO の配合重量比及び
CaO に対するB2O3の配合重量比は、焼成体(LT22)にお
いて、それぞれCaO /SiO2=28.24 重量%/50.28 重量
%=0.56、B2O3/CaO =12.88 重量%/28.24 重量%=
0.46であり、焼成体(LT23)において、それぞれCaO /
SiO2=26.51 重量%/47.26 重量%=0.56、B2O3/CaO
=18.51 重量%/26.51 重量%=0.70であり、焼成体
(LT33)において、それぞれCaO /SiO2=29.48 重量%
/45.35 重量%=0.65、B2O3/CaO =17.42 重量%/2
9.48 重量%=0.59であり、いずれもワラストナイト結
晶が低温で析出して焼成体において高い収縮率が得られ
ている。
Also, the mixing weight ratio of CaO to SiO 2 and
The mixing weight ratios of B 2 O 3 to CaO were as follows: CaO / SiO 2 = 28.24% by weight / 50.28% by weight = 0.56 and B 2 O 3 /CaO=12.88% by weight / 28.24% by weight in the fired body (LT22).
0.46. In the fired body (LT23), CaO /
SiO 2 = 26.51% by weight / 47.26% by weight = 0.56, B 2 O 3 / CaO
= 18.51 wt% / 26.51% by weight = 0.70, in the sintered body (LT33), respectively CaO / SiO 2 = 29.48 wt%
/45.35 weight% = 0.65, B 2 O 3 / CaO = 17.42 wt% / 2
In each case, wollastonite crystals were precipitated at a low temperature and a high shrinkage rate was obtained in the fired body.

【0051】なお、ソーダ石灰ガラス微粉末と水酸化カ
ルシウム微粉末とメタホウ酸カルシウム微粉末との原料
配合割合から算出した前記各焼成体の組成割合は、焼成
体(LT22)においては、SiO2が50.28 重量%、Na2Oが8.
60重量%、CaO が28.24 重量%及びB2O3が12.88 重量%
であり、SiO2とNa2Oとの合計量を100 とする組成割合は
約85.00 重量部のSiO2及び約15.00 重量部のNa2Oに対し
て約48.00 重量部のCaO と約22.00 重量部のB2O3であ
り、焼成体(LT23)においては、SiO2が47.26 重量%、
Na2Oが8.08重量%、CaO が26.51 重量%及びB2O3が18.5
1 重量%であり、SiO2とNa2Oとの合計量を100 とする組
成割合は約85.00 重量部のSiO2及び約15.00 重量部のNa
2Oに対して約48.00 重量部のCaO と約33.00 重量部のB2
O3であり、焼成体(LT33)においては、SiO2が45.35 重
量%、Na2Oが7.75重量%、CaO が29.48 重量%及びB2O3
が17.42 重量%であり、SiO2とNa2Oとの合計量を100 と
する組成割合は約85.00 重量部のSiO2及び約15.00 重量
部に対してNa2Oと約56.00 重量部のCaO と約33.00 重量
部のB2O3である。
[0051] Incidentally, the composition ratio of each sintered body was calculated from the raw material mixing ratio of the soda-lime glass powder and calcium fine powder and calcium metaborate powder hydroxide, in the sintered body (LT22), SiO 2 is 50.28% by weight, Na 2 O 8.
60% by weight, 28.24% by weight of CaO and 12.88% by weight of B 2 O 3
When the total amount of SiO 2 and Na 2 O is 100, the composition ratio is about 48.00 parts by weight of CaO and about 22.00 parts by weight with respect to about 85.00 parts by weight of SiO 2 and about 15.00 parts by weight of Na 2 O. a of B 2 O 3, in the sintered body (LT23), SiO 2 is 47.26 wt%,
8.08% by weight of Na 2 O, 26.51% by weight of CaO and 18.5% of B 2 O 3
1% by weight, and the composition ratio of the total amount of SiO 2 and Na 2 O to 100 is about 85.00 parts by weight of SiO 2 and about 15.00 parts by weight of Na.
Against 2 O and CaO of about 48.00 parts by weight to about 33.00 parts by weight of B 2
O 3 , and in the fired body (LT33), 45.35% by weight of SiO 2 , 7.75% by weight of Na 2 O, 29.48% by weight of CaO, and B 2 O 3
And the total amount of SiO 2 and Na 2 O is 100, the composition ratio is about 85.00 parts by weight of SiO 2 and about 15.00 parts by weight of Na 2 O and about 56.00 parts by weight of CaO. About 33.00 parts by weight of B 2 O 3 .

【0052】実施の形態3.Embodiment 3 FIG.

【0053】60.2重量%のソーダ石灰ガラス粉砕物に1
0.8重量%の水酸化カルシウム粉末と28.9重量%のメタ
ホウ酸カルシウム粉末とを加えて乾式遊星ボールミル混
合して該混合物をメディアン径 6.4μm の粒子を多く含
む3〜20μm の微粉末とした外、実施の形態1と同様に
して焼成体を作製した。
10.2% by weight of 60.2% by weight of soda lime glass
0.8% by weight of calcium hydroxide powder and 28.9% by weight of calcium metaborate powder are added and mixed in a dry planetary ball mill to form a mixture having a fineness of 3 to 20 μm containing a large amount of particles having a median diameter of 6.4 μm. A fired body was produced in the same manner as in Embodiment 1.

【0054】本実施の形態においても、焼成温度825 ℃
以上の焼成体はワラストナイトのみとなっており、実施
の形態1と同様の効果を有するワラストナイト系低温焼
成ガラスセラミックスであった。
Also in this embodiment, the firing temperature is 825 ° C.
The above fired body was only wollastonite, and was a wollastonite-based low-temperature fired glass ceramic having the same effect as in the first embodiment.

【0055】また、焼成温度850 ℃における各焼成体の
曲げ強さは95MPa 、吸水率は0.0 %、かさ密度は2.41g
/cm3 であり、実施の形態1と同様の機械的強度が得ら
れている。
The bending strength of each fired body at a firing temperature of 850 ° C. was 95 MPa, the water absorption was 0.0%, and the bulk density was 2.41 g.
/ Cm 3 , and the same mechanical strength as in the first embodiment is obtained.

【0056】[0056]

【実施例】【Example】

【0057】実施例1〜9,比較例1〜3.Examples 1 to 9 and Comparative Examples 1 to 3.

【0058】実施の形態1と同様にソーダ石灰ガラスと
して実施の形態1における廃ガラスびんのガラス粉砕物
を使用して表2及び表3に示す原料配合による各実施例
及び各比較例の焼成体を作製した。なお、表2及び表3
には焼成体の組成であるSiO2、Na2O、CaO 及びB2O3の組
成割合をソーダ石灰ガラス微粉末と水酸化カルシウム微
粉末とメタホウ酸カルシウム微粉末との原料配合割合か
ら算出して調合組成重量%として示し、SiO2とNa2Oとの
合計量を100 とする組成割合を調合組成重量部として示
した。
As in the case of the first embodiment, the fired body of each of the examples and each of the comparative examples using the raw material mixture shown in Tables 2 and 3 using the ground glass of the waste glass bottle in the first embodiment as soda lime glass. Was prepared. Tables 2 and 3
The composition ratio of SiO 2 , Na 2 O, CaO and B 2 O 3 which is the composition of the fired body was calculated from the raw material mixing ratio of soda-lime glass fine powder, calcium hydroxide fine powder and calcium metaborate fine powder. % By weight, and the composition ratio where the total amount of SiO 2 and Na 2 O was 100 was indicated as the weight ratio of the prepared composition.

【0059】[0059]

【表2】 [Table 2]

【0060】[0060]

【表3】 [Table 3]

【0061】表2及び表3において、ソーダ石灰ガラス
微粉末と水酸化カルシウム微粉末とメタホウ酸カルシウ
ム微粉末との配合割合を原料配合として示し、当該配合
割合から算出した焼成体の組成割合を調合組成重量%と
して、また、SiO2とNa2Oとの合計量を100 とした場合の
CaO とB2O3とにおける焼成体の組成割合を調合組成重量
部として示した。
In Tables 2 and 3, the compounding ratio of the soda-lime glass fine powder, the calcium hydroxide fine powder and the calcium metaborate fine powder is shown as a raw material mixture, and the composition ratio of the fired body calculated from the compounding ratio is prepared. When the composition weight% and the total amount of SiO 2 and Na 2 O are 100
The composition ratio of the fired body in CaO and B 2 O 3 is shown as a blended composition part by weight.

【0062】実施例1〜9では、いずれも焼成温度825
℃、850 ℃、870 ℃及び900 ℃の焼成体においてワラス
トナイトのみとなっており、ワラストナイト系低温焼成
ガラスセラミックスが得られていた。また、焼成温度85
0 ℃焼成体が最も緻密となっていた。
In Examples 1 to 9, the firing temperature was 825.
C., 850.degree. C., 870.degree. C. and 900.degree. C. showed only wollastonite in the fired body, and a wollastonite-based low-temperature fired glass ceramic was obtained. In addition, firing temperature 85
The sintered body at 0 ° C. was the most dense.

【0063】また、SiO2に対するCaO の配合重量比及び
CaO に対するB2O3の配合重量比は、実施例3の焼成体に
おいて、それぞれCaO /SiO2=30.21 重量%/53.73 重
量%=0.56、B2O3/CaO =6.88重量%/30.21 重量%=
0.23であり、実施例4の焼成体において、それぞれCaO
/SiO2=33.86 重量%/50.92 重量%=0.66、B2O3/Ca
O =6.52重量%/33.86 重量%=0.19であり、実施例5
の焼成体において、それぞれCaO /SiO2=27.81 重量%
/42.73 重量%=0.65、B2O3/CaO =22.16 重量%/2
7.81 重量%=0.80であり、実施例7の焼成体におい
て、それぞれCaO /SiO2=34.96 重量%/45.58 重量%
=0.78、B2O3/CaO =11.67 重量%/34.96重量%=0.3
3であり、実施例8の焼成体において、それぞれCaO /S
iO2=33.01重量%/48.08 重量%=0.69、B2O3/CaO =
16.55 重量%/33.01 重量%=0.50であり、実施例9の
焼成体において、それぞれCaO /SiO2=31.33 重量%/
40.65 重量%=0.77、B2O3/CaO =21.08 重量%/31.3
3 重量%=0.67であり、いずれもワラストナイト結晶が
低温で析出して焼成体において高い収縮率が得られてい
る。
The mixing weight ratio of CaO to SiO 2 and
The mixing weight ratio of B 2 O 3 with respect to CaO in the fired body of Example 3 was CaO / SiO 2 = 30.21% by weight / 53.73% by weight = 0.56 and B 2 O 3 /CaO=6.88% by weight / 30.21% by weight, respectively. =
0.23, and in the fired body of Example 4, CaO
/ SiO 2 = 33.86% by weight / 50.92% by weight = 0.66, B 2 O 3 / Ca
O = 6.52% by weight / 33.86% by weight = 0.19;
In the fired body of CaO / SiO 2 = 27.81% by weight
/42.73% by weight = 0.65, B 2 O 3 /CaO=22.16% by weight / 2
7.81% by weight = 0.80, and in the fired body of Example 7, CaO / SiO 2 = 34.96% by weight / 45.58% by weight, respectively.
= 0.78, B 2 O 3 / CaO = 11.67 wt% / 34.96 wt% = 0.3
3, and in the fired body of Example 8, CaO 2 / S
iO 2 = 33.01% by weight / 48.08% by weight = 0.69, B 2 O 3 / CaO =
16.55% by weight / 33.01% by weight = 0.50, and in the fired body of Example 9, CaO / SiO 2 = 31.33% by weight /
40.65 wt% = 0.77, B 2 O 3 / CaO = 21.08 wt% / 31.3
3% by weight = 0.67, and in each case, wollastonite crystals were precipitated at a low temperature, and a high shrinkage rate was obtained in the fired body.

【0064】これに対して比較例2及び3の焼成体はい
ずれもデビトライトが含まれいた。また、焼成温度825
℃、850 ℃、870 ℃及び900 ℃でのかさ密度には変化が
なく、緻密化されていなかった。また、比較例1におい
ては原料配合において、水酸化カルシウム微粉末が配合
されていないため、溶融発泡状態となっており、ワラス
トナイト系低温焼成ガラスセラミックスとなっていなか
った。
On the other hand, the fired bodies of Comparative Examples 2 and 3 both contained devitrite. In addition, firing temperature 825
The bulk densities at ℃, 850 ° C, 870 ° C and 900 ° C did not change and were not densified. In Comparative Example 1, since the calcium hydroxide fine powder was not blended in the raw material blend, it was in a melt-foamed state and was not a wollastonite-based low-temperature fired glass ceramic.

【0065】[0065]

【発明の効果】本発明によれば、廃ガラス(ソーダ石灰
ガラス)を対象とし、該ソーダ石灰ガラス微粉末に特定
配合割合をもって水酸化カルシウム微粉末とメタホウ酸
カルシウム微粉末とを混合して低温焼成することによ
り、電子機器等の回路基板や小型絶縁部品に優れた電気
絶縁性と機械的強度を有するワラストナイト系低温焼成
ガラスセラミックスを提供することができるから、空き
びんに代表される廃ガラスを再利用することができる。
According to the present invention, waste glass (soda lime glass) is used, and calcium hydroxide fine powder and calcium metaborate fine powder are mixed with the soda lime glass fine powder at a specific blending ratio to reduce the temperature. By firing, it is possible to provide wollastonite-based low-temperature fired glass ceramics having excellent electrical insulation and mechanical strength for circuit boards and small insulating parts of electronic devices and the like. Glass can be reused.

【0066】従って、本発明の産業上利用性は非常に高
いといえる。
Therefore, it can be said that the industrial applicability of the present invention is very high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1に係るワラストナイト系
低温焼成ガラスセラミックスのX線回折パターンを示す
グラフである。
FIG. 1 is a graph showing an X-ray diffraction pattern of a wollastonite-based low-temperature fired glass ceramic according to Embodiment 1 of the present invention.

【図2】本発明の実施の形態1に係るワラストナイト系
低温焼成ガラスセラミックスのかさ密度と焼成温度との
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between bulk density and firing temperature of wollastonite-based low-temperature fired glass ceramics according to Embodiment 1 of the present invention.

【図3】本発明の実施の形態1に係るワラストナイト系
低温焼成ガラスセラミックスの表面構造を倍率×5000倍
にて示す図面代用走査電子顕微鏡写真である。
FIG. 3 is a scanning electron micrograph instead of a drawing showing the surface structure of the wollastonite low-temperature fired glass ceramics according to Embodiment 1 of the present invention at × 5000 magnification.

フロントページの続き Fターム(参考) 4G062 AA11 BB05 CC03 DA07 DB01 DC04 DC05 DD01 DE01 DF01 EA01 EB04 EC01 ED01 EE05 EE06 EF01 EG01 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM28 NN32 QQ07 Continued on the front page F term (reference) 4G062 AA11 BB05 CC03 DA07 DB01 DC04 DC05 DD01 DE01 DF01 EA01 EB04 EC01 ED01 EE05 EE06 EF01 EG01 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 H01H01 GB01 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM28 NN32 QQ07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ソーダ石灰ガラス微粉末を主原料とし、
且つ、825 〜900 ℃の温度範囲において焼成してなる結
晶としてワラストナイトのみを含んでいると共にSiO2、C
aO、Na2O及びB2O3を主成分とするワラストナイト系低温
焼成ガラスセラミックス。
Claims: 1. Soda lime glass fine powder as a main raw material,
In addition, it contains only wollastonite as a crystal obtained by firing in a temperature range of 825 to 900 ° C., and contains SiO 2 , C
A wollastonite-based low-temperature fired glass ceramic containing aO, Na 2 O and B 2 O 3 as main components.
【請求項2】 主成分であるSiO2、CaO、Na2O及びB2O3
量が、それぞれ、重量部にて85部、48〜56部、15部及び
22〜33部である請求項1記載のワラストナイト系低温焼
成ガラスセラミックス。
2. The amounts of the main components SiO 2 , CaO, Na 2 O and B 2 O 3 are 85 parts, 48 to 56 parts, 15 parts and 15 parts by weight, respectively.
2. The wollastonite low-temperature fired glass ceramic according to claim 1, wherein the amount is 22 to 33 parts.
【請求項3】 ソーダ石灰ガラス微粉末にCaO を含む化
合物の微粉末とB2O3を含む化合物の微粉末とを混合し、
該混合物を所要形状にプレス成形し、該成形物を825 〜
900 ℃の温度範囲にて焼成することを特徴とする結晶と
してワラストナイトのみを含んでいると共にSiO2、CaO、N
a2O及びB2O3を主成分とするワラストナイト系低温焼成
ガラスセラミックスの製造法。
3. A fine powder of a compound containing CaO and a fine powder of a compound containing B 2 O 3 are mixed with fine powder of soda-lime glass,
The mixture is press-molded into a required shape, and the molded product is subjected to 825 to
It contains only wollastonite as a crystal characterized by being fired in a temperature range of 900 ° C, and contains SiO 2 , CaO, N
A method for producing wollastonite-based low-temperature fired glass ceramics containing a 2 O and B 2 O 3 as main components.
【請求項4】 CaO を含む化合物の微粉末が水酸化カル
シウム微粉末、B2O3を含む化合物の微粉末がメタホウ酸
カルシウム微粉末である請求項3記載のワラストナイト
系低温焼成ガラスセラミックスの製造法。
4. The wollastonite low-temperature fired glass ceramic according to claim 3, wherein the fine powder of the compound containing CaO is a fine powder of calcium hydroxide and the fine powder of the compound containing B 2 O 3 is a fine powder of calcium metaborate. Manufacturing method.
【請求項5】 ソーダ石灰ガラス微粉末の配合割合が4
6.4〜71.9重量%、水酸化カルシウム微粉末の配合割合
が3.7 〜17.9重量%、メタホウ酸カルシウム微粉末の配
合割合が14.2〜45.2重量%である請求項4記載のワラス
トナイト系低温焼成ガラスセラミックスの製造法。
5. The compounding ratio of soda-lime glass fine powder is 4
5. The wollastonite low-temperature fired glass ceramic according to claim 4, wherein the blending ratio of the calcium hydroxide fine powder is 3.7-17.9 wt%, and the blending ratio of the calcium metaborate fine powder is 14.2-45.2 wt%. Manufacturing method.
JP2001111767A 2001-04-10 2001-04-10 Wollastonite low-temperature fired glass ceramics and method for producing the same Expired - Fee Related JP4756254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111767A JP4756254B2 (en) 2001-04-10 2001-04-10 Wollastonite low-temperature fired glass ceramics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111767A JP4756254B2 (en) 2001-04-10 2001-04-10 Wollastonite low-temperature fired glass ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002308646A true JP2002308646A (en) 2002-10-23
JP4756254B2 JP4756254B2 (en) 2011-08-24

Family

ID=18963312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111767A Expired - Fee Related JP4756254B2 (en) 2001-04-10 2001-04-10 Wollastonite low-temperature fired glass ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JP4756254B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016227A (en) * 2004-06-30 2006-01-19 Koyo Denki Kogyo Kk Method for producing porous sintered compact
JP2009527455A (en) * 2006-02-24 2009-07-30 コーニング インコーポレイテッド Method for producing glass composition
JP2011001212A (en) * 2009-06-17 2011-01-06 Sharp Corp Method of producing ceramic material using alkali-free glass, and ceramic structure
WO2022054337A1 (en) * 2020-09-14 2022-03-17 岡本硝子株式会社 Low-temperature co-fired substrate composition
RU2797205C1 (en) * 2022-09-14 2023-05-31 Автономная некоммерческая организация высшего образования "Белгородский университет кооперации, экономики и права Method for obtaining glass ceramics
CN116217212A (en) * 2022-12-10 2023-06-06 清远纳福娜陶瓷有限公司 Preparation method of low-temperature sintered building ceramic material
CN116375448A (en) * 2022-12-10 2023-07-04 景德镇陶瓷大学 Preparation method of ultralow-temperature sintered building ceramic material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573739A (en) * 1980-06-11 1982-01-09 Nippon Kogaku Kk <Nikon> Bioactive glass and glass ceramic
JPS5747741A (en) * 1980-09-01 1982-03-18 Nippon Sheet Glass Co Ltd Glass suitable for manufacturing fibrous wollastonite
JPH01203243A (en) * 1988-02-10 1989-08-16 Nippon Sheet Glass Co Ltd Crystallized glassy artificial stone
JPH02145456A (en) * 1988-11-28 1990-06-04 Central Glass Co Ltd Crystalline glass and production thereof
JPH03164447A (en) * 1989-11-24 1991-07-16 Asahi Glass Co Ltd Production of crystallized glass
JPH0455342A (en) * 1990-06-21 1992-02-24 Kirin Brewery Co Ltd High-strength crystallized glass formed body
JPH08310834A (en) * 1995-05-12 1996-11-26 Hikari Giken:Kk Production of colored crystalline glass effectively utilizing incineration ash of general waste or the like
JPH10152343A (en) * 1996-11-15 1998-06-09 Deyuaru Syst Dev:Kk Production of crystalline glass effectively utilizing natural substance, general and industrial waste, incinerated ash of general and industrial waster or the like
JP2000272959A (en) * 1999-03-26 2000-10-03 Fukui Prefecture Crystallized glass complex ceramic and its production

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573739A (en) * 1980-06-11 1982-01-09 Nippon Kogaku Kk <Nikon> Bioactive glass and glass ceramic
JPS5747741A (en) * 1980-09-01 1982-03-18 Nippon Sheet Glass Co Ltd Glass suitable for manufacturing fibrous wollastonite
JPH01203243A (en) * 1988-02-10 1989-08-16 Nippon Sheet Glass Co Ltd Crystallized glassy artificial stone
JPH02145456A (en) * 1988-11-28 1990-06-04 Central Glass Co Ltd Crystalline glass and production thereof
JPH03164447A (en) * 1989-11-24 1991-07-16 Asahi Glass Co Ltd Production of crystallized glass
JPH0455342A (en) * 1990-06-21 1992-02-24 Kirin Brewery Co Ltd High-strength crystallized glass formed body
JPH08310834A (en) * 1995-05-12 1996-11-26 Hikari Giken:Kk Production of colored crystalline glass effectively utilizing incineration ash of general waste or the like
JPH10152343A (en) * 1996-11-15 1998-06-09 Deyuaru Syst Dev:Kk Production of crystalline glass effectively utilizing natural substance, general and industrial waste, incinerated ash of general and industrial waster or the like
JP2000272959A (en) * 1999-03-26 2000-10-03 Fukui Prefecture Crystallized glass complex ceramic and its production

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016227A (en) * 2004-06-30 2006-01-19 Koyo Denki Kogyo Kk Method for producing porous sintered compact
JP2009527455A (en) * 2006-02-24 2009-07-30 コーニング インコーポレイテッド Method for producing glass composition
JP2015027943A (en) * 2006-02-24 2015-02-12 コーニング インコーポレイテッド Methods for producing glass compositions
JP2011001212A (en) * 2009-06-17 2011-01-06 Sharp Corp Method of producing ceramic material using alkali-free glass, and ceramic structure
CN115210195A (en) * 2020-09-14 2022-10-18 冈本硝子株式会社 Composition for low-temperature co-fired substrate
JPWO2022054337A1 (en) * 2020-09-14 2022-03-17
WO2022054337A1 (en) * 2020-09-14 2022-03-17 岡本硝子株式会社 Low-temperature co-fired substrate composition
KR20220149598A (en) * 2020-09-14 2022-11-08 오카모토 가라스 가부시키가이샤 Composition for low temperature co-fired substrate
CN115210195B (en) * 2020-09-14 2023-03-21 冈本硝子株式会社 Composition for low-temperature co-fired substrate
JP7323879B2 (en) 2020-09-14 2023-08-09 岡本硝子株式会社 Low-temperature co-fired substrate composition
EP4108646A4 (en) * 2020-09-14 2024-01-24 Okamoto Glass Co Ltd Low-temperature co-fired substrate composition
KR102633693B1 (en) 2020-09-14 2024-02-05 오카모토 가라스 가부시키가이샤 Composition for low-temperature co-fired substrates
RU2797205C1 (en) * 2022-09-14 2023-05-31 Автономная некоммерческая организация высшего образования "Белгородский университет кооперации, экономики и права Method for obtaining glass ceramics
CN116217212A (en) * 2022-12-10 2023-06-06 清远纳福娜陶瓷有限公司 Preparation method of low-temperature sintered building ceramic material
CN116375448A (en) * 2022-12-10 2023-07-04 景德镇陶瓷大学 Preparation method of ultralow-temperature sintered building ceramic material

Also Published As

Publication number Publication date
JP4756254B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP2020526467A (en) Boroaluminosilicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and its manufacturing method
JP2010531287A (en) Dielectric ceramic composition for low temperature firing having high strength and high Q value
JP5835640B2 (en) Crystalline glass powder
CN102173587A (en) Glass ceramic material for electronic substrate and preparation method thereof
JP2003002682A (en) Low-softening-point glass and method for producing the same, and low-temperature-sintering ceramic composition
US20140243182A1 (en) Glass-ceramic composition and method for manufacturing the same
KR20100003920A (en) Foamed glass having highstrength property and method of producing the same
CN105347781A (en) Ceramic material and preparation method thereof
JP4756254B2 (en) Wollastonite low-temperature fired glass ceramics and method for producing the same
KR101124580B1 (en) Glass Ceramic Compositions using LCD Waste Glass
KR20050046727A (en) The use of zeolites in preparing low temperature ceramics
JPS63107838A (en) Glass-ceramic sintered body
JP5196444B2 (en) Ceramic material using alkali-free glass and method for producing ceramic structure
JPS636499B2 (en)
JPH06172023A (en) Production of cordierite powder and its ceramic
US9181133B1 (en) Crystallized silicate powder by synthesized and high strengthened porcelain body having the same
CN1115179A (en) Body containing deposited corundum and process for producing the body
JP2003128431A (en) Lead-free glass and glass ceramic composition
JP2004026529A (en) Glass composition for low-temperature fired substrate and glass ceramics using the same
JP4694775B2 (en) Low temperature fired dielectric porcelain
KR20080048755A (en) Ceramic compositions with high strength for applications of law temperature co-fired ceramics
KR101559379B1 (en) Glass-Ceramic Compositions for LTCC Using Aluminium Pphospate Based Ceramic Fillers
US6159883A (en) Ceramic dielectric compositions
JPS62252340A (en) Sintered glass and sintered glass ceramic
JP2000325917A (en) Production of raw material for ceramic using waste glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees