JP2002305145A5 - - Google Patents

Download PDF

Info

Publication number
JP2002305145A5
JP2002305145A5 JP2001108056A JP2001108056A JP2002305145A5 JP 2002305145 A5 JP2002305145 A5 JP 2002305145A5 JP 2001108056 A JP2001108056 A JP 2001108056A JP 2001108056 A JP2001108056 A JP 2001108056A JP 2002305145 A5 JP2002305145 A5 JP 2002305145A5
Authority
JP
Japan
Prior art keywords
state
semiconductor film
energy
semiconductor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001108056A
Other languages
Japanese (ja)
Other versions
JP2002305145A (en
JP4068813B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2001108056A priority Critical patent/JP4068813B2/en
Priority claimed from JP2001108056A external-priority patent/JP4068813B2/en
Publication of JP2002305145A publication Critical patent/JP2002305145A/en
Publication of JP2002305145A5 publication Critical patent/JP2002305145A5/ja
Application granted granted Critical
Publication of JP4068813B2 publication Critical patent/JP4068813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0009】
【課題を解決するための手段】
本願発明の薄膜半導体装置の製造方法は、基板上に形成された珪素を主体とする結晶性半導体膜を能動層として用いる薄膜半導体装置の製造において、基板上に堆積された前記半導体膜に370nm以上710nm以下の波長を有するパルスレーザ光を照射する工程を含み、その際に前記半導体膜に照射されるレーザ光の状態(入射光状態)を検出し、前記半導体膜を透過したレーザ光の状態(透過光状態)を検出し、前記入射光状態と前記透過光状態から所定の半導体膜の結晶化状態が得られたか確認し、前記半導体膜に対して所定の結晶化状態が得られたら、レーザ光照射位置に対する半導体膜の位置を相対的に移動させることを特徴としているものである。この様に半導体膜の結晶化状態を確認し、確認が得られたらレーザ光照射位置に対する半導体膜の位置を相対的に移動させることにより、所望の半動体膜の結晶化状態が安定かつ効率的に得られ、半導体膜全体が均一に結晶化される。
[0009]
[Means for Solving the Problems]
The method of manufacturing a thin film semiconductor device according to the present invention is a method of manufacturing a thin film semiconductor device using a crystalline semiconductor film mainly composed of silicon formed on a substrate as an active layer, and the semiconductor film deposited on the substrate has a thickness of 370 nm or more. Including a step of irradiating pulsed laser light having a wavelength of 710 nm or less, detecting a state (incident light state) of the laser light irradiated to the semiconductor film at that time, and a state of the laser light transmitted through the semiconductor film ( A transmitted light state) is detected, and it is confirmed whether a predetermined crystallization state of the semiconductor film is obtained from the incident light state and the transmitted light state. This is characterized in that the position of the semiconductor film is moved relative to the light irradiation position. In this way, the crystallization state of the semiconductor film is confirmed, and if confirmation is obtained, the position of the semiconductor film is moved relative to the laser light irradiation position, so that the crystallization state of the desired semi-moving body film is stable and efficient. The entire semiconductor film is uniformly crystallized.

【0010】
ここでレーザ光の状態はレーザ光のエネルギーであり、所定の半導体膜の結晶化状態が得られたか確認する際には、半導体薄膜に対して照射したレーザ光のエネルギー(入射光エネルギー)と、前記半導体薄膜を透過した前記レーザ光のエネルギー(透過光エネルギー)を比較することにより、前記半導体薄膜を透過したエネルギーの割合が所定値を上回ったか確認する。これによりレーザ光のエネルギーが不安定でも、所望の半動体薄膜の結晶化状態が安定して得られる。
[0010]
Here, the state of the laser beam is the energy of the laser beam. When confirming whether a predetermined crystallization state of the semiconductor film has been obtained, the energy of the laser beam irradiated to the semiconductor thin film (incident light energy), By comparing the energy (transmitted light energy) of the laser beam transmitted through the semiconductor thin film, it is confirmed whether the ratio of the energy transmitted through the semiconductor thin film exceeds a predetermined value. Thereby, even if the energy of the laser beam is unstable, the desired crystallization state of the semi-moving body thin film can be stably obtained.

【0011】
また本願発明の薄膜半導体装置の製造方法は、基板上に形成された珪素を主体とする結晶性半導体膜を能動層として用いる薄膜半導体装置の製造において、基板上に堆積された前記半導体膜に370nm以上710nm以下の波長を有するレーザ光を照射する工程を含み、その際に前記半導体膜に照射されるレーザ光の状態(入射光状態)を検出し、前記半導体膜を反射したレーザ光の状態(反射光状態)を検出し、前記半導体膜を透過したレーザ光の状態(透過光状態)を検出し、前記入射光状態と前記反射光状態と前記透過光状態から所定の半導体膜の結晶化状態が得られたか確認し、前記半導体膜に対して所定の結晶化状態が得られたら、レーザ光照射位置に対する半導体膜の位置を相対的に移動させることを特徴としているものである。この様に半導体膜の結晶化状態を確認し、確認が得られたらレーザ光照射位置に対する半導体膜の位置を相対的に移動させることにより、所望の半動体膜の結晶化状態が安定かつ効率的に得られ、半導体膜全体が均一に結晶化される。
[0011]
The method of manufacturing a thin film semiconductor device according to the present invention is a method of manufacturing a thin film semiconductor device using a crystalline semiconductor film mainly composed of silicon formed on a substrate as an active layer, and 370 nm on the semiconductor film deposited on the substrate. Including a step of irradiating a laser beam having a wavelength of 710 nm or less, detecting a state (incident light state) of the laser beam irradiated on the semiconductor film at that time, and a state of the laser beam reflected on the semiconductor film ( A reflected light state), a laser light state (transmitted light state) transmitted through the semiconductor film is detected, and a crystallization state of a predetermined semiconductor film is determined from the incident light state, the reflected light state, and the transmitted light state. The position of the semiconductor film is moved relative to the laser light irradiation position when a predetermined crystallization state is obtained with respect to the semiconductor film. . In this way, the crystallization state of the semiconductor film is confirmed, and if confirmation is obtained, the position of the semiconductor film is moved relative to the laser light irradiation position, so that the crystallization state of the desired semi-moving body film is stable and efficient. The entire semiconductor film is uniformly crystallized.

【0012】
ここでレーザ光の状態はレーザ光のエネルギーであり、所定の半導体膜の結晶化状態が得られたか確認する際には、半導体薄膜に対して照射したレーザ光のエネルギー(入射光エネルギー)と、前記半導体薄膜を反射した前記レーザ光のエネルギー(反射光エネルギー)と、前記半導体薄膜を透過した前記レーザ光のエネルギー(透過光エネルギー)を比較することにより、前記半導体薄膜を透過したエネルギーの割合が所定値を上回ったか確認する。これによりレーザ光のエネルギーが不安定でも、所望の半動体薄膜の結晶化状態が安定して得られる。
[0012]
Here, the state of the laser beam is the energy of the laser beam. When confirming whether a predetermined crystallization state of the semiconductor film has been obtained, the energy of the laser beam irradiated to the semiconductor thin film (incident light energy), By comparing the energy of the laser light reflected from the semiconductor thin film (reflected light energy) and the energy of the laser light transmitted through the semiconductor thin film (transmitted light energy), the ratio of the energy transmitted through the semiconductor thin film is Check if the specified value is exceeded. Thereby, even if the energy of the laser beam is unstable, the desired crystallization state of the semi-moving body thin film can be stably obtained.

【0013】
この様なレーザ光として最も優れているのがNd:YAGレーザの第2高調波(YAG2ωと略称する。その波長は532nm)である。
[0013]
The most excellent such laser beam is the second harmonic (abbreviated as YAG2ω, whose wavelength is 532 nm) of the Nd: YAG laser.

【0014】
本願発明の薄膜半導体装置の製造装置は、基板上に形成された珪素を主体とする結晶性半導体膜を能動層として用いる薄膜半導体装置の製造において、基板上に堆積された前記半導体膜に370nm以上710nm以下の波長を有するレーザ光を照射する手段と、前記レーザ光の照射位置に対する半導体膜の位置を相対的に移動させる駆動手段と、前記半導体膜に照射されるレーザ光の状態(入射光状態)を検出するレーザ光検出手段と、前記半導体膜を透過したレーザ光の状態(透過光状態)を検出するレーザ光検出手段と、前記レーザ光検出手段で検出された前記入射光状態と前記反射光状態の比較から所定の半導体膜の結晶化状態が得られたか確認する半導体膜結晶化状態確認手段と、前記半導体膜結晶化状態確認手段によって前記半導体膜の所定の結晶化状態が得られたら、前記駆動手段によってレーザ光照射位置に対する半導体膜の位置を相対的に移動させる制御手段を具備していることを特徴とするものである。
[0014]
An apparatus for manufacturing a thin film semiconductor device according to the present invention provides a thin film semiconductor device using a crystalline semiconductor film mainly composed of silicon formed on a substrate as an active layer. The semiconductor film deposited on the substrate has a thickness of 370 nm or more. Means for irradiating laser light having a wavelength of 710 nm or less; drive means for moving the position of the semiconductor film relative to the irradiation position of the laser light; and state of the laser light irradiated on the semiconductor film (incident light state) ) For detecting the state of the laser light transmitted through the semiconductor film (transmission light state), the incident light state detected by the laser light detection means, and the reflection The semiconductor film crystallization state confirmation means for confirming whether a predetermined crystallization state of the semiconductor film has been obtained from the comparison of the light state, and the semiconductor film crystallization state confirmation means After a predetermined crystalline state body film is obtained, it is characterized in that it comprises a control means for relatively moving the position of the semiconductor film against the laser beam irradiating position by the driving means.

【0015】
ここでレーザ光検出手段は、レーザ光の状態としてエネルギーを検出し、半導体膜結晶化状態確認手段では、半導体薄膜に照射したレーザ光のエネルギー(入射光エネルギー)と、前記半導体薄膜を透過した前記レーザ光のエネルギー(透過光エネルギー)を其々レーザ光検出手段で検出し、前記レーザ光検出手段で検出した前記入射光エネルギーと前記透過光エネルギーを比較することにより、前記半導体薄膜を透過したエネルギーの割合が所定値を上回ったか確認する。これによりレーザ光のエネルギーが不安定でも、所望の半導体薄膜の結晶化状態が安定して得られる。
[0015]
Here, the laser light detection means detects energy as the state of the laser light, and the semiconductor film crystallization state confirmation means detects the energy of the laser light irradiated to the semiconductor thin film (incident light energy) and the light transmitted through the semiconductor thin film. Energy of laser light (transmitted light energy) is detected by laser light detecting means, and the energy transmitted through the semiconductor thin film is compared by comparing the incident light energy detected by the laser light detecting means with the transmitted light energy. Confirm that the ratio of the number exceeds the predetermined value. Thereby, even if the energy of the laser beam is unstable, a desired crystallized state of the semiconductor thin film can be obtained stably.

【0016】
また本願発明の薄膜半導体装置の製造装置は、基板上に形成された珪素を主体とする結晶性半導体膜を能動層として用いる薄膜半導体装置の製造において、基板上に堆積された前記半導体膜に370nm以上710nm以下の波長を有するレーザ光を照射する手段と、前記レーザ光の照射位置に対する半導体膜の位置を相対的に移動させる駆動手段と、前記半導体膜に照射されるレーザ光の状態(入射光状態)を検出するレーザ光検出手段と、前記半導体膜を反射したレーザ光の状態(反射光状態)を検出するレーザ光検出手段と、前記半導体膜を透過したレーザ光の状態(透過光状態)を検出するレーザ光検出手段と、前記レーザ光検出手段で検出された前記入射光状態と前記反射光状態と前記透過光状態の比較から所定の半導体膜の結晶化状態が得られたか確認する半導体膜結晶化状態確認手段と、前記半導体膜結晶化状態確認手段によって前記半導体膜の所定の結晶化状態が得られたら、前記駆動手段によってレーザ光照射位置に対する半導体膜の位置を相対的に移動させる制御手段を具備していることを特徴とするものである。
[0016]
The thin film semiconductor device manufacturing apparatus according to the present invention provides a thin film semiconductor device using a crystalline semiconductor film mainly composed of silicon formed on a substrate as an active layer, and the semiconductor film deposited on the substrate has a thickness of 370 nm. A means for irradiating a laser beam having a wavelength of 710 nm or less; a drive means for moving the position of the semiconductor film relative to the irradiation position of the laser light; and a state of the laser light applied to the semiconductor film (incident light) Laser light detecting means for detecting the state), laser light detecting means for detecting the state of the laser light reflected from the semiconductor film (reflected light state), and state of the laser light transmitted through the semiconductor film (transmitted light state). A laser light detection means for detecting the crystal of the predetermined semiconductor film from a comparison of the incident light state, the reflected light state and the transmitted light state detected by the laser light detection means Semiconductor film crystallization state confirmation means for confirming whether the state has been obtained, and when the predetermined crystallization state of the semiconductor film is obtained by the semiconductor film crystallization state confirmation means, the semiconductor film for the laser light irradiation position by the driving means It is characterized by comprising a control means for relatively moving the position of.

【0017】
ここでレーザ光検出手段は、レーザ光の状態としてエネルギーを検出し、半導体膜結晶化状態確認手段では、半導体薄膜に照射したレーザ光のエネルギー(入射光エネルギー)と、前記半導体薄膜を反射した前記レーザ光のエネルギー(反射光エネルギー)と、前記半導体薄膜を透過した前記レーザ光のエネルギー(透過光エネルギー)を其々レーザ光検出手段で検出し、前記レーザ光検出手段で検出した前記入射光エネルギーと前記反射光エネルギーと前記透過光エネルギーを比較することにより、前記半導体薄膜を透過したエネルギーの割合が所定値を上回ったか確認する。これによりレーザ光のエネルギーが不安定でも、所望の半導体薄膜の結晶化状態が安定して得られる。
[0017]
Here, the laser light detection means detects energy as the state of the laser light, and the semiconductor film crystallization state confirmation means detects the energy of the laser light irradiated to the semiconductor thin film (incident light energy) and the reflection of the semiconductor thin film. The energy of the laser beam (reflected beam energy) and the energy of the laser beam transmitted through the semiconductor thin film (transmitted beam energy) are respectively detected by the laser beam detection unit, and the incident light energy detected by the laser beam detection unit By comparing the reflected light energy and the transmitted light energy, it is confirmed whether the ratio of the energy transmitted through the semiconductor thin film exceeds a predetermined value. Thereby, even if the energy of the laser beam is unstable, a desired crystallized state of the semiconductor thin film can be obtained stably.

【0018】
この様な薄膜半導体装置の製造装置におけるレーザ光として最も優れているのがYAG2ωレーザである。
[0018]
The YAG2ω laser is the most excellent laser beam in such a thin film semiconductor device manufacturing apparatus.

【0037】
図5では同一のパルスエネルギーをもつYAG2ωレーザ光を結晶性の異なる珪素膜に照射したが、レーザ発振装置からのレーザ光のパルスエネルギーの変動などによって異なるパルスエネルギーのレーザ光が珪素膜に照射された場合については、照射したレーザ光のパルスエネルギーと、珪素膜を透過したエネルギーを其々検出し、それらの割合を算出することで、珪素膜を透過したパルスエネルギーの割合として珪素膜の結晶性と対応つけることができる。
[0037]
In FIG. 5, the YAG2ω laser light having the same pulse energy is irradiated to the silicon film having different crystallinity, but the laser light having different pulse energy is irradiated to the silicon film due to the fluctuation of the pulse energy of the laser light from the laser oscillation device. In this case, the pulse energy of the irradiated laser light and the energy transmitted through the silicon film are detected, and the ratio of these is calculated, so that the crystallinity of the silicon film as the ratio of the pulse energy transmitted through the silicon film. Can be matched.

Claims (14)

基板上に形成された珪素を主体とする結晶性半導体膜を能動層として用いる薄膜半導体装置の製造において、
基板上に堆積された前記半導体膜に370nm以上710nm以下の波長を有するレーザ光を照射する工程を含み、
その際に前記半導体膜に照射されるレーザ光の状態(入射光状態)を検出し、
前記半導体膜を透過したレーザ光の状態(透過光状態)を検出し、
前記入射光状態と前記透過光状態から所定の半導体膜の結晶化状態が得られたか確認し、
前記半導体膜に対して所定の結晶化状態が得られたら、レーザ光照射位置に対する半導体膜の位置を相対的に移動させることを特徴とする薄膜半導体装置の製造方法。
In manufacturing a thin film semiconductor device using a crystalline semiconductor film mainly composed of silicon formed on a substrate as an active layer,
Irradiating the semiconductor film deposited on the substrate with a laser beam having a wavelength of 370 nm or more and 710 nm or less,
At that time, the state (incident light state) of the laser light applied to the semiconductor film is detected,
Detecting the state of the laser light transmitted through the semiconductor film (transmitted light state),
Check whether a predetermined crystallization state of the semiconductor film is obtained from the incident light state and the transmitted light state,
A method of manufacturing a thin film semiconductor device, comprising: moving a position of a semiconductor film relative to a laser beam irradiation position when a predetermined crystallization state is obtained with respect to the semiconductor film.
レーザ光の状態はレーザ光のエネルギーであり、所定の半導体膜の結晶化状態が得られたか確認する際には、半導体薄膜に対して照射したレーザ光のエネルギー(入射光エネルギー)と、前記半導体薄膜を透過した前記レーザ光のエネルギー(透過光エネルギー)を比較することにより、前記半導体薄膜を透過したエネルギーの割合が所定値を上回ったか確認することを特徴とする請求項1記載の薄膜半導体装置の製造方法。The state of the laser beam is the energy of the laser beam. When confirming whether a predetermined crystallization state of the semiconductor film has been obtained, the energy of the laser beam irradiated to the semiconductor thin film (incident light energy) and the semiconductor 2. The thin film semiconductor device according to claim 1, wherein the energy of the laser beam transmitted through the thin film (transmitted light energy) is compared to confirm whether the ratio of the energy transmitted through the semiconductor thin film exceeds a predetermined value. Manufacturing method. 基板上に形成された珪素を主体とする結晶性半導体膜を能動層として用いる薄膜半導体装置の製造において、
基板上に堆積された前記半導体膜に370nm以上710nm以下の波長を有するレーザ光を照射する工程を含み、
その際に前記半導体膜に照射されるレーザ光の状態(入射光状態)を検出し、
前記半導体膜を反射したレーザ光の状態(反射光状態)を検出し、
前記半導体膜を透過したレーザ光の状態(透過光状態)を検出し、
前記入射光状態と前記反射光状態と前記透過光状態から所定の半導体膜の結晶化状態が得られたか確認し、
前記半導体膜に対して所定の結晶化状態が得られたら、レーザ光照射位置に対する半導体膜の位置を相対的に移動させることを特徴とする薄膜半導体装置の製造方法。
In manufacturing a thin film semiconductor device using a crystalline semiconductor film mainly composed of silicon formed on a substrate as an active layer,
Irradiating the semiconductor film deposited on the substrate with a laser beam having a wavelength of 370 nm or more and 710 nm or less,
At that time, the state (incident light state) of the laser light applied to the semiconductor film is detected,
Detecting the state of the laser light reflected from the semiconductor film (reflected light state),
Detecting the state of the laser light transmitted through the semiconductor film (transmitted light state),
Check whether a predetermined crystallization state of the semiconductor film is obtained from the incident light state, the reflected light state, and the transmitted light state,
A method of manufacturing a thin film semiconductor device, comprising: moving a position of a semiconductor film relative to a laser beam irradiation position when a predetermined crystallization state is obtained with respect to the semiconductor film.
レーザ光の状態はレーザ光のエネルギーであり、所定の半導体膜の結晶化状態が得られたか確認する際には、半導体薄膜に対して照射したレーザ光のエネルギー(入射光エネルギー)と、前記半導体薄膜を反射した前記レーザ光のエネルギー(反射光エネルギー)と、前記半導体薄膜を透過した前記レーザ光のエネルギー(透過光エネルギー)を比較することにより、前記半導体薄膜を透過したエネルギーの割合が所定値を上回ったか確認することを特徴とする請求項3記載の薄膜半導体装置の製造方法。The state of the laser beam is the energy of the laser beam. When confirming whether a predetermined crystallization state of the semiconductor film has been obtained, the energy of the laser beam irradiated to the semiconductor thin film (incident light energy) and the semiconductor By comparing the energy of the laser light reflected from the thin film (reflected light energy) and the energy of the laser light transmitted through the semiconductor thin film (transmitted light energy), the ratio of the energy transmitted through the semiconductor thin film is a predetermined value. 4. The method of manufacturing a thin film semiconductor device according to claim 3, wherein it is confirmed whether or not the value exceeds. 前記レーザ光はNdイオンドープあるいはYbイオンドープの結晶あるいはガラスを励起媒質としたQスイッチ発振固体レーザの高調波であることを特徴とする請求項1及至4のいずれかに記載の薄膜半導体装置の製造方法。5. The thin film semiconductor device according to claim 1, wherein the laser beam is a harmonic of a Q-switched oscillation solid-state laser using Nd ion-doped or Yb ion-doped crystal or glass as an excitation medium. Production method. 前記レーザ光はQスイッチNd:YAGレーザの第2高調波であることを特徴とする請求項1及至5のいずれかに記載の薄膜半導体装置の製造方法。6. The method of manufacturing a thin film semiconductor device according to claim 1, wherein the laser beam is a second harmonic of a Q-switched Nd: YAG laser. 前記レーザ光の波長が約532nmであることを特徴とする請求項1及至5のいずれかに記載の薄膜半導体装置の製造方法。6. The method of manufacturing a thin film semiconductor device according to claim 1, wherein the wavelength of the laser beam is about 532 nm. 基板上に形成された珪素を主体とする結晶性半導体膜を能動層として用いる薄膜半導体装置の製造において、
基板上に堆積された前記半導体膜に370nm以上710nm以下の波長を有するレーザ光を照射する手段と、
前記レーザ光の照射位置に対する半導体膜の位置を相対的に移動させる駆動手段と、
前記半導体膜に照射されるレーザ光の状態(入射光状態)を検出するレーザ光検出手段と、
前記半導体膜を透過したレーザ光の状態(透過光状態)を検出するレーザ光検出手段と、
前記レーザ光検出手段で検出された前記入射光状態と前記透過光状態の比較から所定の半導体膜の結晶化状態が得られたか確認する半導体膜結晶化状態確認手段と、
前記半導体膜結晶化状態確認手段によって前記半導体膜の所定の結晶化状態が得られたら、前記駆動手段によってレーザ光照射位置に対する半導体膜の位置を相対的に移動させる制御手段を具備していることを特徴とする薄膜半導体装置の製造装置。
In manufacturing a thin film semiconductor device using a crystalline semiconductor film mainly composed of silicon formed on a substrate as an active layer,
Means for irradiating the semiconductor film deposited on the substrate with laser light having a wavelength of 370 nm or more and 710 nm or less;
Driving means for moving the position of the semiconductor film relative to the irradiation position of the laser beam;
Laser light detecting means for detecting the state of the laser light irradiated on the semiconductor film (incident light state);
Laser light detecting means for detecting the state of the laser light transmitted through the semiconductor film (transmitted light state);
A semiconductor film crystallization state confirmation means for confirming whether a predetermined crystallization state of the semiconductor film is obtained from a comparison between the incident light state detected by the laser light detection means and the transmitted light state;
When a predetermined crystallization state of the semiconductor film is obtained by the semiconductor film crystallization state confirmation unit, a control unit is provided that moves the position of the semiconductor film relative to the laser light irradiation position by the driving unit. An apparatus for manufacturing a thin film semiconductor device.
レーザ光検出手段は、レーザ光の状態としてエネルギーを検出し、半導体膜結晶化状態確認手段では、半導体膜に照射したレーザ光のエネルギー(入射光エネルギー)と、前記半導体膜を透過した前記レーザ光のエネルギー(透過光エネルギー)を其々レーザ光検出手段によって検出し、前記レーザ光検出手段で検出した前記入射光エネルギーと前記透過光エネルギーを比較することにより、前記半導体薄膜を透過したエネルギーの割合が所定値を上回ったか確認することを特徴とする請求項8記載の薄膜半導体装置の製造装置。The laser light detection means detects energy as the state of the laser light, and the semiconductor film crystallization state confirmation means detects the energy of the laser light irradiated to the semiconductor film (incident light energy) and the laser light transmitted through the semiconductor film. The ratio of the energy transmitted through the semiconductor thin film by comparing the incident light energy detected by the laser light detecting means and the transmitted light energy. 9. The apparatus for manufacturing a thin film semiconductor device according to claim 8, wherein it is confirmed whether or not the value exceeds a predetermined value. 基板上に形成された珪素を主体とする結晶性半導体膜を能動層として用いる薄膜半導体装置の製造において、
基板上に堆積された前記半導体膜に370nm以上710nm以下の波長を有するレーザ光を照射する手段と、
前記レーザ光の照射位置に対する半導体膜の位置を相対的に移動させる駆動手段と、
前記半導体膜に照射されるレーザ光の状態(入射光状態)を検出するレーザ光検出手段と、
前記半導体膜を反射したレーザ光の状態(反射光状態)を検出するレーザ光検出手段と、
前記半導体膜を透過したレーザ光の状態(透過光状態)を検出するレーザ光検出手段と、
前記レーザ光検出手段で検出された前記入射光状態と前記反射光状態と前記透過光状態の比較から所定の半導体膜の結晶化状態が得られたか確認する半導体膜結晶化状態確認手段と、
前記半導体膜結晶化状態確認手段によって前記半導体膜の所定の結晶化状態が得られたら、前記駆動手段によってレーザ光照射位置に対する半導体膜の位置を相対的に移動させる制御手段を具備していることを特徴とする薄膜半導体装置の製造装置。
In manufacturing a thin film semiconductor device using a crystalline semiconductor film mainly composed of silicon formed on a substrate as an active layer,
Means for irradiating the semiconductor film deposited on the substrate with laser light having a wavelength of 370 nm or more and 710 nm or less;
Driving means for moving the position of the semiconductor film relative to the irradiation position of the laser beam;
Laser light detecting means for detecting the state of the laser light irradiated on the semiconductor film (incident light state);
Laser light detection means for detecting the state of the laser light reflected from the semiconductor film (reflected light state);
Laser light detecting means for detecting the state of the laser light transmitted through the semiconductor film (transmitted light state);
A semiconductor film crystallization state confirmation means for confirming whether a predetermined crystallization state of the semiconductor film is obtained from a comparison of the incident light state, the reflected light state, and the transmitted light state detected by the laser light detection means;
When a predetermined crystallization state of the semiconductor film is obtained by the semiconductor film crystallization state confirmation unit, a control unit is provided that moves the position of the semiconductor film relative to the laser light irradiation position by the driving unit. An apparatus for manufacturing a thin film semiconductor device.
レーザ光検出手段は、レーザ光の状態としてエネルギーを検出し、半導体膜結晶化状態確認手段では、半導体膜に照射したレーザ光のエネルギー(入射光エネルギー)と、前記半導体膜を反射した前記レーザ光のエネルギー(反射光エネルギー)と、前記半導体膜を透過した前記レーザ光のエネルギー(透過光エネルギー)を其々レーザ光検出手段によって検出し、前記レーザ光検出手段で検出した前記入射光エネルギーと前記反射光エネルギーと前記透過光エネルギーを比較することにより、前記半導体薄膜を透過したエネルギーの割合が所定値を上回ったか確認することを特徴とする請求項10記載の薄膜半導体装置の製造装置。The laser light detection means detects energy as the state of the laser light, and the semiconductor film crystallization state confirmation means detects the energy of the laser light irradiated to the semiconductor film (incident light energy) and the laser light reflected from the semiconductor film. Energy (reflected light energy) and energy of the laser light transmitted through the semiconductor film (transmitted light energy) are respectively detected by laser light detecting means, and the incident light energy detected by the laser light detecting means and the energy 11. The apparatus for manufacturing a thin film semiconductor device according to claim 10, wherein it is confirmed whether the ratio of the energy transmitted through the semiconductor thin film exceeds a predetermined value by comparing the reflected light energy and the transmitted light energy. 前記レーザ光はNdイオンドープあるいはYbイオンドープの結晶あるいはガラスを励起媒質としたQスイッチ発振固体レーザの高調波であることを特徴とする請求項8及至11のいずれかに記載の薄膜半導体装置の製造装置。12. The thin film semiconductor device according to claim 8, wherein the laser beam is a harmonic of a Q-switched oscillation solid-state laser using Nd ion-doped or Yb ion-doped crystal or glass as an excitation medium. Manufacturing equipment. 前記レーザ光はQスイッチNd:YAGレーザの第2高調波であることを特徴とする請求項8及至12のいずれかに記載の薄膜半導体装置の製造装置。13. The apparatus for manufacturing a thin film semiconductor device according to claim 8, wherein the laser beam is a second harmonic of a Q-switched Nd: YAG laser. 前記レーザ光の波長が約532nmであることを特徴とする請求項8及至12のいずれかに記載の薄膜半導体装置の製造装置。13. The apparatus for manufacturing a thin film semiconductor device according to claim 8, wherein the laser beam has a wavelength of about 532 nm.
JP2001108056A 2001-04-06 2001-04-06 Method for manufacturing thin film semiconductor device Expired - Fee Related JP4068813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108056A JP4068813B2 (en) 2001-04-06 2001-04-06 Method for manufacturing thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001108056A JP4068813B2 (en) 2001-04-06 2001-04-06 Method for manufacturing thin film semiconductor device

Publications (3)

Publication Number Publication Date
JP2002305145A JP2002305145A (en) 2002-10-18
JP2002305145A5 true JP2002305145A5 (en) 2005-03-17
JP4068813B2 JP4068813B2 (en) 2008-03-26

Family

ID=18960266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108056A Expired - Fee Related JP4068813B2 (en) 2001-04-06 2001-04-06 Method for manufacturing thin film semiconductor device

Country Status (1)

Country Link
JP (1) JP4068813B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148159B2 (en) * 2003-09-29 2006-12-12 Ultratech, Inc. Laser thermal annealing of lightly doped silicon substrates
JP2007158372A (en) * 2007-02-06 2007-06-21 Advanced Display Inc Method and apparatus for manufacturing semiconductor device
JP2012015445A (en) 2010-07-05 2012-01-19 Japan Steel Works Ltd:The Laser anneal processing unit and laser anneal processing method
JP2014220331A (en) * 2013-05-07 2014-11-20 株式会社リコー Electromagnetic wave irradiation apparatus

Similar Documents

Publication Publication Date Title
JP5315393B2 (en) Method for manufacturing crystalline semiconductor film
KR0153823B1 (en) Method of manufacturing semiconductor device
KR20030011724A (en) Laser irradiating device, laser irradiating method and manufacturing method of semiconductor device
KR100740124B1 (en) Poly silicon thin film transistor and the method therefor
US7615424B2 (en) Laser irradiation apparatus and method for manufacturing semiconductor device using the laser irradiation apparatus
JPH07506221A (en) System and method for selective laser processing of material object structures in multi-material, multi-layer devices
WO2002031871A1 (en) Method and apparatus for producing polysilicon film, semiconductor device, and method of manufacture thereof
WO2000054314A1 (en) Method and apparatus for laser heat treatment, and semiconductor device
WO2005083341A1 (en) Silicon layer for uniformizing temperature during photo-annealing
JP2007059431A (en) Process for fabricating semiconductor device and laser processing system
JP2005347694A (en) Method and device for manufacturing semiconductor thin film
JP2002305145A5 (en)
JPH01260812A (en) Manufacture of semiconductor device and apparatus therefor
JP2004207691A (en) Semiconductor thin film manufacturing method and apparatus, semiconductor thin film manufactured by method, and semiconductor element using thin film
JP3847172B2 (en) Crystal growth method and laser annealing apparatus
JP4068813B2 (en) Method for manufacturing thin film semiconductor device
JP4860116B2 (en) Method for manufacturing crystalline semiconductor film
JP2003224070A5 (en)
JP2017079276A (en) Polarization device and polarization method
JP2017063138A (en) Piezoelectric film, piezoelectric device, and method for producing piezoelectric film
JP2004072086A (en) Method for laser irradiation and laser irradiator
JP4100962B2 (en) Manufacturing method of semiconductor device
JP2004193592A5 (en)
JPH0376285A (en) Semiconductor laser device
JPH10125614A (en) Laser irradiating device