JP2002303564A - Valve management system - Google Patents

Valve management system

Info

Publication number
JP2002303564A
JP2002303564A JP2001106612A JP2001106612A JP2002303564A JP 2002303564 A JP2002303564 A JP 2002303564A JP 2001106612 A JP2001106612 A JP 2001106612A JP 2001106612 A JP2001106612 A JP 2001106612A JP 2002303564 A JP2002303564 A JP 2002303564A
Authority
JP
Japan
Prior art keywords
valve
fluid
plant
information
valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001106612A
Other languages
Japanese (ja)
Other versions
JP3890916B2 (en
Inventor
Masafumi Nojima
雅史 能島
Kenji Araki
憲司 荒木
Yoshihisa Kiyotoki
芳久 清時
Masatoshi Takada
将年 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001106612A priority Critical patent/JP3890916B2/en
Publication of JP2002303564A publication Critical patent/JP2002303564A/en
Application granted granted Critical
Publication of JP3890916B2 publication Critical patent/JP3890916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem that it is necessary to consider a maintenance method other than mounting of a sensor for economical maintenance of a valve because, although a sensor is mounted on only valves important for managing a plant in order to maintain a valve, the sensor is very expensive and it is not an economical maintenance method for managing all valves in a plant or the like where many large and small various valves exist in piping paths. SOLUTION: A maintenance system of a valve, which is economical because the sensor is not used, and has higher reliability than a conventional inspection method, can be provided by obtaining information, covering all the valves in the plant, relating to an internal fluid of the valve by operation using input data such as operation information on the valve, material used for the valve, a surrounding environment, and the shape and arrangement information of the valve, evaluating a fluid condition of the valve, and narrowing the number of valves to be maintained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラント運転上の
信頼性を維持しつつ、プラント運転情報から弁の内部流
体状態を評価し、弁の劣化診断を行うことで、プラント
内に多数配置された弁の保全を省力化することを提案す
る弁管理システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention evaluates the internal fluid state of a valve based on plant operation information and diagnoses deterioration of the valve while maintaining the reliability of the operation of the plant. The present invention relates to a valve management system that proposes to save labor for maintaining a valve.

【0002】[0002]

【従来の技術】プラント内の弁の減肉を原因とする破断
漏洩事故や隔離機能の低下を未然に防ぐことは重要な課
題である。これはプラント停止や要求出力の低下による
経済的損失が大きいだけでなく、放射性物質などの内部
の有害物質が漏洩,拡散することは危険度が高い上、社
会的影響が非常に大きいことから明らかである。
2. Description of the Related Art It is an important issue to prevent breakage leakage accidents and deterioration of isolation function due to thinning of valves in a plant. This is not only because of the large economic loss due to plant shutdowns and the reduction in required output, but also because leakage and diffusion of internal harmful substances such as radioactive substances are highly dangerous and have a very large social impact. It is.

【0003】一般に、配管経路に介設されている弁は、
摺動部分の摩耗などによる機械的損傷,キャビテーショ
ン流発生などによって起こる減肉に起因する水理的損傷
によって寿命に達する。
[0003] In general, a valve interposed in a piping path includes:
The service life is attained due to mechanical damage due to wear of the sliding parts and hydraulic damage due to wall thinning caused by cavitation flow.

【0004】ところで、弁の寿命評価は、劣化の確認は
目視などで行われていたが、一部の弁について、センサ
による劣化評価が行われるようになった。
[0004] Incidentally, in the evaluation of the life of a valve, the deterioration has been confirmed by visual inspection or the like, but the deterioration of some valves has been evaluated by a sensor.

【0005】たとえば機械的損傷による劣化に関して
は、すでに特開2000−65246号公報の技術等に
よって容易にこれを評価可能であり、水理的劣化に関し
ては特開平2−1507402号公報のように弁の上
流,下流側の圧力の差圧をセンサ等で測ることによって
評価することができる。
For example, deterioration due to mechanical damage can be easily evaluated by the technique of Japanese Patent Application Laid-Open No. 2000-65246, and hydraulic deterioration can be easily evaluated by a valve as disclosed in Japanese Patent Application Laid-Open No. 2-1507402. It can be evaluated by measuring the differential pressure between the pressures on the upstream and downstream sides with a sensor or the like.

【0006】このように従来は、弁にセンサを取り付け
ることで弁の劣化を把握し、交換や検査の時期を決定す
る方法が採られていた。
As described above, conventionally, a method has been adopted in which the deterioration of the valve is grasped by attaching a sensor to the valve, and the time for replacement or inspection is determined.

【0007】[0007]

【発明が解決しようとする課題】弁に取り付けるセンサ
は非常に高価であり、配管経路に大小さまざまな弁が多
数存在するプラントなどではすべての弁を管理するには
非経済的な保全方法である。
A sensor mounted on a valve is very expensive, and in a plant where a large number of valves of various sizes exist in a piping route, it is an uneconomical maintenance method to manage all the valves. .

【0008】よって、従来法で経済性を満たす弁の保全
を行うには、設計上重要な箇所のみにセンサを取り付け
て弁の水理的寿命を評価し、それ以外は目視のみで検査
する方法が採られていた。
Accordingly, in order to maintain a valve satisfying economical efficiency by the conventional method, a method is required in which a sensor is attached only to a portion important in design and the hydraulic life of the valve is evaluated, and other than that, inspection is performed only visually. Was taken.

【0009】このため、従来の方法ではプラント内すべ
ての弁の保全が実質不可能となり、信頼性が低い問題点
を有していた。
For this reason, in the conventional method, maintenance of all valves in the plant becomes substantially impossible, and there is a problem of low reliability.

【0010】本発明はこのような事情に鑑みなされたも
ので、プラント内のすべての弁を対象として、弁の使用
条件,環境,弁の幾何情報などを考慮して弁の危険度を
ランク付けし、保全対象となる弁の絞り込みを行い、信
頼性が高く、経済的な弁の保全システムを提供すること
を目的としたものである。
The present invention has been made in view of such circumstances, and ranks the degree of risk of all valves in a plant in consideration of the use conditions of the valves, the environment, the geometric information of the valves, and the like. The object of the present invention is to narrow down the valves to be maintained and to provide a highly reliable and economical valve maintenance system.

【0011】[0011]

【課題を解決するための手段】本発明は、弁の入り口圧
力と入り口口径,弁開度,流体の流量から求まる弁絞り
部での圧力および流体速度を求め、この圧力を流体の飽
和蒸気圧と比較することで、キャビテーションやフラッ
シングなどの流体状態の変化を評価し、評価した流体状
態,弁絞り部での流体速度および弁に使用される材料の
特性から弁の水理的寿命を数値的に評価し、弁の危険度
をランク付けすることで検査対象となる弁の絞り込み支
援を行う。
SUMMARY OF THE INVENTION According to the present invention, a pressure and a fluid velocity at a valve constricted portion obtained from an inlet pressure and an inlet diameter of a valve, a valve opening degree, and a flow rate of a fluid are obtained, and this pressure is used as a saturated vapor pressure of the fluid. To evaluate changes in fluid state such as cavitation and flushing, and to calculate the hydraulic life of the valve numerically based on the evaluated fluid state, the fluid velocity at the valve constriction, and the characteristics of the material used for the valve. , And rank the degree of risk of the valves to assist in narrowing down the valves to be inspected.

【0012】[0012]

【発明の実施の形態】本発明の一実施形態を利用した弁
管理システムを原子力プラントに適用した場合の全体構
成の一例を図1に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of the overall configuration when a valve management system using one embodiment of the present invention is applied to a nuclear power plant.

【0013】本実施形態のシステムは入力装置101,
運転情報データ格納装置102,環境・材料データ格納
装置103,弁・流体データ格納装置104,弁危険度
評価手段105,表示装置106を備えている。
The system of the present embodiment includes an input device 101,
An operation information data storage device 102, an environment / material data storage device 103, a valve / fluid data storage device 104, a valve risk evaluation means 105, and a display device 106 are provided.

【0014】なお、運転情報データ格納装置102は、
各弁の開度や、流量,圧力などのプラントに据付られた
センサによって得られる情報、また、環境・材料データ
103は流体中の溶存酸素濃度,PHや各弁に使用されて
いる材料の硬度,靭性,疲労強度などの情報,弁・流体
データ格納装置104は弁と配管の口径,接続方法,配
置情報,種類などの情報をそれぞれ格納している。弁危
険度評価手段105はこれら3つのデータ格納装置から
情報を引き出し、プラントの運転状態を反映し、キャビ
テーションやフラッシングなどの弁の内部流体状態を評
価し、その結果から弁の危険度をランク付けして表示装
置106によって可視化する。
The driving information data storage device 102
Information obtained by sensors installed in the plant, such as the opening of each valve, flow rate, and pressure, and environmental and material data
103 is information on dissolved oxygen concentration in fluid, PH and hardness, toughness, fatigue strength of materials used for each valve, etc., and valve / fluid data storage device 104 is valve and pipe diameter, connection method, arrangement information, Information such as the type is stored. The valve risk evaluation means 105 extracts information from these three data storage devices, reflects the operating state of the plant, evaluates the internal fluid state of the valve such as cavitation and flushing, and ranks the risk of the valve based on the result. And visualized by the display device 106.

【0015】以下に、本実施形態のシステムを構成する
各装置の詳細について説明する。
Hereinafter, details of each device constituting the system of the present embodiment will be described.

【0016】図2は運転情報データ格納装置102のデ
ータ格納形式を示す。運転情報データ格納装置102で
はプラント内の弁にIDをつけ、弁の開度ごとの流量特
性データ,開度と流量特性の関係に関与するプラグ(弁
体)の形状データを含む構成である。弁のIDは、系統
名−(弁機能−)弁番号の書式で記述される。弁番号は
弁に任意に付けられる番号である。プラグ形状は開度が
変化したときの流量特性の変化に大きく依存する。
FIG. 2 shows a data storage format of the driving information data storage device 102. The operation information data storage device 102 has a configuration in which an ID is assigned to a valve in the plant, flow rate characteristic data for each valve opening degree, and plug (valve) shape data related to the relationship between the opening degree and the flow rate characteristic. The valve ID is described in the format of system name- (valve function-) valve number. The valve number is a number arbitrarily assigned to the valve. The plug shape greatly depends on the change in the flow characteristic when the opening degree changes.

【0017】弁・流体データ格納装置104は図3のよ
うな弁の形状・配置データと図4および図5のような弁
内部流体情報を含む構成となる。
The valve / fluid data storage device 104 has a configuration including the shape and arrangement data of the valve as shown in FIG. 3 and the fluid information inside the valve as shown in FIGS.

【0018】弁の形状データ301はプラント内の各弁
の出入口口径,ストロークなどの弁の外観および内部形
状やプラント内の基準点からの弁入口および出口の空間
座標すなわち弁の3次元配置データ,弁とつながる配管
のID等を含む構成である。形状はバルブの種類を表し
ている。例えばグローブバルブ(GLB),逆止弁(C
HK)を示している。材質は弁に使われている材料を格
納している。特に弁が複数の材質で構成されている場合
は、すべての情報を格納する。
The valve shape data 301 includes the external appearance and internal shape of the valve such as the inlet and outlet diameters and strokes of each valve in the plant, the spatial coordinates of the valve inlet and outlet from a reference point in the plant, that is, three-dimensional arrangement data of the valve, This is a configuration including the ID of the pipe connected to the valve. The shape represents the type of valve. For example, globe valve (GLB), check valve (C
HK). The material stores the material used for the valve. Especially when the valve is made of a plurality of materials, all information is stored.

【0019】弁配置データ302はプラント内での弁・
配管・プラント機器の3次元空間座標を示す。弁につい
ては弁出入口の中心の座標を格納する。
The valve arrangement data 302 stores the valve /
3 shows three-dimensional space coordinates of piping and plant equipment. For the valve, the coordinates of the center of the valve entrance are stored.

【0020】弁接続データ303は弁出入り口とそれぞ
れつながる部品のIDを格納している。
The valve connection data 303 stores the ID of a part connected to each of the valve ports.

【0021】弁内部流体情報は、弁内部を流れる流体の
流量Q,弁入口での流速v1 および圧力P1 ,弁出口で
の流速v2 および圧力P2 ,温度Tをプラント内の弁ご
とに図4および図5のようにテーブル化したものを含む
構成である。図4の弁内部流体情報(設計値)はプラン
ト設計時においてヒートバランスによって求められる定
格出力での各パラメータを格納する。
The fluid information inside the valve includes the flow rate Q of the fluid flowing inside the valve, the flow velocity v 1 and pressure P 1 at the valve inlet, the flow velocity v 2 and pressure P 2 at the valve outlet, and the temperature T for each valve in the plant. 4 and 5 are tables. The valve internal fluid information (design value) in FIG. 4 stores each parameter at a rated output obtained by heat balance at the time of plant design.

【0022】一方、図5の弁内部流体情報(運転値)は
プラント運転時の弁内部を流れる流体の情報を格納す
る。
On the other hand, the valve internal fluid information (operating value) in FIG. 5 stores information on the fluid flowing inside the valve during plant operation.

【0023】図6は流体の特性値を格納する。ある温度
(セルシウス度)における流体の飽和蒸気圧(Pa)お
よび比重(g/cm3)を格納している。
FIG. 6 stores the characteristic values of the fluid. The saturation vapor pressure (Pa) and specific gravity (g / cm 3 ) of the fluid at a certain temperature (degree Celsius) are stored.

【0024】図7はプラントの機器601および機器6
02を結ぶ配管系統を示す。プラントでは常に機器60
1,602、例えば機器601は復水回収タンク、60
2は復水器である。プラントにおいて機器の内部圧力P
1 ,流量Q,流体温度Tは常に測定している。いま、何
らかの原因によって出力が低下した場合、プラントでは
弁603,604の開度を調節することにより、出力を
一定に保つ。
FIG. 7 shows equipment 601 and equipment 6 of the plant.
2 shows a piping system connecting No. 02. In the plant, the equipment 60
1, 602, for example, the equipment 601 is a condensate recovery tank,
2 is a condenser. Internal pressure P of equipment in the plant
1 , the flow rate Q and the fluid temperature T are always measured. If the output decreases for some reason, the plant keeps the output constant by adjusting the opening of the valves 603 and 604.

【0025】弁の開度を調節する際には弁603から6
04までの流体の流速v2や圧力P2,弁604から機器
602までの流体の流速v3 や圧力P3 は変化する。特
に各弁の弁絞り部での圧力Pc ,vc は弁の開度によっ
て大きく変化する。
When adjusting the opening of the valve, the valves 603 to 6
The flow velocity v 2 and pressure P 2 of the fluid up to 04 and the flow velocity v 3 and pressure P 3 of the fluid from the valve 604 to the device 602 vary. In particular the pressure P c, v c of the valve diaphragm portion of each valve varies greatly with the opening of the valve.

【0026】これら各パラメータの変化は運転条件の変
化により常に更新され、弁の開度を変更してもその開度
に応じた弁内部の流体情報を知ることが可能となる。
Changes in these parameters are constantly updated by changes in operating conditions, and even when the opening of the valve is changed, it is possible to know the fluid information inside the valve according to the opening.

【0027】環境・材料データ103は図8で示す材料
データベースと図9で示す水質データベースを含む構成
である。
The environment / material data 103 includes a material database shown in FIG. 8 and a water quality database shown in FIG.

【0028】図8で示す材料データベースは弁に使われ
る材料の硬さ,疲労強度,靭性等の機械的特性を評価し
てテーブル化したものである。
The material database shown in FIG. 8 is a table obtained by evaluating the mechanical properties such as hardness, fatigue strength and toughness of the material used for the valve.

【0029】図9の水質データは弁内部に流れる流体の
溶存酸素量,PH等の水質をテーブル化したものであ
る。
The water quality data shown in FIG. 9 is a table of water quality such as dissolved oxygen amount and PH of the fluid flowing inside the valve.

【0030】本システムはこれら各データ格納装置から
得られるデータを入力として弁危険度評価手段105に
よってプラント運転情報を反映した弁の危険評価を行
う。この評価は詳細には図10および図11のような手
段で行われる。
In the present system, the data obtained from each of these data storage devices is used as an input, and the valve risk evaluation means 105 performs the valve risk evaluation reflecting the plant operation information. This evaluation is performed in detail by means as shown in FIGS.

【0031】流体評価1001は運転情報データ格納装
置102から各弁の開度における流量特性データを、弁
・流体データ格納装置104から弁内部流体情報(運転
値),弁形状データを入力して現在の運転情報における
弁内部流体情報(運転値)の各パラメータの値を更新
し、弁の内部流体状態を弁絞り部での圧力Pc およびv
c と流体温度での飽和蒸気圧と比較することで弁の流体
状態を評価する。
The fluid evaluation 1001 receives the flow rate characteristic data at the opening of each valve from the operation information data storage device 102 and the valve internal fluid information (operation value) and the valve shape data from the valve / fluid data storage device 104 and receives the current data. The value of each parameter of the valve internal fluid information (operating value) in the operation information of the above is updated, and the internal fluid state of the valve is changed to the pressures Pc and v at the valve restrictor.
The fluid state of the valve is evaluated by comparing c with the saturated vapor pressure at the fluid temperature.

【0032】ここでそれぞれのパラメータの導出方法お
よび弁絞り部での流体状態評価方法についての詳細を図
12に示す。
FIG. 12 shows details of a method for deriving the respective parameters and a method for evaluating the fluid state in the valve restrictor.

【0033】流体状態評価1001は弁IDをキーとし
て、配管形状・配置DBから弁口径データ、プラント運
転情報データから流量特性データを検索し、この値を入
力として弁を図13のような簡略化モデルに変換する。
ここで弁口径データは弁出入口流路断面積S1 およびS
2 を求めるために用い、流量特性データは弁絞り部の流
路断面積SR を求める。図の矢印は流体の進行方向を示
す。弁内部速度は流量Qと流路断面積から
The fluid state evaluation 1001 retrieves valve diameter data from the piping shape / arrangement DB and flow characteristic data from the plant operation information data using the valve ID as a key, and inputs the values to simplify the valve as shown in FIG. Convert to a model.
Here, the valve diameter data is based on the cross-sectional areas S 1 and S
The flow characteristic data is used to determine the flow path cross-sectional area S R of the valve restrictor. The arrows in the figure indicate the traveling direction of the fluid. The internal speed of the valve is determined from the flow rate Q and the flow path cross-sectional area

【0034】とそれぞれ求めることができ、弁絞り部で
の圧力Pc は、ベルヌーイの定理より
The pressure P c at the valve restrictor is calculated by Bernoulli's theorem.

【0035】のように求めることができる。Can be obtained as follows.

【0036】求めた弁絞り部の圧力Pc と飽和蒸気圧P
v を流体温度Tをキーとして流体情報DBから求め、P
v/Pcを求める。
The obtained pressure Pc of the valve restrictor and the saturated vapor pressure P
v is obtained from the fluid information DB using the fluid temperature T as a key, and P
Find v / Pc .

【0037】弁リスク評価1002は流体評価1001
において求められた、流体情報を入力して弁の現在の危
険度を評価する。
The valve risk evaluation 1002 is a fluid evaluation 1001
And input the fluid information determined in the above to evaluate the current risk of the valve.

【0038】詳細には図11のような処理フローで処理
される。
More specifically, the processing is performed according to the processing flow shown in FIG.

【0039】流体評価1001において求めた各弁のP
v/Pc,vc およびP2 を入力データとして、材料デー
タベース,水質データベースから材料のエロージョン感
受性を求め、流体のエロージョンしきい速度vd を求め
る。弁絞り部での流体の速度vc は流体のエネルギーの
大きさを表し、vc が大きければ大きいほどエロージョ
ンの発生確率は高くなる。また、材料ごとにエロージョ
ンの感受性は異なるために、弁のエロージョン発生確率
は流体の速度と材料の機械的特性の相互作用から求ま
る。この相互作用はエロージョンしきい速度vd を設定
することで評価される。vd は多変量解析を用いた統計
解析による手法や、材料疲労特性を考慮したスプリンガ
ーの式等を用いて理論的に算出され、材料ごとに異な
る。
The P of each valve determined in the fluid evaluation 1001
v / P c, as v c and P 2 input data, material database, determine the erosion susceptibility of the material from the water quality database, determine the erosion threshold velocity v d of the fluid. Velocity v c of the fluid at the valve diaphragm portion represents the magnitude of the energy of the fluid, v c probability of erosion The greater the higher. Also, since the erosion sensitivity differs for each material, the erosion occurrence probability of the valve is determined from the interaction between the fluid velocity and the mechanical properties of the material. This interaction is evaluated by setting the erosion threshold speed v d. v d is theoretically calculated using a method based on statistical analysis using multivariate analysis, a Springer's formula that takes into account material fatigue properties, and the like, and differs for each material.

【0040】入力されたデータから、各弁の内部流体状
態の評価を次のように行う。内部流体状態とはすなわち
ノーマル流,キャビテーション流,フラッシュ流の3状
態であり、Pv/Pc<1のとき内部流体状態はノーマル
流、Pv/Pc>1のときキャビテーション流、Pv/Pc
>1かつP2<Pvのときフラッシュ流となる。Pv/Pc
およびP2 の値を管理することにより、弁の内部流体状
態によるエロージョン発生確率が一元管理可能となる。
From the input data, the internal fluid state of each valve is evaluated as follows. The internal fluid state is three states of normal flow, cavitation flow, and flash flow. When Pv / Pc <1, the internal fluid state is normal flow, and when Pv / Pc > 1, the cavitation flow, Pv / P c
When> 1 and P 2 <P v , the flash flow is established. Pv / Pc
And by managing the value of P 2, erosion probability due to internal fluid state of the valve it is possible centrally managed.

【0041】また、流体の速度によりvc<vdのときエ
ロージョンが発生しにくく、vc>vd のときエロージ
ョン発生しやすくなる。材料ごとのvdとvcを比較する
ことにより、材料ごとのエロージョン発生確率が一元管
理可能となる。
Further, erosion hardly occurs when v c <v d , and erosion easily occurs when v c > v d , depending on the velocity of the fluid. By comparing the v d and v c of each material, the erosion generation probability for each material allows centralized management.

【0042】弁保全度可視化モジュール1003は、こ
の弁内部流体状態の結果、すなわち各弁の内部流体情報
を図14のように(vc,Pv/Pc)を座標系中にまと
めると、y軸に流体状態によるエロージョン評価、横軸
に流体速度による流体評価を表示可能となり弁のエロー
ジョン管理を一覧可能とする。これにより、弁を6つの
危険度に分けることができる。すなわち、流体状態が
フラッシュ流で流体によるエロージョン可能性が高い弁
1401、流体状態がフラッシュ流で流体によるエロ
ージョン可能性が低い弁1402、流体状態がキャビ
テーション流で流体によるエロージョン可能性が高い弁
1403、流体状態がキャビテーション流で流体によ
るエロージョン可能性が低い弁1404、流体状態が
ノーマル流で流体によるエロージョン可能性が高い弁1
405、流体状態がノーマル流で流体によるエロージ
ョン可能性が低い弁1406に分けることが可能とな
る。
The valve maintainability visualization module 1003, a result of the valve internal fluid state, i.e. as (v c, P v / P c) of FIG. 14 the internal fluid information of each valve summarized in a coordinate system, The erosion evaluation based on the fluid state can be displayed on the y-axis, and the fluid evaluation based on the fluid velocity can be displayed on the horizontal axis, so that the erosion management of the valve can be viewed. This allows the valve to be divided into six levels of risk. That is, a valve 1401 whose fluid state is a flush flow and a high possibility of erosion by a fluid, a valve 1402 whose fluid state is a flush flow and a low possibility of erosion by a fluid, a valve 1403 where the fluid state is a cavitation flow and a high possibility of erosion by a fluid, A valve 1404 having a low erosion possibility due to a fluid when the fluid state is a cavitation flow, and a valve 1 having a high erosion possibility due to a fluid when the fluid state is a normal flow.
405, it is possible to divide the valve into a valve 1406 in which the fluid state is normal flow and the possibility of erosion by the fluid is low.

【0043】この結果を表示装置1004で顧客に示
し、検査対象となる弁の絞込みを行う。このシステムに
おいて、弁内部流体情報について設計値と運転値を入力
することにより、運転中の弁が設計性能よりもどの程度
過酷な運転をしているかを示すことが可能となり、これ
により、プラントの運転支援が可能となる。
The result is shown to the customer on the display device 1004, and the valves to be inspected are narrowed down. In this system, by inputting the design value and the operation value for the valve internal fluid information, it is possible to indicate how severe the operation of the valve during operation is compared with the design performance. Driving support becomes possible.

【0044】[0044]

【発明の効果】本発明によれば、プラント内のすべての
弁を対象として、弁の使用条件,環境,弁の幾何情報か
ら弁の危険度をランク付けし、保全対象となる弁の絞り
込みを行い、信頼性が高く、経済的な弁の保全システム
を提供することが可能となる。
According to the present invention, for all valves in a plant, the degree of risk of the valves is ranked based on the use conditions of the valves, the environment, and the geometric information of the valves, and the valves to be maintained are narrowed down. It is possible to provide a reliable and economical valve maintenance system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】弁管理システムの概要。FIG. 1 is an outline of a valve management system.

【図2】運転情報データの内容および格納様式。FIG. 2 shows the contents and storage format of driving information data.

【図3】弁形状・配置データの内容および格納様式。FIG. 3 shows the contents and storage format of valve shape / arrangement data.

【図4】弁内部流体情報(設計値)の内容および格納様
式。
FIG. 4 shows the contents and storage format of valve internal fluid information (design values).

【図5】弁内部流体情報(運転値)の内容および格納様
式。
FIG. 5 shows the content and storage format of valve internal fluid information (operating value).

【図6】流体飽和蒸気圧および比重―温度定数表。FIG. 6 is a table showing fluid saturation vapor pressure and specific gravity-temperature constant.

【図7】プラント機器,配管配置図。FIG. 7 is a diagram showing plant equipment and piping arrangements.

【図8】材料データの内容および格納様式。FIG. 8 shows the contents and storage format of material data.

【図9】水質データの内容および格納様式。FIG. 9 shows the contents and storage format of water quality data.

【図10】弁危険度評価手段構成図。FIG. 10 is a view showing a configuration of a valve risk evaluation means.

【図11】弁リスク評価処理フロー図。FIG. 11 is a flowchart of a valve risk evaluation process.

【図12】内部流体評価処理フロー図。FIG. 12 is a flowchart of an internal fluid evaluation process.

【図13】弁簡略化モデル。FIG. 13 is a simplified valve model.

【図14】弁危険度可視化モジュール。FIG. 14 is a valve risk visualization module.

【符号の説明】[Explanation of symbols]

101…入力装置、102…運転情報データ格納装置、
103…環境・材料データ格納装置、104…弁・流体
データ格納装置、105…弁危険度評価手段、106…
表示装置。
101: input device, 102: driving information data storage device,
103: environment / material data storage device, 104: valve / fluid data storage device, 105: valve risk evaluation means, 106 ...
Display device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清時 芳久 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内 (72)発明者 高田 将年 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 2G024 AA15 BA11 BA12 BA21 CA16 CA17 FA02 FA06 FA15 3H065 AA08 CA01 CA03 5H223 AA01 BB01 DD03 DD09 EE05 EE06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Yoshihisa Seiki, 3-1-1, Komachi, Hitachi, Ibaraki Pref. Nuclear Power Division, Hitachi, Ltd. 1-chome F term in Hitachi Research Laboratory, Hitachi, Ltd. F-term (reference) 2G024 AA15 BA11 BA12 BA21 CA16 CA17 FA02 FA06 FA15 3H065 AA08 CA01 CA03 5H223 AA01 BB01 DD03 DD09 EE05 EE06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】弁の形状・配置データやプラント運転中の
弁内部を流れる流体の情報を格納する弁・流体データ格
納装置と、弁に使用される材料の機械的特性や内部流体
の水質についての情報を格納する環境・材料データ格納
装置と、プラント運転時の弁の開度変化による弁内部流
体の流量特性の変化についての情報を格納する運転情報
データ格納装置と、管路の形状や、管路を流れる流体の
流量および弁の上流側圧力を入力し、入力されたパラメ
ータと予め入力されている定数に基づいて、キャビテー
ションやフラッシング等の弁内部の流体状態を評価する
弁危険度評価手段とを有することを特徴とする弁管理シ
ステム。
1. A valve / fluid data storage device for storing data on the shape and arrangement of a valve and information on a fluid flowing inside the valve during operation of a plant, and a mechanical property of a material used for the valve and a water quality of the internal fluid. An environment / material data storage device for storing information on the operation of the plant, an operation information data storage device for storing information on a change in the flow rate characteristic of the fluid inside the valve due to a change in the opening degree of the valve during plant operation, a shape of the pipeline, Valve risk evaluation means for inputting the flow rate of the fluid flowing in the pipeline and the upstream pressure of the valve and evaluating the fluid state inside the valve such as cavitation and flushing based on the input parameters and constants input in advance. And a valve management system.
【請求項2】前記弁・流体データから、プラント設計時
点での理想的な流体情報をさらに有し、各弁の設計時と
運転時での弁の危険度を比較し、要求性能以上で運転さ
れている弁を評価することを特徴とする請求項1に記載
の弁管理システム。
2. The apparatus according to claim 2, further comprising ideal fluid information at the time of plant design from the valve / fluid data, comparing the risk of the valves at the time of design and operation of each valve, and operating at a required performance or more. The valve management system according to claim 1, wherein the evaluated valve is evaluated.
JP2001106612A 2001-04-05 2001-04-05 Valve management system Expired - Fee Related JP3890916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001106612A JP3890916B2 (en) 2001-04-05 2001-04-05 Valve management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001106612A JP3890916B2 (en) 2001-04-05 2001-04-05 Valve management system

Publications (2)

Publication Number Publication Date
JP2002303564A true JP2002303564A (en) 2002-10-18
JP3890916B2 JP3890916B2 (en) 2007-03-07

Family

ID=18959079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001106612A Expired - Fee Related JP3890916B2 (en) 2001-04-05 2001-04-05 Valve management system

Country Status (1)

Country Link
JP (1) JP3890916B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004199655A (en) * 2002-10-22 2004-07-15 Fisher Rosemount Syst Inc Smart process module and smart process object in process plant
US8000814B2 (en) 2004-05-04 2011-08-16 Fisher-Rosemount Systems, Inc. User configurable alarms and alarm trending for process control system
US8055358B2 (en) 2005-12-05 2011-11-08 Fisher-Rosemount Systems, Inc. Multi-objective predictive process optimization with concurrent process simulation
US8135481B2 (en) 2004-05-04 2012-03-13 Fisher-Rosemount Systems, Inc. Process plant monitoring based on multivariate statistical analysis and on-line process simulation
JP2012255746A (en) * 2011-06-10 2012-12-27 Azbil Corp Cavitation diagnosis apparatus and diagnosis method
JP2013191002A (en) * 2012-03-14 2013-09-26 Azbil Corp Maintenance target valve selection device and selection method
US8825183B2 (en) 2010-03-22 2014-09-02 Fisher-Rosemount Systems, Inc. Methods for a data driven interface based on relationships between process control tags
US8881039B2 (en) 2009-03-13 2014-11-04 Fisher-Rosemount Systems, Inc. Scaling composite shapes for a graphical human-machine interface
US9046881B2 (en) 2002-10-22 2015-06-02 Fisher-Rosemount Systems, Inc. Updating and utilizing dynamic process simulation in an operating process environment
JP2017155852A (en) * 2016-03-02 2017-09-07 株式会社テイエルブイ Diagnosis device and diagnosis method of drain trap
US9904263B2 (en) 2002-10-22 2018-02-27 Fisher-Rosemount Systems, Inc. Smart process objects used in a process plant modeling system
US10878140B2 (en) 2016-07-27 2020-12-29 Emerson Process Management Power & Water Solutions, Inc. Plant builder system with integrated simulation and control system configuration
JP2022093261A (en) * 2020-12-11 2022-06-23 金子産業株式会社 Database generator, state determination device, database generation method, and state determination method
US11418969B2 (en) 2021-01-15 2022-08-16 Fisher-Rosemount Systems, Inc. Suggestive device connectivity planning
JP7380393B2 (en) 2020-03-31 2023-11-15 株式会社プロテリアル Valve thinning diagnosis system, valve thinning diagnosis method, and valve thinning diagnosis service

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656638B (en) * 2015-02-13 2017-10-27 西安热工研究院有限公司 A kind of Power Plant Equipment cavitation erosion real time diagnostic device and method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9046881B2 (en) 2002-10-22 2015-06-02 Fisher-Rosemount Systems, Inc. Updating and utilizing dynamic process simulation in an operating process environment
US9983559B2 (en) 2002-10-22 2018-05-29 Fisher-Rosemount Systems, Inc. Updating and utilizing dynamic process simulation in an operating process environment
US9904263B2 (en) 2002-10-22 2018-02-27 Fisher-Rosemount Systems, Inc. Smart process objects used in a process plant modeling system
US9904268B2 (en) 2002-10-22 2018-02-27 Fisher-Rosemount Systems, Inc. Updating and utilizing dynamic process simulation in an operating process environment
US9069344B2 (en) 2002-10-22 2015-06-30 Fisher-Rosemount Systems, Inc. Smart process modules and objects in process plants
JP2004199655A (en) * 2002-10-22 2004-07-15 Fisher Rosemount Syst Inc Smart process module and smart process object in process plant
US8135481B2 (en) 2004-05-04 2012-03-13 Fisher-Rosemount Systems, Inc. Process plant monitoring based on multivariate statistical analysis and on-line process simulation
US8127241B2 (en) 2004-05-04 2012-02-28 Fisher-Rosemount Systems, Inc. Process plant user interface system having customized process graphic display layers in an integrated environment
US8000814B2 (en) 2004-05-04 2011-08-16 Fisher-Rosemount Systems, Inc. User configurable alarms and alarm trending for process control system
US8060834B2 (en) 2004-05-04 2011-11-15 Fisher-Rosemount Systems, Inc. Graphics integration into a process configuration and control environment
US8185219B2 (en) 2004-05-04 2012-05-22 Fisher-Rosemount Systems, Inc. Graphic element with multiple visualizations in a process environment
US8055358B2 (en) 2005-12-05 2011-11-08 Fisher-Rosemount Systems, Inc. Multi-objective predictive process optimization with concurrent process simulation
US8881039B2 (en) 2009-03-13 2014-11-04 Fisher-Rosemount Systems, Inc. Scaling composite shapes for a graphical human-machine interface
US8825183B2 (en) 2010-03-22 2014-09-02 Fisher-Rosemount Systems, Inc. Methods for a data driven interface based on relationships between process control tags
JP2012255746A (en) * 2011-06-10 2012-12-27 Azbil Corp Cavitation diagnosis apparatus and diagnosis method
JP2013191002A (en) * 2012-03-14 2013-09-26 Azbil Corp Maintenance target valve selection device and selection method
JP2017155852A (en) * 2016-03-02 2017-09-07 株式会社テイエルブイ Diagnosis device and diagnosis method of drain trap
US10878140B2 (en) 2016-07-27 2020-12-29 Emerson Process Management Power & Water Solutions, Inc. Plant builder system with integrated simulation and control system configuration
JP7380393B2 (en) 2020-03-31 2023-11-15 株式会社プロテリアル Valve thinning diagnosis system, valve thinning diagnosis method, and valve thinning diagnosis service
JP2022093261A (en) * 2020-12-11 2022-06-23 金子産業株式会社 Database generator, state determination device, database generation method, and state determination method
WO2023053608A1 (en) * 2020-12-11 2023-04-06 金子産業株式会社 Database generation device, state assessment device, database generation method, and state assessment method
US11418969B2 (en) 2021-01-15 2022-08-16 Fisher-Rosemount Systems, Inc. Suggestive device connectivity planning

Also Published As

Publication number Publication date
JP3890916B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
JP2002303564A (en) Valve management system
CN103189725B (en) Leakage identification in supply system and leakage location
US10656045B2 (en) Apparatus for analyzing the performance of fluid distribution equipment
US10663162B2 (en) Fluid utilization facility management method and fluid utilization facility management system
CN104976518A (en) Subsea pipeline leakage monitoring system
WO2015070529A1 (en) Dry-type vacuum pump air exhaust process simulating and testing method and testing system
CN103403463A (en) Spm fault detection and diagnostics algorithm
CN111706785B (en) Natural gas dendritic pipe network leakage pipe section identification method
Rathnayaka et al. Monitoring of pressure transients in water supply networks
US9243971B2 (en) Monitoring fluid flow in a conduit
CN103616136A (en) Method for monitoring leakage state of valve of heat distribution pipeline
CN106124393A (en) Flowing accelerated corrosion assay device and using method thereof
KR20140046999A (en) Apparatus for diagnosing cavitation
JP5113722B2 (en) Flow measuring device
JP4889734B2 (en) Supervisory control system
WO2020003598A1 (en) Plant diagnostic system and method
US8874415B2 (en) System and method for forming failure estimates for a heat recovery steam generator
JP2018073316A (en) Plant diagnostic system and diagnostic method
CN108692608A (en) A kind of heat exchanger operation conditions intelligent on-line monitoring device
CN208606637U (en) A kind of heat exchanger operation conditions intelligent on-line monitoring device
CN114811448B (en) Method for pipeline leakage detection, leakage flow velocity estimation and leakage positioning under flowing condition
CN110425745A (en) Method, apparatus and water heater for water heater
CN205879907U (en) Multi -functional on -line monitoring device of thermal power factory heat exchanger
WO2017154761A1 (en) Diagnostic device, diagnostic system, diagnostic method, and computer-readable recording medium
CN211627324U (en) Simulation petrochemical industry pipeline erodees corrosion monitoring and detects experimental apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees