JP2002301044A - Magnetic resonance image diagnosis apparatus - Google Patents

Magnetic resonance image diagnosis apparatus

Info

Publication number
JP2002301044A
JP2002301044A JP2001108515A JP2001108515A JP2002301044A JP 2002301044 A JP2002301044 A JP 2002301044A JP 2001108515 A JP2001108515 A JP 2001108515A JP 2001108515 A JP2001108515 A JP 2001108515A JP 2002301044 A JP2002301044 A JP 2002301044A
Authority
JP
Japan
Prior art keywords
subject
image
coil
magnetic field
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001108515A
Other languages
Japanese (ja)
Inventor
Hiromichi Shimizu
博道 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2001108515A priority Critical patent/JP2002301044A/en
Publication of JP2002301044A publication Critical patent/JP2002301044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the deterioration of an image due to the movement of a patient in a sensitivity encoding method of MRI. SOLUTION: In the examee performing nearly periodical movement, sensitivity distribution information per coil of coil array per time phase of the periodical movement is obtained, and turn-back removal computation using the inherent sensitivity distribution information per time phase is performed. Consequently, it is possible to obtain an image without turn-back artifact of even the moving examee in the sensitivity encode method of MRI.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,磁気共鳴画像診断
装置(MRI)に関し,特に被検体の動きの影響を低減し
た磁気共鳴画像診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic resonance imaging apparatus (MRI), and more particularly to a magnetic resonance imaging apparatus that reduces the influence of the movement of a subject.

【0002】[0002]

【従来の技術】近年MRIは組織描出能に優れた画像診断
装置として,X線CTと並んで疾病の重要な診断手段とな
っている。MRIの一つの弱点は撮影時間が長いことであ
るが,これを解決する方法としては,1)傾斜磁場の性
能を上げる方法,2)バースト状励起パルスやα度(α
≠90,180)パルスによる高次エコーを用いる方法,3)
位相エンコードを間引いて計測の反復回数を低減する方
法がある。第一の方法にはEPIやスパイラルスキャンが
あり,1回の磁化の励起に於いて2次元の空間情報を全て
エンコードして信号を計測する。1回の励起のみで画像
が得られるため高速であるが,傾斜磁場の高速な応答特
性や大振幅特性が要求されるため,現状以上の高速化は
困難である。第二の方法はRFパルスをバースト状のパル
ス列に置き換え,複数のエコーを生成させることにより
1回の励起で2次元の空間情報を全て取得する。あるいは
高次エコーに異なる空間情報をエンコードし,1回の励
起で2次元の空間情報を全て取得する。傾斜磁場に対す
る機械的要求は緩和されるが,磁化の利用効率が低く,
画像のSN比が低いという欠点がある。第三の方法はkey
hole法などで,複数の画像間で画像のコントラストにあ
まり寄与しないk空間の高周波数成分を共用すること
で,位相エンコードステップを削減し,撮影時間を短縮
する。ハード的には制限はないが,被検体が大きく動い
ている場合にはアーチファクトが発生する。
2. Description of the Related Art In recent years, MRI has become an important diagnostic means for diseases along with X-ray CT as an image diagnostic apparatus having excellent tissue delineation ability. One of the weak points of MRI is that the imaging time is long. To solve this problem, 1) a method of improving the performance of the gradient magnetic field, 2) a burst-like excitation pulse or α-degree (α
(≠ 90, 180) Method using high-order echo by pulse, 3)
There is a method for reducing the number of measurement repetitions by thinning out the phase encoding. The first method includes EPI and spiral scan, and measures the signal by encoding all two-dimensional spatial information in one excitation of magnetization. Although it is fast because an image can be obtained with only one excitation, it is difficult to achieve a higher speed than the current situation because high-speed response characteristics and large amplitude characteristics of the gradient magnetic field are required. The second method is to replace the RF pulse with a burst pulse train and generate multiple echoes.
Acquire all two-dimensional spatial information with one excitation. Alternatively, different spatial information is encoded in the higher-order echo, and all two-dimensional spatial information is acquired by one excitation. The mechanical requirements for the gradient magnetic field are relaxed, but the efficiency of magnetization utilization is low.
There is a disadvantage that the SN ratio of the image is low. The third method is key
By sharing high-frequency components in the k-space that do not significantly contribute to image contrast between multiple images using the hole method, etc., the phase encoding step is reduced and the shooting time is reduced. Although there is no limitation in terms of hardware, artifacts occur when the subject moves greatly.

【0003】近年同じく位相エンコードを低減する方法
で,検出コイルの感度分布情報を用いた演算処理により
位相エンコードを低減したときに生じる画像の折り返し
を回避する方法が新たに提案された。これには演算処理
をk空間で行うSMASH(Sodickson DK, Manning WJ,“Sim
ultaneous acquisition of spatial harmonics(SMASH):
ultra-fast imaging with radiofrequency coil array
s”, Magn Reson Med.,vol.38, 591-603(1997)と実空間
で行うSENSE(Klaas P. Pruessmann, Markus Weiger, Ma
rkus B. Scheidegger, and Peter Boesiger,“SENSE: s
ensitivity encoding for fast MRI”,Magn Reson Me
d.,vol.42,952-962(1999))があり,感度エンコード法ま
たはパラレルMRIなどと総称される。いずれも複数のコ
イルアレーを用いてMR信号を同時に検出する。フーリエ
再構成ではk空間の位相エンコードを間引き,エンコー
ド間隔(Δky)を大きくした場合,撮影視野が縮小する
(FOVy=2π/Δky)。従って,被検体が視野よりも大き
いときには被検体の折り返しが生じる。このままでは診
断に使えない画像となるが,検出コイルの感度情報が既
知であれば,演算処理を施すことにより折り返しを除去
できる(前記Pruessmannの論文を参照)。感度エンコー
ド法ではコイルの数だけ位相エンコードを低減できる。
例えば4コイルでは位相エンコード数を1/4に低減でき,
撮影時間を従来の1/4に短縮できる。時間短縮とのトレ
ードオフとして画像SN比は低下するが,息止め下心臓撮
影やDiffusion EPIのエコートレインの削減等ではSN比
の低下を補う以上のメリットが期待されている。
In recent years, a method for reducing the phase encoding has been proposed, which is a method for avoiding the aliasing of an image which occurs when the phase encoding is reduced by an arithmetic processing using the sensitivity distribution information of the detection coil. This includes SMASH (Sodickson DK, Manning WJ, “Sim
ultaneous acquisition of spatial harmonics (SMASH):
ultra-fast imaging with radiofrequency coil array
s ”, Magn Reson Med., vol. 38, 591-603 (1997) and SENSE performed in real space (Klaas P. Pruessmann, Markus Weiger, Ma.
rkus B. Scheidegger, and Peter Boesiger, “SENSE: s
ensitivity encoding for fast MRI ”, Magn Reson Me
d., vol. 42, 952-962 (1999)), and are collectively referred to as sensitivity encoding or parallel MRI. In each case, MR signals are simultaneously detected using a plurality of coil arrays. In the Fourier reconstruction, when the phase encoding in the k space is thinned out and the encoding interval (Δky) is increased, the field of view is reduced (FOVy = 2π / Δky). Therefore, when the subject is larger than the visual field, the subject is turned back. An image cannot be used for diagnosis as it is, but if the sensitivity information of the detection coil is known, aliasing can be removed by performing arithmetic processing (see the aforementioned Pruessmann paper). In the sensitivity encoding method, phase encoding can be reduced by the number of coils.
For example, with 4 coils, the number of phase encodes can be reduced to 1/4,
The shooting time can be reduced to 1/4 of the conventional one. As a trade-off with time reduction, the S / N ratio of the image is reduced. However, the advantages of compensating for the reduction of the S / N ratio are expected in cardiac imaging under breath holding and reduction of echo train in diffusion EPI.

【0004】感度エンコード法では検出コイルの感度分
布情報が重要になる。これは感度分布情報の誤差によ
り,画像のシェーディングのみでなく折り返し除去の不
完全による偽像が発生するためである。感度分布を得る
にはファントムの予備撮影を事前に行う方法と,被検体
の画像へローパスフィルター等の処理を施す方法があ
る。また,感度分布を高精度に得るために,単なるロー
パスフィルターの代わりに局所的な多項式フィッティン
グを施す方法が提案されている(Klaas P. Pruessmann,
Markus Weiger, Markus B.Scheidegger, Peter Boesig
er,“Coil sensitivity maps for sensitivity encodin
g and intensity correction”, Proceedings of the I
SMRM 6th Annual Meeting, Sydney, 1998, p2087)。
[0004] In the sensitivity encoding method, sensitivity distribution information of the detection coil becomes important. This is because an error in the sensitivity distribution information causes a false image due to incomplete aliasing removal as well as image shading. In order to obtain the sensitivity distribution, there are a method of performing preliminary photographing of the phantom and a method of performing processing such as a low-pass filter on the image of the subject. Also, in order to obtain the sensitivity distribution with high accuracy, a method has been proposed in which local polynomial fitting is performed instead of a simple low-pass filter (Klaas P. Pruessmann,
Markus Weiger, Markus B. Scheidegger, Peter Boesig
er, “Coil sensitivity maps for sensitivity encodin
g and intensity correction ”, Proceedings of the I
SMRM 6th Annual Meeting, Sydney, 1998, p2087).

【0005】[0005]

【発明が解決しようとする課題】検出コイルの感度分布
はコイルと被検体との相対的な配置にも依存する。この
ためコイルアレーの中で被検体が移動または変形すると
感度分布も微妙に変化してしまう。この様な例としては
呼吸運動,関節の屈曲運動などがある。心臓では心拍の
時相毎に撮影された画像から感度分布を抽出する際,全
時相の感度分布を加算し,平均をとる処理の例がある(M
arkus Weiger,Klaas P.Pruessmann and Peter Boesige
r,“Cardiac real-time imaging usins SENSE”,Magn R
eson Med.,vol.43,177-184(2000))。これは感度分布のS
/Nを向上させるためであるが,時相の情報が失われ,精
密な感度分布は得られなくなる。また,関節の屈曲運動
のように被検体が存在する領域が撮影視野の中で大きく
移動する運動の場合には,平均処理でも正確な感度分布
は得られない。このように,移動または変異の前後で同
一の感度分布情報あるいは平均化した感度分布情報を用
いて感度エンコード法の折り返し除去演算を行うと,演
算誤差を生じ最終画像へ折り返しが残存し,診断に障害
を生じるという問題がある。
The sensitivity distribution of the detection coil also depends on the relative arrangement of the coil and the subject. Therefore, when the subject moves or deforms in the coil array, the sensitivity distribution also slightly changes. Such examples include respiratory movements, joint flexion movements, and the like. In the heart, when extracting the sensitivity distribution from the images taken for each heartbeat phase, there is an example of processing in which the sensitivity distributions for all phases are added and the average is taken (M
arkus Weiger, Klaas P. Pruessmann and Peter Boesige
r, “Cardiac real-time imaging usins SENSE”, Magn R
eson Med., vol. 43, 177-184 (2000)). This is the sensitivity distribution S
In order to improve / N, information on the time phase is lost, and a precise sensitivity distribution cannot be obtained. Further, in the case of a motion in which the region where the subject exists moves largely in the field of view, such as a bending motion of a joint, an accurate sensitivity distribution cannot be obtained even by the averaging process. As described above, when the aliasing removal calculation of the sensitivity encoding method is performed using the same sensitivity distribution information or the averaged sensitivity distribution information before and after movement or mutation, an arithmetic error occurs, and aliasing remains in the final image, which is difficult to diagnose. There is a problem of causing obstacles.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め,本発明では感度エンコード法において,概略周期運
動をする被検体の周期運動の時相毎にアレーコイルのコ
イル毎の感度分布情報を取得し,時相毎の固有の感度分
布情報を用いた折り返し除去演算を行う。上記コイル感
度分布は予備撮影の中で被検体の動きに連動させたゲー
ト信号を発生させながら所望の時相で取得する。被検体
の動きの検出には呼吸センサーや脈波センサー等の各種
センサーの他,MRIを用いてもよい。後者では磁化の励
起毎にナビゲーションエコーを計測し,該エコー信号の
1次元フーリエ変換と別途計測した基準ナビゲーション
エコー信号の1次元フーリエ変換との比較演算処理から
変位を検出してもよく,ナビゲーションエコーと基準ナ
ビゲーションエコーのk空間データの位相同士の比較か
ら被検体の変位に関する情報を抽出してもよい。変位と
動きの時相の対応関係は予め予備撮像で決定しテーブル
化してセーブしておく。上記コイル感度分布はまた,本
撮影で取得した一連の時相別の画像にローパスフィルタ
ー処理等の演算を施して抽出することもできる。
According to the present invention, in order to solve the above-mentioned problems, in a sensitivity encoding method, sensitivity distribution information for each coil of an array coil is obtained for each time phase of a periodic motion of a subject which performs a substantially periodic motion. Then, an aliasing removal calculation is performed using the unique sensitivity distribution information for each time phase. The coil sensitivity distribution is acquired at a desired time phase while generating a gate signal linked to the movement of the subject during the preliminary imaging. For detecting the movement of the subject, MRI may be used in addition to various sensors such as a respiration sensor and a pulse wave sensor. In the latter, a navigation echo is measured for each magnetization excitation, and the echo signal is measured.
The displacement may be detected from a comparison operation between the one-dimensional Fourier transform and the one-dimensional Fourier transform of the separately measured reference navigation echo signal, and the phase of the k-space data of the navigation echo and the reference navigation echo may be compared to determine the object. Information regarding the displacement may be extracted. The correspondence between the displacement and the time phase of the movement is determined in advance by preliminary imaging, tabulated and saved. The coil sensitivity distribution can also be extracted by performing a calculation such as a low-pass filter process on a series of images for each phase acquired in the main photographing.

【0007】以上のように、被検体の動きの時相に合わ
せたコイル感度感度分布を用いて折り返し除去の処理を
行うため,感度エンコード法において動きのある被検体
でも,折り返しアーチファクトのない画像を得ることが
できる。
As described above, since the aliasing removal processing is performed using the coil sensitivity sensitivity distribution in accordance with the time phase of the movement of the subject, even if the subject has a motion in the sensitivity encoding method, an image without aliasing artifacts can be obtained. Obtainable.

【0008】[0008]

【発明の実施の形態】以下,実施例を用いて本方法を詳
細に説明する。図4は本発明の適応対象である核磁気共
鳴診断装置の概略構成図である。同図において402は被
検体内部に一様な静磁場B0を発生させるための静磁場発
生磁気回路,401は被検体,414aは高周波磁場を発生す
る送信コイル,414bは被検体から生じる核磁気共鳴信号
を検出するためのアレー状に配置された検出コイル,40
9は直交するx,yおよびzの3方向に強度が線形に変化す
る傾斜磁場Gx,Gy,Gzを発生する傾斜磁場コイル,410は
傾斜磁場に電流を供給するための傾斜磁場電源である。
また,408はコンピュータ,406は信号処理及び記録装
置,421は操作部である。424と425は計算途中のデータ
あるいは最終データを収納するメモリである。傾斜磁場
発生系403,送信系404,検出系405は全てシーケンサ407
によって制御され,このシーケンサ407はコンピュータ4
08によって制御される。コンピュータ408は操作部421か
らの指令により制御される。また、被検体401には体動
(呼吸等の周期的な動き)を検出するセンサ400を取り
付けているが、被検体401に直接取り付けなくとも動き
を検出できるものであればどのようなものでもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present method will be described in detail using embodiments. FIG. 4 is a schematic configuration diagram of a nuclear magnetic resonance diagnostic apparatus to which the present invention is applied. In the figure, reference numeral 402 denotes a static magnetic field generating magnetic circuit for generating a uniform static magnetic field B0 inside the subject, 401 denotes the subject, 414a denotes a transmitting coil for generating a high-frequency magnetic field, and 414b denotes nuclear magnetic resonance generated from the subject. 40 detection coils arranged in an array to detect signals
Reference numeral 9 denotes a gradient magnetic field coil that generates gradient magnetic fields Gx, Gy, and Gz whose intensities linearly change in three orthogonal directions x, y, and z. Reference numeral 410 denotes a gradient magnetic field power supply for supplying a current to the gradient magnetic field.
Reference numeral 408 denotes a computer, 406 denotes a signal processing and recording device, and 421 denotes an operation unit. Reference numerals 424 and 425 denote memories for storing data being calculated or final data. The gradient magnetic field generation system 403, the transmission system 404, and the detection system 405 are all sequencers 407.
The sequencer 407 is controlled by a computer 4
Controlled by 08. The computer 408 is controlled by a command from the operation unit 421. Further, the sensor 401 for detecting body movement (periodic movement such as respiration) is attached to the subject 401, but any sensor that can detect movement without directly attaching to the subject 401 is used. Good.

【0009】次に本装置の動作の概要を説明する。シン
セサイザ411により発生させた高周波を変調器412で振幅
または位相変調し電力増幅器413で増幅し,送信コイル4
14aに供給することにより被検体401の内部に高周波磁場
を発生させ,核スピンを励起させる。通常は1Hを対象と
するが,31P,12C等,核スピンを有する他の原子核を対
象とすることもある。
Next, an outline of the operation of the present apparatus will be described. The high frequency generated by the synthesizer 411 is amplitude or phase-modulated by the modulator 412 and amplified by the power amplifier 413.
By supplying it to 14a, a high-frequency magnetic field is generated inside the subject 401 to excite nuclear spins. Usually, 1H is targeted, but other nuclei with nuclear spin, such as 31P and 12C, may be targeted.

【0010】励起核のエネルギー緩和に伴い被検体401
から放出される核磁気共鳴信号は,検出コイル414bによ
り受信され,コイル毎に増幅器415で増幅され,検波器4
16で直交位相検波され,A/D変換器417でA/D変換されコ
ンピュータ408へ入力される。コンピュータ408は信号処
理後,前記核スピンの密度分布,緩和時定数,拡散係
数,流速,スペクトル分布等でコントラストを付与した
画像をディスプレイ428に表示する。
[0010] With the relaxation of the energy of the excited nuclei, the subject 401
The nuclear magnetic resonance signal emitted from the detector is received by a detection coil 414b, amplified by an amplifier 415 for each coil, and
At 16, quadrature phase detection is performed, A / D converted at A / D converter 417, and input to computer 408. After the signal processing, the computer 408 displays on the display 428 an image to which a contrast is given by the nuclear spin density distribution, relaxation time constant, diffusion coefficient, flow velocity, spectrum distribution and the like.

【0011】このような装置における本発明の実施例を
以下詳細に説明する。ここではまず被検体の例として呼
吸運動を行っている腹部33を例として取り上げる。図3
の32に示すように腹部の上下に6つのアレーコイル32を
配置し,各コイルからの信号を同時に検出する。位相方
向をy方向にとり,上と下の信号をそれぞれ合成し,本
撮影のエンコードは1/2に削減する。アレーコイルは可
橈性の支持材に保持され腹部に巻き付けられており,呼
吸運動に伴って移動する。個々のコイルに対する生体負
荷が変化するため,感度分布は変化する。第一の実施例
における処理手順を図1により説明する。まず,運動の
周期を撮影する時相と時相の数Lを決定しておく。予備
撮影として以下を行う。トリガー信号に合わせて(処理
11)時相niの画像を撮影する(12)。所望の時相を全て
撮影した後,各時相ni(i=1,2,....L)の感度分布を計算
し,メモリへ保存する。予備撮影は時相毎の画像が得ら
れるものであればどのような撮影シーケンスを用いても
よい。予備撮影では位相エンコードの削減を行わず,折
り返しのない画像を取得する。
An embodiment of the present invention in such an apparatus will be described in detail below. Here, the abdomen 33 performing a respiratory movement is taken as an example of the subject. Figure 3
As shown at 32, six array coils 32 are arranged above and below the abdomen, and signals from each coil are simultaneously detected. The phase direction is set in the y direction, the upper and lower signals are combined, and the encoding for the main shooting is reduced to half. The array coil is held by a flexible support and is wrapped around the abdomen, and moves with respiratory movement. Since the biological load on each coil changes, the sensitivity distribution changes. The processing procedure in the first embodiment will be described with reference to FIG. First, the time phase at which the motion cycle is photographed and the number L of the time phases are determined. The following is performed as preliminary photography. According to the trigger signal (processing
11) Capture an image of the temporal phase ni (12). After photographing all desired time phases, the sensitivity distribution of each time phase ni (i = 1, 2,... L) is calculated and stored in the memory. For the preliminary photographing, any photographing sequence may be used as long as an image for each phase can be obtained. In the preliminary photographing, an image without aliasing is obtained without reducing the phase encoding.

【0012】時相を特定するには,べローズ等の機械的
な呼吸センサによって呼吸動を計測し,動きの特定の時
相に対して撮影のトリガーを発生させる。すなわちセン
サにより変位が最大の時点p0で信号を得(図3aの31),
この時刻からの遅れ時間をずらせて各時相p1, p2,....
の撮影トリガーを発生させる。
In order to specify the time phase, a respiratory motion is measured by a mechanical respiration sensor such as a bellows, and a photographing trigger is generated for a specific time phase of the motion. That is, a signal is obtained by the sensor at the time point p0 when the displacement is maximum (31 in FIG. 3a),
By shifting the delay time from this time, each phase p1, p2, ...
Generate a shooting trigger.

【0013】別の方法として,MRI画像からナビゲーシ
ョンエコー等により動きの情報を抽出しレトロスペクテ
ィブに時相を対応させてもよい。ナビゲーションエコー
は位相エンコードをかけずリードアウト傾斜磁場のみの
存在下で取得したエコーであり,このフーリエ変換は被
検体のリードアウト軸への投影像となる。
As another method, motion information may be extracted from an MRI image by a navigation echo or the like, and the time phase may be made to correspond to the retrospective. The navigation echo is an echo obtained in the presence of only the readout gradient magnetic field without applying phase encoding, and this Fourier transform is a projection image of the subject on the readout axis.

【0014】ナビゲーションエコーから変位を抽出する
には,次の方法がある。y方向(ここでは変位の方向をy
方向とする)にリードアウト傾斜磁場を印加して取得し
たナビゲーションエコー信号fn(t)の1次元フーリエ変換
fn'(y)は,被検体のy軸上への投影を与える。そこで,
別途計測した基準ナビゲーションエコー信号f0(t)の1次
元フーリエ変換f0'(y)とfn'(y)を比較することにより,
被検体のy方向の変位量を抽出できる。剛体的な変位に
対しては相関係数を計算すればよく,非剛体的な変位に
対しては,被検体のエッジを比較することで,変位を計
測できる。図8にナビゲーションエコー付きEPIのシーケ
ンスの例を示す。本エコー89を計測後,ナビゲーション
エコー801を計測する。ナビゲーションエコーはy方向に
1次元フーリエ変換し,被検体のy軸上への投影像を再
構成する。図5に腹壁の法線方向変位Δyを模式的に示
す。この投影像(図5aの53)と基準ナビゲーションエコ
ーの投影像(図5aの52)とを比較することにより,被検
体のy方向の変位を計算する。剛体的な平行移動の場合
(図5a)は投影像同士の相関係数が最大となるずれ量Δ
yを求める。膨張-伸縮運動では投影像のエッジ同士を比
較する(図5b)。変位-時相対応テーブルを予め用意し
ておき,撮影したEPI画像の時相を決定する。
There are the following methods for extracting a displacement from a navigation echo. y direction (here the direction of displacement is y
1D Fourier transform of navigation echo signal fn (t) obtained by applying readout gradient magnetic field
fn '(y) gives the projection of the subject on the y-axis. Therefore,
By comparing the one-dimensional Fourier transform f0 '(y) and fn' (y) of the reference navigation echo signal f0 (t) measured separately,
The displacement amount of the subject in the y direction can be extracted. For a rigid displacement, the correlation coefficient may be calculated, and for a non-rigid displacement, the displacement can be measured by comparing the edges of the subject. FIG. 8 shows an example of an EPI sequence with a navigation echo. After measuring the main echo 89, the navigation echo 801 is measured. The navigation echo performs a one-dimensional Fourier transform in the y direction to reconstruct a projection image of the subject on the y axis. FIG. 5 schematically shows the displacement Δy in the normal direction of the abdominal wall. By comparing the projected image (53 in FIG. 5A) with the projected image of the reference navigation echo (52 in FIG. 5A), the displacement of the subject in the y direction is calculated. In the case of rigid translation (FIG. 5a), the shift amount Δ at which the correlation coefficient between the projected images becomes maximum.
Find y. In the expansion-contraction movement, the edges of the projected images are compared (FIG. 5b). A displacement-time phase correspondence table is prepared in advance, and the time phase of the captured EPI image is determined.

【0015】別の変位検出方法としては,ナビゲーショ
ンエコー信号のk空間データの位相と,基準ナビゲーシ
ョンエコー信号のk空間データの位相との比較演算処理
から被検体の変位に関する情報を抽出することもでき
る。ここでは実空間での被検体の平行移動はフーリエシ
フト理論により,k空間での信号位相に1次の回転を発生
させることを利用する。この場合は計測データを用いる
ため,フーリエ変換が不要であり処理を高速化できる。
ただし,被検体の動きが剛体の平行移動で近似できない
場合は位相変化は単純でなくなり,実空間での動きを推
定できなくなる。
As another displacement detection method, information on the displacement of the subject can be extracted from a comparison operation process between the phase of the k-space data of the navigation echo signal and the phase of the k-space data of the reference navigation echo signal. . Here, the parallel movement of the object in the real space utilizes the generation of a first-order rotation in the signal phase in the k-space according to the Fourier shift theory. In this case, since the measurement data is used, Fourier transform is not required, and the processing can be speeded up.
However, when the movement of the subject cannot be approximated by the parallel movement of the rigid body, the phase change is not simple, and the movement in the real space cannot be estimated.

【0016】別のMRIによる方法として,図9のような低
フリップ角励起91によるナビゲーションエコー94の計測
サイクルを短いTRで反復し,リアルタイムに投影像の再
構成と変位検出を行い,時相を識別しながら所望の時相
で予備撮影や本撮影を実行してもよい。ただし,これに
はハードウェアに実時間での処理が要求される。
As another MRI method, the measurement cycle of the navigation echo 94 by the low flip angle excitation 91 as shown in FIG. 9 is repeated with a short TR, the reconstruction of the projected image and the displacement detection are performed in real time, and the time phase is changed. Preliminary photography or actual photography may be performed at a desired time phase while identifying. However, this requires real-time processing of the hardware.

【0017】画像からコイルの感度分布を得るには,被
検体の画像にローパスフィルター処理を施してもよく,
または多項式フィッティングを施してもよい。後者につ
いては前述のPruessmannの論文に記述されている。アレ
ーコイルの画像をボディコイルの画像で規格化すること
により,組織情報を除去しアレーコイルの感度分布を抽
出し,さらに多項式フィッティングを施してもよく,こ
れにより被検体のエッジや被検体内部の信号欠損領域の
影響を除いた高精度な感度分布が得られるが,その反面
処理には時間がかかる。このため後述する実時間処理は
困難であるが,図1の実施例のように本撮影とは別に感
度分布計測を実行する場合は問題ない。感度分布は被検
体が存在する領域のみで得られる。このため予備撮影と
本撮影とで同一時相の被検体にずれが存在する場合に
は,感度情報の欠落が発生する。これを回避するため被
検体の外部にまで感度分布を外挿する処理を行ってお
く。
In order to obtain the sensitivity distribution of the coil from the image, the image of the subject may be subjected to low-pass filter processing.
Alternatively, a polynomial fitting may be performed. The latter is described in the aforementioned Pruessmann paper. By normalizing the array coil image with the body coil image, tissue information can be removed, the sensitivity distribution of the array coil can be extracted, and polynomial fitting can be performed. Although a highly accurate sensitivity distribution excluding the influence of the signal defect area can be obtained, the processing takes time. For this reason, real-time processing, which will be described later, is difficult, but there is no problem when sensitivity distribution measurement is performed separately from the actual imaging as in the embodiment of FIG. The sensitivity distribution is obtained only in the region where the subject exists. For this reason, if there is a difference between the subjects in the same time phase between the preliminary imaging and the main imaging, sensitivity information is lost. In order to avoid this, a process of extrapolating the sensitivity distribution to the outside of the subject is performed.

【0018】予備撮影の後,本撮影を行いトリガー信号
を取得し,(処理11)これに合わせて時相niの画像を撮
影する(12)。所望の時相を全て撮影した後,各時相毎
にコイル毎に画像を再構成する。本撮影では位相エンコ
ードを間引いているので,位相方向に折り返しが生じて
いる。折り返し除去の演算についてはPruessmannらの論
文に記載されている(Klaas P.Pruessmann, Markus Wei
ger, Markus B.Scheidegger,Peter Boesiger,“Coil se
nsitivity encoding for fast MRI”, Proceedings of
the ISMRM 6th Annual Meeting, Sydney,1998,p579)。
簡単のため,2コイルで位相方向のエンコード数を1/2に
間引いた場合を説明する。この場合,画像は2回折り返
されたものとなり,それぞれのコイルによる画像p1, p2
は数1で表される。
After the preliminary photographing, the main photographing is performed to obtain a trigger signal (process 11), and an image of the time phase ni is photographed in accordance with this (12). After photographing all desired time phases, an image is reconstructed for each coil at each time phase. In this imaging, since the phase encoding is thinned out, aliasing occurs in the phase direction. The operation of aliasing removal is described in a paper by Pruessmann et al. (Klaas P. Pruessmann, Markus Wei
ger, Markus B. Scheidegger, Peter Boesiger, “Coil se
nsitivity encoding for fast MRI ”, Proceedings of
the ISMRM 6th Annual Meeting, Sydney, 1998, p579).
For the sake of simplicity, a case where the number of encodes in the phase direction is reduced to half with two coils will be described. In this case, the image is turned twice, and the images p1, p2
Is represented by Equation 1.

【0019】[0019]

【数1】 数1において,ciはコイルiの複素感度分布,sは折り返
しがない場合のピクセルの信号値である。Δyは位相エ
ンコード方向の折り返しを表す。数1は数2のようにベク
トルと行列で表現できる。
(Equation 1) In Equation 1, ci is the complex sensitivity distribution of the coil i, and s is the signal value of the pixel when there is no aliasing. Δy represents the return in the phase encoding direction. Equation 1 can be represented by a vector and a matrix as in Equation 2.

【0020】[0020]

【数2】 折り返しがないピクセル信号値は数3で与えられる。(Equation 2) The pixel signal value without aliasing is given by Equation 3.

【0021】[0021]

【数3】 ここで,C-1はCの逆行列を表す。感度分布の逆行列C-1
を予備計測で求めておくことにより,本撮影の折り返し
画像から数3により折り返しのない画像を得る。
(Equation 3) Here, C-1 represents the inverse matrix of C. Inverse matrix C-1 of sensitivity distribution
Is obtained by preliminary measurement, an image without aliasing is obtained from the aliased image of the actual shooting by Equation 3.

【0022】第二の実施例を図2により説明する。ここ
では,本撮影の中の時相niの画像からこの時相の感度分
布を抽出する(処理23)。また,時相ループの中で再構
成,表示までを実時間で行う。予備撮影は不要である
が,高速な行列演算が必要になる。感度分布の抽出では
例えば次のような工程を行う。画像中の被検体部分を切
り出し,画像のローパスフィルター処理により細部の組
織構造を消去し,信号欠損部位の信号の補間およびノイ
ズ除去を行う。なお,被検体の外部の感度分布情報は不
要である。
A second embodiment will be described with reference to FIG. Here, the sensitivity distribution of the time phase ni is extracted from the image of the time phase ni in the main photographing (process 23). Also, reconstruction and display are performed in real time in a temporal loop. Preliminary photographing is unnecessary, but high-speed matrix calculation is required. In the extraction of the sensitivity distribution, for example, the following steps are performed. The subject portion in the image is cut out, and the tissue structure of the detail is deleted by low-pass filter processing of the image, and the signal interpolation and the noise removal at the signal defect site are performed. Note that sensitivity distribution information outside the subject is not required.

【0023】以上,腹部撮影を例にとって説明してきた
が,次に別の応用例を説明する。図6(a)は4コイルによ
る心臓撮影の例である。ここでは心臓は約1秒の周期で
拡張収縮を繰り返しており,大きな血流の変化により生
体インピーダンスが変化するため,コイルの感度分布も
僅かながら変化する。4個のアレーコイル61で心臓をカ
バーし,位相エンコード方向を図のGpの方向に設定す
る。心電計でトリガー信号64を得,トリガーからの遅延
時間で各時相の画像I1,I2,...を計測する。図7は3コイ
ルによる膝撮影の例で,患者が自発的に概略周期的な屈
伸運動を行っているものとする。屈伸運動は膝関節の損
傷等の診断において一般に行われるものである。図7に
示すようにアレーコイル73を配置し,各コイルからの信
号を同時に検出する。膝の運動に伴い,個々のコイルに
対する生体負荷が変化するため,感度分布は変化する。
また,屈伸運動により視野内の被検体は時相によって位
置が大きく変化するため,画像から感度分布を得るため
には,時相毎に感度分布を得る必要がある。時相の識別
にはナビゲーターエコーを利用してもよく,レーザー変
位計などの光学的な変位センサーを用いてもよい。
The abdominal radiography has been described above as an example. Next, another application example will be described. FIG. 6A shows an example of cardiac imaging using four coils. Here, the heart repeatedly expands and contracts at a cycle of about 1 second, and the bioelectrical impedance changes due to a large change in blood flow, so that the sensitivity distribution of the coil also slightly changes. The heart is covered with four array coils 61, and the phase encoding direction is set to the direction of Gp in the figure. An electrocardiograph obtains a trigger signal 64, and measures images I1, I2,... Of each time phase with a delay time from the trigger. FIG. 7 shows an example of knee imaging using three coils, in which a patient is voluntarily performing a roughly periodic bending and stretching movement. Bending and stretching movements are commonly performed in the diagnosis of knee joint damage and the like. As shown in FIG. 7, an array coil 73 is arranged, and signals from each coil are simultaneously detected. The sensitivity distribution changes because the biological load on each coil changes with the movement of the knee.
In addition, since the position of the subject in the visual field changes greatly depending on the time phase due to the bending and stretching motion, it is necessary to obtain the sensitivity distribution for each time phase in order to obtain the sensitivity distribution from the image. The navigator echo may be used to identify the time phase, or an optical displacement sensor such as a laser displacement meter may be used.

【0024】以上,2次元の撮影を例にとり説明した
が,3次元のSENSE計測においても運動や変形をしている
被検体では時相別のプローブ感度分布情報が有効にな
る。また,SENSE法に限らず,SMASH法やその他のコイル
感度分布情報を用いて空間情報をエンコードするMRI撮
影法にあっては,時相別のプローブ感度分布情報が同様
に有効である。
The two-dimensional imaging has been described above as an example. However, even in a three-dimensional SENSE measurement, probe sensitivity distribution information for each phase is effective for a moving or deformed subject. In addition to the SENSE method, in the SMASH method and other MRI imaging methods in which spatial information is encoded using coil sensitivity distribution information, time-dependent probe sensitivity distribution information is similarly effective.

【0025】[0025]

【発明の効果】以上説明したように,本発明によればMR
Iの感度エンコード法において動きのある被検体でも,
折り返しアーチファクトのない画像を得ることができ
る。
As described above, according to the present invention, the MR
Even with moving subjects in the sensitivity encoding method of I,
An image without aliasing artifacts can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の代表的な処理手順を示す図。FIG. 1 is a diagram showing a typical processing procedure of the present invention.

【図2】本発明の別の処理手順を示す図。FIG. 2 is a diagram showing another processing procedure of the present invention.

【図3】腹部の呼吸動による変位を示す図。FIG. 3 is a diagram showing displacement due to respiratory movement of the abdomen.

【図4】磁気共鳴画像診断装置の全体の構成を示す図。FIG. 4 is a diagram illustrating an overall configuration of a magnetic resonance imaging diagnostic apparatus.

【図5】腹壁の変位とその投影を示す図。FIG. 5 is a diagram showing displacement of an abdominal wall and its projection.

【図6】心臓へのアレーコイルの適用を例示する図。FIG. 6 is a diagram illustrating the application of an array coil to the heart.

【図7】膝へのアレーコイルの適用を例示する図。FIG. 7 is a diagram illustrating an example of application of an array coil to a knee.

【図8】ナビゲーションエコーを示す図。FIG. 8 is a diagram showing a navigation echo.

【図9】別のナビゲーションエコーを示す図。FIG. 9 is a diagram showing another navigation echo.

【符号の説明】[Explanation of symbols]

31 変位の時間曲線,32 腹部用アレーコイル,33 .
被検体,34 ベッド,401 被検体,413 RFアンプ,41
4a 送信コイル,414b 検出コイル,415 プリアン
プ,417 A-D変換器,51 腹壁,52 基準時刻の投影
像,53 異なる時刻の投影像,61 心臓用アレーコイ
ル,62 心臓,71 膝,72 膝用アレーコイル。85 位
相エンコード傾斜磁場パルス,86 ナビゲーションエコ
ー用リードアウト傾斜磁場パルス,87 ワープパルス,
88 リードアウト傾斜磁場パルス,89 本エコー,801
ナビゲーションエコー,93 ナビゲーションエコー用
リードアウト傾斜磁場パルス,94 ナビゲーションエコ
31 Displacement time curve, 32 Abdominal array coil, 33.
Subject, 34 bed, 401 Subject, 413 RF amplifier, 41
4a transmission coil, 414b detection coil, 415 preamplifier, 417 AD converter, 51 abdominal wall, 52 reference time projected image, 53 different time projected image, 61 heart array coil, 62 heart, 71 knee, 72 knee array coil . 85 phase encoding gradient magnetic field pulse, 86 readout gradient magnetic field pulse for navigation echo, 87 warp pulse,
88 Readout gradient pulse, 89 echoes, 801
Navigation echo, 93 Readout gradient magnetic field pulse for navigation echo, 94 Navigation echo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検体に対し静磁場を発生する静磁場発
生手段と、前記被検体に傾斜磁場を発生する傾斜磁場発
生手段と、前記被検体に高周波磁場を照射する高周波磁
場発生手段と、前記被検体からの各磁気共鳴信号を検出
する複数個配列された信号検出手段と、前記検出信号を
用いて画像を再構成する再構成手段と、前記再構成され
た画像を表示する表示手段と、前記各手段の動作を制御
する制御手段を備えた磁気共鳴画像診断装置において、
前記被検体の周期的な運動を検出する検出手段を備え、
前記制御手段は前記周期的な運動の時相毎に前記各信号
検出手段の感度分布情報を取得することを特徴とする磁
気共鳴画像診断装置。
1. A static magnetic field generating means for generating a static magnetic field for a subject, a gradient magnetic field generating means for generating a gradient magnetic field on the subject, a high frequency magnetic field generating means for irradiating the subject with a high frequency magnetic field, A plurality of signal detecting means for detecting each magnetic resonance signal from the subject, a reconstructing means for reconstructing an image using the detection signal, and a display means for displaying the reconstructed image; In a magnetic resonance imaging diagnostic apparatus including a control unit for controlling the operation of each of the units,
Comprising a detecting means for detecting the periodic movement of the subject,
The apparatus according to claim 1, wherein the control unit acquires sensitivity distribution information of each of the signal detection units at each time phase of the periodic motion.
JP2001108515A 2001-04-06 2001-04-06 Magnetic resonance image diagnosis apparatus Pending JP2002301044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108515A JP2002301044A (en) 2001-04-06 2001-04-06 Magnetic resonance image diagnosis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001108515A JP2002301044A (en) 2001-04-06 2001-04-06 Magnetic resonance image diagnosis apparatus

Publications (1)

Publication Number Publication Date
JP2002301044A true JP2002301044A (en) 2002-10-15

Family

ID=18960636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108515A Pending JP2002301044A (en) 2001-04-06 2001-04-06 Magnetic resonance image diagnosis apparatus

Country Status (1)

Country Link
JP (1) JP2002301044A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298212A (en) * 2003-03-28 2004-10-28 Ge Medical Systems Global Technology Co Llc Rf coil and magnetic resonance imaging apparatus
WO2006051911A1 (en) * 2004-11-12 2006-05-18 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus, image data correction apparatus, and image data correction method
JP2006130285A (en) * 2004-10-08 2006-05-25 Hitachi Medical Corp Magnetic resonance imaging apparatus
KR100636012B1 (en) 2005-07-11 2006-10-20 한국과학기술원 Method to ghost artifact reduction in echo planar imaging(epi) with sensitivity encoding(sense) and computer readable record medium on which program for executing method is recorded
JP2007229443A (en) * 2006-02-06 2007-09-13 Toshiba Corp Magnetic resonance imaging device, and imaging condition setting method for magnetic resonance imaging device
JP2008539852A (en) * 2005-05-02 2008-11-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Independent motion correction in each signal channel of magnetic resonance imaging system
JP2009279238A (en) * 2008-05-23 2009-12-03 Hitachi Medical Corp Magnetic resonance imaging system
JP2009543648A (en) * 2006-07-18 2009-12-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Multi-coil MRI artifact suppression
JP2010172473A (en) * 2009-01-29 2010-08-12 Hitachi Medical Corp Nuclear magnetic resonance imaging apparatus and operating method for nuclear magnetic resonance imaging apparatus
KR101070153B1 (en) 2003-03-12 2011-10-05 지이 메디컬 시스템즈 글로발 테크놀러지 캄파니 엘엘씨 Nuclear magnetic resonance imaging apparatus and nuclear magnetic resonance imaging method
JP2012000389A (en) * 2010-06-21 2012-01-05 Hitachi Medical Corp Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP4912156B2 (en) * 2005-01-21 2012-04-11 株式会社日立メディコ Magnetic resonance imaging method and apparatus
JP2012183431A (en) * 2006-02-06 2012-09-27 Toshiba Corp Magnetic resonance imaging device
JP2013111424A (en) * 2011-11-30 2013-06-10 Ge Medical Systems Global Technology Co Llc Magnetic resonance apparatus
WO2013094787A1 (en) * 2011-12-21 2013-06-27 한국과학기술원 Magnetic resonance imaging method in a radial coordinate system
JP2014503290A (en) * 2010-12-22 2014-02-13 コーニンクレッカ フィリップス エヌ ヴェ Parallel MRI method for rigid body motion compensation using calibration scan, coil sensitivity map and navigator

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101070153B1 (en) 2003-03-12 2011-10-05 지이 메디컬 시스템즈 글로발 테크놀러지 캄파니 엘엘씨 Nuclear magnetic resonance imaging apparatus and nuclear magnetic resonance imaging method
JP2004298212A (en) * 2003-03-28 2004-10-28 Ge Medical Systems Global Technology Co Llc Rf coil and magnetic resonance imaging apparatus
JP4607430B2 (en) * 2003-03-28 2011-01-05 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー RF coil and magnetic resonance imaging apparatus
JP2006130285A (en) * 2004-10-08 2006-05-25 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP4679158B2 (en) * 2004-10-08 2011-04-27 株式会社日立メディコ Magnetic resonance imaging system
JPWO2006051911A1 (en) * 2004-11-12 2008-05-29 株式会社東芝 Magnetic resonance imaging apparatus, image data correction apparatus, and image data correction method
JP4861821B2 (en) * 2004-11-12 2012-01-25 株式会社東芝 Magnetic resonance imaging apparatus and image data correction apparatus
US8526703B2 (en) 2004-11-12 2013-09-03 Kabushiki Kaisha Toshiba Making different corrections for different areas of magnetic resonance image data
US8126237B2 (en) 2004-11-12 2012-02-28 Kabushiki Kaisha Toshiba Magnetic resonance imaging and correcting device
WO2006051911A1 (en) * 2004-11-12 2006-05-18 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus, image data correction apparatus, and image data correction method
JP2011240201A (en) * 2004-11-12 2011-12-01 Toshiba Corp Magnetic resonance imaging apparatus and image data correcting device
JP4912156B2 (en) * 2005-01-21 2012-04-11 株式会社日立メディコ Magnetic resonance imaging method and apparatus
JP2008539852A (en) * 2005-05-02 2008-11-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Independent motion correction in each signal channel of magnetic resonance imaging system
KR100636012B1 (en) 2005-07-11 2006-10-20 한국과학기술원 Method to ghost artifact reduction in echo planar imaging(epi) with sensitivity encoding(sense) and computer readable record medium on which program for executing method is recorded
JP2012183431A (en) * 2006-02-06 2012-09-27 Toshiba Corp Magnetic resonance imaging device
JP2007229443A (en) * 2006-02-06 2007-09-13 Toshiba Corp Magnetic resonance imaging device, and imaging condition setting method for magnetic resonance imaging device
JP2009543648A (en) * 2006-07-18 2009-12-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Multi-coil MRI artifact suppression
JP2009279238A (en) * 2008-05-23 2009-12-03 Hitachi Medical Corp Magnetic resonance imaging system
JP2010172473A (en) * 2009-01-29 2010-08-12 Hitachi Medical Corp Nuclear magnetic resonance imaging apparatus and operating method for nuclear magnetic resonance imaging apparatus
JP2012000389A (en) * 2010-06-21 2012-01-05 Hitachi Medical Corp Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP2014503290A (en) * 2010-12-22 2014-02-13 コーニンクレッカ フィリップス エヌ ヴェ Parallel MRI method for rigid body motion compensation using calibration scan, coil sensitivity map and navigator
JP2013111424A (en) * 2011-11-30 2013-06-10 Ge Medical Systems Global Technology Co Llc Magnetic resonance apparatus
WO2013094787A1 (en) * 2011-12-21 2013-06-27 한국과학기술원 Magnetic resonance imaging method in a radial coordinate system

Similar Documents

Publication Publication Date Title
US10444315B2 (en) MRI with motion correction using navigators acquired using a dixon technique
US5154178A (en) Method and apparatus for obtaining in-vivo nmr data from a moving subject
US8489174B2 (en) Method to detect a breathing movement of an examination subject corresponding to signal data by magnetic resonance
US6493569B2 (en) Method and apparatus using post contrast-enhanced steady-state free precession in MR imaging
US7358732B2 (en) System, method, software arrangement and computer-accessible medium for providing real-time motion correction by utilizing clover leaf navigators
US7372269B2 (en) Magnetic resonance imaging method and apparatus
EP0994363A2 (en) Respiratory gating method for MR imaging
US9301704B2 (en) Magnetic resonance imaging system for non-contrast MRA and magnetic resonance signal acquisition method employed by the same
JP4152381B2 (en) Magnetic resonance imaging system
RU2580189C2 (en) Motion-compensated interventional magnetic resonance imaging
JP5599893B2 (en) MR imaging using navigator
US7127092B2 (en) Reduction of motion artifact in NMR images using spherical navigator signals
US10371779B2 (en) Apparatus and method for magnetic resonance imaging with high spatial temporal resolutions
US10156625B2 (en) MR imaging with B1 mapping
JP2001204712A (en) Method for measuring breathing displacement and velocity using navigator magnetic resonance imaging echo signal
US6924643B2 (en) Magnetic resonance imaging using direct, continuous real-time imaging for motion compensation
EP2350698B1 (en) System and method for moving table mri
JP2002301044A (en) Magnetic resonance image diagnosis apparatus
JP2017529960A (en) Propeller MR imaging with artifact suppression
US20110166436A1 (en) System and Method For Non-Contrast MR Angiography Using Steady-State Image Acquisition
US9968276B2 (en) System and method for imaging of the vascular components with temporal information and suppressed blood pools using magnetic resonance imaging
JP5722212B2 (en) Magnetic resonance imaging apparatus and method
JP6758842B2 (en) Magnetic resonance imaging device
KR20190053412A (en) Device and method for dynamic tagged magnet resonance imaging
JP2005168868A (en) Magnetic resonance imaging apparatus