JP2002300001A - Substrate for surface acoustic wave device, the surface acoustic wave device employing it, and its manufacturing method - Google Patents

Substrate for surface acoustic wave device, the surface acoustic wave device employing it, and its manufacturing method

Info

Publication number
JP2002300001A
JP2002300001A JP2001099407A JP2001099407A JP2002300001A JP 2002300001 A JP2002300001 A JP 2002300001A JP 2001099407 A JP2001099407 A JP 2001099407A JP 2001099407 A JP2001099407 A JP 2001099407A JP 2002300001 A JP2002300001 A JP 2002300001A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
wave device
substrate
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001099407A
Other languages
Japanese (ja)
Inventor
Shinji Inoue
真司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001099407A priority Critical patent/JP2002300001A/en
Publication of JP2002300001A publication Critical patent/JP2002300001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate for a surface acoustic wave device made of a lithium tantalate single crystal with excellent uniformity and to provide the surface acoustic wave device employing it and its manufacturing method. SOLUTION: This invention provides the substrate for a surface acoustic wave device that is made of a lithium tantalate single crystal the abnormal optical refractive index of which is 2.1767-2.1795 and the double refraction value of which is 0.0004-0.0032, which are respectively measured by using a He-Ne laser at a temperature of 20-30 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、タンタル酸リチウ
ム単結晶から成る弾性表面波装置用基板及びそれを用い
た弾性表面波装置並びにその製造方法に関する。
The present invention relates to a surface acoustic wave device substrate made of lithium tantalate single crystal, a surface acoustic wave device using the same, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】タンタル酸リチウム単結晶(以下、LT
という)は、電子部品や光機能素子の基板材料として広
く用いられ、近年では特に、携帯電話等に代表される通
信機器や情報機器に使用される弾性表面波素子の基板に
好適に用いられている。
2. Description of the Related Art Lithium tantalate single crystal (hereinafter referred to as LT)
Is widely used as a substrate material for electronic components and optical functional devices, and in recent years, has been particularly suitably used as a substrate for surface acoustic wave devices used in communication equipment and information equipment typified by mobile phones and the like. I have.

【0003】タンタル酸リチウム単結晶から成るウエハ
(wafer)は、シリコン単結晶に代表される半導体
単結晶ウエハの製造工程とほぼ同様の方法で作製され
る。すなわち、融液引上げ法によって結晶を育成した
後、結晶の外径を丸め加工し、ウエハに必要な結晶方位
が得られるように切断され、粗研磨、面取り加工、及び
鏡面研磨の工程を順次経て作製される(例えば、昭和5
3年発行東芝レビュー33巻9号761〜763頁を参
照)。
A wafer made of a lithium tantalate single crystal is manufactured in substantially the same manner as a manufacturing process of a semiconductor single crystal wafer represented by a silicon single crystal. That is, after growing the crystal by the melt pulling method, the outer diameter of the crystal is rounded, cut to obtain the necessary crystal orientation of the wafer, and sequentially subjected to the steps of rough polishing, chamfering, and mirror polishing. Produced (for example, Showa 5
(See Toshiba Review, Vol. 33, No. 9, pp. 761-763).

【0004】一方、LTウエハを用いた弾性表面波デバ
イスは高周波化に伴い、構造の微細化が進み、製造歩留
りの低下が問題となっている。更に、デバイスの低価格
化に伴い大口径ウエハを用いて歩留り良くデバイスを製
造することが望まれている。特に、弾性表面波装置の歩
留りにはウエハの弾性表面波速度の均一性が敏感に影響
するが、従来は弾性表面波速度と相関のあるキュリー温
度を熱分析などで測定することにより弾性表面波速度の
均一性を管理しているのが一般的であった(特開昭61
−127219号公報を参照)
[0004] On the other hand, the surface acoustic wave device using an LT wafer has a finer structure as the frequency becomes higher, and the production yield is reduced. Further, as the cost of devices decreases, it is desired to manufacture devices with a high yield using large-diameter wafers. In particular, the uniformity of the surface acoustic wave velocity of the wafer sensitively affects the yield of the surface acoustic wave device, but conventionally the surface acoustic wave is measured by measuring the Curie temperature, which is correlated with the surface acoustic wave velocity, by thermal analysis or the like. It is common to control the uniformity of speed (Japanese Patent Application Laid-Open No. Sho 61
(See JP-A-127219)

【0005】[0005]

【発明が解決しようとする課題】従来のウエハ面内の表
面波速度均一性は、例えば特開昭61−127219号
公報によれば結晶組成と相関があるが、組成の定量分析
精度が低いため、組成と相関のあるキュリー温度によっ
て管理することが提案されている。
The surface wave velocity uniformity in the conventional wafer surface has a correlation with the crystal composition according to, for example, Japanese Patent Application Laid-Open No. 61-127219, but the precision of quantitative analysis of the composition is low. It has been proposed to control by the Curie temperature correlated with the composition.

【0006】しかしながら、キュリー温度測定に用いる
熱分析では、測定誤差が±1.5℃程度見込まれるため
決して精度が高いとは言えない。特に、近年の携帯電話
に用いられる弾性表面波フィルタの周波数はギガHz帯
にまで上昇し、デバイスの最小電極寸法は15分の1ま
で微細化されサブミクロンのオーダーに到達したため、
弾性表面波速度のばらつきが歩留り低下に直結すること
になり、弾性表面波速度の管理がさらに重要となってき
た。また、熱分析では測定に数時間を要するためウエハ
選別の効率が悪く問題であった。
However, thermal analysis used for Curie temperature measurement cannot be said to be highly accurate because a measurement error is expected to be about ± 1.5 ° C. In particular, the frequency of surface acoustic wave filters used in mobile phones in recent years has increased to the giga-Hz band, and the minimum electrode size of the device has been reduced to one-fifteenth and has reached the order of submicron.
Variations in surface acoustic wave velocities are directly linked to yield reduction, and the management of surface acoustic wave velocities has become even more important. Further, in the thermal analysis, it takes several hours for the measurement, so that the efficiency of the wafer sorting is low.

【0007】そこで本発明は、前述の諸問題に鑑み提案
されたものであり、均一性に優れたタンタル酸リチウム
単結晶から成る弾性表面波装置用基板及びそれを用いた
弾性表面波装置並びにその製造方法を提供することを目
的とする。
Accordingly, the present invention has been proposed in view of the above-mentioned problems, and is provided with a substrate for a surface acoustic wave device made of lithium tantalate single crystal having excellent uniformity, a surface acoustic wave device using the same, and a surface acoustic wave device using the same. It is intended to provide a manufacturing method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の弾性表面波装置用基板は、温度20〜30
℃において、He−Neレーザーを用いて測定した、異
常光屈折率が2.1767〜2.1795、または複屈
折値が0.0004〜0.0032の、タンタル酸リチ
ウム単結晶から成る。
In order to solve the above problems, a substrate for a surface acoustic wave device according to the present invention has a temperature of 20-30.
It consists of a lithium tantalate single crystal having an extraordinary refractive index of 2.167 to 2.1795 or a birefringence value of 0.0004 to 0.0032, measured using a He-Ne laser at ° C.

【0009】また、特に前記異常光屈折率または前記複
屈折値の変動が±0.0003であることを特徴とす
る。
In addition, the fluctuation of the extraordinary light refractive index or the birefringence value is particularly ± 0.0003.

【0010】また、基板の主面が33°〜46°回転Y
カット面であることを特徴とする。
Further, the main surface of the substrate rotates by 33 ° to 46 ° Y
It is a cut surface.

【0011】また、本発明の弾性表面波装置は、弾性表
面波装置用基板上に、弾性表面波の励振電極を形成した
ことを特徴とする。
The surface acoustic wave device according to the present invention is characterized in that a surface acoustic wave excitation electrode is formed on a surface acoustic wave device substrate.

【0012】また、本発明の弾性表面波装置の製造方法
は、タンタル酸リチウム単結晶から成る基板に対し、温
度20〜30℃において、He−Neレーザーを用いて
異常光屈折率または複屈折値を測定する工程と、前記異
常光屈折率が2.1767〜2.1795、または前記
複屈折値が0.0004〜0.0032のタンタル酸リ
チウム単結晶の基板を選択する工程と、選択した基板上
に弾性表面波の励振電極を形成する工程とを含むことを
特徴とする。
The method of manufacturing a surface acoustic wave device according to the present invention is characterized in that a substrate made of a single crystal of lithium tantalate is subjected to an extraordinary light refractive index or a birefringence value using a He—Ne laser at a temperature of 20 to 30 ° C. And selecting a substrate of lithium tantalate single crystal having an extraordinary refractive index of 2.167 to 2.1795 or a birefringence of 0.0004 to 0.0032, and a selected substrate. Forming a surface acoustic wave excitation electrode thereon.

【0013】[0013]

【発明の実施の形態】以下に、例えば携帯電話の弾性表
面波フィルタの圧電基板として好適に使用されるタンタ
ル酸リチウム単結晶ウエハの製造方法、とくに、均一な
弾性表面波の管理方法を模式的に図示した図面に基づき
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a lithium tantalate single crystal wafer suitably used as, for example, a piezoelectric substrate of a surface acoustic wave filter of a cellular phone, and in particular, a method for managing uniform surface acoustic waves will be described below. This will be described in detail with reference to the drawings shown in FIG.

【0014】弾性表面波装置の周波数と密接に関係のあ
る弾性表面波の速度が光学的性質である屈折率と密接に
関係があることから、高周波帯で使用される携帯電話な
どに広く用いられるウエハ基板方位について詳細に調べ
た。
Since the velocity of a surface acoustic wave, which is closely related to the frequency of a surface acoustic wave device, is closely related to the refractive index, which is an optical property, it is widely used for mobile phones used in high frequency bands. The orientation of the wafer substrate was examined in detail.

【0015】その結果、異常光線の屈折率又は複屈折値
を特定の範囲内になるように選別することで、特性が一
定した歩留りの高い弾性表面波装置を製造することが可
能になることがわかった。
As a result, by selecting the refractive index or the birefringence value of the extraordinary ray so as to be within a specific range, it becomes possible to manufacture a surface acoustic wave device having a constant characteristic and a high yield. all right.

【0016】詳しくは引上げ育成されたLT単結晶から
ウエハ加工プロセスを経て片面が鏡面研磨されたウエハ
を作製する。この後、ウエハ内及びウエハ間の異常光屈
折率を、温度20〜30℃の環境下でHe−Neレーザ
ー(波長632.8nm)を用いて測定し、異常光屈折
率が2.1767〜2.1795、その面内変動が±
0.0003となるようにウエハを選別して、デバイス
工程に用いるか、又は同様の測定条件で、タンタル酸リ
チウム単結晶ウエハの複屈折値が0.0004〜0.0
032でその変動が±0.0003の範囲に選別された
ウエハのみをデバイス工程に用いる。これにより、製造
される弾性表面波装置は周波数のばらつきが小さく一定
の特性を有する高歩留りの弾性表面波装置を作製ことが
できる。
More specifically, a wafer whose one side is mirror-polished is manufactured from a pulled and grown LT single crystal through a wafer processing process. Thereafter, the extraordinary light refractive index within the wafer and between the wafers is measured using a He-Ne laser (wavelength 632.8 nm) in an environment of a temperature of 20 to 30 ° C., and the extraordinary light refractive index is 2.167 to 2 .1795, and its in-plane variation is ±
The wafer was selected so as to be 0.0003 and used in the device process, or under the same measurement conditions, the birefringence value of the lithium tantalate single crystal wafer was 0.0004 to 0.0
Only the wafers whose fluctuations are selected within the range of ± 0.0003 in 032 are used in the device process. As a result, the surface acoustic wave device to be manufactured can produce a high-yield surface acoustic wave device having a small frequency variation and constant characteristics.

【0017】デバイス工程は基板上に形成する弾性表面
波の励振電極の電極構造が微細になるに従い高額な設備
を用いて製造され、弾性表面波装置の原価の大半を設備
投資額が占めることになり、デバイス工程での歩留り向
上は最も重要であった。
The device process is manufactured using expensive equipment as the electrode structure of the surface acoustic wave excitation electrode formed on the substrate becomes finer, and equipment investment accounts for the majority of the cost of the surface acoustic wave device. Therefore, the improvement of the yield in the device process was the most important.

【0018】このように、本発明の弾性表面波装置の製
造方法は、タンタル酸リチウム単結晶から成る基板に対
し、温度20〜30℃において、He−Neレーザーを
用いて異常光屈折率または複屈折値を測定する工程と、
異常光屈折率が2.1767〜2.1795、または複
屈折値が0.0004〜0.0032のタンタル酸リチ
ウム単結晶の基板を選択する工程と、選択した基板上に
弾性表面波の励振電極を形成する工程とを含む。
As described above, the method of manufacturing a surface acoustic wave device according to the present invention is characterized in that a substrate made of a single crystal of lithium tantalate is treated with a He—Ne laser at a temperature of 20 to 30 ° C. using an extraordinary light refractive index or multiple light. Measuring the refraction value;
A step of selecting a substrate of lithium tantalate single crystal having an extraordinary refractive index of 2.167 to 2.1795 or a birefringence of 0.0004 to 0.0032, and a surface acoustic wave excitation electrode on the selected substrate And forming a.

【0019】特に図4に示す右手系直交座標系に基づ
き、回転角θが33°〜46°のタンタル酸リチウム単
結晶ウエハは高周波用の弾性表面波装置に広く使用さ
れ、サブミクロンの微細電極構造を有することから歩留
り確保が重要課題となっており、効果が絶大である。
In particular, based on the right-handed rectangular coordinate system shown in FIG. 4, a lithium tantalate single crystal wafer having a rotation angle θ of 33 ° to 46 ° is widely used in a high-frequency surface acoustic wave device, and has a submicron fine electrode. Due to the structure, securing the yield is an important issue, and the effect is enormous.

【0020】ここで、図中9はYカット面、8はθ回転
Yカット面、θは回転角(°)をそれぞれ示す。図1は
ウエハの異常光屈折率と複屈折値に対する弾性表面波速
度の変化率を示したものである。33°回転Yカット基
板の特性は2a及び2b、36°回転Yカット基板の特
性は3a及び3b、42°回転Yカット基板の特性は4
a及び4b、46°回転Yカット基板の特性は5a及び
5bである。
In the drawing, 9 indicates a Y-cut plane, 8 indicates a θ-rotation Y-cut plane, and θ indicates a rotation angle (°). FIG. 1 shows the rate of change of the surface acoustic wave velocity with respect to the extraordinary light refractive index and the birefringence value of the wafer. The characteristics of the 33 ° rotated Y cut substrate are 2a and 2b, the characteristics of the 36 ° rotated Y cut substrate are 3a and 3b, and the characteristics of the 42 ° rotated Y cut substrate are 4
The characteristics of the Y-cut substrates a and 4b and 46 ° rotation are 5a and 5b.

【0021】異常光屈折率及び複屈折値の数値限定根拠
は図1に示す特性の、異常光屈折率及び複屈折値と弾性
表面波速度変動率の関係から、弾性表面波速度の変動率
が大きく、デバイス歩留りを低下させる0.15%を下
限として算出した。
The grounds for limiting the values of the extraordinary light refractive index and the birefringence value are as follows. From the relationship between the extraordinary light refractive index and the birefringence value and the surface acoustic wave velocity variation rate of the characteristic shown in FIG. The lower limit was set to 0.15%, which is large and lowers the device yield.

【0022】また、屈折率の測定は図2に示すプリズム
カップリング法により測定した。タンタル酸リチウム単
結晶から成るウエハSの表面に接触した屈折率npのプ
リズムnpとの接触面におけるレーザー光の反射臨界角
αで反射する光路1においてウエハの異常光屈折率ne
と複屈折値△nはnpとαによって次式より求められ
る。
The refractive index was measured by the prism coupling method shown in FIG. The extraordinary refractive index ne of the wafer in the optical path 1 that reflects the laser beam at the critical angle of reflection α at the contact surface with the prism np having the refractive index np in contact with the surface of the wafer S made of lithium tantalate single crystal
And the birefringence value Δn can be obtained by the following equation using np and α.

【0023】ne=np sinθ(ただし、LTの光
軸とレーザーの偏光方向が一致する場合であり、これに
対し偏光方向を90°回転させた通常光の屈折率はno
と記す) △n=|no−ne| 弾性表面波速度変化率は図3に示す測定系より求められ
る。すなわち、タンタル酸リチウム単結晶から成るウエ
ハ上に設けられた、弾性表面波の励振電極である櫛状の
電極(IDT電極)7に、高周波電圧を印加することに
よって得られる電気特性をネットワークアナライザーM
を用いて測定し、その共振周波数frと電極周期6の積
により弾性表面波速度を求める。ウエハ面内又はウエハ
間の弾性表面波速度変化量の基準とする弾性表面波速度
からの比率で表したものが弾性表面波速度変化率であ
る。
Ne = np sin θ (provided that the optical axis of the LT coincides with the polarization direction of the laser, whereas the refractive index of ordinary light whose polarization direction is rotated by 90 ° is no.
Δn = | no-ne | The surface acoustic wave velocity change rate is obtained from the measurement system shown in FIG. That is, the electrical characteristics obtained by applying a high-frequency voltage to a comb-like electrode (IDT electrode) 7, which is a surface acoustic wave excitation electrode, provided on a wafer made of a single crystal of lithium tantalate are analyzed by a network analyzer M.
, And the surface acoustic wave velocity is obtained from the product of the resonance frequency fr and the electrode period 6. The rate of change in the surface acoustic wave velocity is represented by a ratio of the amount of change in the surface acoustic wave velocity within the wafer surface or between the wafers to the reference surface acoustic wave velocity.

【0024】[0024]

【実施例】 次に、本発明のより具体的な実施例につい
て説明する。 〔例1〕42°回転Yカットタンタル酸リチウム単結晶
ウエハの作製方法について説明する。ウエハカットに垂
直な方位の種結晶を調和組成のLT原料融液に接触させ
回転しながら徐冷と引上げを行ない、約100mm径の
単結晶を得た。結晶の両端を内周刃切断機とX線回折装
置を用いて42°回転Yカット面で切断した。
EXAMPLES Next, more specific examples of the present invention will be described. Example 1 A method for producing a 42 ° rotated Y-cut lithium tantalate single crystal wafer will be described. A seed crystal having an orientation perpendicular to the wafer cut was brought into contact with an LT raw material melt having a harmony composition and gradually cooled and pulled up while rotating to obtain a single crystal having a diameter of about 100 mm. Both ends of the crystal were cut along a 42 ° rotated Y-cut plane using an inner peripheral blade cutter and an X-ray diffractometer.

【0025】次に、両切断面に銀ペーストを塗布し、電
気炉でキュリー温度以上の700℃で電極間に1.5〜
5V/cmの電圧を印加しながら単一分域化処理を行な
った。単一分域化処理された結晶インゴットを円筒研
削、スライス、粗研磨、面取り、鏡面研磨を施して片面
が鏡面研磨されたウエハを作製した。
Next, a silver paste is applied to both cut surfaces, and 1.5 to 1.5 ° C.
A single domaining process was performed while applying a voltage of 5 V / cm. The crystal ingot subjected to the single-domain treatment was subjected to cylindrical grinding, slicing, rough polishing, chamfering, and mirror polishing to produce a wafer having one surface mirror-polished.

【0026】[0026]

【表1】 [Table 1]

【0027】表1に面内の異常光屈折率及び複屈折値を
変えたウエハと弾性表面波速度の変化率、周波数±0.
15%以内の歩留りを対比させた結果を示す。異常光屈
折率及び複屈折値の変化量に対応して弾性表面波速度の
変化率が増減し、さらにこれに応じて周波数歩留りも増
減していることがわかった。これに33°〜46°回転
Yカット基板についてのデータも含めてその関係をグラ
フに示したものが図1であり、比例関係にあることが判
明した。
Table 1 shows the wafer having different in-plane extraordinary light refractive indices and birefringence values, the rate of change of the surface acoustic wave velocity, and the frequency ± 0.
The result which compared the yield within 15% is shown. It was found that the rate of change of the surface acoustic wave velocity increased and decreased in accordance with the amount of change in the extraordinary light refractive index and the birefringence, and the frequency yield also increased and decreased accordingly. FIG. 1 is a graph showing the relationship including the data on the Y-cut substrate rotated by 33 ° to 46 °, and FIG. 1 shows that the relationship is proportional.

【0028】特に、デバイス作製プロセスにおいて弾性
表面波速度の変動率が経験上0.15%を超えると、弾
性表面波装置の歩留りを大きく低下させるため、異常光
屈折率は温度20〜30℃の環境下でHe−Neレーザ
ー(波長632.8nm)を用いて測定し、2.176
7〜2.1795でその面内変動が±0.0003であ
ること。又は同測定条件においてタンタル酸リチウム単
結晶ウエハの複屈折値が0.0004〜0.0032で
変動が±0.0003の範囲に選別されたウエハを用い
ることで達成可能であることがわかった。
In particular, when the rate of change of the surface acoustic wave velocity exceeds 0.15% in the device manufacturing process, the yield of the surface acoustic wave device is greatly reduced. It was measured using a He-Ne laser (wavelength 632.8 nm) in an environment, and 2.176
7 to 2.1795 and its in-plane variation is ± 0.0003. Or it turned out that it can be achieved by using a wafer selected under the same measurement conditions as the lithium tantalate single crystal wafer, in which the birefringence value of the wafer is 0.0004 to 0.0032 and the variation is in the range of ± 0.0003.

【0029】さらに詳細に説明すると図1から弾性表面
波速度変化率が0.15%以内になるのは異常光屈折率
及び複屈折値が33°回転Yカットでは2.1767〜
2.1773及び0.0004〜0.001、36°回
転Yカットでは2.1772〜2.1778及び0.0
009〜0.0015、42°回転Yカットでは2.1
782〜2.1788及び0.0019〜0.002
5、46°回転Yカットでは2.1789〜2.179
5及び0.0026〜0.0032が効果のある範囲で
ある。
More specifically, FIG. 1 shows that the rate of change of the surface acoustic wave velocity is within 0.15% when the extraordinary light refractive index and the birefringence value are 33.degree.
2.773 and 0.0004 to 0.001; for the 36 ° rotation Y cut, 2.1772 to 2.1778 and 0.0
009 to 0.0015, 2.1 for 42 degree rotation Y cut
782-2.1788 and 0.0019-0.002
2.1789 to 2.179 for 5, 46 ° rotation Y-cut
5 and 0.0026 to 0.0032 are effective ranges.

【0030】これらの測定方法について説明する。弾性
表面波の速度は図3に模式的に示す櫛形の共振子をデバ
イスプロセスで作製し、プローバー(GGB製 40A
−GSG−250−DB)とネットワークアナライザー
(ヒューレットパッカード社製 8753D)を用いて
共振周波数frを測定し、frと波長λの積から計算し
た。異常光屈折率ne及び複屈折値△nは図2に示すプ
リズムカップリング法により、プリズムの屈折率npと
レーザーの全反射臨界入射角度θ、を用いて次式から算
出した。特に、SCHOTT社製のLaSF35高屈折
率ガラス(n632.8=2.01493)を用いて測
定値の校正を行なった。
The measuring method will be described. The speed of the surface acoustic wave was measured by fabricating a comb-shaped resonator schematically shown in FIG. 3 by a device process, and using a prober (40A manufactured by GGB).
-GSG-250-DB) and a network analyzer (8753D, manufactured by Hewlett-Packard Company), and the resonance frequency fr was measured and calculated from the product of fr and the wavelength λ. The extraordinary light refractive index ne and the birefringence value Δn were calculated by the prism coupling method shown in FIG. 2 using the refractive index np of the prism and the critical incident angle θ of total reflection of the laser from the following equation. In particular, the measured values were calibrated using LaSF35 high refractive index glass (n632.8 = 2.01493) manufactured by SCHOTT.

【0031】その結果、表1、図1に示すように弾性表
面波速度と異常光屈折率及び複屈折値は相関関係があり
異常光屈折率を2.1767及び至る2.1795でそ
の面内変動が±0.0003又は複屈折値を0.000
4〜0.0032で変動が±0.0003の範囲で選別
することにより弾性表面波速度の変動率を弾性表面波装
置の周波数歩留り低下の限界である0.15%以内に前
もって選別することが可能となる。これは、ギガHz帯
の高周波弾性表面波装置として広く使用されている33
°〜46°回転Yカット方位において特に効果的である
ことがわかった。
As a result, as shown in Table 1 and FIG. 1, there is a correlation between the surface acoustic wave velocity, the extraordinary light refractive index and the birefringence value, and the extraordinary light refractive index is 2.767 and up to 2.1795. Fluctuation ± 0.0003 or birefringence 0.000
By selecting the variation of the surface acoustic wave velocity within the range of ± 0.0003 in the range of 4 to 0.0032, the variation rate of the surface acoustic wave velocity can be selected in advance within 0.15% which is the limit of the frequency yield reduction of the surface acoustic wave device. It becomes possible. This is widely used as a high frequency surface acoustic wave device in the giga-Hz band.
It has been found to be particularly effective in the rotation Y-cut azimuth of between .degree.

【0032】これにより、従来測定に時間を要し測定精
度にも問題のあったキュリー温度によるウエハの選別方
法に比べ短時間で簡単に高精度に弾性表面波装置用のウ
エハを選別できる。
As a result, a wafer for a surface acoustic wave device can be easily and accurately selected in a short time and with high accuracy as compared with a conventional method of selecting a wafer based on the Curie temperature, which has required a long time for measurement and has a problem in measurement accuracy.

【0033】[0033]

【発明の効果】以上、本発明によれば、温度20〜30
℃において、He−Neレーザーを用いて測定した、異
常光屈折率が2.1767〜2.1795、または複屈
折値が0.0004〜0.0032の、タンタル酸リチ
ウム単結晶から成る弾性表面波装置用基板を用いる。ま
た、異常光屈折率または前記複屈折値の変動が±0.0
003である弾性表面波装置用基板を用いる。さらに、
基板の主面が33°〜46°回転Yカット面である弾性
表面波装置用基板を用いる。さらにまた、タンタル酸リ
チウム単結晶から成る基板に対し、温度20〜30℃に
おいて、He−Neレーザーを用いて異常光屈折率また
は複屈折値を測定する工程と、前記異常光屈折率が2.
1767〜2.1795、または前記複屈折値が0.0
004〜0.0032のタンタル酸リチウム単結晶の基
板を選択する工程と、選択した基板上に弾性表面波の励
振電極を形成する工程とを含む製造を行う。
As described above, according to the present invention, the temperature is 20 to 30.
Surface acoustic wave composed of a lithium tantalate single crystal having an extraordinary refractive index of 2.167 to 2.7995 or a birefringence of 0.0004 to 0.0032, measured using a He-Ne laser at ℃. An apparatus substrate is used. Further, the fluctuation of the extraordinary light refractive index or the birefringence value is ± 0.0
The surface acoustic wave device substrate 003 is used. further,
A substrate for a surface acoustic wave device in which the main surface of the substrate is a Y-cut surface rotated by 33 ° to 46 ° is used. Furthermore, a step of measuring an extraordinary light refractive index or a birefringence value using a He—Ne laser at a temperature of 20 to 30 ° C. on the substrate made of a lithium tantalate single crystal;
1767 to 2.1795, or the birefringence value is 0.0
The production including the step of selecting a substrate of 004 to 0.0032 of lithium tantalate single crystal and the step of forming a surface acoustic wave excitation electrode on the selected substrate is performed.

【0034】これにより、従来方法と比べて簡便に且つ
短時間でウエハ選別ができる。さらに、選別されたウエ
ハを用いて作製された弾性表面波装置は特性が良好で、
均一な基板を高歩留りに製造できるため、製造コストを
低下させることができる上に、不良を低減できることか
ら廃棄物を削減し環境保護の効果を期待できる。
As a result, wafer sorting can be performed more easily and in a shorter time than in the conventional method. Furthermore, the surface acoustic wave device manufactured using the selected wafer has good characteristics,
Since a uniform substrate can be manufactured at a high yield, the manufacturing cost can be reduced, and in addition, the number of defects can be reduced, so that waste can be reduced and the effect of environmental protection can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は異常光屈折率に対する弾性表面波速度
変化率の関係を示したグラフ、(b)は複屈折値に対す
る弾性表面波速度変化率の関係を示したグラフである。
1A is a graph showing a relationship between a surface acoustic wave velocity change rate and an extraordinary light refractive index, and FIG. 1B is a graph showing a relationship between a surface acoustic wave velocity change rate and a birefringence value.

【図2】プリズムカップリング法を模式的に説明する断
面図である。
FIG. 2 is a cross-sectional view schematically illustrating a prism coupling method.

【図3】弾性表面波の速度を測定する測定系を模式的に
説明する斜視図である。
FIG. 3 is a perspective view schematically illustrating a measurement system for measuring the velocity of a surface acoustic wave.

【図4】ウエハカット方位を説明する座標図である。FIG. 4 is a coordinate diagram illustrating a wafer cut direction.

【符号の説明】[Explanation of symbols]

1:レーザー光の光路 2a、2b:33°回転Yカット面の特性 3a、3b:36°回転Yカット面の特性 4a、4b:42°回転Yカット面の特性 5a、5b:46°回転Yカット面の特性 6:電極周期(波長) 7:電極 S:タンタル酸リチウム単結晶ウエハ np:屈折率npのプリズム α:レーザーの反射臨界角度 M:ネットワークアナライザー 8:θ°回転Yカット面 9:Yカット面 θ:Yカット面のX軸周りの回転角 1: Optical path of laser light 2a, 2b: Characteristics of 33 ° rotated Y-cut surface 3a, 3b: Characteristics of 36 ° rotated Y-cut surface 4a, 4b: Characteristics of 42 ° rotated Y-cut surface 5a, 5b: 46 ° rotated Y-cut surface Characteristics of cut surface 6: Electrode period (wavelength) 7: Electrode S: Lithium tantalate single crystal wafer np: Prism with refractive index np α: Critical reflection angle of laser M: Network analyzer 8: θ ° rotation Y cut surface 9: Y cut plane θ: Rotation angle of Y cut plane around X axis

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 温度20〜30℃において、He−Ne
レーザーを用いて測定した、異常光屈折率が2.176
7〜2.1795、または複屈折値が0.0004〜
0.0032の、タンタル酸リチウム単結晶から成る弾
性表面波装置用基板。
1. At a temperature of 20 to 30 ° C., He-Ne
The extraordinary light refractive index measured using a laser is 2.176.
7 to 2.1795, or a birefringence value of 0.0004 to
0.0032, a substrate for a surface acoustic wave device comprising a lithium tantalate single crystal.
【請求項2】 前記異常光屈折率または前記複屈折値の
変動が±0.0003であることを特徴とする請求項1
に記載の弾性表面波装置用基板。
2. The method according to claim 1, wherein the fluctuation of the extraordinary light refractive index or the birefringence value is ± 0.0003.
4. The substrate for a surface acoustic wave device according to 1.
【請求項3】 基板の主面が33°〜46°回転Yカッ
ト面であることを特徴とする請求項1乃至2に記載の弾
性表面波装置用基板。
3. The surface acoustic wave device substrate according to claim 1, wherein the main surface of the substrate is a Y-cut surface rotated by 33 ° to 46 °.
【請求項4】 請求項1乃至3に記載の弾性表面波装置
用基板上に、弾性表面波の励振電極を形成したことを特
徴とする弾性表面波装置。
4. A surface acoustic wave device having a surface acoustic wave device excitation electrode formed on the surface acoustic wave device substrate according to claim 1.
【請求項5】 タンタル酸リチウム単結晶から成る基板
に対し、温度20〜30℃において、He−Neレーザ
ーを用いて異常光屈折率または複屈折値を測定する工程
と、前記異常光屈折率が2.1767〜2.1795、
または前記複屈折値が0.0004〜0.0032のタ
ンタル酸リチウム単結晶の基板を選択する工程と、選択
した基板上に弾性表面波の励振電極を形成する工程とを
含むことを特徴とする弾性表面波装置の製造方法。
5. A step of measuring an extraordinary light refractive index or a birefringence value of a substrate made of a single crystal of lithium tantalate at a temperature of 20 to 30 ° C. using a He—Ne laser; 2.767 to 2.1795,
Alternatively, the method includes a step of selecting a substrate of lithium tantalate single crystal having a birefringence of 0.0004 to 0.0032, and a step of forming a surface acoustic wave excitation electrode on the selected substrate. A method for manufacturing a surface acoustic wave device.
JP2001099407A 2001-03-30 2001-03-30 Substrate for surface acoustic wave device, the surface acoustic wave device employing it, and its manufacturing method Pending JP2002300001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001099407A JP2002300001A (en) 2001-03-30 2001-03-30 Substrate for surface acoustic wave device, the surface acoustic wave device employing it, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001099407A JP2002300001A (en) 2001-03-30 2001-03-30 Substrate for surface acoustic wave device, the surface acoustic wave device employing it, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002300001A true JP2002300001A (en) 2002-10-11

Family

ID=18952948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001099407A Pending JP2002300001A (en) 2001-03-30 2001-03-30 Substrate for surface acoustic wave device, the surface acoustic wave device employing it, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002300001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999983B2 (en) 2003-11-21 2011-08-16 National Institute For Materials Science Lens material, optical electronic component and optical electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999983B2 (en) 2003-11-21 2011-08-16 National Institute For Materials Science Lens material, optical electronic component and optical electronic device

Similar Documents

Publication Publication Date Title
US11309861B2 (en) Guided surface acoustic wave device providing spurious mode rejection
US6856218B2 (en) Surface acoustic wave device and communications apparatus using the same
KR102220137B1 (en) Piezoelectric oxide single crystal substrate
TWI629869B (en) Bonded substrate, manufacturing method thereof, and surface acoustic wave device using the same
TW201635702A (en) Lithium tantalate single crystal substrate for surface acoustic wave elements, device using same and production method and inspection method therefor
CN111740008A (en) Method for improving thickness uniformity of ion beam stripped film
JPS61134111A (en) Lithium tantalate single crystal wafer
JP2002300001A (en) Substrate for surface acoustic wave device, the surface acoustic wave device employing it, and its manufacturing method
JP2007036670A (en) Manufacturing method of surface acoustic wave element, and the surface acoustic wave element
US6696736B2 (en) Piezoelectric substrate for surface acoustic wave device, and surface acoustic wave device
JP2001085970A (en) Resonator for high stable piezo-oscillator
US4224547A (en) Adjusting the frequency of piezoelectric crystal devices via fracturing the crystal surface
JP2003165795A (en) Oxide single crystal wafer, method for producing the same, and its evaluation method
US6246149B1 (en) Surface acoustic wave device
JP2005244735A (en) Manufacturing method of quartz oscillator, and quartz oscillator
Goutzoulis et al. Design And Performance Of Optical Activity-Based Hg [sub] 2 [/sub] Cl [sub] 2 [/sub] Bragg Cells
JPH11298291A (en) Piezoelectric monocrystal wafer for pseudo surface acoustic wave device and its production
JP2001339108A (en) Piezoelectric oxide single-crystal wafer
JPH0783231B2 (en) Method for selecting lithium tantalate single crystal wafer for SAW
Singh et al. Performance of mercurous chloride acousto-optic devices
JP2002359540A (en) Board for surface acoustic wave device, and surface acoustic wave device using the same, and manufacturing method of the board
JP2003198322A (en) Substrate for surface acoustic wave element and surface acoustic wave element using it
JP2009189036A (en) Method for manufacturing surface acoustic wave filter
JP2554377B2 (en) Method for manufacturing transparent single crystal wafer
JP2002314162A (en) Crystal substrate and its manufacturing method