JP2002299404A - Substrate processor - Google Patents

Substrate processor

Info

Publication number
JP2002299404A
JP2002299404A JP2001095166A JP2001095166A JP2002299404A JP 2002299404 A JP2002299404 A JP 2002299404A JP 2001095166 A JP2001095166 A JP 2001095166A JP 2001095166 A JP2001095166 A JP 2001095166A JP 2002299404 A JP2002299404 A JP 2002299404A
Authority
JP
Japan
Prior art keywords
chamber
transfer
substrate
cassette
transfer robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001095166A
Other languages
Japanese (ja)
Inventor
Akio Yoshino
晃生 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2001095166A priority Critical patent/JP2002299404A/en
Publication of JP2002299404A publication Critical patent/JP2002299404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the teaching work efficiency and the teaching accuracy in a transporter for a substrate processor. SOLUTION: The mechanical positional relation between a reference position specified in a transport room having a transport robot and a transport destination is obtained in advance, a required action quantity for transporting substrates is obtained from the positional relation, and the relation of the reference position to the transport robot is detected to transport the substrates based on the detection result and the action quantity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はドライエッチング装
置、プラズマCVD装置等の基板処理装置、特に基板搬
送手段として搬送ロボットを具備する基板処理装置に関
するものである。
The present invention relates to a substrate processing apparatus such as a dry etching apparatus and a plasma CVD apparatus, and more particularly to a substrate processing apparatus having a transfer robot as a substrate transfer means.

【0002】[0002]

【従来の技術】先ず、図1により内部搬送装置として搬
送ロボットを具備する基板処理装置の概略について説明
する。
2. Description of the Related Art First, an outline of a substrate processing apparatus having a transfer robot as an internal transfer device will be described with reference to FIG.

【0003】平面形状が5角形をした気密な搬送室1の
前面に第1カセット室2、第2カセット室3が気密に設
けられ、該第1カセット室2、第2カセット室3と前記
搬送室1とはゲート弁6,7を介して連通し、前記第1
カセット室2、第2カセット室3の搬送室1と反対側の
面にはカセットドア4,5が設けられている。
A first cassette chamber 2 and a second cassette chamber 3 are hermetically provided in front of an airtight transfer chamber 1 having a pentagonal plane shape. The first chamber communicates with the chamber 1 through gate valves 6 and 7.
Cassette doors 4 and 5 are provided on the surfaces of the cassette chamber 2 and the second cassette chamber 3 on the side opposite to the transfer chamber 1.

【0004】前記搬送室1の前面に隣接する2面にそれ
ぞれ気密な冷却室8,9が相対向する様に設けられ、該
冷却室8,9はそれぞれゲート弁11,12を介して前
記搬送室1に連通している。又、該搬送室1の前面に対
向する2面にそれぞれ第1反応室13、第2反応室14
が設けられ、該第1反応室13、第2反応室14はゲー
ト弁15,16を介して前記搬送室1に連通している。
Air-tight cooling chambers 8 and 9 are provided on two surfaces adjacent to the front surface of the transfer chamber 1 so as to face each other, and the cooling chambers 8 and 9 are provided via the gate valves 11 and 12 respectively. It communicates with room 1. A first reaction chamber 13 and a second reaction chamber 14 are provided on two surfaces facing the front surface of the transfer chamber 1, respectively.
The first reaction chamber 13 and the second reaction chamber 14 communicate with the transfer chamber 1 via gate valves 15 and 16.

【0005】前記搬送室1内には3節アーム18を具備
する搬送ロボット17が設けられ、前記3節アーム18
は鉛直軸心を中心に回転可能であると共に半径方向に伸
縮可能となっている。
A transfer robot 17 having a three-joint arm 18 is provided in the transfer chamber 1.
Is rotatable about a vertical axis and is expandable and contractible in the radial direction.

【0006】外部搬送装置(図示せず)から前記カセッ
トドア4,5を介して前記第1カセット室2、第2カセ
ット室3にカセット(図示せず)が搬入される。該カセ
ットには製品用ウェーハ(図示せず)が所定数(通常は
25枚)装填されている。
[0006] A cassette (not shown) is carried into the first cassette chamber 2 and the second cassette chamber 3 from the external transfer device (not shown) through the cassette doors 4 and 5. The cassette is loaded with a predetermined number (usually 25) of product wafers (not shown).

【0007】前記搬送ロボット17は前記3節アーム1
8の回転と伸縮の協働及び前記ゲート弁6,7、ゲート
弁15,16の開閉により、前記製品用ウェーハを前記
第1カセット室2、第2カセット室3のカセットから前
記第1反応室13、第2反応室14に搬入する。
The transfer robot 17 is provided with the three-node arm 1.
The wafers for product are transferred from the cassettes of the first cassette chamber 2 and the second cassette chamber 3 to the first reaction chamber by the cooperation of the rotation and expansion and contraction of 8 and the opening and closing of the gate valves 6 and 7 and the gate valves 15 and 16. 13 and carried into the second reaction chamber 14.

【0008】該第1反応室13、第2反応室14では搬
入されたウェーハに成膜処理を行う。成膜処理が完了す
ると、前記搬送ロボット17は前記3節アーム18によ
り処理済ウェーハを前記冷却室8,9に移載し、該冷却
室8,9に冷却ガスを流通させ所定温度迄冷却した後、
前記第1カセット室2のカセットに払戻ししている。該
カセット内の製品用ウェーハに対して全て処理が完了す
ると、前記カセットドア4,5を介して処理済ウェーハ
が装填されたカセットが搬出され、更に製品用ウェーハ
が装填されたカセットが搬入される。
In the first reaction chamber 13 and the second reaction chamber 14, a film is formed on the loaded wafer. When the film forming process is completed, the transfer robot 17 transfers the processed wafer to the cooling chambers 8 and 9 by the three-node arm 18 and circulates a cooling gas through the cooling chambers 8 and 9 to cool the wafer to a predetermined temperature. rear,
The money is paid back to the cassette in the first cassette chamber 2. When the processing for all the product wafers in the cassette is completed, the cassette loaded with the processed wafer is unloaded through the cassette doors 4 and 5, and the cassette loaded with the product wafer is loaded. .

【0009】上記基板処理装置に於いて、基板の搬送は
前記搬送ロボット17により行われるが、各室(搬送
先)に精度よく基板を搬送する為には、各室の方向、各
室内の基板載置位置等搬送に必要な情報を前記搬送ロボ
ット17にティーチングする必要がある。
In the above-described substrate processing apparatus, the transfer of the substrate is performed by the transfer robot 17. In order to transfer the substrate to each chamber (destination) with high accuracy, the direction of each chamber and the substrate in each chamber are required. It is necessary to teach the transfer robot 17 information necessary for the transfer such as the mounting position.

【0010】ティーチングは例えば搬送ロボットのモー
タ等の回転部に設けたエンコーダ等による動作量検出セ
ンサを用いて、前記3節アーム18に基板を載せて搬送
動作を手動で行わせ、反応室、カセット室、搬送室等に
於ける基板の搬送位置、或は前記3節アーム18の先端
の位置を位置センサ(図示せず)により検出し、検出結
果と前記動作量検出センサにより測定した搬送の動作量
を前記搬送ロボット17の制御部に入力する。
In the teaching, for example, an operation amount detection sensor using an encoder or the like provided in a rotating portion such as a motor of a transfer robot is used, and the substrate is placed on the three-node arm 18 and the transfer operation is manually performed. A transfer position of the substrate in a chamber, a transfer chamber, or the like, or a position of the tip of the three-node arm 18 is detected by a position sensor (not shown), and the detection result and the transfer operation measured by the operation amount detection sensor are detected. The amount is input to the control unit of the transfer robot 17.

【0011】これにより、例えばカセット室の所定位置
から反応室の所定位置迄基板搬送する際の動作量がティ
ーチングされる。
Thus, for example, the amount of operation when the substrate is transferred from a predetermined position in the cassette chamber to a predetermined position in the reaction chamber is taught.

【0012】[0012]

【発明が解決しようとする課題】水平位置は3節アーム
18、基板の搬送路を挾んで上下に位置センサを設け、
該位置センサにより水平位置を検出することが好まし
い。然し乍ら、例えば前記第1反応室13ではプラズマ
発生の為の電極が該第1反応室13の上下に設けられて
いるので、位置センサは設けられない。この為、水平方
向から位置センサにより位置を検出しようとすると、基
板の反り、エッヂ部の凹凸があった場合、位置センサに
よる位置検出ができなくなり、やはり位置センサが使用
できない。
As for the horizontal position, a three-node arm 18 and position sensors are provided vertically above and below the substrate transport path.
Preferably, the position sensor detects a horizontal position. However, for example, in the first reaction chamber 13, since electrodes for generating plasma are provided above and below the first reaction chamber 13, no position sensor is provided. For this reason, when trying to detect the position by the position sensor from the horizontal direction, if there is warpage of the substrate or unevenness of the edge portion, the position sensor cannot detect the position, and the position sensor cannot be used.

【0013】従来では位置センサが使用できない場所で
は、目視による位置検出を行い、手作業で位置情報を前
記搬送ロボット17の制御部に入力していた。
Conventionally, in a place where the position sensor cannot be used, the position is visually detected and the position information is manually input to the control unit of the transfer robot 17.

【0014】この為、従来の方法では時間が掛かり、効
率の悪い作業となっていると共に人の勘に頼ることとな
り、ティーチング精度が悪いという問題があった。
For this reason, the conventional method takes time, is inefficient, and depends on the intuition of human beings. Thus, there is a problem that teaching accuracy is poor.

【0015】本発明は斯かる実情に鑑み、ティーチング
作業の効率の向上を図ると共にティーチング精度の向上
を図るものである。
The present invention has been made in view of the above circumstances and aims to improve the efficiency of teaching work and improve teaching accuracy.

【0016】[0016]

【課題を解決するための手段】本発明は、搬送ロボット
を有する搬送室内の所定の位置を基準位置として、該基
準位置と搬送先との機械的位置関係を事前に求め、該位
置関係から基板搬送に必要な動作量を求め、前記基準位
置と搬送ロボットとの関係を検出し、該検出結果と前記
動作量に基づき基板搬送を行う様にした基板処理装置に
係るものである。
According to the present invention, a predetermined position in a transfer chamber having a transfer robot is set as a reference position, a mechanical positional relationship between the reference position and the transfer destination is determined in advance, and the substrate is determined from the positional relationship. The present invention relates to a substrate processing apparatus that obtains an operation amount required for transfer, detects a relationship between the reference position and the transfer robot, and transfers a substrate based on the detection result and the operation amount.

【0017】[0017]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】本発明が実施される装置構成は図1で示し
たものと同様である。又、図2は搬送制御系の概略を示
している。
The configuration of the apparatus for implementing the present invention is the same as that shown in FIG. FIG. 2 shows an outline of a transport control system.

【0019】搬送室1と他の室、即ち第1反応室13、
第2反応室14、或は冷却室8、冷却室9との位置関係
は物理的に決定され、固定の値である。即ち、設計上或
は実測により求められ、一度求めたら変わることがない
既知の数値である。
The transfer chamber 1 and other chambers, that is, the first reaction chamber 13,
The positional relationship between the second reaction chamber 14 or the cooling chambers 8 and 9 is physically determined and is a fixed value. That is, it is a known numerical value that is obtained by design or by actual measurement and does not change once obtained.

【0020】又、搬送ロボット17は3節アーム18の
伸縮と回転により基板の搬送を行い、伸縮量、回転量に
ついては駆動系の動作量検出センサ23、例えばモータ
等の回転部に設けたエンコーダ等により検出することが
可能である。又、前記動作量検出センサ23により得ら
れる動作については、反復再現性が得られる。従って、
伸縮量、回転量については前記動作量検出センサ23の
検出によって既知の値とすることができる。尚、該動作
量検出センサ23と3節アーム18の伸縮量との関係は
該3節アーム18の動作テストで予め求めておいてもよ
い。
The transfer robot 17 transfers the substrate by expanding and contracting and rotating the three-joint arm 18, and determines the amount of expansion and contraction and the amount of rotation. And so on. In addition, the operation obtained by the operation amount detection sensor 23 has repetitive reproducibility. Therefore,
The amount of expansion and contraction and the amount of rotation can be set to known values by the detection of the movement amount detection sensor 23. Note that the relationship between the movement amount detection sensor 23 and the amount of expansion / contraction of the three-bar arm 18 may be obtained in advance by a motion test of the three-bar arm 18.

【0021】本発明では、前記搬送室1と他の室との位
置関係、前記搬送ロボット17の動作量を既知の値とし
て利用することで、反応室13,14等以外の場所で反
応室13,14等での搬送動作のティーチングを行うも
のである。
In the present invention, the positional relationship between the transfer chamber 1 and other chambers and the amount of movement of the transfer robot 17 are used as known values, so that the reaction chamber 13 can be located in a place other than the reaction chambers 13 and 14. , 14 and the like.

【0022】以下の実施の形態では、第1反応室13へ
の搬送動作についてのティーチングを前記搬送室1で行
う様にしたものである。該搬送室1でティーチング作業
が可能な様に、該搬送室1には図3に示される様に搬送
される基板20の角の映像を取得するエリアセンサ(画
像センサ)21、エリアセンサ(画像センサ)22が設
けられる。
In the following embodiment, the teaching of the transfer operation to the first reaction chamber 13 is performed in the transfer chamber 1. An area sensor (image sensor) 21 and an area sensor (image) for acquiring an image of a corner of the substrate 20 conveyed in the transfer chamber 1 as shown in FIG. 3 so that a teaching operation can be performed in the transfer chamber 1. Sensor) 22 is provided.

【0023】先ず、ティーチング作業を行う準備とし
て、前記搬送室1と第1反応室13、第2反応室14及
び他の室との位置関係のデータを実測により、又は設計
上から求める。
First, as preparation for performing a teaching operation, data on the positional relationship between the transfer chamber 1 and the first reaction chamber 13, the second reaction chamber 14, and other chambers is obtained by actual measurement or from the design.

【0024】更に、前記搬送室1内での前記搬送ロボッ
ト17を所定基準位置近傍に移動させて、その位置デー
タ(搬送ロボットと所定基準位置との関係)を取得す
る。
Further, the transfer robot 17 in the transfer chamber 1 is moved to the vicinity of a predetermined reference position, and its position data (the relationship between the transfer robot and the predetermined reference position) is obtained.

【0025】例えば図1に示される様な前記搬送ロボッ
ト17の位置を基準位置とし、その回転可能な姿勢を基
準姿勢とし、この姿勢、位置から前記冷却室8、冷却室
9、第1反応室13、第2反応室14の基板載置位置迄
の3節アーム18の動作量、即ち回転量及び伸縮量を決
定する。
For example, the position of the transfer robot 17 as shown in FIG. 1 is set as a reference position, and its rotatable posture is set as a reference posture. From this posture and position, the cooling chamber 8, the cooling chamber 9, the first reaction chamber 13. The amount of movement of the three-node arm 18 up to the substrate mounting position in the second reaction chamber 14, that is, the amount of rotation and the amount of expansion and contraction are determined.

【0026】前記搬送室1から第1カセット室2、第2
カセット室3、前記冷却室8、冷却室9、第1反応室1
3、第2反応室14それぞれに基板20を搬送する為に
必要な前記3節アーム18の動作量は実測値、又は設計
値から把握できる。これらの搬送動作に必要な各搬送動
作量が入力部26より搬送制御部25に設定入力され
る。
From the transfer chamber 1 to the first cassette chamber 2,
Cassette chamber 3, cooling chamber 8, cooling chamber 9, first reaction chamber 1
Third, the operation amount of the three-node arm 18 required for transferring the substrate 20 to each of the second reaction chambers 14 can be grasped from an actually measured value or a design value. Each transport operation amount required for these transport operations is set and input to the transport controller 25 from the input unit 26.

【0027】図2、図3及び図4によりティーチング方
法を説明する。
The teaching method will be described with reference to FIGS. 2, 3 and 4.

【0028】前記搬送ロボット17の3節アーム18に
前記基板20を載置し、更に基準姿勢として基準位置近
傍に移動させて、前記画像センサ21、画像センサ22
により基板20の角部の映像、即ち位置データを取得す
る。尚、前記画像センサ21、画像センサ22で取得す
る基板20の角部の映像は、基板20が矩形であった場
合は対角に位置する角部が好ましい。又、前記画像セン
サ21、画像センサ22は前記基板20を検出し易い場
所に設ければよく、更に決まった位置で該基板20の角
部の映像の取得を行うので、画像センサ等の位置調整或
は角部の映像の取得作業は容易となり、且つ精度が向上
する。
The substrate 20 is placed on the three-joint arm 18 of the transfer robot 17, and is further moved as a reference posture near the reference position, so that the image sensor 21 and the image sensor 22 are moved.
Thus, an image of the corner of the substrate 20, that is, position data is acquired. The image of the corner of the substrate 20 acquired by the image sensor 21 and the image sensor 22 is preferably a diagonally located corner when the substrate 20 is rectangular. Further, the image sensor 21 and the image sensor 22 may be provided at a place where the substrate 20 can be easily detected. Further, since an image of a corner of the substrate 20 is obtained at a predetermined position, the position adjustment of the image sensor and the like is performed. Alternatively, the work of acquiring an image of a corner is facilitated and the accuracy is improved.

【0029】前記画像センサ21と、画像センサ22の
映像信号は基板処理装置の搬送ロボット17の搬送動作
を制御する搬送制御部25に入力される。該搬送制御部
25で前記搬送ロボット17の基準姿勢での該搬送ロボ
ット17と基板20との位置関係が演算される。更に演
算された基板20の位置と前記基準位置との位置関係が
演算される。
The image signals from the image sensor 21 and the image sensor 22 are input to a transfer controller 25 for controlling the transfer operation of the transfer robot 17 of the substrate processing apparatus. The transfer controller 25 calculates the positional relationship between the transfer robot 17 and the substrate 20 in the reference posture of the transfer robot 17. Further, the positional relationship between the calculated position of the substrate 20 and the reference position is calculated.

【0030】以上の操作で、前記3節アーム18の現在
位置を前記搬送制御部25が認識すると共に、その位置
から各室に対する伸縮量が前記搬送制御部25に入力さ
れ、ティーチング作業が完了する。
With the above operations, the current position of the three-joint arm 18 is recognized by the transfer control unit 25, and the amount of expansion and contraction for each room is input to the transfer control unit 25 from that position, and the teaching operation is completed. .

【0031】上記した様に、前記基板20の搬送作業は
前記3節アーム18の伸縮と回転により行われる。従っ
て、更に該3節アーム18が搬送動作を行う回転位置の
ティーチングを行う。
As described above, the transfer operation of the substrate 20 is performed by the expansion and contraction and rotation of the three-node arm 18. Therefore, teaching of the rotational position at which the three-joint arm 18 performs the transport operation is further performed.

【0032】回転位置のティーチングは該3節アーム1
8に前記基板20を載置した状態で、実際に前記3節ア
ーム18を回転させて行う。例えば、前記冷却室8に関
しては前記3節アーム18の伸縮方向を前記冷却室8の
基板載置位置の方向に合致させ、この時の前記3節アー
ム18の方向が前記入力部26を介して前記搬送制御部
25に前記動作量検出センサ23の検出量として入力さ
れる。同様にして、前記冷却室9、第1カセット室2、
第2カセット室3、第1反応室13、第2反応室14に
対してもそれぞれ3節アーム18を回転させることによ
り、前記動作量検出センサ23の検出量として、前記入
力部26に入力する。
The teaching of the rotational position is performed by the three-joint arm 1
8 with the substrate 20 placed thereon, the three-node arm 18 is actually rotated. For example, with respect to the cooling chamber 8, the direction of expansion and contraction of the three-node arm 18 is matched with the direction of the substrate mounting position of the cooling chamber 8, and the direction of the three-node arm 18 at this time is set via the input unit 26. It is input to the transport control unit 25 as a detection amount of the operation amount detection sensor 23. Similarly, the cooling chamber 9, the first cassette chamber 2,
The three-node arm 18 is also rotated with respect to the second cassette chamber 3, the first reaction chamber 13, and the second reaction chamber 14 to input the detection amount of the operation amount detection sensor 23 to the input unit 26. .

【0033】而して、前記搬送ロボット17が基板20
を搬送する場合の、各室に対する3節アーム18の伸縮
量、搬送方向(回転位置)についてのティーチングが完
了する。
The transfer robot 17 moves the substrate 20
In the case of transporting, the teaching about the amount of expansion and contraction of the three-node arm 18 with respect to each chamber and the transport direction (rotational position) is completed.

【0034】尚、上記実施の形態では、各室それぞれに
対して回転位置を個別にティーチングしたが、前記第1
カセット室2、第2カセット室3、冷却室8、冷却室
9、第1反応室13、第2反応室14間の回転位置関係
は、設計値から或は実測から事前に求められ、伸縮量と
同様に既知の値とすることができる。各室の回転位置の
関係を既知の値とすると、前記画像センサ21と、画像
センサ22で得られた基板20の位置と前記第1カセッ
ト室2、第2カセット室3、冷却室8、冷却室9、第1
反応室13、第2反応室14のいずれか1つの室に対す
る回転位置関係を求めることで、他の室についての回転
位置は前記した各室の既知の回転位置から演算で求める
ことができ、他の室についての回転位置のティーチング
作業は省略することができる。
In the above embodiment, the rotational position is individually taught for each of the chambers.
The rotational positional relationship between the cassette chamber 2, the second cassette chamber 3, the cooling chamber 8, the cooling chamber 9, the first reaction chamber 13, and the second reaction chamber 14 is obtained in advance from design values or from actual measurement, and The value can be a known value in the same manner as. Assuming that the relationship between the rotational positions of the respective chambers is a known value, the positions of the image sensor 21 and the substrate 20 obtained by the image sensor 22 and the first cassette chamber 2, the second cassette chamber 3, the cooling chamber 8, and the cooling chamber Room 9, 1st
By calculating the rotational position relationship with respect to any one of the reaction chamber 13 and the second reaction chamber 14, the rotational positions of the other chambers can be obtained by calculation from the known rotational positions of the respective chambers. The teaching operation of the rotational position for the chamber of (1) can be omitted.

【0035】又、上記実施の形態では3節アーム18の
伸縮に対して基準位置を設定したが、回転についても基
準位置を設定してもよい。尚、搬送ロボット17に関す
る位置検出を基板の角部を検出することによって求めた
が、搬送ロボット17を構成する部材、例えば3節アー
ム18の所定位置に関して求めてもよい。
In the above embodiment, the reference position is set for the expansion and contraction of the three-bar arm 18, but the reference position may be set for the rotation. Although the position of the transfer robot 17 is detected by detecting a corner of the substrate, the position may be obtained with respect to a predetermined position of a member constituting the transfer robot 17, for example, the three-node arm 18.

【0036】[0036]

【発明の効果】以上述べた如く本発明によれば、搬送ロ
ボットを有する搬送室内の所定の位置を基準位置とし
て、該基準位置と搬送先との機械的位置関係を事前に求
め、該位置関係から基板搬送に必要な動作量を求め、前
記基準位置と搬送ロボットとの関係を検出し、該検出結
果と前記動作量に基づき基板搬送を行う様にしたので、
ティーチング作業で人の勘に頼ることがなく、又人手作
業が少なくなるので、精度の高い而も効率の高いティー
チング作業を行うことができるという優れた効果を発揮
する。
As described above, according to the present invention, a predetermined position in a transfer chamber having a transfer robot is set as a reference position, and a mechanical positional relationship between the reference position and the transfer destination is determined in advance. Since the amount of operation required for substrate transfer is determined from the above, the relationship between the reference position and the transfer robot is detected, and the substrate transfer is performed based on the detection result and the amount of operation.
Since the teaching operation does not depend on the intuition of humans and the number of manual operations is reduced, an excellent effect that a highly accurate teaching operation can be performed with high efficiency can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】基板処理装置の概略説明図である。FIG. 1 is a schematic explanatory view of a substrate processing apparatus.

【図2】本発明の実施の形態に於ける搬送制御系の概略
ブロック図である。
FIG. 2 is a schematic block diagram of a transport control system according to the embodiment of the present invention.

【図3】該実施の形態での基板角部の位置情報を取得す
る説明図である。
FIG. 3 is an explanatory diagram for obtaining position information of a corner portion of a substrate in the embodiment.

【図4】該実施の形態での基板搬送を模式化した説明図
である。
FIG. 4 is an explanatory diagram schematically illustrating substrate conveyance in the embodiment.

【符号の説明】[Explanation of symbols]

1 搬送室 2 第1カセット室 3 第2カセット室 8 冷却室 9 冷却室 13 第1反応室 14 第2反応室 17 搬送ロボット 18 3節アーム 21 画像センサ 22 画像センサ 25 搬送制御部 26 入力部 DESCRIPTION OF SYMBOLS 1 Transport room 2 1st cassette room 3 2nd cassette room 8 Cooling room 9 Cooling room 13 1st reaction room 14 2nd reaction room 17 Transfer robot 18 3rd arm 21 Image sensor 22 Image sensor 25 Transfer control part 26 Input part

フロントページの続き Fターム(参考) 3C007 AS24 BS15 KT02 KT06 LS02 LS05 5F031 GA02 GA45 JA04 JA22 JA32 JA51 MA28 MA32 PA02 Continuation of the front page F term (reference) 3C007 AS24 BS15 KT02 KT06 LS02 LS05 5F031 GA02 GA45 JA04 JA22 JA32 JA51 MA28 MA32 PA02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 搬送ロボットを有する搬送室内の所定の
位置を基準位置として、該基準位置と搬送先との機械的
位置関係を事前に求め、該位置関係から基板搬送に必要
な動作量を求め、前記基準位置と搬送ロボットとの関係
を検出し、該検出結果と前記動作量に基づき基板搬送を
行う様にしたことを特徴とする基板処理装置。
A predetermined position in a transfer chamber having a transfer robot is set as a reference position, a mechanical positional relationship between the reference position and a transfer destination is determined in advance, and an operation amount required for substrate transfer is determined from the positional relationship. A substrate processing apparatus configured to detect a relationship between the reference position and the transfer robot and to transfer the substrate based on the detection result and the operation amount.
JP2001095166A 2001-03-29 2001-03-29 Substrate processor Pending JP2002299404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001095166A JP2002299404A (en) 2001-03-29 2001-03-29 Substrate processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001095166A JP2002299404A (en) 2001-03-29 2001-03-29 Substrate processor

Publications (1)

Publication Number Publication Date
JP2002299404A true JP2002299404A (en) 2002-10-11

Family

ID=18949257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001095166A Pending JP2002299404A (en) 2001-03-29 2001-03-29 Substrate processor

Country Status (1)

Country Link
JP (1) JP2002299404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310858A (en) * 2004-04-19 2005-11-04 Yaskawa Electric Corp Method of teaching wafer position, and teaching jig
JP2014113649A (en) * 2012-12-07 2014-06-26 Daihen Corp Robot teaching method, transport method, and transport system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310858A (en) * 2004-04-19 2005-11-04 Yaskawa Electric Corp Method of teaching wafer position, and teaching jig
JP4506255B2 (en) * 2004-04-19 2010-07-21 株式会社安川電機 Wafer position teaching method and robot thereof
JP2014113649A (en) * 2012-12-07 2014-06-26 Daihen Corp Robot teaching method, transport method, and transport system

Similar Documents

Publication Publication Date Title
US11776834B2 (en) On the fly automatic wafer centering method and apparatus
US6516244B1 (en) Wafer alignment system and method
TWI391983B (en) A processing device, a processing method, an identification method of the object to be processed, and a memory medium
TW594458B (en) Method for determining a position of a robot
JP2009500869A (en) Equipment with on-the-fly workpiece centering
US7353076B2 (en) Vacuum processing method and vacuum processing apparatus
JP2002246447A (en) Dislocation detecting device for object to be processed, processing system and dislocation detecting method
TWI752910B (en) On the fly automatic wafer centering method and apparatus
JP2001210698A (en) Method of and apparatus for determining substrate offset using optimization technique
WO2008052102A2 (en) Deposition analysis for robot motion correction
JP2009107107A (en) Method and system for robot calibration with camera
US11810801B2 (en) Robot embedded vision apparatus
JP7326619B2 (en) Automatic teaching enclosure system
JP4395873B2 (en) Displacement amount detection method and displacement amount correction method for thin plate-like object
KR102325282B1 (en) Robot Control System and Method for Fabrication Equipment of Semiconductor Apparatus, Computer Program Therefor
US7505832B2 (en) Method and apparatus for determining a substrate exchange position in a processing system
JP2002299404A (en) Substrate processor
JPH09252039A (en) Teaching position setting method and device of transfer device
JP4359365B2 (en) Substrate processing apparatus and substrate position deviation correction method in substrate processing apparatus
JP2003068829A (en) Substrate transport system and substrate treating device
JP2007116014A (en) Substrate treatment apparatus
JP2005079442A (en) Substrate conveying device and method and program
JP2007242680A (en) Semiconductor production equipment