JP2002298275A - Magnetic rotary link - Google Patents

Magnetic rotary link

Info

Publication number
JP2002298275A
JP2002298275A JP2001098096A JP2001098096A JP2002298275A JP 2002298275 A JP2002298275 A JP 2002298275A JP 2001098096 A JP2001098096 A JP 2001098096A JP 2001098096 A JP2001098096 A JP 2001098096A JP 2002298275 A JP2002298275 A JP 2002298275A
Authority
JP
Japan
Prior art keywords
coil
rotary link
magnetic rotary
conversion element
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001098096A
Other languages
Japanese (ja)
Inventor
Koji Hagino
弘司 萩野
Kenichiro Iketa
健一郎 井桁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Advanced Motor Corp
Original Assignee
Nidec Servo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Servo Corp filed Critical Nidec Servo Corp
Priority to JP2001098096A priority Critical patent/JP2002298275A/en
Publication of JP2002298275A publication Critical patent/JP2002298275A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a multi-channeling and a hollow axial structure by performing the transmission of a noncontact signal through a rotating shaft by a coil and a magnetoelectric conversion device to improve the problem of an optical system. SOLUTION: This magnetic rotary link comprises a concentric circular coil arranged in the center of the rotating shaft and the magnetoelectric conversion device arranged along the circumference of the coil with a rotatable gap, and has a basic structure for transmitting a signal even during rotation by detecting the magnetic field generated in the coil by the magnetoelectric conversion device through the gap when carrying an input signal current to the coil. A plurality of combinations of the basic structures are used to constitute the two-way communication and multi-channeling. The hollow axial structure can be mechanical provided by the method using the hollow cylindrical coil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、回転機構を介して電気
信号を送受信する装置に関するものであり、電流によっ
て発生する磁界と磁電変換素子を組み合わせて信号を非
接触で伝達することにより、信頼性を向上すると共に、
多チャンネル化と中空軸構造を可能とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for transmitting and receiving an electric signal via a rotating mechanism, and by transmitting a signal in a non-contact manner by combining a magnetic field generated by an electric current and a magneto-electric conversion element, thereby providing a reliable signal. While improving the
It is possible to increase the number of channels and the hollow shaft structure.

【0002】[0002]

【従来の技術】ロータリー式の電子部品自動装着装置の
ロータリーヘッド部やロボットの関節部、あるいはゲー
ム機等では、基台となる固定側に対して回転軸を介して
回転する回転側にアクチュエータ(主として電動機)
や、その制御装置を搭載した構造がよく用いられる。こ
の場合、装置本体である固定側から、回転する機構部側
へ電気エネルギーすなわち電源を供給したり、固定側の
制御装置と回転側制御装置との間で制御信号のやりとり
すなわち通信を行ったりする必要がある。また場合によ
っては、回転側にシリンダーやチャック等の空気圧アク
チュエータや油圧アクチュエータを用いることもあり、
回転機構を介して空気圧や油圧を供給する必要もある。
従来これらの電源の供給や制御用電気信号の伝達は、ブ
ラシとスリップリングを用いた接触方式が最も一般的で
ある。また空気圧や油圧の供給は、回転軸中心部に空気
圧用あるいは油圧用のロータリジョイントを配して行う
のが一般的である。
2. Description of the Related Art In a rotary head part of a rotary electronic component automatic mounting apparatus, a joint part of a robot, a game machine, or the like, an actuator ( Mainly electric motors)
Alternatively, a structure equipped with the control device is often used. In this case, electric energy, that is, power is supplied from the fixed side, which is the apparatus main body, to the rotating mechanism side, and control signals are exchanged, that is, communication is performed between the fixed side control device and the rotation side control device. There is a need. In some cases, pneumatic or hydraulic actuators such as cylinders and chucks may be used on the rotating side.
It is also necessary to supply air pressure and hydraulic pressure via a rotation mechanism.
Conventionally, the most common method of supplying power and transmitting control electric signals is a contact method using a brush and a slip ring. The supply of air pressure or hydraulic pressure is generally performed by arranging a rotary joint for air pressure or hydraulic pressure at the center of the rotating shaft.

【0003】従来この制御電気信号の通信を非接触化す
るものとして、特願平6−216123「電子部品自動
装着装置」があり、制御用データの通信を非接触で行う
光通信部材を回転軸の中心位置に備えたことを特徴とし
ている。また回転軸の中心位置に配置する光通信部材の
他の具体例として、特願平11−212034「回転光
結合装置」があり、2組の発光受光素子を回転軸の中心
部に配置して、双方向の通信を可能としている。
[0003] Conventionally, there has been a Japanese Patent Application No. 6-216123 "Electronic component automatic mounting apparatus" which makes communication of control electric signals non-contact. It is characterized in that it is provided at the center position. As another specific example of the optical communication member arranged at the center position of the rotation axis, there is Japanese Patent Application No. 11-212034 “Rotating light coupling device”, in which two sets of light emitting and receiving elements are arranged at the center part of the rotation axis. , Enabling two-way communication.

【0004】非接触で信号を伝達する他の方法として、
VTRのヘッド部やレゾルバで使用されている回転トラ
ンス方式もあるが、トランスの特性はコアのエアギャッ
プの大きさで決まるので、極小のギャップ寸法を確保す
るため、コア端面の研磨加工や組立並びに軸受構造等に
高度な技術を要するため高価格になる。また信号も直流
分の伝達は不可能であり、高速信号の伝達にはキャリア
周波数を高くして、変調復調する等の複雑な回路を必要
とする問題がある。
[0004] As another method of transmitting a signal without contact,
There is also a rotary transformer system used in the VTR head and resolver, but the characteristics of the transformer are determined by the size of the core air gap. It requires a high level of technology for the bearing structure, etc., and is expensive. In addition, it is impossible to transmit a DC component of a signal, and there is a problem that transmission of a high-speed signal requires a complicated circuit such as increasing a carrier frequency and performing modulation and demodulation.

【0005】[0005]

【発明が解決しようとする課題】上述の如き回転機構を
介したエネルギー及び信号の伝達装置において、エネル
ギーすなわち電源や空気圧・油圧の供給は、従来のブラ
シとスリップリングやロータリージョイントを用いた方
法が一般的な方法であるが、制御用電気信号について
は、高速シリアル通信等の採用に伴い取り扱う信号が高
速となるため、信号の伝達にブラシとスリップリングを
用いる接触方式は、接触ノイズによる信号伝達特性の劣
化や、摩耗による寿命の問題等、信頼性の向上が大きな
課題になってきている。これを改善するための光通信に
よる方法にも、以下のような問題がある。すなわち、発
光素子例えば発光ダイオードの発光量は時間と共に減少
するので寿命を考慮する必要がある。光学経路のチリ・
ゴミ・汚れ等で信号の伝達特性は劣化するので対策が必
要である。光半導体の許容周囲温度はあまり高くないの
で、使用温度に制限を受ける。双方向通信1チャンネル
の構成は比較的容易であるが、多チャンネル化するには
例えば多重通信化する等の手段が必要になり、高速応答
の素子や変復調手段や分波回路等を必要とし、複雑高価
な回路が必要となる。代わりにチャンネル数分の光通信
部材を使用する方法は、機械構造的に複雑になり高価に
なる。また回転軸の中心部に光通信部材を配置する方法
は、中空軸構造が採用できなくなり、回転軸の中央部に
空圧や油圧を供給するロータリージョイントを組み込む
ことができなくなる。
In the apparatus for transmitting energy and signals through the above-mentioned rotating mechanism, the supply of energy, that is, power, pneumatic pressure and hydraulic pressure is performed by a conventional method using a brush and a slip ring or a rotary joint. This is a general method, but for the control electric signal, since the signal handled becomes faster with the adoption of high-speed serial communication etc., the contact method using a brush and a slip ring for signal transmission is a signal transmission due to contact noise. Improvement of reliability has become a major issue, such as deterioration of characteristics and a problem of life due to wear. The method using optical communication to improve this also has the following problems. That is, since the light emission amount of a light emitting element such as a light emitting diode decreases with time, it is necessary to consider the life. Chile in the optical path
Since the signal transmission characteristics are degraded by dust and dirt, countermeasures are required. Since the permissible ambient temperature of the optical semiconductor is not so high, the operating temperature is limited. Although the configuration of one channel of the bidirectional communication is relatively easy, in order to increase the number of channels, means such as multiplex communication is required, and a high-speed response element, a modulation / demodulation means, a demultiplexing circuit, and the like are required. Complicated and expensive circuits are required. Instead, the method of using optical communication members for the number of channels becomes complicated and expensive in terms of mechanical structure. Further, the method of disposing the optical communication member at the center of the rotating shaft cannot employ a hollow shaft structure, and cannot incorporate a rotary joint for supplying pneumatic or hydraulic pressure to the center of the rotating shaft.

【0006】[0006]

【課題を解決するための手段】本発明に成る非接触信号
伝達装置は、回転機構の固定側に回転軸の中心に対して
同心で円形の電流路となるコイルを配置し、回転側にそ
のコイルの円周部分に沿って、回転可能な空隙を設けて
磁電変換素子を配置し、入力信号電流をコイルに流し、
その電流によって発生した磁界を、空隙を介して磁電変
換素子で検出することにより、固定側から回転側へ信号
を伝える。
According to the non-contact signal transmission device of the present invention, a coil which is a circular current path concentric with the center of the rotating shaft is arranged on the fixed side of the rotating mechanism, and the coil is arranged on the rotating side. Along the circumference of the coil, a rotatable air gap is provided and the magnetoelectric conversion element is arranged, and an input signal current flows through the coil,
A signal is transmitted from the fixed side to the rotating side by detecting the magnetic field generated by the current with the magneto-electric conversion element through the air gap.

【0007】回転機構の回転側に、回転軸の中心に対し
て同心で円形の電流路となるコイルを配置し、回転側に
そのコイルの円周部分に沿って、回転可能な空隙を設け
て磁電変換素子を配置し、入力信号電流をコイルに流
し、その電流によって発生した磁界を、空隙を介して磁
電変換素子で検出することにより、回転中も回転側から
固定側へ信号を伝える。
On the rotating side of the rotating mechanism, a coil which is concentric with the center of the rotating shaft and forms a circular current path is arranged, and on the rotating side, a rotatable air gap is provided along the circumference of the coil. A magneto-electric conversion element is arranged, an input signal current flows through the coil, and a magnetic field generated by the current is detected by the magneto-electric conversion element through a gap, so that a signal is transmitted from the rotating side to the fixed side even during rotation.

【0008】回転側から固定側へと、固定側から回転側
への信号伝達を同時にすなわち双方の信号伝達を行うた
め、上述の構成を径方向に同心状に組合せて配置する。
In order to simultaneously transmit signals from the rotation side to the fixed side and from the fixed side to the rotation side, that is, to perform both signal transmissions, the above-described configurations are arranged concentrically in the radial direction.

【0009】多チャンネルすなわち複数チャンネルの信
号伝達を行うため、上述の構成を径方向に複数個配置す
る。
In order to transmit signals of multiple channels, that is, a plurality of channels, a plurality of the above-described configurations are arranged in the radial direction.

【0010】回転側から固定側へと、固定側から回転側
への信号伝達を同時にすなわち双方向の信号伝達を行う
ため、上述の構成を軸方向に組合せて配置する。
In order to simultaneously transmit signals from the rotation side to the fixed side and from the fixed side to the rotation side, that is, to perform bidirectional signal transmission, the above-described configurations are arranged in combination in the axial direction.

【0011】多チャンネルすなわち複数チャンネルの信
号伝達を行うため、上述の構成を軸方向に複数個配置す
る。
In order to transmit signals of multiple channels, that is, a plurality of channels, a plurality of the above-described configurations are arranged in the axial direction.

【0012】[0012]

【実施例】以下図面によって本発明の実施例を説明す
る。図1に本発明になる非接触信号伝達装置すなわち磁
気式回転リンクの基本要素の一実施例を示す。固定側の
フレーム33に対して、回転軸31が軸受け32によっ
て回転する構造になっている。固定側の電流路となるコ
イル1はプリント基板2の表面にプリント回路パターン
で形成されている。コイル1のパターン形状は回転軸3
1の中心に対して同心の複数ターンの円形となってい
る。回転側の磁電変換素子11はプリント基板12に実
装されており、回転軸31を介してプリント基板12が
回転したとき、磁電変換素子11はコイル1と接触しな
いように小さな空隙を保って、コイル1と対抗しながら
コイルの円周に沿って回転する。入力信号を電流信号に
変換する処理回路3はここではプリント基板2の裏面に
実装されており、コイル1に電流が流れるとコイルの廻
りに電流に比例した磁界が発生する。その磁界に鎖交す
る位置に磁界の強さを電気信号に変換する素子すなわち
磁電変換素子11を配置しておけば、固定側の入力信号
を非接触で回転側に伝達できる。磁界の強さはコイルか
らの距離に反比例するので、磁電変換素子はできるだけ
コイルに近い位置に配置することが望ましい。磁電変換
素子の信号を増幅変換して出力する処理回路13は、こ
こでは基板12の裏面に実装されている。円形のコイル
1と磁電変換素子11の位置関係は、回転軸32が回転
しても変わらないから、軸を回転しながらの信号の伝達
が可能である。前述のコイル1をプリント基板上にパタ
ーン形成する方法は、コイルの組立やコイル端末の結線
処理が不要で製作上非常に有利な方法である。電線を巻
線加工によって製作したコイルを、プリント基板上に接
着貼付する等他の方法でも製作可能であるが、組立の手
間や端末の結線処理工数が増える。回転軸31は中空軸
構造に出きるので、中空部に空圧あるいは油圧供給用の
ロータリージョイントやその他の部品(ここでは図示し
ていない)を組み込むことが可能であり、回転側にエア
ーチャックやシリンダー等のアクチュエータを用いる用
途の場合、非常に有利な構造となる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the basic elements of a non-contact signal transmission device, that is, a magnetic rotary link according to the present invention. The structure is such that the rotating shaft 31 is rotated by the bearing 32 with respect to the fixed frame 33. A coil 1 serving as a fixed-side current path is formed on a surface of a printed circuit board 2 in a printed circuit pattern. The pattern shape of the coil 1 is the rotation axis 3
It is a circle of multiple turns concentric with the center of one. The rotation-side magnetoelectric conversion element 11 is mounted on a printed circuit board 12, and when the printed circuit board 12 is rotated via the rotation shaft 31, the magnetoelectric conversion element 11 maintains a small gap so as not to contact the coil 1. Rotate along the circumference of the coil while opposing 1. The processing circuit 3 for converting an input signal into a current signal is mounted on the back surface of the printed circuit board 2, and when a current flows through the coil 1, a magnetic field proportional to the current is generated around the coil. If an element for converting the intensity of the magnetic field into an electric signal, that is, the magnetoelectric conversion element 11 is arranged at a position interlinking with the magnetic field, an input signal on the fixed side can be transmitted to the rotating side without contact. Since the strength of the magnetic field is inversely proportional to the distance from the coil, it is desirable to arrange the magnetoelectric conversion element as close as possible to the coil. The processing circuit 13 that amplifies and converts the signal of the magnetoelectric conversion element and outputs the signal is mounted on the back surface of the substrate 12 here. Since the positional relationship between the circular coil 1 and the magnetoelectric conversion element 11 does not change even when the rotating shaft 32 rotates, it is possible to transmit a signal while rotating the shaft. The above-described method of forming a pattern of the coil 1 on a printed circuit board is a very advantageous method in terms of manufacturing because it does not require assembling the coil or connecting the coil terminals. Other methods, such as bonding a coil made by winding an electric wire onto a printed circuit board, can be used, but the time and labor for assembling and the number of steps for connecting terminals are increased. Since the rotating shaft 31 comes out into a hollow shaft structure, it is possible to incorporate a pneumatic or hydraulic supply rotary joint or other components (not shown here) into the hollow portion, and an air chuck or the like on the rotating side. For an application using an actuator such as a cylinder, a very advantageous structure is obtained.

【0013】図1は固定側から回転側へ信号を伝達する
場合の例であるが、逆に回転側から固定側に信号を伝達
するには、コイルと磁電変換素子の関係を入れ替えて、
回転側にコイルを、固定側に磁電変換素子を使用するこ
とによって実現できる。
FIG. 1 shows an example in which a signal is transmitted from the fixed side to the rotating side. Conversely, in order to transmit a signal from the rotating side to the fixed side, the relationship between the coil and the magnetoelectric conversion element is exchanged.
This can be realized by using a coil on the rotating side and a magneto-electric conversion element on the fixed side.

【0014】図2は回転側から固定側へと、固定側から
回転側への信号伝達を同時に、すなわち双方向の信号伝
達を行うため、上述の構成を径方向に同心状に組合せて
配置した実施例を示す。図1の実施例に対して、回転側
の基板12には回転軸31に同心の円形コイル14と信
号処理回路15が、磁電変換素子11に対して内径側に
追加されており、固定側の基板2には、前記コイル14
に対向する位置すなわちコイル1に対して内径側に磁電
変換素子4が配置され、さらにその信号処理回路5が基
板2の裏側に追加されている。この構成により、回転側
から固定側へと、固定側から回転側への信号伝達を同時
に、すなわち双方向の信号伝達を行うことが可能とな
る。
FIG. 2 shows that the above-mentioned components are arranged concentrically in the radial direction in order to transmit signals from the rotation side to the fixed side simultaneously from the fixed side to the rotation side, that is, to perform bidirectional signal transmission. An example will be described. In contrast to the embodiment of FIG. 1, a circular coil 14 and a signal processing circuit 15 concentric with a rotating shaft 31 are added to the rotating side substrate 12 on the inner diameter side with respect to the magnetoelectric conversion element 11, and the rotating side substrate 12 has a fixed side. The substrate 14 includes the coil 14
The magneto-electric conversion element 4 is disposed at a position opposing to the coil 1, that is, on the inner diameter side with respect to the coil 1, and a signal processing circuit 5 is further added to the back side of the substrate 2. With this configuration, it is possible to simultaneously perform signal transmission from the rotation side to the fixed side and from the fixed side to the rotation side, that is, perform bidirectional signal transmission.

【0015】図3は、図2の双方向の組合せを2組すな
わち2チャンネルの双方向通信を行うための一実施例を
示す。プリント基板の径方向に円形コイルと磁電変換素
子を同心状に配置する方法は、プリント基板を用いて構
成するのに都合のよい構造であるが、チャンネル数を増
やすと外径が大きくなる。
FIG. 3 shows an embodiment for performing two sets of bidirectional communication of FIG. 2, that is, two channels of bidirectional communication. The method of concentrically arranging the circular coil and the magnetoelectric conversion element in the radial direction of the printed board is a structure convenient for using a printed board, but the outer diameter increases when the number of channels is increased.

【0016】図4はコイルと磁電変換素子の空隙を径方
向にして、複数のコイルと磁電変換素子の組合せを軸方
向に並べるように配置した実施例で、磁電変換素子や周
辺の処理回路の実装にやや難があるが、外径寸法を小さ
くできる特徴がある。
FIG. 4 shows an embodiment in which the gap between the coil and the magneto-electric conversion element is set in the radial direction and the combination of a plurality of coils and the magneto-electric conversion element is arranged in the axial direction. Although there is some difficulty in mounting, there is a feature that the outer diameter can be reduced.

【0017】上述の磁電変換素子は磁気抵抗素子または
巨大磁気抵抗素子またはホール効果素子等が使用可能で
ある。光半導体素子の許容周囲温度は一般に75〜85
°Cであるのに対して、磁電変換素子は100〜125
°Cと許容周囲温度が高いので、より高温での動作が可
能である。磁気抵抗素子及び巨大磁気抵抗素子の検知可
能な磁界は数ガウスから数10ガウスと小さいので、小
さなコイル電流で信号の伝達が可能である。ホール効果
素子の動作磁界は磁気抵抗素子に比較すると、少し大き
い方が望ましいが、素子の価格と入手性は優れている。
As the above-mentioned magnetoelectric conversion element, a magnetoresistance element, a giant magnetoresistance element, a Hall effect element, or the like can be used. The allowable ambient temperature of the optical semiconductor device is generally 75 to 85.
° C, whereas the magnetoelectric conversion element is 100-125.
The operation at a higher temperature is possible because of the high allowable ambient temperature of ° C. Since the detectable magnetic field of the magnetoresistive element and the giant magnetoresistive element is as small as several gauss to several tens of gauss, the signal can be transmitted with a small coil current. It is desirable that the operating magnetic field of the Hall effect element is slightly larger than that of the magnetoresistive element, but the price and availability of the element are excellent.

【0018】[0018]

【発明の効果】本発明に成る磁気式回転リンクは、ブラ
シとスリップリングを用いる接触方式の、接触ノイズに
よる信号伝達特性の劣化や、摩耗による寿命の問題を非
接触化することで回避し、信頼性を向上することができ
る。また光通信による非接触化方法の問題点である、発
光素子例えば発光ダイオードの発光量が時間と共に減少
する寿命の問題や、光学経路のチリ・ゴミ・汚れ等で信
号の伝達特性は劣化する問題も回避できる。さらに光半
導体の許容周囲温度に比較して、磁電変換素子は許容周
囲温度が高いのでより高温での動作が可能である。機械
構造的にも回転軸の中心に対して同心の円形コイルと磁
電変換素子の組合せは、軸の中心部を使用しないため、
中空軸構造を採用できるため、回転軸の中央部に空圧や
油圧を供給するロータリージョイントその他の部品を組
み込むことができる。
According to the magnetic rotary link of the present invention, the problem of deterioration in signal transmission characteristics due to contact noise and life due to wear of the contact system using a brush and a slip ring can be avoided by making the contact non-contact. Reliability can be improved. In addition, there are problems in the non-contact method by optical communication, such as a problem of a life span in which a light emitting amount of a light emitting element such as a light emitting diode decreases with time, and a problem of deterioration of signal transmission characteristics due to dust, dirt, dirt, and the like in an optical path. Can also be avoided. Further, the magnetoelectric conversion element has a higher allowable ambient temperature than the allowable ambient temperature of the optical semiconductor, and thus can operate at a higher temperature. In terms of mechanical structure, the combination of a circular coil and a magnetoelectric transducer concentric with the center of the rotating shaft does not use the center of the shaft,
Since a hollow shaft structure can be adopted, a rotary joint for supplying pneumatic pressure or hydraulic pressure and other components can be incorporated in the center of the rotating shaft.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に成る例の信号伝達方法の基本原理を示
す断面構造図である。
FIG. 1 is a sectional structural view showing a basic principle of an example signal transmission method according to the present invention.

【図2】回転側から固定側へと、固定側から回転側への
信号伝達を同時に、すなわち双方向の信号伝達を実現す
る方法の断面構造図である。
FIG. 2 is a sectional structural view of a method of realizing signal transmission from the rotation side to the fixed side and simultaneously from the fixed side to the rotation side, that is, bidirectional signal transmission.

【図3】多チャンネルの例として双方向2チャンネルを
径方向に同心状に配列した例の断面構造図である。
FIG. 3 is a cross-sectional structural view of an example in which two bidirectional channels are concentrically arranged in a radial direction as an example of a multi-channel.

【図4】多チャンネルの例として双方向2チャンネルを
軸方向に並べて配列し、小径化した例の断面構造図であ
る。
FIG. 4 is a cross-sectional structural diagram of an example in which two channels are arranged side by side in the axial direction and the diameter is reduced as an example of multiple channels.

【符号の説明】[Explanation of symbols]

1 回転軸に同心の固定側円形コイル 2 固定側プリント基板 3 固定側入力信号処理回路 4 固定側磁電変換素子 5 固定側出力信号処理回路 11 回転軸に同心の回転側円形コイル 12 回転側プリント基板 13 回転側入力信号処理回路 14 回転側磁電変換素子 15 回転側出力信号処理回路 31 回転軸 32 軸受 33 固定側フレーム REFERENCE SIGNS LIST 1 Fixed-side circular coil concentric with rotation axis 2 Fixed-side printed circuit board 3 Fixed-side input signal processing circuit 4 Fixed-side magnetoelectric conversion element 5 Fixed-side output signal processing circuit 11 Rotation-side circular coil concentric with rotation axis 12 Rotation-side printed circuit board 13 Rotation-side input signal processing circuit 14 Rotation-side magnetoelectric conversion element 15 Rotation-side output signal processing circuit 31 Rotation shaft 32 Bearing 33 Fixed-side frame

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】回転機構の固定側に、回転軸の中心に対し
て同心で円形の電流路となるコイルを配置し、回転側に
そのコイルの円周部分に沿って、回転可能な空隙を設け
て磁電変換素子を配置し、入力信号電流をコイルに流
し、その電流によって発生した磁界を、空隙を介して磁
電変換素子で検出することにより、回転中も固定側から
回転側へ信号を伝える磁気式回転リンク。
A coil having a circular current path concentric with the center of a rotating shaft is disposed on a fixed side of a rotating mechanism, and a rotatable air gap is provided on the rotating side along a circumferential portion of the coil. A magneto-electric conversion element is provided, an input signal current is supplied to the coil, and a magnetic field generated by the current is detected by the magneto-electric conversion element through an air gap, thereby transmitting a signal from the fixed side to the rotation side even during rotation. Magnetic rotary link.
【請求項2】回転機構の回転側に、回転軸の中心に対し
て同心で円形の電流路となるコイルを配置し、固定側に
そのコイルの円周部分に沿って、回転可能な空隙を設け
て磁電変換素子を配置し、入力信号電流をコイルに流
し、その電流によって発生した磁界を、空隙を介して磁
電変換素子で検出することにより、回転中も回転側から
固定側へ信号を伝える磁気式回転リンク。
2. A coil having a circular current path concentric with the center of the rotating shaft is arranged on the rotating side of the rotating mechanism, and a rotatable air gap is formed on the fixed side along the circumference of the coil. A magneto-electric conversion element is provided, an input signal current is supplied to the coil, and a magnetic field generated by the current is detected by the magneto-electric conversion element through an air gap, thereby transmitting a signal from the rotating side to the fixed side even during rotation. Magnetic rotary link.
【請求項3】請求項1と請求項2の構成を組み合わせて
径方向に同心状に配置することにより、回転側から固定
側へと、固定側から回転側への信号伝達を同時にすなわ
ち双方の信号伝達を行う磁気式回転リンク。
3. The arrangement of the first and second aspects is combined and arranged concentrically in the radial direction, so that signal transmission from the rotation side to the fixed side and from the fixed side to the rotation side simultaneously, that is, both signal transmissions are performed. A magnetic rotary link that transmits signals.
【請求項4】請求項1または請求項2の構成を組み合わ
せて径方向に同心状に配置することにより、多チャンネ
ルの信号伝達を行う磁気式回転リンク。
4. A magnetic rotary link for transmitting signals of multiple channels by arranging concentrically in the radial direction by combining the configurations of claim 1 and 2.
【請求項5】請求項1と請求項2の構成を組み合わせて
軸方向に並べて配置することにより、回転側から固定側
へと、固定側から回転側への信号伝達を同時にすなわち
双方の信号伝達を行う磁気式回転リンク。
5. The signal transmission from the rotation side to the fixed side and from the fixed side to the rotation side at the same time, that is, both signal transmissions, by combining and arranging the configurations of claim 1 and 2 in the axial direction. Do magnetic rotary link.
【請求項6】請求項1または請求項2の構成を組み合わ
せて軸方向に並べて配置することにより、多チャンネル
の信号伝達を行う磁気式回転リンク。
6. A magnetic rotary link for transmitting multi-channel signals by arranging the arrangement of claim 1 or 2 in a line in the axial direction.
【請求項7】回転軸に対して同心の円形コイルをプリン
ト回路パターンで形成したことを特徴とする請求項1か
ら4の磁気式回転リンク。
7. A magnetic rotary link according to claim 1, wherein a circular coil concentric with the rotation axis is formed by a printed circuit pattern.
【請求項8】磁電変換素子として磁気抵抗素子あるいは
巨大磁気抵抗素子を用いたことを特徴とする請求項1か
ら6の磁気式回転リンク。
8. The magnetic rotary link according to claim 1, wherein a magnetoresistive element or a giant magnetoresistive element is used as the magnetoelectric conversion element.
【請求項9】磁電変換素子としてホール効果素子を用い
たことを特徴とする請求項1から6の磁気式回転リン
ク。
9. The magnetic rotary link according to claim 1, wherein a Hall effect element is used as the magnetoelectric conversion element.
JP2001098096A 2001-03-30 2001-03-30 Magnetic rotary link Pending JP2002298275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001098096A JP2002298275A (en) 2001-03-30 2001-03-30 Magnetic rotary link

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001098096A JP2002298275A (en) 2001-03-30 2001-03-30 Magnetic rotary link

Publications (1)

Publication Number Publication Date
JP2002298275A true JP2002298275A (en) 2002-10-11

Family

ID=18951779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001098096A Pending JP2002298275A (en) 2001-03-30 2001-03-30 Magnetic rotary link

Country Status (1)

Country Link
JP (1) JP2002298275A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249375A (en) * 2007-03-29 2008-10-16 Topcon Corp Three-dimensional position measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249375A (en) * 2007-03-29 2008-10-16 Topcon Corp Three-dimensional position measuring apparatus

Similar Documents

Publication Publication Date Title
EP1187152A2 (en) Rotary contactless connector and non-rotary contactless connector
KR960016494B1 (en) Rotary transformer
JP3665340B2 (en) Electromagnetic actuator having cylindrical translation coil and toroidal rotation coil, and actuator unit comprising the same and measurement system
US7988363B2 (en) Bearing with rotation detection device
US4939400A (en) Transmission apparatus having split-coil type coaxial coupler
JP2006322927A (en) Absolute rotary encoder and micrometer
US6434293B1 (en) Rotary light coupler
WO2011061794A1 (en) Magnetic absolute encoder and motor
KR100713161B1 (en) Contactless connector
JP2006220571A (en) Resolver unit and resolver using the same
CN101058376B (en) Spooling device
CN211209705U (en) Non-contact slip ring for high-speed communication
JP2002298275A (en) Magnetic rotary link
JP3533375B2 (en) Rotary non-contact connector
JP2002075760A (en) Rotary- and non-rotary type noncontact connectors
JPH08222459A (en) Non-contact motion transmission device
JPS58147249A (en) Signal transmitter of rotary part
JP2012241741A (en) Driving force transmission mechanism, driving apparatus and method for manufacturing driving apparatus
CN115335928A (en) Multilayer printed coil arrangement with variable pitch printed coils
JP2007279865A (en) Magnetic rotary link
KR101842030B1 (en) A component supporting head of surface mounter
JP2020120430A (en) Rotary table device
US7045924B2 (en) Bobbinless high-density armature having no substrate, and rotor using the same
US20230110644A1 (en) Variable reluctance resolver using surface mounted inductors and/or transformers
JP2006049629A (en) Contactless connector

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040127