JP2002293647A - Green ceramic sheet for sensor device and manufacturing method thereof - Google Patents

Green ceramic sheet for sensor device and manufacturing method thereof

Info

Publication number
JP2002293647A
JP2002293647A JP2001137910A JP2001137910A JP2002293647A JP 2002293647 A JP2002293647 A JP 2002293647A JP 2001137910 A JP2001137910 A JP 2001137910A JP 2001137910 A JP2001137910 A JP 2001137910A JP 2002293647 A JP2002293647 A JP 2002293647A
Authority
JP
Japan
Prior art keywords
sheet
sensor element
binder
unsintered
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001137910A
Other languages
Japanese (ja)
Other versions
JP4602592B2 (en
Inventor
Kiyonobu Kiwaki
清信 木脇
Shinya Awano
真也 粟野
Yoshiaki Kuroki
義昭 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2001137910A priority Critical patent/JP4602592B2/en
Publication of JP2002293647A publication Critical patent/JP2002293647A/en
Application granted granted Critical
Publication of JP4602592B2 publication Critical patent/JP4602592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a green ceramic sheet for a sensor device which has excellent handling properties and is hardly deformed particularly in the manufacture of a sensor requiring many times of lamination and/or printing, and to provide a manufacturing method thereof. SOLUTION: The green ceramic sheet for the sensor device is obtained by forming a paste sheet using a doctor blade process. The paste is obtained by feeding a polyvinyl butyral resin as a binder and n-butyl phthalate as a plasticizer to high purity alumina powder having 0.3-0.18 μm average particle diameter and 3-8 m<2> /g specific surface area so that the ratio of the plasticizer to the binder by mass is 35 to 50%, adding toluene and mixing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はセンサ素子用未焼成
セラミックシート及びその製造方法に関する。更に詳し
くは、ハンドリング性に優れ、特に製造工程において積
層回数及び/又は印刷回数が多い場合であっても変形を
ほとんど生じないセンサ素子用未焼成セラミックシート
及びその製造方法を提供する。なお、本発明のセンサ素
子用未焼成セラミックシートは、積層型ガスセンサ素子
(酸素センサ素子、全領域空燃比センサ素子、窒素酸化
物センサ素子及び炭化水素センサ素子等)の形成に用い
ることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a green ceramic sheet for a sensor element and a method for producing the same. More specifically, the present invention provides an unsintered ceramic sheet for a sensor element which is excellent in handling properties and hardly deforms even when the number of laminations and / or the number of printings is large in a manufacturing process, and a method for manufacturing the same. The unfired ceramic sheet for a sensor element of the present invention can be used for forming a laminated gas sensor element (an oxygen sensor element, a full area air-fuel ratio sensor element, a nitrogen oxide sensor element, a hydrocarbon sensor element, and the like).

【0002】[0002]

【従来の技術】従来より、内燃機関から排出される排ガ
ス中の特定成分を検出するガスセンサとして、酸素セン
サ、HCセンサ及びNOxセンサが知られている。そし
て、この種のガスセンサには、板状のセラミック基板を
複数積層して構成された積層型ガスセンサ素子が組み付
けられたものが実用に供されている。この焼成されてセ
ラミック基板となるセンサ素子用未焼成セラミックシー
トは、セラミック粉末にバインダ及び可塑材等を混合し
て得られたスラリーをドクターブレード法によりシート
状(板状)に成形して得られる。従来はバインダの添加
質量の半量を超える可塑剤を添加しハンドリング性を確
保していた。
2. Description of the Related Art Conventionally, oxygen sensors, HC sensors and NOx sensors have been known as gas sensors for detecting specific components in exhaust gas discharged from an internal combustion engine. As this kind of gas sensor, a gas sensor in which a laminated gas sensor element formed by laminating a plurality of plate-shaped ceramic substrates is assembled is put to practical use. The unfired ceramic sheet for a sensor element which becomes a fired ceramic substrate is obtained by forming a slurry obtained by mixing a ceramic powder with a binder, a plastic material, and the like into a sheet shape (plate shape) by a doctor blade method. . Conventionally, handling properties have been ensured by adding a plasticizer that exceeds half the amount of the binder added.

【0003】[0003]

【発明が解決しようとする課題】しかし、近年積層型ガ
スセンサ素子の構造がより複雑化し、この素子の製造に
おいて積層及びペースト(具体的には、電極等を形成す
るための導電層用ペーストや、絶縁層を形成するための
絶縁層用ペースト等)の印刷を行う回数が増えている。
このため、積層毎に行われる圧着作業の回数も増加し、
より多く圧着作業を課せられたシートが次第に変形する
場合が生じている。更に、印刷に用いるペーストは粘度
を低下させるために含有される溶剤量がシートに比べて
はるかに多い。このため、ペーストの印刷回数が増える
に従い、積層されているセンサ素子用未焼成セラミック
シートはペーストに含まれる溶剤を吸収し、次第に軟化
し、変形する場合が生じている。一方、積層型ガスセン
サ素子において複雑化した構造を達成するためには、よ
り精密な寸法精度で各シート(セラミック基板)を製造
する必要がある。また、積層型ガスセンサ素子を小型化
する上でも高い寸法精度は必要である。
However, in recent years, the structure of the laminated gas sensor element has become more complicated, and in the production of this element, a laminate and a paste (specifically, a paste for a conductive layer for forming electrodes and the like, The number of times of printing an insulating layer paste or the like for forming an insulating layer) is increasing.
For this reason, the number of times of crimping work performed for each lamination also increases,
In some cases, a sheet subjected to more crimping operations gradually deforms. Further, the paste used for printing contains a much larger amount of solvent to reduce the viscosity than the sheet. For this reason, as the number of times of printing of the paste increases, the stacked unfired ceramic sheets for sensor elements absorb the solvent contained in the paste, and gradually soften and deform. On the other hand, in order to achieve a complicated structure in the stacked gas sensor element, it is necessary to manufacture each sheet (ceramic substrate) with more precise dimensional accuracy. Also, high dimensional accuracy is required for miniaturization of the stacked gas sensor element.

【0004】本発明は上記問題を解決するものであり、
ハンドリング性に優れ、特に積層回数及び/又はペース
トの印刷回数を多く行う必要がある積層型ガスセンサ素
子の製造において、変形をほとんど生じないセンサ素子
用未焼成セラミックシート及びその製造方法を提供する
ことを目的とする。
[0004] The present invention is to solve the above problems,
An object of the present invention is to provide an unsintered ceramic sheet for a sensor element which hardly deforms in the production of a laminated gas sensor element which is excellent in handling properties, and particularly requires a large number of times of lamination and / or printing of a paste, and a method for producing the same. Aim.

【0005】[0005]

【課題を解決するための手段】本発明のセンサ素子用未
焼成セラミックシート(以下、単に「未焼成シート」と
もいう)は、セラミック粉末とバインダと可塑剤とが含
有されるセンサ素子用未焼成セラミックシートであっ
て、該可塑剤の質量は該バインダの質量の35〜50%
であることを特徴とする。
The unsintered ceramic sheet for a sensor element of the present invention (hereinafter also simply referred to as "unsintered sheet") comprises an unsintered ceramic element for a sensor element containing ceramic powder, a binder and a plasticizer. A ceramic sheet, wherein the mass of the plasticizer is 35 to 50% of the mass of the binder.
It is characterized by being.

【0006】上記「セラミック粉末」は、特に限定され
ず種々用いることができる。例えば、アルミナ、ジルコ
ニア、チタニア、イットリア、シリカ、マグネシア及び
ムライト等が挙げられる。尚、セラミック粉末はこれの
うちのいずれか1種のみからなってもよく、2種以上が
混合されていてもよい。また、上記「バインダ」は、セ
ラミック粉末に成形性を付与するものであれば特に限定
されず種々用いることができるが、親油性のバインダで
あることが好ましい。この親油性バインダとしては、例
えば、ポリビニルブチラール樹脂及びアクリル樹脂等が
挙げられる。これらのうち特にポリビニルブチラール樹
脂はセラミック粉末の凝集体への分散性が良好であり、
熱的使用範囲も広く、さらに不純物の混入量が少ない観
点から好ましい。
The above-mentioned “ceramic powder” is not particularly limited and various types can be used. For example, alumina, zirconia, titania, yttria, silica, magnesia, mullite and the like can be mentioned. The ceramic powder may be composed of only one of them, or may be a mixture of two or more. The "binder" is not particularly limited as long as it imparts moldability to the ceramic powder, and various types of binders can be used, but a lipophilic binder is preferable. Examples of the lipophilic binder include a polyvinyl butyral resin and an acrylic resin. Among these, polyvinyl butyral resin has good dispersibility to the aggregate of the ceramic powder,
This is preferable from the viewpoint that the range of thermal use is wide and the amount of impurities mixed is small.

【0007】更に、上記「可塑剤」は、上記バインダに
対して可塑性を付与するものであれば特に限定されず種
々用いることができる。例えば、ブチルカルビトール、
フタル酸ジnブチル(DBP)、DOP、DBS等が挙
げられる。これらの中でも、特にDBP、DOP等は、
蒸気圧が高く揮発性が低く、沸点が高く好ましい。
Further, the above-mentioned "plasticizer" is not particularly limited as long as it imparts plasticity to the above-mentioned binder, and various types can be used. For example, butyl carbitol,
Di-n-butyl phthalate (DBP), DOP, DBS and the like. Among these, DBP, DOP, etc.
High vapor pressure, low volatility, and high boiling point are preferred.

【0008】この可塑剤は、未焼成シートに含有される
バインダの質量の35〜50%あればよく、40〜45
%であることが好ましい。バインダの質量に対する可塑
剤の質量割合が上記範囲であれば未焼成シート自体の成
形性を低下させることなく、即ち、未焼成シートの成形
後であって乾燥後にマイクロクラックが生じにくく、成
形後の未焼成シートの表面に凹凸が無く、切断時に未焼
成シート(未焼成シートの一部)が切断刃に付着せず、
切断後隣り合って放置されても付着しない。更に、積層
回数及び/又はペーストの印刷回数を多く行う必要があ
る積層型ガスセンサ素子の製造においても、未焼成シー
トがほとんど変形(具体的には、未焼成シートの縮み或
は伸び)が生ずることもない。
The amount of the plasticizer may be 35 to 50% of the mass of the binder contained in the unsintered sheet.
%. If the mass ratio of the plasticizer to the mass of the binder is in the above range, the moldability of the unsintered sheet itself is not reduced, that is, microcracks are not easily generated after drying of the unsintered sheet and after drying, and There is no unevenness on the surface of the unfired sheet, and the unfired sheet (part of the unfired sheet) does not adhere to the cutting blade during cutting,
It does not adhere even if it is left next to it after cutting. Furthermore, even in the production of a laminated gas sensor element in which the number of times of lamination and / or the number of times of printing of the paste must be increased, the unsintered sheet is almost deformed (specifically, the unsintered sheet contracts or elongates). Nor.

【0009】特に、セラミック粉末にアルミナが80質
量%(特に90〜100質量%)含有される場合には、
セラミック粉末の質量をA(g)とし、セラミック粉末
の比表面積をB(m/g)とし、バインダの質量をC
(g)とした場合のA×B/C(以下、「比面バインダ
量」という)が35〜55m/g(より好ましくは3
8〜53m/g、更に好ましくは40〜50m
g)であることが好ましい。この比面バインダ量が55
/gを超えると未焼成シートの成形後であって乾燥
(放置)後に未焼成シートにマイクロクラックを生じ易
くなる。一方、35m/gより小さくなるに従い、セ
ンサ素子用未焼成セラミックシートのもつ粘着性が高く
なりがちで、圧着等による変形量も大きくなる傾向にあ
り好ましくない。
Particularly, when the ceramic powder contains 80% by mass (particularly 90 to 100% by mass) of alumina,
The mass of the ceramic powder is A (g), the specific surface area of the ceramic powder is B (m 2 / g), and the mass of the binder is C
A × B / C (hereinafter referred to as “specific surface binder amount”) in the case of (g) is 35 to 55 m 2 / g (more preferably 3 to 55 m 2 / g).
8 to 53 m 2 / g, more preferably 40 to 50 m 2 / g
g) is preferred. When the specific surface binder amount is 55
If it exceeds m 2 / g, microcracks tend to occur in the unsintered sheet after forming the unsintered sheet and after drying (leaving). On the other hand, as it becomes smaller than 35 m 2 / g, the adhesiveness of the unfired ceramic sheet for a sensor element tends to increase, and the amount of deformation due to pressure bonding or the like tends to increase, which is not preferable.

【0010】また、このセラミック粉末の比表面積Bは
3〜8m/g(より好ましくは4〜7m/g、更に
好ましくは4〜6m/g)であることが好ましい。こ
の比表面積が3m/g未満となると、未焼成シートの
焼成時に、セラミック粉末の粉体間の反応を活性化させ
るべく焼成温度を高めなければならず、異常粒成長が生
ずるおそれがあり、また素子のセンシング部を形成する
ために設けられる電極部の三相界面が低下するおそれが
ある。一方、8m/gを超えると、セラミック粉末と
バインダとを混合したスラリーをキャスティングする際
に固形化し易くなり、未焼成シートの表面に凹凸が生じ
易くなる。未焼成シートの表面に凹凸を生じると、導電
層用ペーストや絶縁層用ペースト等のペーストを印刷し
た場合に、これらペーストがシート表面上での途切れた
り、厚みのばらつきを生じ易くなるため好ましくない。
The specific surface area B of the ceramic powder is preferably 3 to 8 m 2 / g (more preferably 4 to 7 m 2 / g, and still more preferably 4 to 6 m 2 / g). If the specific surface area is less than 3 m 2 / g, the firing temperature must be increased to activate the reaction between the ceramic powders during firing of the unsintered sheet, and abnormal grain growth may occur. Further, the three-phase interface of the electrode portion provided for forming the sensing portion of the element may be reduced. On the other hand, if it exceeds 8 m 2 / g, the slurry obtained by mixing the ceramic powder and the binder tends to solidify when casting, and the surface of the unsintered sheet tends to be uneven. When irregularities are generated on the surface of the unsintered sheet, when pastes such as a conductive layer paste and an insulating layer paste are printed, these pastes tend to be cut off on the sheet surface or the thickness tends to vary, which is not preferable. .

【0011】更に、このセラミック粉末の平均粒径は
0.3〜0.6μm(より好ましくは0.35〜0.5
5μm、更に好ましくは0.4〜0.5μm)であるこ
とが好ましい。この平均粒径が0.3μm未満となる
と、未焼成シートの焼成時に、セラミック粉末の粉体間
の反応を活性化させるために焼成温度をより高くする必
要が生じる。しかし、焼成温度を過度に上昇させると異
常粒成長を生じ易く、また、センサ素子のセンシング部
を構成する電極の三相界面の性能も低下しがちである。
一方、0.6μmを超えると、セラミック粉末とバイン
ダとを混合したスラリーをキャスティングする際に固形
化し易くなり、未焼成シートの表面に凹凸が生じ易くな
る。未焼成シートの表面に凹凸を生じると、導電層用ペ
ーストや絶縁層用ペースト等のペーストを印刷した場合
に、これらペーストがシート表面上での途切れたり、厚
みのばらつきを生じ易くなるため好ましくない。
Further, the average particle size of the ceramic powder is 0.3 to 0.6 μm (more preferably, 0.35 to 0.5 μm).
5 μm, more preferably 0.4 to 0.5 μm). If the average particle size is less than 0.3 μm, it is necessary to raise the firing temperature to activate the reaction between the ceramic powders during firing of the unsintered sheet. However, if the firing temperature is excessively increased, abnormal grain growth tends to occur, and the performance of the three-phase interface of the electrodes constituting the sensing part of the sensor element tends to decrease.
On the other hand, when the thickness exceeds 0.6 μm, the slurry obtained by mixing the ceramic powder and the binder tends to be solidified when casting, and the surface of the unsintered sheet tends to be uneven. When irregularities are generated on the surface of the unsintered sheet, when pastes such as a conductive layer paste and an insulating layer paste are printed, these pastes tend to be interrupted on the sheet surface, and the thickness tends to vary, which is not preferable. .

【0012】また、本発明の未焼成シートは、その実密
度が理論密度の57〜70%であることが好ましい。上
記実密度とはアルキメデス法にて測定した場合の密度で
ある。一方、理論密度とは未焼成シートに含有される全
ての構成材料の理論密度を各構成材料の含有割合毎に加
算して算出した値である。この理論密度に対する実密度
の割合が57%未満となると、未焼成シートにクラック
が生じ易く、また焼成収縮差のばらつきも大きくなりが
ちである。一方、理論密度に対する実密度の割合が70
%を超えると、脱脂処理(脱バインダ処理)の際に十分
に脱脂することが難しくなり、脱脂中にシートにクラッ
クを生じる場合がある。
The unsintered sheet of the present invention preferably has an actual density of 57 to 70% of the theoretical density. The actual density is a density measured by the Archimedes method. On the other hand, the theoretical density is a value calculated by adding the theoretical densities of all the constituent materials contained in the unsintered sheet for each content ratio of each constituent material. If the ratio of the actual density to the theoretical density is less than 57%, cracks are likely to occur in the unsintered sheet, and the difference in the difference in firing shrinkage tends to increase. On the other hand, the ratio of the real density to the theoretical density is 70
%, It becomes difficult to sufficiently degrease at the time of degreasing treatment (debinding process), and cracks may occur in the sheet during degreasing.

【0013】尚、上記本発明のセンサ素子用未焼成セラ
ミックシートについては、上記のセラミック粉末、バイ
ンダの他に未焼成シートを形成するためのスラリーの調
整時に添加される可分散剤、イオネット等が含有される
ことが一般的である。
The unsintered ceramic sheet for a sensor element of the present invention contains, in addition to the ceramic powder and the binder, a dispersant, an ionette and the like which are added when preparing a slurry for forming the unsintered sheet. It is general that it is contained.

【0014】本発明のセンサ素子用未焼成セラミックシ
ートの製造方法は、セラミック粉末とバインダと可塑剤
とを含有するセンサ素子用未焼成セラミックシートの製
造方法であって、該可塑剤の質量を該バインダの質量の
35〜50%に調整することを特徴とする。
The method for producing an unsintered ceramic sheet for a sensor element of the present invention is a method for producing an unsintered ceramic sheet for a sensor element containing ceramic powder, a binder, and a plasticizer. It is characterized in that it is adjusted to 35 to 50% of the mass of the binder.

【0015】上記「セラミック粉末」、上記「バイン
ダ」及び上記「可塑剤」については、上述した本発明の
センサ素子用未焼成セラミックシートと同様である。本
発明のセンサ素子用未焼成セラミックシートの製造方法
によると、未焼成セラミックシートの成形後であって乾
燥後にクラックを生じず、成形後の未焼成シートの表面
に凹凸が無く、切断時に未焼成シート(未焼成シートの
一部)が切断刃に付着せず、切断後隣り合って放置され
ても付着しない。
The “ceramic powder”, the “binder”, and the “plasticizer” are the same as in the unsintered ceramic sheet for a sensor element of the present invention described above. According to the method for producing an unsintered ceramic sheet for a sensor element of the present invention, after the unsintered ceramic sheet is formed, cracks do not occur after drying, the surface of the unsintered sheet after molding has no irregularities, The sheet (part of the unsintered sheet) does not adhere to the cutting blade, and does not adhere even if left adjacent to after the cutting.

【0016】[0016]

【発明の実施の形態】以下、本発明を更に詳しく説明す
る。 [1]バインダに対する可塑剤の量が異なる15種類の
未焼成シートの製造 純度99.99%以上、平均粒径0.46μm、比表面
積4.8m/gであるアルミナ粉末1000gに対し
て、表1に示す質量(比面バインダ量で30〜60m
/g)のポリビニルブチラール樹脂(バインダ)と、表
1に示す量のフタル酸ジnブチル(可塑剤)と、適量の
トルエン(溶剤)とを添加してボールミルにより混合
し、スラリーを調製した。尚、表1に示すバインダ及び
可塑剤の配合割合は、セラミック粉末の質量に対する外
配合で換算した質量割合である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. [1] Production of 15 types of unsintered sheets having different amounts of the plasticizer with respect to the binder: 1000 g of alumina powder having a purity of 99.99% or more, an average particle size of 0.46 μm, and a specific surface area of 4.8 m 2 / g; Mass shown in Table 1 (30 to 60 m 2 in specific surface binder amount)
/ G) of polyvinyl butyral resin (binder), di-n-butyl phthalate (plasticizer) in an amount shown in Table 1, and an appropriate amount of toluene (solvent) were added and mixed by a ball mill to prepare a slurry. In addition, the compounding ratio of the binder and the plasticizer shown in Table 1 is a mass ratio converted into an external compound with respect to the mass of the ceramic powder.

【0017】[0017]

【表1】 *IMG[T01][Table 1] * IMG [T01]

【0018】尚、セラミック粉末の平均粒径は、マイク
ロトラック(HRA)により測定した値である。一方、
セラミック粉末の比表面積は、BET法(窒素吸着量
法)により測定した値である。
The average particle size of the ceramic powder is a value measured by Microtrac (HRA). on the other hand,
The specific surface area of the ceramic powder is a value measured by a BET method (nitrogen adsorption amount method).

【0019】上記で得られたスラリーを目開き約0.0
6mmのナイロンメッシュを通過させた後、脱泡機内に
おいて加温しながら真空度を次第に大きくして脱泡を行
った。次いで、これまでに得られた12種のスラリーを
ドクターブレード法により、各々樹脂フィルム上に厚さ
0.4〜0.5mmのシート状に成形した。得られたシ
ート状成形物を乾燥室(常圧、常温、常湿)にて11時
間放置して乾燥させた後、成形物から樹脂フィルムを剥
がして、バインダ及び可塑材の添加量が異なる15種類
の未焼成シート(実施例1〜9、比較例1〜6)を得
た。そして、得られた各センサ素子用未焼成セラミック
シートを、NC切断機によりプレート温度55℃上で9
0mm×60mmに切断した。
The slurry obtained above is opened with an opening of about 0.0
After passing through a 6 mm nylon mesh, the degree of vacuum was gradually increased while heating in a defoaming machine to perform defoaming. Next, the twelve types of slurries obtained so far were each formed into a sheet having a thickness of 0.4 to 0.5 mm on a resin film by a doctor blade method. The obtained sheet-like molded product was left to dry in a drying room (normal pressure, normal temperature, normal humidity) for 11 hours, and then the resin film was peeled off from the molded product, and the added amounts of the binder and the plasticizer were different. Various types of unsintered sheets (Examples 1 to 9 and Comparative Examples 1 to 6) were obtained. Then, the obtained unsintered ceramic sheet for each sensor element is subjected to an NC cutting machine at a plate temperature of 55 ° C. for 9 hours.
It was cut into 0 mm x 60 mm.

【0020】[2]未焼成シートの成形後におけるクラ
ックの検討 [1]で得られた90mm×60mmの未焼成シート1
5種類の各々を10枚用意した。この10枚の未焼成シ
ートの表裏面に水溶性赤色インクを塗布した後、各細片
の表裏面について拡大鏡を用いて目視にて確認し、水溶
性赤色インクが浸透することにより確認できるマイクロ
クラックの有無を検査した。その結果表裏いずれかに1
ヶ所でもクラックが認められた未焼成シートに表1の
「成形によるクラックの発生」の欄に「×」と示し、ク
ラックの認められなかった未焼成シートには「○」と示
した。この結果、バインダに対する可塑剤の質量割合が
31.8%以下である比較例1及び比較例2ではクラッ
クが認められた。これに対して、バインダに対する可塑
剤の質量割合が31.8%を超える未焼成シートにおい
ては、クラックは生じていなかった。
[2] Examination of cracks after molding of unsintered sheet The unsintered sheet of 90 mm × 60 mm obtained in [1]
Ten pieces of each of the five types were prepared. After applying the water-soluble red ink to the front and back surfaces of these 10 unsintered sheets, the front and back surfaces of each strip are visually checked using a magnifying glass, and the microscopic color can be checked by the permeation of the water-soluble red ink. The presence or absence of cracks was inspected. As a result, 1
An unsintered sheet in which cracks were observed at any of the places was indicated by “x” in the column of “Cracks generated by forming” in Table 1, and an unsintered sheet in which no cracks were observed was indicated by “○”. As a result, cracks were observed in Comparative Examples 1 and 2 in which the mass ratio of the plasticizer to the binder was 31.8% or less. On the other hand, no crack occurred in the unsintered sheet in which the mass ratio of the plasticizer to the binder exceeded 31.8%.

【0021】[3]印刷用ペーストの調整 一方、別途[1]と同様にして得られた未焼成シート
に、ブチルカルビドール及びアセトンを加えて溶解させ
て混合し、次いで、アセトンを蒸発させて粘度が120
Paのペーストを調整した。
[3] Preparation of printing paste On the other hand, butyl carbidol and acetone are added to the unsintered sheet obtained in the same manner as in [1], dissolved and mixed, and then the acetone is evaporated. 120 viscosity
The paste of Pa was adjusted.

【0022】[4]ペーストの印刷による未焼成シート
の変形の検討 [1]で得られクラックを生じていなかった実施例1〜
9と比較例3〜6における未焼成シートの各々の片面全
面に、[3]で得られたペーストを印刷し、次いで、6
0℃にて2時間かけて乾燥させた。その後、同様に
[3]で得られたペーストを4回ずつ印刷及び乾燥を繰
り返し、合計5回のペーストの印刷を行った積層体を得
た。同様な操作を各実施例及び比較例毎に10枚の未焼
成シートについて行い積層体を得た。得られた各10枚
の積層体の長手方向における寸法(印刷前90mm)の
寸法を各々測定し、印刷を行う前の同寸法からの変形率
の平均値を算出し表1に示した。
[4] Examination of deformation of unsintered sheet due to printing of paste Examples 1 to 4 in which cracks did not occur obtained in [1]
9 and the paste obtained in [3] was printed on the entire surface of one side of each of the unsintered sheets in Comparative Examples 3 to 6.
Dry at 0 ° C. for 2 hours. Thereafter, similarly, printing and drying of the paste obtained in [3] were repeated four times each to obtain a laminate in which the paste was printed five times in total. The same operation was performed for each of the ten unsintered sheets for each example and comparative example to obtain a laminate. The size (90 mm before printing) in the longitudinal direction of each of the obtained 10 laminates was measured, and the average value of the deformation ratio from the same size before printing was calculated.

【0023】この結果、バインダに対する可塑剤の質量
割合が35〜50%である実施例1〜9ではその変化率
は0.02〜0.4に抑えることができているのに対し
て、比較例3〜6では1.6を超えて大きくなってい
る。即ち、バインダに対する可塑剤の質量割合が50%
以上となると急激に変形率が大きくなっていることが分
かる。従って、[2]及び[4]の結果より成形時にク
ラックを生じることなく、且つ、未焼成シートの表面に
対するペーストの印刷工程が多い場合であっても、ペー
ストの印刷に起因した変形率を0.5未満に小さく抑え
ることができる未焼成シートは、バインダに対する可塑
剤の質量割合が35〜50%であることが分かる。
As a result, in Examples 1 to 9 in which the mass ratio of the plasticizer to the binder was 35 to 50%, the rate of change could be suppressed to 0.02 to 0.4. In Examples 3 to 6, it is larger than 1.6. That is, the mass ratio of the plasticizer to the binder is 50%.
From the above, it can be seen that the deformation rate sharply increases. Therefore, according to the results of [2] and [4], the deformation rate caused by the printing of the paste is reduced to 0 even if there is no crack at the time of molding and there are many paste printing steps on the surface of the unsintered sheet. It can be seen that the unsintered sheet that can be suppressed to less than 0.5 has a mass ratio of the plasticizer to the binder of 35 to 50%.

【0024】[5]セラミック粉末に対するバインダ量
が異なる7種類の未焼成シートの製造 純度99.99%以上、平均粒径0.46μm、比表面
積4.8m/gであるアルミナ粉末1000gに対し
て、表1に示す質量(比面バインダ量が30〜60m
/g)のポリビニルブチラール樹脂(バインダ)と、表
2に示すポリビニルブチラール樹脂の質量の半量におけ
るフタル酸ジnブチル(可塑剤)と、適量のトルエン
(溶剤)とを添加して回転機により混合した。尚、アル
ミナ粉末の平均粒径及び比表面積は[1]におけると同
様に測定した。
[5] Production of 7 types of unsintered sheets having different binder amounts with respect to the ceramic powder: 1000 g of alumina powder having a purity of 99.99% or more, an average particle size of 0.46 μm and a specific surface area of 4.8 m 2 / g. Te, mass shown in Table 1 (specific surface binder amount is 30 to 60 m 2
/ G) of polyvinyl butyral resin (binder), di-n-butyl phthalate (plasticizer) in half the mass of polyvinyl butyral resin shown in Table 2, and an appropriate amount of toluene (solvent) are added and mixed by a rotary machine. did. The average particle size and specific surface area of the alumina powder were measured in the same manner as in [1].

【0025】[0025]

【表2】 *IMG[T02][Table 2] * IMG [T02]

【0026】上記で得られたスラリーを目開き約0.0
6mmのナイロンメッシュを通過させた後、脱泡機内に
おいて加温しながら真空度を次第に大きくして脱泡を行
った。次いで、これまでに得られた12種のスラリーを
ドクターブレード法により、各々樹脂フィルム上に厚さ
0.4〜0.5mmのシート状に成形した。得られたシ
ート状成形物を乾燥室(常圧、常温、常湿)にて11時
間放置して乾燥させた後、成形物から樹脂フィルムを剥
がして、比面バインダ量が異なる7種類の未焼成シート
(実施例10〜16)を得た。
The slurry obtained above is opened with an opening of about 0.0
After passing through a 6 mm nylon mesh, the degree of vacuum was gradually increased while heating in a defoaming machine to perform defoaming. Next, the twelve types of slurries obtained so far were each formed into a sheet having a thickness of 0.4 to 0.5 mm on a resin film by a doctor blade method. The obtained sheet-like molded product was left to dry in a drying chamber (normal pressure, normal temperature, normal humidity) for 11 hours, then the resin film was peeled off from the molded product, and seven types of non-specific binders having different specific surface binder amounts were used. Fired sheets (Examples 10 to 16) were obtained.

【0027】[6]切断時の切断刃への未焼成シートの
付着 [5]で得られた各未焼成シートを、NC切断機により
プレート温度55℃上で6mm×6mmの細片100枚
に格子状に切断した。この時、切断刃に未焼成シートが
付着し、載置面(プレート)から浮上するか否かを目視
により観察した。この結果、未焼成シートが載置面より
浮上することなく切断できることが分かった。
[6] Attachment of unsintered sheet to cutting blade during cutting Each unsintered sheet obtained in [5] is cut into 100 pieces of 6 mm × 6 mm strips at a plate temperature of 55 ° C. by an NC cutting machine. Cut into a grid. At this time, it was visually observed whether the unsintered sheet adhered to the cutting blade and floated from the mounting surface (plate). As a result, it was found that the unsintered sheet could be cut without floating above the mounting surface.

【0028】[7]切断後放置による未焼成シート同士
の付着 [6]において格子状に6mm×6mmの細片100枚
に切り分けられた未焼成シート7種類をそのまま(細片
状の未焼成シート同士が側面で互いに触れ合っている状
態)放置した。そして、完全に冷却したシート状態で1
時間経過した後に細片状の未焼成シート同士を引き離し
た。その結果、実施例16においては付着していたが引
き離すことが問題ない程度にはできた(表2では「○」
と示した)。また、実施例1〜6では付着が全く認めら
れなかった(表2では「◎」と記した)。
[7] Attachment of unsintered sheets by leaving after cutting The 7 types of unsintered sheets cut into 100 pieces of 6 mm × 6 mm strips in a lattice form in [6] as they are (strip-shaped unsintered sheets) The two were touching each other on the sides). Then, in a completely cooled sheet state, 1
After a lapse of time, the strip-shaped unsintered sheets were separated from each other. As a result, it was possible to adhere to the film in Example 16 but to remove the film without any problem ("O" in Table 2).
As shown). Further, in Examples 1 to 6, no adhesion was observed at all (in Table 2, it was described as “◎”).

【0029】[8]未焼成シートの切断によるクラック
発生の有無の検討 [7]で得られた細片状の未焼成シート7種類の各々を
100枚用意した。この100枚の細片状にある未焼成
シートの表裏面に水溶性赤色インクを塗布した後、各細
片の表裏面について拡大鏡を用いて目視にて確認し、水
溶性赤色インクが浸透することにより確認できるクラッ
ク(マイクロクラック)の有無を検査した。その結果、
実施例1では3%の未焼成シートにクラックの発生が認
められたが、この発生率は製造上特に問題のないレベル
であると考えられる。なお、それ以外の実施例2〜7で
は、クッラクの発生はなく良好な検査結果が得られた。
[8] Examination of occurrence of crack due to cutting of unsintered sheet 100 pieces of each of the seven types of strip-shaped unsintered sheets obtained in [7] were prepared. After applying the water-soluble red ink to the front and back surfaces of the unfired sheets in the form of 100 strips, the front and back surfaces of each strip are visually checked using a magnifying glass, and the water-soluble red ink penetrates. The presence or absence of cracks (microcracks) that can be confirmed by the above was inspected. as a result,
In Example 1, cracks were observed in 3% of the unsintered sheet, but this occurrence rate is considered to be at a level that does not cause any problem in production. In addition, in Examples 2 to 7 other than the above, cracks did not occur and good inspection results were obtained.

【0030】[9]圧着による変形の検討 [1]と同様にして、縦90mm、横60mmに切り分
けた厚さ0.4〜0.5mmの未焼成シートを比面バイ
ンダ量毎に6枚作成した。得られた未焼成シートの7種
各6枚を各々圧着装置に載置し、縦90.4mm、横6
0.4mm、厚さ0.5mmの金属板を被せて50℃に
おいて0.8MPaの条件にて圧着作業を行った。その
後、未焼成シートの圧着作業前の長さが90mmであっ
た縦方向の伸びを計測し、変形量を算出して表2に併記
した。その結果、実施例7では、極僅かであるが0.0
5%の変形が認められたが、この程度の変形量であれば
積層による未焼成積層体の変形は許容される範囲である
と考えられる。一方、実施例1〜6については、製造上
何等問題のない変形のレベルであった。
[9] Examination of deformation due to pressure bonding In the same manner as in [1], six unsintered sheets having a thickness of 0.4 to 0.5 mm cut into 90 mm in length and 60 mm in width are prepared for each specific surface binder amount. did. Six sheets of each of the seven types of unsintered sheets obtained were placed on a crimping device, and each was 90.4 mm in length and 6 in width.
A metal plate having a thickness of 0.4 mm and a thickness of 0.5 mm was put on and subjected to a pressure bonding operation at 50 ° C. under a condition of 0.8 MPa. Thereafter, the elongation in the longitudinal direction of the unsintered sheet, which had a length of 90 mm before the pressure bonding operation, was measured, and the amount of deformation was calculated. As a result, in Example 7, although very small, 0.0
Deformation of 5% was observed, but with such an amount of deformation, it is considered that deformation of the unfired laminate due to lamination is within an allowable range. On the other hand, Examples 1 to 6 were at the deformation level without any problem in production.

【0031】[0031]

【発明の効果】本発明のセンサ素子用未焼成セラミック
シートの製造方法によると、成形後にクラックを生じ
ず、積層回数及び/又はペーストの印刷回数が多い場合
であってもほとんど変形を生じることなく、積層及びペ
ーストの印刷を行うことができるセンサ素子用未焼成セ
ラミックシートを得ることができる。また、このような
センサ素子用未焼成セラミックシートによると、製造時
の積層回数が多いセンサ素子においても高い寸法精度で
積層を行うことができる。更に、小型のセンサ素子の製
造においても高い寸法精度で積層を行うことができる。
このため、測定精度に優れ、耐久性の高いセンサ素子を
得ることができる。
According to the method for producing an unfired ceramic sheet for a sensor element of the present invention, cracks do not occur after molding, and almost no deformation occurs even when the number of laminations and / or the number of paste printings is large. Thus, an unsintered ceramic sheet for a sensor element on which lamination and printing of a paste can be performed can be obtained. Further, according to such an unsintered ceramic sheet for a sensor element, it is possible to perform the lamination with high dimensional accuracy even for a sensor element having a large number of laminations during manufacturing. Furthermore, lamination can be performed with high dimensional accuracy even in the manufacture of a small sensor element.
For this reason, a sensor element with excellent measurement accuracy and high durability can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 27/416 G01N 27/46 331 27/419 325Z 327Z (72)発明者 黒木 義昭 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 Fターム(参考) 2G004 BB04 BM07 2G046 AA03 AA07 AA13 AA18 BB02 BB06 EA07 EA18 FB02 FE03 2G060 AA03 AB05 AB10 AB15 AE19 BD10 JA01 4G030 AA07 AA12 AA16 AA17 AA36 AA37 BA07 GA11 GA14 GA15 GA17 GA20 HA04 PA22 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 27/416 G01N 27/46 331 27/419 325Z 327Z (72) Inventor Yoshiaki Kuroki Takatsuji-cho, Mizuho-ku, Nagoya-shi No. 14-18 Japan Special Ceramics Co., Ltd. F-term (reference) 2G004 BB04 BM07 2G046 AA03 AA07 AA13 AA18 BB02 BB06 EA07 EA18 FB02 FE03 2G060 AA03 AB05 AB10 AB15 AE19 BD10 JA01 4G030 AA07 AA12 AA17 GA17 AGA17 GAA HA04 PA22

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 セラミック粉末とバインダと可塑剤とが
含有されるセンサ素子用未焼成セラミックシートであっ
て、該可塑剤の質量は該バインダの質量の35〜50%
であることを特徴とするセンサ素子用未焼成セラミック
シート。
An unsintered ceramic sheet for a sensor element containing ceramic powder, a binder and a plasticizer, wherein the mass of the plasticizer is 35 to 50% of the mass of the binder.
An unfired ceramic sheet for a sensor element, characterized in that:
【請求項2】 上記セラミック粉末はアルミナを80質
量%以上含有し、該セラミック粉末の質量をA(g)と
し、該セラミック粉末の比表面積をB(m/g)と
し、上記バインダの質量をC(g)とした場合に、A×
B/Cが35〜55m/gである請求項1記載のセン
サ素子用未焼成セラミックシート。
2. The ceramic powder contains at least 80% by mass of alumina, the mass of the ceramic powder is A (g), the specific surface area of the ceramic powder is B (m 2 / g), and the mass of the binder is Is C (g), A ×
B / C is unfired ceramic sheet sensor element according to claim 1, wherein the 35~55m 2 / g.
【請求項3】 上記Bは3〜8m/gである請求項2
記載のセンサ素子用未焼成セラミックシート。
3. The method according to claim 2, wherein B is 3 to 8 m 2 / g.
An unfired ceramic sheet for a sensor element as described in the above.
【請求項4】 上記セラミック粉末の平均粒径は0.3
〜0.6μmである請求項1乃至3のうちのいずれか1
項に記載のセンサ素子用未焼成セラミックシート。
4. The ceramic powder has an average particle size of 0.3.
4. The method according to claim 1, wherein the thickness is about 0.6 μm.
An unfired ceramic sheet for a sensor element according to item 8.
【請求項5】 実密度が理論密度の57〜70%である
センサ素子用未焼成セラミックシート。
5. An unfired ceramic sheet for a sensor element having an actual density of 57 to 70% of a theoretical density.
【請求項6】 セラミック粉末とバインダと可塑剤とを
含有するセンサ素子用未焼成セラミックシートの製造方
法であって、該可塑剤の質量を該バインダの質量の35
〜50%に調整することを特徴とするセンサ素子用未焼
成セラミックシートの製造方法。
6. A method for producing a green ceramic sheet for a sensor element, comprising a ceramic powder, a binder and a plasticizer, wherein the mass of the plasticizer is 35% of the mass of the binder.
A method for producing an unfired ceramic sheet for a sensor element, which is adjusted to 50%.
【請求項7】 上記セラミック粉末としてアルミナを8
0質量%以上含有する粉末を用い、該セラミック粉末の
質量をA(g)とし、該セラミック粉末の比表面積をB
(m/g)とし、上記バインダの質量をC(g)とし
た場合に、A×B/Cを35〜55m/gに調整する
請求項6記載のセンサ素子用未焼成セラミックシートの
製造方法。
7. An alumina as the ceramic powder,
A powder containing 0% by mass or more is used, the mass of the ceramic powder is A (g), and the specific surface area of the ceramic powder is B
(M 2 / g) and then, the mass of the binder in the case of the C (g), A × B / C the 35~55m 2 / g according to claim 6 sensor element green ceramic sheet according to adjust to Production method.
【請求項8】 上記Bが3〜8m/gである上記セラ
ミック粉末を用いる請求項6又は7に記載のセンサ素子
用未焼成セラミックシートの製造方法。
8. The method for producing an unfired ceramic sheet for a sensor element according to claim 6, wherein the ceramic powder in which B is 3 to 8 m 2 / g is used.
【請求項9】 平均粒径が0.3〜0.6μmである上
記セラミック粉末を用いる請求項6乃至8のうちのずれ
か1項に記載のセンサ素子用未焼成セラミックシートの
製造方法。
9. The method for producing an unfired ceramic sheet for a sensor element according to claim 6, wherein the ceramic powder having an average particle size of 0.3 to 0.6 μm is used.
JP2001137910A 2001-03-31 2001-03-31 Unfired ceramic sheet for laminated gas sensor element and method for producing the same Expired - Fee Related JP4602592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001137910A JP4602592B2 (en) 2001-03-31 2001-03-31 Unfired ceramic sheet for laminated gas sensor element and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001137910A JP4602592B2 (en) 2001-03-31 2001-03-31 Unfired ceramic sheet for laminated gas sensor element and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002293647A true JP2002293647A (en) 2002-10-09
JP4602592B2 JP4602592B2 (en) 2010-12-22

Family

ID=18984927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001137910A Expired - Fee Related JP4602592B2 (en) 2001-03-31 2001-03-31 Unfired ceramic sheet for laminated gas sensor element and method for producing the same

Country Status (1)

Country Link
JP (1) JP4602592B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058309A (en) * 2006-08-29 2008-03-13 Internatl Business Mach Corp <Ibm> Fluid test apparatus and method
JP2010181252A (en) * 2009-02-05 2010-08-19 Nippon Soken Inc Method for manufacturing ceramic sheet and method for manufacturing ceramic laminate

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204355A (en) * 1989-02-01 1990-08-14 Showa Denko Kk Production of sinterable mixture
JPH03199161A (en) * 1989-12-27 1991-08-30 Showa Denko Kk Production of ceramic substrate
JPH07320693A (en) * 1994-03-31 1995-12-08 Hitachi Ltd Fluorescent lamp
JPH0864461A (en) * 1994-08-23 1996-03-08 Murata Mfg Co Ltd Manufacture of laminated ceramic electronic component
JPH106324A (en) * 1996-06-25 1998-01-13 Ngk Spark Plug Co Ltd Preparation of ceramic structure
JP2000007425A (en) * 1998-06-29 2000-01-11 Sumitomo Chem Co Ltd High strength alumina substrate and its production
JP2000178066A (en) * 1998-12-15 2000-06-27 Sumitomo Chem Co Ltd Alumina sintered body and its production
JP2000180410A (en) * 1998-12-10 2000-06-30 Riken Corp Lamination-type ceramic gas sensor
JP2000276944A (en) * 1999-03-25 2000-10-06 Matsushita Electric Ind Co Ltd Conductive paste and manufacture of ceramic electronic component using it
JP2001066280A (en) * 1999-06-22 2001-03-16 Ngk Spark Plug Co Ltd Ceramic laminate, its manufacturing method, and oxygen sensor element using the same
JP2002293646A (en) * 2001-03-31 2002-10-09 Ngk Spark Plug Co Ltd Green ceramic sheet for sensor device and manufacturing method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204355A (en) * 1989-02-01 1990-08-14 Showa Denko Kk Production of sinterable mixture
JPH03199161A (en) * 1989-12-27 1991-08-30 Showa Denko Kk Production of ceramic substrate
JPH07320693A (en) * 1994-03-31 1995-12-08 Hitachi Ltd Fluorescent lamp
JPH0864461A (en) * 1994-08-23 1996-03-08 Murata Mfg Co Ltd Manufacture of laminated ceramic electronic component
JPH106324A (en) * 1996-06-25 1998-01-13 Ngk Spark Plug Co Ltd Preparation of ceramic structure
JP2000007425A (en) * 1998-06-29 2000-01-11 Sumitomo Chem Co Ltd High strength alumina substrate and its production
JP2000180410A (en) * 1998-12-10 2000-06-30 Riken Corp Lamination-type ceramic gas sensor
JP2000178066A (en) * 1998-12-15 2000-06-27 Sumitomo Chem Co Ltd Alumina sintered body and its production
JP2000276944A (en) * 1999-03-25 2000-10-06 Matsushita Electric Ind Co Ltd Conductive paste and manufacture of ceramic electronic component using it
JP2001066280A (en) * 1999-06-22 2001-03-16 Ngk Spark Plug Co Ltd Ceramic laminate, its manufacturing method, and oxygen sensor element using the same
JP2002293646A (en) * 2001-03-31 2002-10-09 Ngk Spark Plug Co Ltd Green ceramic sheet for sensor device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058309A (en) * 2006-08-29 2008-03-13 Internatl Business Mach Corp <Ibm> Fluid test apparatus and method
JP2010181252A (en) * 2009-02-05 2010-08-19 Nippon Soken Inc Method for manufacturing ceramic sheet and method for manufacturing ceramic laminate

Also Published As

Publication number Publication date
JP4602592B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP2000281438A (en) Zirconia sheet and its production
US9187374B2 (en) Ceramics paste and laminated body
JP3320947B2 (en) Ceramic member having fine through holes
JP3429126B2 (en) Method of manufacturing ceramic member having fine through holes
JPH0582550B2 (en)
KR20100053464A (en) Method of manufacturing ceramic board and electronic device
JP4358777B2 (en) Zirconia setter and method for manufacturing ceramic substrate
JP2011247725A (en) Sensor element
JP2002293647A (en) Green ceramic sheet for sensor device and manufacturing method thereof
JPH106324A (en) Preparation of ceramic structure
JP2004292242A (en) Manufacturing method of ceramic composite
JP2006253563A (en) Manufacturing method for electronic component and calcination method
CN1304334C (en) Imbarking plate, ceramic base-plate manufacturing method and ceramic base-plate
JP2002293646A (en) Green ceramic sheet for sensor device and manufacturing method thereof
JP3602300B2 (en) Manufacturing method of ceramic member
JP2004043197A (en) Process for producing ceramic slurry, ceramic green sheet and ceramic sintered compact
JP4439257B2 (en) Ceramic green sheet and manufacturing method thereof
JP5761003B2 (en) Manufacturing method of ceramic substrate
JP3236489B2 (en) Method for manufacturing ceramic member having fine through-hole
JP3038425B2 (en) Manufacturing method of laminated ceramic sheet
JP2003107034A (en) Laminated gas sensor element and gas sensor equipped with the same
JP2003344351A (en) Oxygen sensor element
JP4161618B2 (en) Method for producing multilayer ceramic fired body
JP2013075798A (en) Method for producing ceramic sheet
JP7222296B2 (en) Firing jig

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees