JP2002289906A - Semiconductor light-receiving element, semiconductor light receiving device, and semiconductor device - Google Patents

Semiconductor light-receiving element, semiconductor light receiving device, and semiconductor device

Info

Publication number
JP2002289906A
JP2002289906A JP2001084307A JP2001084307A JP2002289906A JP 2002289906 A JP2002289906 A JP 2002289906A JP 2001084307 A JP2001084307 A JP 2001084307A JP 2001084307 A JP2001084307 A JP 2001084307A JP 2002289906 A JP2002289906 A JP 2002289906A
Authority
JP
Japan
Prior art keywords
semiconductor
receiving element
semiconductor light
light receiving
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001084307A
Other languages
Japanese (ja)
Other versions
JP2002289906A5 (en
JP4291521B2 (en
Inventor
Akihisa Terano
昭久 寺野
Yasunobu Matsuoka
康信 松岡
Shigehisa Tanaka
滋久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001084307A priority Critical patent/JP4291521B2/en
Priority to US09/905,956 priority patent/US6670600B2/en
Publication of JP2002289906A publication Critical patent/JP2002289906A/en
Publication of JP2002289906A5 publication Critical patent/JP2002289906A5/ja
Application granted granted Critical
Publication of JP4291521B2 publication Critical patent/JP4291521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an optical module or an optical transmitter which is superhigh in speed and has high sensitivity by scaling down of the size of an element for the reduction of an element capacity C of a board incidence type of semiconductor light-receiving element. SOLUTION: A plurality of ohmic connections 10 having their dimensions specified and a reflector 12, where being in contact with a semiconductor, a transparent film and a metal film 11 are stacked in this order are mixed within the diameter of light reception on a substrate that the incident light reaches after permeating the semiconductor, besides being located on the opposite side from the light incidence side of the board incidence type of semiconductor light-receiving element. Consequently, the optical module, the semiconductor light receiving device, and the optical transmitter, which are superhigh in speed and has high sensitivity corresponding to the enlargement of the transmission capacity can be manufactured with high reproductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体受光素子、
半導体受光装置及び半導体装置、更に詳しく言えば、半
導体基板面に垂直な方向から光を入射し電気信号に変換
する基板入射型半導体受光素子及びそれを用いた半導体
受光装置及び半導体装置に係り、特に光通信分野に用い
られる半導体受光素子及びその半導体受光素子を搭載し
た半導体受光装置及び光伝送装置に関する。
The present invention relates to a semiconductor light receiving element,
The present invention relates to a semiconductor light receiving device and a semiconductor device, and more particularly, to a substrate incident type semiconductor light receiving element that receives light from a direction perpendicular to a semiconductor substrate surface and converts the light into an electric signal, and a semiconductor light receiving device and a semiconductor device using the same. The present invention relates to a semiconductor light receiving element used in the field of optical communication, a semiconductor light receiving device equipped with the semiconductor light receiving element, and an optical transmission device.

【0002】[0002]

【従来の技術】近年、インターネット等の情報サービス
の急増とともに画像情報等の大容量を必要とする情報伝
達の需要拡大により、情報ネットワークの伝送容量の拡
大が急がれている。
2. Description of the Related Art In recent years, with the rapid increase of information services such as the Internet and the demand for information transmission requiring a large capacity of image information and the like, the transmission capacity of an information network has been rapidly increased.

【0003】伝送容量10Gbps以上の光通信システムを構
築するためには、超高速・高感度特性を有する光伝送装
置の開発が不可欠であり、これには光信号を取り入れて
電気信号に変換する半導体受光素子の超高速化及び高感
度化が必須である。
In order to construct an optical communication system having a transmission capacity of 10 Gbps or more, it is essential to develop an optical transmission device having ultra-high speed and high sensitivity characteristics. Ultra-high speed and high sensitivity of the light receiving element are essential.

【0004】半導体受光素子の応答速度は、素子容量C
と負荷抵抗Rの積で求められるCR時定数と、入射して
きた光信号によって励起されたキャリアの走行時間によ
って規定される。
The response speed of a semiconductor light receiving element is determined by the element capacitance C
It is defined by the CR time constant determined by the product of the load resistance R and the transit time of carriers excited by the incident optical signal.

【0005】そのため、応答速度を速くするためには、
素子容量C及び負荷抵抗Rを小さくすると共に、キャリ
アの走行時間を短くすることが要求される。走行時間は
半導体受光素子の中の光吸収層の厚さに比例するため、
光吸収層をできるだけ薄くする必要がある。しかし光吸
収層を薄層化することによって、光吸収層で吸収されず
に透過してしまう光量が増大するため、光吸収層の薄層
化は感度の低下の要因となる。
Therefore, in order to increase the response speed,
It is required to reduce the element capacitance C and the load resistance R and to shorten the carrier traveling time. Since the transit time is proportional to the thickness of the light absorbing layer in the semiconductor light receiving element,
It is necessary to make the light absorbing layer as thin as possible. However, by reducing the thickness of the light absorbing layer, the amount of light that is transmitted without being absorbed by the light absorbing layer increases. Therefore, reducing the thickness of the light absorbing layer causes a reduction in sensitivity.

【0006】このように光吸収層の厚さに関して、応答
速度と感度とは相反する関係にあるため、応答速度の高
速性と高感度特性の両者を満足する半導体受光素子の実
現は極めて困難であり、超高速かつ高感度な光伝送装置
を開発する上で大きな問題となっていた。
As described above, since the response speed and the sensitivity are opposite to each other with respect to the thickness of the light absorbing layer, it is extremely difficult to realize a semiconductor light receiving element that satisfies both the high response speed and high sensitivity characteristics. This has been a major problem in developing an ultra-high-speed and high-sensitivity optical transmission device.

【0007】上記問題を解決する技術として、光入射側
とは反対側でかつ入射光が光吸収層を透過して到達する
基板上に、受光径の大きさに応じた寸法を有し、半導体
層に接して下から誘電体膜/電極金属膜2層構造の反射
鏡を形成して、光吸収層で吸収されずに透過した光を効
率よく反射させ光吸収層の戻す技術(公知の技術と呼
ぶ)が知られている(特開平5−218488号公
報)。
As a technique for solving the above problem, a semiconductor device having a size corresponding to the size of a light receiving diameter on a substrate on the side opposite to the light incident side and at which incident light reaches through the light absorbing layer, A reflecting mirror having a two-layer structure of a dielectric film and an electrode metal film is formed from below in contact with the layer to efficiently reflect light transmitted without being absorbed by the light absorbing layer and return the light absorbing layer (known technology) (Referred to as JP-A-5-218488).

【0008】図2に上記公知の技術を用いて作製したア
バランシェ増倍型裏面入射型半導体受光素子(APD)
の模式的な断面構造を示す。図示のように、n型InP
基板21上に膜厚0.7μmの高濃度n型InAlAs
バッファ層22、膜厚0.2μmの低濃度n型InAl
As増倍層23、膜厚0.05μmのアンドープInG
aAs/InAlAs超格子層24、膜厚1.0μmの
低濃度p型InGaAs光吸収層25、膜厚1.0μm
のp型InAlAsバッファ層26、膜厚0.1nmの
高濃度p型InGaAsコンタクト層27が順次成長さ
れており、pn接合径が50μmφとなるメサ構造が形
成されている。
FIG. 2 shows an avalanche multiplication type back-illuminated semiconductor light receiving element (APD) manufactured by using the above-mentioned known technique.
1 shows a schematic cross-sectional structure. As shown, n-type InP
0.7 μm-thick high-concentration n-type InAlAs on substrate 21
Buffer layer 22, low-concentration n-type InAl having a thickness of 0.2 μm
As multiplication layer 23, undoped InG having a thickness of 0.05 μm
aAs / InAlAs superlattice layer 24, low-concentration p-type InGaAs light absorption layer 25 having a thickness of 1.0 μm, thickness 1.0 μm
A p-type InAlAs buffer layer 26 and a high-concentration p-type InGaAs contact layer 27 having a thickness of 0.1 nm are sequentially grown to form a mesa structure having a pn junction diameter of 50 μmφ.

【0009】基板表面はSiN絶縁膜28によりパッシ
ベーションされており、基板21上の所望の領域にはn
型オーミック電極29が形成されている。p型オーミッ
ク電極30はコンタクト層27上及びコンタクト層27
上の受光径内に形成された40μmφの大きさのSiN
絶縁膜28上にも積層されている。
The substrate surface is passivated by a SiN insulating film 28, and n
A type ohmic electrode 29 is formed. The p-type ohmic electrode 30 is formed on the contact layer 27 and the contact layer 27.
40 μmφ SiN formed in the upper light receiving diameter
It is also laminated on the insulating film 28.

【0010】SiN絶縁膜等からなる誘電体膜28は、
作製プロセスにおける高温のアニール処理によっても、
半導体層であるp型InGaAsコンタクト層26、及
びp型オーミック電極30とほとんど反応しないため、
その界面の平坦性は極めて良好な状態のまま保持され
る。このため、SiN絶縁膜28に接するp型オーミッ
ク電極30からなる金属面、すなわちSiN絶縁膜28
/p型オーミック電極30積層膜からなる反射鏡31
が、透過してきた光をほぼ100%の反射率で反射して
再び光吸収層25内へ導入できることから、量子効率の
向上が図れる。
The dielectric film 28 made of a SiN insulating film or the like
High temperature annealing in the fabrication process
Since it hardly reacts with the p-type InGaAs contact layer 26 as a semiconductor layer and the p-type ohmic electrode 30,
The flatness of the interface is maintained in an extremely good state. Therefore, the metal surface made of the p-type ohmic electrode 30 in contact with the SiN insulating film 28, that is, the SiN insulating film 28
/ P-type ohmic electrode 30 Reflecting mirror 31 composed of a laminated film
However, since the transmitted light can be reflected at almost 100% reflectance and introduced again into the light absorbing layer 25, the quantum efficiency can be improved.

【0011】反射鏡31は、面積が広ければ広いほど実
効的な受光径を大きくできるため、素子の量子効率はこ
の反射鏡面積によって左右される。また、電極金属膜と
半導体層とのオーミック接続部は反射鏡31以外の周辺
部で形成すれば良く、オーミック接続部によって生じる
低反射領域が、光の反射に直接的な影響を及ぼすことは
少ない。
Since the larger the area of the reflecting mirror 31 is, the larger the effective light receiving diameter can be made, the quantum efficiency of the element depends on the area of the reflecting mirror. In addition, the ohmic connection between the electrode metal film and the semiconductor layer may be formed in a peripheral portion other than the reflecting mirror 31, and the low reflection region generated by the ohmic connection hardly directly affects light reflection. .

【0012】[0012]

【発明が解決しようとする課題】しかし、今後光通信等
などに於いて、さらなる伝送容量の拡大に伴って、素子
容量Cの与える影響が極めて大きくなっていくため、よ
り超高速かつ高感度な光伝送装置を開発するためには、
素子容量Cの低減に向けた素子サイズの縮小化も必須と
なる。素子サイズは、最低限必要とされる実効的な受光
径と、素子のpn接合の径との比を1にすることが理想
的である。
However, in the future, in optical communications and the like, the influence of the element capacitance C becomes extremely large with the further expansion of the transmission capacity. To develop optical transmission equipment,
It is also necessary to reduce the element size to reduce the element capacitance C. Ideally, the element size is such that the ratio of the minimum required effective light receiving diameter to the diameter of the pn junction of the element is 1.

【0013】上記公知の技術を用いた場合、受光径とp
n接合径の比を1に限りなく近づけていく場合、実効的
な受光径(=反射鏡面積)を広く確保するためには、反
射鏡以外に形成されるオーミック接続部の面積を減少さ
せなければならないため、素子抵抗が増大する。
When the above known technique is used, the light receiving diameter and p
When the ratio of the n-junction diameters approaches 1 as much as possible, in order to secure a wide effective light receiving diameter (= reflection mirror area), the area of the ohmic connection portion formed other than the reflection mirror must be reduced. Therefore, the element resistance increases.

【0014】逆にオーミック接続部の面積を十分に確保
すると、実効的な受光径(=反射鏡面積)を減少させな
ければならないため、感度の低下を招くこととなる。一
例として、上記半導体受光素子の場合、pn接合径は5
0μmであるから、素子容量は約0.1pFであり10
GHz以上の周波数応答特性が得られる。この素子で、
例えば40GHz動作を想定すると、CR時定数の制限
から素子容量は0.05pFが限界であるため、この値
から最適なpn接合径を計算すると約34μmφとな
る。
Conversely, if the area of the ohmic connection is sufficiently ensured, the effective light receiving diameter (= reflection mirror area) must be reduced, resulting in a decrease in sensitivity. As an example, in the case of the semiconductor light receiving element, the pn junction diameter is 5
0 μm, the element capacitance is about 0.1 pF and 10
A frequency response characteristic of GHz or more can be obtained. With this element,
For example, assuming a 40 GHz operation, the element capacitance is limited to 0.05 pF due to the limitation of the CR time constant. Therefore, when the optimum pn junction diameter is calculated from this value, it becomes about 34 μmφ.

【0015】従って、上記従来の技術を用いてこれまで
通りの素子抵抗を有する受光素子を作る場合、実効的な
受光径は20μm以下となり、実装時にファイバーとの
光軸合わせの精度が必要になるばかりか、環境温度の変
化によって使用中に光軸ずれが発生し、量子効率の低下
を招く危険性が高くなる。このように、上記従来の技術
による基板入射型半導体受光素子は、素子容量Cの低減
に向けた素子サイズの縮小化を図ることが困難であり、
超高速かつ高感度の光伝送装置を開発する上で大きな問
題となっていた。
Therefore, when a light-receiving element having the same element resistance as described above is manufactured using the above-described conventional technique, the effective light-receiving diameter is 20 μm or less, and the accuracy of optical axis alignment with the fiber is required during mounting. Not only that, there is a high risk that an optical axis shift occurs during use due to a change in the environmental temperature, leading to a decrease in quantum efficiency. As described above, in the substrate-illuminated semiconductor light receiving element according to the above-described conventional technique, it is difficult to reduce the element size to reduce the element capacitance C.
This has been a major problem in developing an ultra-high speed and high sensitivity optical transmission device.

【0016】本発明の目的は、素子サイズを縮小化して
も素子抵抗の増大、及び量子効率の低下を生じない高感
度かつ高速の基板入射型半導体受光素子、及びその半導
体受光素子を搭載した半導体受光装置、半導体装置を提
供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-sensitivity and high-speed substrate-illuminated semiconductor light-receiving element which does not cause an increase in element resistance and a decrease in quantum efficiency even when the element size is reduced, and a semiconductor mounted with the semiconductor light-receiving element. A light receiving device and a semiconductor device are provided.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するた
め、本発明の半導体受光素子は、基板入射型半導体受光
素子(以下裏面入射型半導体受光素子とも呼ぶ)の光入
射側とは反対側でかつ入射光が半導体中を透過して到達
する基板上の受光径内に、細線状又は点状の形状の複数
のオーミック接続部と、上記半導体に接して透明膜、金
属膜の順に積層した反射鏡とを混在させて構成される。
ここで、細線状又は点状の形状とは、以下の発明の実施
の形態で示すように、同心状のリングが製造上の観点か
ら望ましいが、それに限定されず、格子状、或いは、矩
形や円形等の孤立パターンが分布した場合も含む。
In order to achieve the above object, a semiconductor light receiving element according to the present invention is provided on a side opposite to a light incident side of a substrate incident type semiconductor light receiving element (hereinafter also referred to as a back side incident type semiconductor light receiving element). And within the light receiving diameter of the substrate on which the incident light is transmitted through the semiconductor, a plurality of ohmic connection portions in the form of a thin line or a dot, and a reflection in which a transparent film and a metal film are stacked in contact with the semiconductor in this order. It is configured by mixing a mirror.
Here, the thin line or dot shape is preferably a concentric ring from the viewpoint of manufacturing as shown in the following embodiments of the invention, but is not limited thereto, and is not limited to a lattice shape or a rectangular shape. This includes the case where isolated patterns such as circles are distributed.

【0018】上記オーミック接続部の細線状又は点状の
形状の寸法は、入射光が認識できないし難い寸法に設定
される。具体的には、光の波長が1.5μm程度である
ので、細線の幅あるいは、点状の径が2μm以下である
ことが望ましい。
The size of the thin line or dot shape of the ohmic connection is set to a size that makes it difficult for incident light to be recognized. Specifically, since the wavelength of light is about 1.5 μm, it is desirable that the width of the thin line or the dot diameter is 2 μm or less.

【0019】本発明の基板入射型半導体受光素子は、光
の性質、すなわち光自身の波長よりも小さいサイズの物
体の形状を認識出来ない、また進行方向に向かって拡が
る性質を利用して、上記細線状又は点状の形状のオーミ
ック接続部は反射面として働かず、電極としては動作す
る。従って、基板入射型半導体受光素子の光反射面は、
実質的に、オーミック接続部の面積及び透明膜、金属膜
の順に積層下部分の面積を合わせた面積、すなわち、有
効受光面積と等しいものとなる。例えば反射鏡面内に半
導体と接する直径1.0μm程度の円形のオーミック接
続部を点在させた場合、低反射であるオーミック接続部
の輪郭はぼやけるとともに、周辺の反射鏡により反射さ
れた光の拡がりによって、反射鏡とオーミック接続部が
混在した受光径内の反射光は、ほぼ完全な明部に支配さ
れた反射光となるため、オーミック接続部によって生じ
る暗部の影響をほとんど受けることなく、全体的な反射
率及び面内感度特性の平坦性を良好なまま保持できる。
The substrate-incident type semiconductor light receiving element of the present invention utilizes the property of light, that is, the property of not being able to recognize the shape of an object having a size smaller than the wavelength of the light itself, and utilizing the property of spreading in the traveling direction. The thin line or dot shaped ohmic connection does not work as a reflection surface but works as an electrode. Therefore, the light reflecting surface of the substrate incident type semiconductor light receiving element is
The area is substantially equal to the sum of the area of the ohmic connection portion and the area of the lower portion of the stack in the order of the transparent film and the metal film, that is, the effective light receiving area. For example, when a circular ohmic connection having a diameter of about 1.0 μm in contact with a semiconductor is scattered in the reflecting mirror surface, the outline of the ohmic connection having low reflection is blurred, and the light reflected by the surrounding reflector is spread. As a result, the reflected light within the light receiving diameter where the reflecting mirror and the ohmic connection are mixed is almost completely reflected light dominated by the bright portion, so that there is almost no influence of the dark portion generated by the ohmic connection, and the overall High reflectivity and flatness of in-plane sensitivity characteristics can be maintained.

【0020】従って、有効な反射面積を確保しながら、
オーミック接続部の面積も確保でき、さらに、受光径内
全域を使ってオーミック電極/半導体間の電流経路が配
置されるため、合計したオーミック接続部面積が多少減
少しても、素子の動作に影響を与えるほどの著しい素子
抵抗の増大は起こらないため、電極間の抵抗を低くして
RC時定数を小さくして、高速化を実現する。同時に、有
効な反射面積もオーミック接続部の影響を受けないので
光の反射量を拡大し、量子効率すなわち感度を高めるこ
とができる。換言すれば、RC時定数を増大することなく
半導体受光素子のサイズの縮小化が可能となり、素子容
量Cの低減を図ることができ、高速な応答特性を保ちつ
つ高い感度の半導体受光素子、並びにそれを搭載した半
導体受光装置、半導体装置を実現できる。
Therefore, while securing an effective reflection area,
The area of the ohmic connection can be ensured, and the current path between the ohmic electrode and the semiconductor is arranged using the entire area within the light receiving diameter. Therefore, even if the total ohmic connection area is slightly reduced, the operation of the device is affected. Since the resistance of the element does not increase significantly enough to give
Reduce RC time constant to achieve higher speed. At the same time, the effective reflection area is not affected by the ohmic connection, so that the amount of reflected light can be increased and the quantum efficiency, that is, the sensitivity can be increased. In other words, the size of the semiconductor light receiving element can be reduced without increasing the RC time constant, the element capacitance C can be reduced, and the semiconductor light receiving element with high sensitivity while maintaining high-speed response characteristics, and A semiconductor light receiving device and a semiconductor device having the same mounted can be realized.

【0021】[0021]

【発明の実施の形態】<実施例1>図1(a)及び
(b)はそれぞれ本発明による基板入射型半導体受光素
子の第1の実施例の模式的な断面図及び部分平面図であ
る。本実施例はアバランシェ増倍型裏面入射型半導体受
光素子(APD)であって、基板1上に、光吸収層5を
含む半導体層2〜7が形成され、その上面すなわち光信号
の光入射側とは反対側でかつ入射光が半導体中を透過し
て到達する基板上の受光径内にリング状の複数のオーミ
ック接続部10と、半導体7に接して透明膜、金属膜の
順に積層した反射鏡11とを混在させて構成されてい
る。リング状の複数のオーミック接続部10は、電極形
成領域の中央部を中心とした線幅2μm以下の同心円パ
ターンである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS <Embodiment 1> FIGS. 1A and 1B are a schematic sectional view and a partial plan view, respectively, of a first embodiment of a substrate-illuminated semiconductor light receiving device according to the present invention. . This embodiment is an avalanche multiplication type back-illuminated type semiconductor light receiving element (APD) in which semiconductor layers 2 to 7 including a light absorption layer 5 are formed on a substrate 1 and the upper surface thereof, that is, the light incident side of an optical signal. A plurality of ring-shaped ohmic connection portions 10 on the opposite side of the substrate and within a light receiving diameter on the substrate through which the incident light passes through the semiconductor, and a reflection film in which a transparent film and a metal film are laminated in contact with the semiconductor 7 in this order. The mirror 11 and the mirror 11 are mixed. The plurality of ring-shaped ohmic connection portions 10 are concentric patterns with a line width of 2 μm or less centered on the center of the electrode formation region.

【0022】本実施例の製法を簡単に説明する。周知の
分子線エピタキシャル成長(MBE)法を用いて、n型
InP基板1上に膜厚0.7μmの高濃度n型InAl
Asバッファ層2、膜厚0.2μmの低濃度n型InA
lAs増倍層3、膜厚0.05μmのアンドープInG
aAs/InAlAs超格子層4、膜厚1.0μmの低
濃度p型InGaAs光吸収層5、膜厚1.0μmのp
型InAlAsバッファ層6、膜厚0.1nmの高濃度
p型InGaAsコンタクト層7が順次成長されてお
り、化学エッチングによりpn接合径が50μmとなる
メサ構造が形成されている。
The manufacturing method of this embodiment will be described briefly. Using a well-known molecular beam epitaxial growth (MBE) method, a 0.7 μm-thick high-concentration n-type InAl
As buffer layer 2, low-concentration n-type InA with a thickness of 0.2 μm
lAs multiplying layer 3, undoped InG having a thickness of 0.05 μm
aAs / InAlAs superlattice layer 4, low-concentration p-type InGaAs light absorbing layer 5 having a thickness of 1.0 μm, p having a thickness of 1.0 μm
A type InAlAs buffer layer 6 and a high-concentration p-type InGaAs contact layer 7 having a thickness of 0.1 nm are sequentially grown, and a mesa structure having a pn junction diameter of 50 μm is formed by chemical etching.

【0023】基板表面はSiN絶縁膜8によりパッシベ
ーションされており、n型InP基板1上の所望の領域
にはn型オーミック電極9が形成されている。コンタク
ト層6上のSiN絶縁膜8には、線幅1.0μmの3重
の同心円パターンからなるオーミック接続部10が開口
されており、オーミック接続部10及びコンタクト層7
上のSiN絶縁膜8上には、p型オーミック電極11が
設けられている。オーミック接続部10ではコンタクト
層7とp型オーミック電極11が接触するため良好なオ
ーミック特性が得られる。またそれ以外のSiN絶縁膜
8/p型オーミック電極11積層膜からなる反射鏡12
(点線で囲む)が、信号光を良好に反射する。
The substrate surface is passivated by a SiN insulating film 8, and an n-type ohmic electrode 9 is formed in a desired region on the n-type InP substrate 1. The SiN insulating film 8 on the contact layer 6 has an opening in the ohmic connection portion 10 formed of a triple concentric pattern with a line width of 1.0 μm.
On the upper SiN insulating film 8, a p-type ohmic electrode 11 is provided. In the ohmic connection section 10, the contact layer 7 and the p-type ohmic electrode 11 are in contact with each other, so that good ohmic characteristics can be obtained. In addition, a reflecting mirror 12 composed of a laminated film of the other SiN insulating film 8 / p-type ohmic electrode 11
(Surrounded by a dotted line) reflects the signal light well.

【0024】上記実施例の半導体受光素子の降伏電圧は
約30Vであり、電圧15Vから増倍が生じることか
ら、本受光素子の動作電圧は15Vから30Vである。
最大増倍率は80以上、印加電圧27Vでの増倍率は約
10であった。50Ωの負荷抵抗で素子の高周波特性を
測定したところ、増倍率2〜12の範囲で、3dB帯域
は17GHz以上であった。
The breakdown voltage of the semiconductor light receiving element of the above embodiment is about 30 V, and multiplication occurs from a voltage of 15 V. Therefore, the operating voltage of the light receiving element is 15 V to 30 V.
The maximum multiplication factor was 80 or more, and the multiplication factor at an applied voltage of 27 V was about 10. When the high-frequency characteristics of the device were measured with a load resistance of 50Ω, the 3 dB band was 17 GHz or more in the range of the gain of 2 to 12.

【0025】また、従来構造の反射鏡を有するpn接合
部の径が50μmφのAPDでは、量子効率が83%程
度であったのに対して、上記pn接合径とほぼ同一径を
有する反射鏡内にオーミック接続部を混在させた本実施
例のAPDでは、量子効率は約91%と従来構造よりも
良好な値が得られた。これは実効的な受光径が従来の4
0μmφから50μmφに大きくなったことに起因して
おり、本実施例はpn接合径が同一ならば従来構造より
も高い量子効率が得られ、かつ上述の効果により信号光
に対する位置ずれトレランス幅を広げることができる。
In an APD having a conventional structure of a pn junction having a reflecting mirror with a diameter of 50 μmφ, the quantum efficiency is about 83%. In the APD of the present embodiment in which the ohmic connection portions are mixed together, the quantum efficiency was about 91%, which was a better value than the conventional structure. This is because the effective light receiving diameter is 4
This is due to the increase from 0 μmφ to 50 μmφ. In this embodiment, if the pn junction diameter is the same, a higher quantum efficiency can be obtained than in the conventional structure, and the above-described effect increases the width of the positional deviation tolerance for the signal light. be able to.

【0026】また本実施例における受光素子の容量は約
0.1pFであるが、本発明はさらなる素子サイズの縮
小化にも容易に対応できることから、従来デバイスを用
いて40GHzで動作する半導体受光素子の作製も十分
可能である。
Although the capacitance of the light receiving element in this embodiment is about 0.1 pF, the present invention can easily cope with further reduction of the element size, so that the semiconductor light receiving element operating at 40 GHz using the conventional device is used. Is also possible.

【0027】図3は本発明の裏面入射型半導体受光素子
を用いた受光モジュールの一実施例の断面図である。ア
ノードピン36、カソードピン37、ケースピン38、
レンズホルダ39、及びレンズ32を備えたヘッダ33
上の所望の位置に、本発明の裏面入射型半導体受光素子
34を金属配線が形成されたマウント35上にフリップ
チップ実装した。
FIG. 3 is a sectional view of an embodiment of a light receiving module using the back illuminated semiconductor light receiving element of the present invention. Anode pin 36, cathode pin 37, case pin 38,
Header 33 including lens holder 39 and lens 32
The back illuminated semiconductor light receiving element 34 of the present invention was flip-chip mounted on the mount 35 on which the metal wiring was formed at the desired position above.

【0028】半導体受光素子34とマウント35上の金
属配線との接続はAuSn半田を用い、マウント35上
の金属配線とアノードピン36及びカソードピン37と
の接続は、圧着によるAu線を用いて行った。素子搭載
時のレンズとの位置ずれは±1.0μm以下に抑えられ
ており、光ファイバを用いて波長1.55μmの光を入
射し、量子効率は93.2%と高い値が得られた。 <実施例3>図4は本発明の裏面入射型半導体受光素子
を用いた光モジュールの他の実施例の断面図である。絶
縁膜40、及び金属配線を有するV溝光導波路基板41
上に、本発明の裏面入射型半導体受光素子42をフリッ
プチップ実装した金属配線を有するキャリア43を搭載
した。
The connection between the semiconductor light receiving element 34 and the metal wiring on the mount 35 is made by using AuSn solder, and the connection between the metal wiring on the mount 35 and the anode pins 36 and the cathode pins 37 is made by using Au wires by crimping. Was. The positional deviation from the lens when the element was mounted was suppressed to ± 1.0 μm or less, and light with a wavelength of 1.55 μm was incident using an optical fiber, and the quantum efficiency was as high as 93.2%. . <Embodiment 3> FIG. 4 is a sectional view of another embodiment of an optical module using the back-illuminated semiconductor light receiving element of the present invention. Insulating film 40 and V-groove optical waveguide substrate 41 having metal wiring
A carrier 43 having metal wiring on which a back-illuminated semiconductor light receiving element 42 of the present invention is flip-chip mounted is mounted thereon.

【0029】ここで半導体受光素子42とキャリア43
上の金属配線との接続、及びキャリア43上のV溝光導
波路基板41上の金属配線との接続は、AuSn半田を
用いた。その後フラットエンドの光ファイバ44をV溝
に固定した。
Here, the semiconductor light receiving element 42 and the carrier 43
The connection with the upper metal wiring and the connection with the metal wiring on the V-groove optical waveguide substrate 41 on the carrier 43 used AuSn solder. Thereafter, the flat end optical fiber 44 was fixed in the V groove.

【0030】本実施例では、素子搭載時及び光ファイバ
固定時の位置ずれは±1.0μm以下に抑えられ、波長
1.55μm光に対する受光感度は0.87A/Wと高
い値が得られた。最大遮断周波数も20GHz以上とな
り、浮遊容量等による帯域劣化も認められなかった。 <実施例4>図5は本発明による光モジュールのさらに
他の実施例の断面図である。本実施例は本発明による裏
面入射型PIN−PDをモニタとして用いたものであ
る。絶縁膜40、モニタ受光素子用金属配線、及び半導
体レーザ用金属配線をもつV溝光導波路基板41上に、
半導体レーザ45と、裏面入射型PIN−PD46をフ
リップチップ実装した金属配線を有するキャリア43と
を搭載した。
In this embodiment, the positional deviation when mounting the element and fixing the optical fiber was suppressed to ± 1.0 μm or less, and the light receiving sensitivity to the light having a wavelength of 1.55 μm was as high as 0.87 A / W. . The maximum cutoff frequency was 20 GHz or more, and no band degradation due to stray capacitance or the like was observed. <Embodiment 4> FIG. 5 is a sectional view of still another embodiment of the optical module according to the present invention. This embodiment uses a back-illuminated PIN-PD according to the present invention as a monitor. On a V-groove optical waveguide substrate 41 having an insulating film 40, a metal wiring for a monitor light receiving element, and a metal wiring for a semiconductor laser,
A semiconductor laser 45 and a carrier 43 having metal wiring on which a back-illuminated PIN-PD 46 is flip-chip mounted are mounted.

【0031】ここで裏面入射型PIN−PD46とキャ
リア43上の金属配線との接続、キャリア43上のV溝
光導波路基板41上のモニタ受光素子用金属配線との接
続、及び半導体レーザ45と半導体レーザ用金属配線と
の接続にはAuSn半田を用いた。その後フラットエン
ドの光ファイバ444をV溝に固定した。
Here, the connection of the back-illuminated PIN-PD 46 to the metal wiring on the carrier 43, the connection to the metal wiring for the monitor light receiving element on the V-groove optical waveguide substrate 41 on the carrier 43, and the semiconductor laser 45 and the semiconductor AuSn solder was used for connection with the metal wiring for laser. After that, the flat end optical fiber 444 was fixed in the V groove.

【0032】本実施例では、各素子の搭載時及び光ファ
イバ固定時の位置ずれは±1.0μm以下に抑えられ、
半導体レーザ45とモニタ用PIN−PD46間の光結
合損失は1〜2dBであった。また外部出力1mWでの
モニタ電流は600μAと良好な値が得られた。 <実施例5>図6は本発明による裏面入射型半導体受光
素子を用いて、パッケージングされた光受信モジュール
の実施例の斜視図である。V溝基板47上に、本発明の
裏面入射型半導体受光素子42をフリップチップ実装し
た金属配線を有するキャリア43を搭載し、さらに高感
度化のため受信用プリアンプIC48もV溝基板47上
に実装した。さらに信号光入射用の光ファイバ49を取
り付け、セラミック製のベース50に固定し、キャップ
51で蓋をした。
In this embodiment, the positional deviation when each element is mounted and when the optical fiber is fixed is suppressed to ± 1.0 μm or less.
The optical coupling loss between the semiconductor laser 45 and the monitoring PIN-PD 46 was 1-2 dB. The monitor current at an external output of 1 mW was as good as 600 μA. <Embodiment 5> FIG. 6 is a perspective view of an embodiment of a light receiving module packaged using a back illuminated semiconductor light receiving element according to the present invention. A carrier 43 having metal wiring on which a back-illuminated semiconductor light receiving element 42 of the present invention is flip-chip mounted is mounted on a V-groove substrate 47, and a preamplifier IC 48 for reception is also mounted on the V-groove substrate 47 for higher sensitivity. did. Further, an optical fiber 49 for signal light incidence was attached, fixed to a ceramic base 50, and covered with a cap 51.

【0033】作製したモジュールを伝送評価した。信号
光波長1.5μm、伝送速度10Gb/sの光伝送にお
いて、10の−12乗の誤り率における最小受光感度は
−27dBmと良好であった。セラミック製のベース5
0およびキャップ51の代わりに樹脂製のもの、あるい
は樹脂のトランスファモールド等を用いてもよい。さら
にV溝基板47の代わりに光回路を有する光導波炉基板
を用いてもよい。また、本発明の裏面入射型半導体受光
素子を用いた光送信及び光送受信モジュールをパッケー
ジングしてもよい。 <実施例6>図7は本発明の裏面入射型半導体受光素子
を用いた光伝送装置の一実施例の斜視図である。本発明
の裏面入射型半導体受光素子が搭載され、信号光入射用
の光ファイバ49が付いた光受信モジュール52と受信
IC53及びその他の電子部品をボード54上に搭載し
た。
The produced module was evaluated for transmission. In optical transmission at a signal light wavelength of 1.5 μm and a transmission speed of 10 Gb / s, the minimum light receiving sensitivity at an error rate of 10 −12 was as good as −27 dBm. Ceramic base 5
Instead of the 0 and the cap 51, a resin material, a resin transfer mold, or the like may be used. Further, instead of the V-groove substrate 47, an optical waveguide furnace substrate having an optical circuit may be used. Further, an optical transmission and transmission / reception module using the back-illuminated semiconductor light receiving element of the present invention may be packaged. <Embodiment 6> FIG. 7 is a perspective view of an embodiment of an optical transmission device using a back illuminated semiconductor light receiving element according to the present invention. A light receiving module 52 equipped with the back illuminated semiconductor light receiving element of the present invention and having an optical fiber 49 for signal light incidence, a receiving IC 53 and other electronic components are mounted on a board 54.

【0034】図8は本発明の受光素子を用いた光伝送装
置の構成を示すブロック図である。光受信モジュール5
2は裏面入射型半導体受光素子42とプリアンプIC48
の2チップによって構成されており、実施例5に記載さ
れた動作によって電圧信号が得られる。その後識別器、
クロック抽出器よって構成された受信IC53によって、
デジタル化された電気信号及びクロック信号に分けられ
出力される。作製したモジュールを伝送評価した。信号
光波長1.5μm、伝送速度10Gb/sの光伝送にお
いて、10の−12乗の誤り率における最小受光感度は
−27dBmと良好であった。
FIG. 8 is a block diagram showing the configuration of an optical transmission device using the light receiving element of the present invention. Optical receiving module 5
2 is a back-illuminated semiconductor light receiving element 42 and a preamplifier IC 48
The voltage signal is obtained by the operation described in the fifth embodiment. Then a classifier,
By the receiving IC 53 constituted by the clock extractor,
It is divided into a digitized electric signal and a clock signal and output. The produced module was evaluated for transmission. In optical transmission at a signal light wavelength of 1.5 μm and a transmission speed of 10 Gb / s, the minimum light receiving sensitivity at an error rate of 10 −12 was as good as −27 dBm.

【0035】光受信モジュールの代わりに、本発明の裏
面入射型半導体受光素子が集積化された光送信モジュー
ル及び光送受信モジュールを搭載してもよい。また、以
上の実施例ではメサ型形状を有する半導体受光素子、及
びそれを搭載した光モジュール、光伝送装置について述
べたが、この他プレーナ型の半導体受光素子に本発明の
電極構造を適用しても良いことは言うまでも無い。
Instead of the optical receiving module, an optical transmitting module and an optical transmitting / receiving module in which the back-illuminated semiconductor light receiving element of the present invention is integrated may be mounted. In the above embodiments, the semiconductor light receiving element having a mesa shape, and the optical module and the optical transmission device equipped with the same have been described. However, the electrode structure of the present invention is applied to other planar light receiving elements. Needless to say, it is good.

【0036】本発明の実施例に係る裏面入射型半導体受
光素子を用いれば、素子抵抗の増大が無く、高い量子効
率が得られることから、より超高速・高感度な光伝送装
置を作製することが出来る。
The use of the back-illuminated semiconductor light-receiving element according to the embodiment of the present invention does not increase the element resistance and provides a high quantum efficiency. Can be done.

【0037】以上、本発明の実施例について説明した
が、本発明は実施例に限定されるものではない。例え
ば、実施例では、メサ形状の裏面入射型半導体受光素子
について述べたが、この他のプレーナ型素子に本発明に
よる電極構造を用いてもよい。また、実施例では、SiN
絶縁膜単層を用いたが、SiO2膜、SiON膜、ポリイミド膜
SOG膜等の絶縁膜単層膜もしくはこれらの膜を積層した
多層膜や、もしくは光に対して透過性を有する金属酸化
膜、金属窒化膜等の絶縁膜単層膜或いはこれらの膜を積
層した多層膜、もしくはコンタクト層上のみに限っては
上記金属酸化膜、金属窒化膜等の導電性膜を用いてもよ
い。
Although the embodiment of the present invention has been described above, the present invention is not limited to the embodiment. For example, in the embodiment, the mesa-shaped back-illuminated type semiconductor light receiving element has been described. However, the electrode structure according to the present invention may be used for other planar type elements. In the embodiment, the SiN
Insulating film single layer was used, but SiO 2 film, SiON film, polyimide film
Insulating film single layer film such as SOG film or a multilayer film in which these films are laminated, or insulating film single layer film such as metal oxide film, metal nitride film, etc., which has transparency to light, or these films are laminated A conductive film such as the above-described metal oxide film or metal nitride film may be used only on the multilayer film or the contact layer.

【0038】[0038]

【発明の効果】本発明の基板入射型半導体受光素子を用
いることにより、素子抵抗の増大が無く、高い量子効率
が得られることから伝送容量の拡大に対応した超高速・
高感度の光モジュール、半導体受光装置、および光伝送
装置を再現性良く作製できる。
The use of the substrate-illuminated semiconductor light receiving device of the present invention does not increase the device resistance and provides high quantum efficiency.
A highly sensitive optical module, semiconductor light receiving device, and optical transmission device can be manufactured with high reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による半導体受光素子の第1の実施例の
模式的な断面図及び部分平面図。
FIG. 1 is a schematic sectional view and a partial plan view of a first embodiment of a semiconductor light receiving element according to the present invention.

【図2】従来技術によるアバランシェ増倍型裏面入射型
半導体受光素子の断面構造図。
FIG. 2 is a cross-sectional structural view of an avalanche multiplication type back illuminated semiconductor light receiving element according to a conventional technique.

【図3】本発明によるの裏面入射型半導体受光素子を用
いた受光モジュールの一実施例の断面図。
FIG. 3 is a cross-sectional view of one embodiment of a light receiving module using a back-illuminated semiconductor light receiving element according to the present invention.

【図4】本発明の裏面入射型半導体受光素子を用いた光
モジュールの他の実施例の断面図。
FIG. 4 is a cross-sectional view of another embodiment of the optical module using the back illuminated semiconductor light receiving element of the present invention.

【図5】本発明による光モジュールのさらに他の実施例
の断面図。
FIG. 5 is a sectional view of still another embodiment of the optical module according to the present invention.

【図6】本発明による裏面入射型半導体受光素子を用い
て、パッケージングされた光受信モジュールの実施例の
斜視図。
FIG. 6 is a perspective view of an embodiment of a light receiving module packaged using the back illuminated semiconductor light receiving element according to the present invention.

【図7】本発明の裏面入射型半導体受光素子を用いた光
伝送装置の一実施例の斜視図。
FIG. 7 is a perspective view of an embodiment of an optical transmission device using the back-illuminated semiconductor light receiving element of the present invention.

【図8】本発明の受光素子を用いた光伝送装置の構成を
示すブロック図。
FIG. 8 is a block diagram showing a configuration of an optical transmission device using the light receiving element of the present invention.

【符号の説明】[Explanation of symbols]

1……n型InP基板、 2……高濃度n型InAlA
sバッファ層、3……低濃度n型InAlAs増倍層、
4……アンドープInGaAs/InAlAs超格子
層、5……低濃度p型InGaAs光吸収層、6……p
型InAlAsバッファ電極、 7……高濃度p型In
GaAsコンタクト層、8……SiN絶縁膜、9……n
型オーミック電極、10……オーミック接続部、11…
…p型オーミック電極、12……反射鏡、21……n型
InP基板、22……高濃度n型InAlAsバッファ
層、23……低濃度n型InAlAs増倍層、24……
アンドープInGaAs/InAlAs超格子層、25
……低濃度p型InGaAs光吸収層、26……p型I
nAlAsバッファ電極、27……高濃度p型InGa
Asコンタクト層、28……SiN絶縁膜、29……n
型オーミック電極、30……p型オーミック電極、31
……反射鏡、32……レンズ、 33……ヘッダ、34
……本発明の裏面入射型半導体受光素子、 35……マ
ウント、36……アノードピン、 37……カソードピ
ン、 38……ケースピン、39……レンズホルダ、4
0……絶縁膜、 41……V溝光導波路基板、42……
本発明の裏面入射型半導体受光素子、 43……キャリ
ア、44……光ファイバ、 45……半導体レーザ、4
6……本発明のモニタ用裏面入射型PIN−PD、 4
7……V溝基板、48……受信用プリアンプIC、49
……信号光入射用光ファイバ、50……ベース、 51
……キャップ、52……光受信モジュール、53……受
信IC、 54……ボード。
1 ... n-type InP substrate 2 ... high-concentration n-type InAlA
s buffer layer, 3... low concentration n-type InAlAs multiplication layer,
4 ... Undoped InGaAs / InAlAs superlattice layer, 5 ... Low-concentration p-type InGaAs light absorbing layer, 6 ... P
-Type InAlAs buffer electrode, 7 high-concentration p-type In
GaAs contact layer, 8 ... SiN insulating film, 9 ... n
Type ohmic electrode, 10 ... ohmic connection part, 11 ...
... p-type ohmic electrode, 12 ... reflecting mirror, 21 ... n-type InP substrate, 22 ... high-concentration n-type InAlAs buffer layer, 23 ... low-concentration n-type InAlAs multiplication layer, 24 ...
Undoped InGaAs / InAlAs superlattice layer, 25
... Low-concentration p-type InGaAs light absorbing layer, 26... P-type I
nAlAs buffer electrode, 27 high-concentration p-type InGa
As contact layer, 28 ... SiN insulating film, 29 ... n
Ohmic electrode, 30 p-type ohmic electrode, 31
…… Reflector, 32 …… Lens, 33 …… Header, 34
... Back-thinned semiconductor light receiving element of the present invention, 35... Mount, 36... Anode pin, 37... Cathode pin 38, case pin 39, lens holder 4
0: insulating film 41: V-groove optical waveguide substrate 42:
Back-illuminated semiconductor light receiving element of the present invention, 43... Carrier, 44... Optical fiber, 45.
6: Monitor back-illuminated PIN-PD of the present invention, 4
7 V-groove substrate 48 Preamplifier IC for reception 49
…… Signal light incidence optical fiber, 50 …… Base, 51
… Cap, 52… Optical receiving module, 53… Receiving IC, 54… Board.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 滋久 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 2H037 AA01 BA02 BA11 DA03 DA04 DA12 4M118 AA01 AA10 AB05 BA01 BA02 CA05 CB01 CB03 CB14 FC03 GA02 GA08 HA21 HA22 HA23 5F049 MA04 MA08 MB07 NA01 NA03 NA15 NB01 SZ16 TA14 WA01 5F088 AA03 AA05 AB07 BA01 BA02 BB01 HA09 JA14 LA01 5F089 AA01 AB03 AC08 CA12 CA14 GA10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shihisa Tanaka 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo F-term in Central Research Laboratory, Hitachi, Ltd. 2H037 AA01 BA02 BA11 DA03 DA04 DA12 4M118 AA01 AA10 AB05 BA01 BA02 CA05 CB01 CB03 CB14 FC03 GA02 GA08 HA21 HA22 HA23 5F049 MA04 MA08 MB07 NA01 NA03 NA15 NB01 SZ16 TA14 WA01 5F088 AA03 AA05 AB07 BA01 BA02 BB01 HA09 JA14 LA01 5F089 AA01 AB03 AC08 CA12 CA14 GA10

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】基板入射型半導体受光素子の光入射側とは
反対側でかつ入射光が半導体中を透過して到達する基板
上の受光径内に、細線状又は点状の形状の複数のオーミ
ック接続部と、上記半導体に接して透明膜、金属膜の順
に積層した反射鏡とを混在させて構成されることを特徴
とする半導体受光素子。
A plurality of thin line-like or point-like shapes are provided within a light receiving diameter on a substrate on a side opposite to a light incident side of a substrate incident type semiconductor light receiving element and at which incident light passes through a semiconductor and reaches. A semiconductor light receiving element comprising a mixture of an ohmic connection part and a reflecting mirror laminated on a semiconductor in the order of a transparent film and a metal film.
【請求項2】上記細線状又は点状の形状の複数のオーミ
ック接続部のそれぞれは上記細線状の形状の幅、又は上
記点状の形状の最大幅が2μm以下であることを特徴と
する請求項1記載の半導体受光素子。
2. The method according to claim 1, wherein each of the plurality of ohmic connection portions having a thin line or a dot shape has a width of the thin line shape or a maximum width of the point shape of 2 μm or less. Item 2. The semiconductor light receiving element according to Item 1.
【請求項3】上記該透明膜は単層の誘電体絶縁膜又は複
数の別種の膜を積層した多層の誘電体絶縁膜あることを
特徴とする請求項1又は2記載の半導体受光素子。
3. The semiconductor light receiving device according to claim 1, wherein said transparent film is a single-layer dielectric insulating film or a multilayer dielectric insulating film in which a plurality of different kinds of films are laminated.
【請求項4】上記該透明膜は導電性を有する膜であるこ
とを特徴とする請求項1又は2記載の半導体受光素子。
4. The semiconductor light receiving device according to claim 1, wherein said transparent film is a film having conductivity.
【請求項5】請求項1ないし4のいずれか1つに記載の
半導体受光素子が基板上に搭載されたことを特徴とする
半導体受光装置。
5. A semiconductor light receiving device, wherein the semiconductor light receiving element according to claim 1 is mounted on a substrate.
【請求項6】請求項1ないし4のいずれか1つに記載の
半導体受光素子と上記半導体受光素子に出射光を入射す
る光ファイバとが同一基板上に集積化されたことを特徴
とする半導体受光装置。
6. A semiconductor wherein the semiconductor light-receiving element according to claim 1 and an optical fiber for emitting light to the semiconductor light-receiving element are integrated on a same substrate. Light receiving device.
【請求項7】請求項1ないし4のいずれか1つに記載の
半導体受光素子と上記半導体受光素子に出射光を入射す
る半導体レーザとが同一基板上に集積化されたことを特
徴とする半導体装置。
7. A semiconductor, wherein the semiconductor light-receiving element according to claim 1 and a semiconductor laser that emits light to the semiconductor light-receiving element are integrated on the same substrate. apparatus.
【請求項8】請求項1ないし4のいずれか1つに記載の
半導体受光素子と、上記半導体受光素子に出射光を入射
する光ファイバと、上記光ファイバに光を入射する半導
体レーザとが同一基板上に集積化されたことを特徴とす
る半導体装置。
8. The semiconductor light-receiving element according to claim 1, wherein an optical fiber for emitting light to the semiconductor light-receiving element and a semiconductor laser for emitting light to the optical fiber are the same. A semiconductor device integrated on a substrate.
【請求項9】請求項7又は8に記載の半導体装置がセラ
ミック又は樹脂でパッケージングされたことを特徴とす
る光モジュール。
9. An optical module, wherein the semiconductor device according to claim 7 is packaged with ceramic or resin.
【請求項10】請求項7又は8に記載の半導体装置の基
板上に、さらに、上記半導体受光素子と電気的に接続さ
れる電子回路が搭載され、セラミック又は樹脂でパッケ
ージングされたことを特徴とする光モジュール。
10. An electronic circuit electrically connected to the semiconductor light receiving element is mounted on the substrate of the semiconductor device according to claim 7 and packaged with ceramic or resin. Optical module.
【請求項11】請求項9又は10に記載の光モジュール
と電子回路とが同一ボード上に搭載されたことを特徴と
する光伝送装置。
11. An optical transmission device comprising the optical module according to claim 9 and an electronic circuit mounted on the same board.
JP2001084307A 2001-03-23 2001-03-23 Semiconductor light receiving element, semiconductor light receiving device, semiconductor device, optical module, and optical transmission device Expired - Lifetime JP4291521B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001084307A JP4291521B2 (en) 2001-03-23 2001-03-23 Semiconductor light receiving element, semiconductor light receiving device, semiconductor device, optical module, and optical transmission device
US09/905,956 US6670600B2 (en) 2001-03-23 2001-07-17 Semiconductor photodetector with ohmic contact areas formed to prevent incident light from resolving the areas, semiconductor photo receiver and semiconductor device installed with the semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001084307A JP4291521B2 (en) 2001-03-23 2001-03-23 Semiconductor light receiving element, semiconductor light receiving device, semiconductor device, optical module, and optical transmission device

Publications (3)

Publication Number Publication Date
JP2002289906A true JP2002289906A (en) 2002-10-04
JP2002289906A5 JP2002289906A5 (en) 2005-09-08
JP4291521B2 JP4291521B2 (en) 2009-07-08

Family

ID=18939998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001084307A Expired - Lifetime JP4291521B2 (en) 2001-03-23 2001-03-23 Semiconductor light receiving element, semiconductor light receiving device, semiconductor device, optical module, and optical transmission device

Country Status (2)

Country Link
US (1) US6670600B2 (en)
JP (1) JP4291521B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005591A (en) * 2005-06-24 2007-01-11 Toshiba Corp Semiconductor light emitting device
WO2013088762A1 (en) * 2011-12-14 2013-06-20 住友電気工業株式会社 Light receiving element, method for manufacturing same, and optical device
JP2014035435A (en) * 2012-08-08 2014-02-24 Nippon Telegr & Teleph Corp <Ntt> Optical coupling circuit element and manufacturing method thereof
JP2017059601A (en) * 2015-09-15 2017-03-23 日本電信電話株式会社 Germanium light receiver

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4166471B2 (en) * 2001-12-28 2008-10-15 三菱電機株式会社 Optical module
JP2003258272A (en) * 2002-02-27 2003-09-12 Sumitomo Electric Ind Ltd Optical signal receiving module
US7391005B2 (en) * 2002-10-25 2008-06-24 Gennum Corporation Direct attach optical receiver module and method of testing
US7224910B2 (en) * 2002-10-25 2007-05-29 Gennum Corporation Direct attach optical receiver module and method of testing
JP4306508B2 (en) * 2004-03-29 2009-08-05 三菱電機株式会社 Avalanche photodiode
JP2006203050A (en) * 2005-01-21 2006-08-03 National Institute Of Information & Communication Technology Extremely feeble photodetector and extremely feeble light imaging device
JP2008066702A (en) * 2006-08-10 2008-03-21 Matsushita Electric Ind Co Ltd Solid-state imaging device and camera
US7755123B2 (en) * 2007-08-24 2010-07-13 Aptina Imaging Corporation Apparatus, system, and method providing backside illuminated imaging device
TWI412149B (en) * 2010-12-16 2013-10-11 Univ Nat Central Laser energy conversion device
CN103030106B (en) 2011-10-06 2015-04-01 清华大学 Three-dimensional nanometer structure array
US10388807B2 (en) * 2014-04-30 2019-08-20 Hewlett Packard Enterprise Development Lp Mirrors including reflective and second layers disposed on photodetectors
JP6862941B2 (en) 2017-03-09 2021-04-21 三菱電機株式会社 Backside incident type light receiving element and its manufacturing method
EP3680941B1 (en) * 2017-09-06 2022-09-28 Nippon Telegraph and Telephone Corporation Avalanche photodiode and method for manufacturing same
RU2676228C1 (en) * 2018-02-19 2018-12-26 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Powerful pulse microwave photodetector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3712503A1 (en) * 1987-04-13 1988-11-03 Nukem Gmbh SOLAR CELL
US5164809A (en) * 1989-04-21 1992-11-17 The Regents Of The University Of Calif. Amorphous silicon radiation detectors
US5149963A (en) * 1990-07-03 1992-09-22 Parker Hannifin Corporation Fiber-optic position sensor including photovoltaic bi-cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005591A (en) * 2005-06-24 2007-01-11 Toshiba Corp Semiconductor light emitting device
WO2013088762A1 (en) * 2011-12-14 2013-06-20 住友電気工業株式会社 Light receiving element, method for manufacturing same, and optical device
JP2014035435A (en) * 2012-08-08 2014-02-24 Nippon Telegr & Teleph Corp <Ntt> Optical coupling circuit element and manufacturing method thereof
JP2017059601A (en) * 2015-09-15 2017-03-23 日本電信電話株式会社 Germanium light receiver

Also Published As

Publication number Publication date
US6670600B2 (en) 2003-12-30
JP4291521B2 (en) 2009-07-08
US20020135036A1 (en) 2002-09-26

Similar Documents

Publication Publication Date Title
JP4291521B2 (en) Semiconductor light receiving element, semiconductor light receiving device, semiconductor device, optical module, and optical transmission device
US6774448B1 (en) High speed detectors having integrated electrical components
TW200400652A (en) Silicon and silicon/germanium light-emitting device, methods and systems
US20050276299A1 (en) Surface-emitting laser, method for manufacturing surface-emitting laser, device and electronic apparatus
JPH1140823A (en) Photodetector module
JP3326418B2 (en) Resonant photodetector
JP2000036615A (en) Photo-detecting element and photo-detecting element module
US11340398B2 (en) Waveguide structure and optoelectronic device comprising the same
US12003075B2 (en) Surface emitting laser device and surface emitting laser apparatus having the same
JPH05129638A (en) Optical semiconductor device
US6791152B2 (en) Photodetector device and method for manufacturing the same
Muramoto et al. Uni-travelling-carrier photodiode module with bandwidth of 80 GHz
CN112425015A (en) Surface emitting laser package and light emitting device including the same
JP3320058B2 (en) Angle cavity resonant photodetector assembly and method of manufacturing the same
KR20190142576A (en) A surface-emitting laser packgae, optical module including the same
WO2023199403A1 (en) Light-receiving element
KR102556816B1 (en) A surface-emitting laser packgae and optical module including the same
JP2003131088A (en) Optical path converting body, method for manufacturing the same, and optical module using the same
KR100654014B1 (en) Photo diode having electrode structure for large optical signal receiving area
EP4203209A1 (en) Quantum cascade element
US8575714B2 (en) Backside illuminated semiconductor light-receiving device, optical receiver module, and optical transceiver
JPH1117211A (en) Semiconductor planar photodiode and device therewith
US20030075672A1 (en) Method and apparatus for coupling optical fiber with photodetectors
JPH1090540A (en) Semiconductor photodetector, semiconductor photodetecting device and semiconductor device
Muller Ultrafast multireflection-and transparent thinfilm silicon photodiodes

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4291521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term