JP2002289882A - Optical semiconductor module and method of manufacturing the same - Google Patents

Optical semiconductor module and method of manufacturing the same

Info

Publication number
JP2002289882A
JP2002289882A JP2002009683A JP2002009683A JP2002289882A JP 2002289882 A JP2002289882 A JP 2002289882A JP 2002009683 A JP2002009683 A JP 2002009683A JP 2002009683 A JP2002009683 A JP 2002009683A JP 2002289882 A JP2002289882 A JP 2002289882A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor device
light
circuit board
semiconductor module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002009683A
Other languages
Japanese (ja)
Inventor
Masahiro Ono
正浩 小野
Minehiro Itagaki
峰広 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002009683A priority Critical patent/JP2002289882A/en
Publication of JP2002289882A publication Critical patent/JP2002289882A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/11003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the bump preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • H01L2224/11822Applying permanent coating, e.g. in-situ coating by dipping, e.g. in a solder bath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83102Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus using surface energy, e.g. capillary forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83951Forming additional members, e.g. for reinforcing, fillet sealant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01056Barium [Ba]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01084Polonium [Po]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance high-frequency characteristics of a light-receiving optical semiconductor device. SOLUTION: In the optical semiconductor module, the light-receiving optical semiconductor device A is flip-chip mounted on a circuit board 7, and an optical fiber 8 is fixed to a mounting face A1 of the device A or a rear face A2 of the mounting face A1 , so as to enhance the high-frequency characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光半導体モジュ−
ルとその製造方法に関する。
The present invention relates to an optical semiconductor module.
And its manufacturing method.

【0002】[0002]

【従来の技術】光ファイバの特徴は「低損失」、「細
径」、「軽量」等であって、従来のメタリックケーブル
と比較して損失を大幅に小さくすることができる。高速
の信号ではこの差はより顕著である。近い将来家庭まで
広帯域サービスを提供するためには、低コスト・高帯域
・高感度な光受信端末(ONU:Optical Network Uni
t)の開発が必須となっている。
2. Description of the Related Art Optical fibers are characterized by "low loss", "small diameter", "light weight", etc., and can greatly reduce the loss as compared with conventional metallic cables. This difference is more pronounced for high-speed signals. In order to provide broadband services to homes in the near future, low-cost, high-bandwidth, high-sensitivity optical receiving terminals (ONU: Optical Network Uni)
t) development is essential.

【0003】[0003]

【発明が解決しようとする課題】低コスト・高帯域・高
感度な光受信端末(ONU)を実現するうえで、超格子
アバランシェフォトダイオード(以下、APDと略す
る)と、Pinフォトダイオ−ド(以下、PinPDと
略する)とが、受光素子として注目されている。高帯域
・高感度な光受信端末(ONU)を実現するために、こ
れらの受光素子においてさらなる特性(特に高周波特
性)の向上を望む声が高まっている。
In order to realize a low-cost, high-bandwidth, high-sensitivity optical receiving terminal (ONU), a superlattice avalanche photodiode (hereinafter abbreviated as APD) and a pin photodiode are provided. (Hereinafter abbreviated as PinPD) has attracted attention as a light receiving element. In order to realize a high-bandwidth and high-sensitivity optical receiving terminal (ONU), there is an increasing demand for further improvement of characteristics (in particular, high-frequency characteristics) of these light receiving elements.

【0004】したがって、本発明の主たる目的は、受光
用光半導体装置の高周波特性を向上させることである。
Accordingly, a main object of the present invention is to improve the high-frequency characteristics of a light receiving optical semiconductor device.

【0005】[0005]

【課題を解決するための手段】上述した目的を達成する
ためには、本発明は、要するに、回路基板と、前記回路
基板にフリップチップ実装された受光用光半導体装置
と、前記受光用光半導体装置の実装面もしくは前記実装
面の裏面に固定された光ファイバと、を有して光半導体
モジュールを構成している。
In order to achieve the above-mentioned object, the present invention provides a circuit board, a light-receiving optical semiconductor device mounted on the circuit board by flip-chip, and a light-receiving optical semiconductor. An optical semiconductor module is configured to include a mounting surface of the device or an optical fiber fixed to the back surface of the mounting surface.

【0006】これにより本発明は、回路基板に対して受
光用光半導体装置を短い配線距離で接続することが可能
となって、高周波特性が向上する。
According to the present invention, the light receiving optical semiconductor device can be connected to the circuit board with a short wiring distance, and the high-frequency characteristics are improved.

【0007】また、フリップチップ実装することで、受
光用光半導体装置裏面から直接放熱することも可能にな
り、従来のパッケージ(樹脂モールド品)に比べ放熱性
も向上する。
[0007] Flip-chip mounting also makes it possible to directly radiate heat from the back surface of the light-receiving optical semiconductor device, thereby improving heat radiation compared to a conventional package (resin molded product).

【0008】さらには、光ファイバを受光用光半導体装
置の実装面もしくはその裏面に滑らせて最大受光感度の
ところで固定させることができるので、出力特性を確保
したうえでの位置合わせが容易となり、製造コストの低
減につながる。特に受光用光半導体装置の裏面は鏡面仕
上げされていることが多く、平坦性が確保されている。
そのため、光ファイバを実装面の裏面に固定する場合に
は、光ファイバの位置合わせがさらに容易となって生産
性がさらに向上する。
Further, since the optical fiber can be slid on the mounting surface of the light receiving optical semiconductor device or on the back surface thereof and fixed at the maximum light receiving sensitivity, the alignment while ensuring the output characteristics becomes easy, This leads to a reduction in manufacturing costs. In particular, the back surface of the light receiving optical semiconductor device is often mirror-finished, and flatness is ensured.
Therefore, when the optical fiber is fixed to the back surface of the mounting surface, the alignment of the optical fiber is further facilitated, and the productivity is further improved.

【0009】なお、受光用光半導体装置に対する光ファ
イバの位置合わせを行う場合には、回路基板表面に位置
合わせ用の溝を設けてここに光ファイバを沿わせること
で位置合わせを実施することが考えられる。しかしなが
ら、このような構成では、溝に対して高い加工精度が要
求されるうえに、受光用光半導体装置と溝との位置合わ
せにも高い精度が要求され、このことが製造コストを上
昇させる要因となる。これに対して、本発明の構成で
は、このような不都合を全く生じさせない。
When positioning the optical fiber with respect to the light receiving optical semiconductor device, it is possible to provide a positioning groove on the surface of the circuit board and to align the optical fiber along the groove. Conceivable. However, in such a configuration, a high processing accuracy is required for the groove, and also a high accuracy is required for the alignment between the light receiving optical semiconductor device and the groove, which increases the manufacturing cost. Becomes On the other hand, the configuration of the present invention does not cause any such inconvenience.

【0010】本発明においては、前記受光用光半導体装
置は光吸収層を有しており、前記光ファイバを、前記実
装面と直交する方向に沿って前記光吸収層に対向する位
置に固定するのが好ましい。そうすれば、光吸収効率が
良好なものとなる。
In the present invention, the light receiving optical semiconductor device has a light absorbing layer, and the optical fiber is fixed at a position facing the light absorbing layer along a direction orthogonal to the mounting surface. Is preferred. Then, the light absorption efficiency becomes good.

【0011】本発明においては、前記回路基板は接続電
極を有しており、前記受光用半光導体装置の入出力端子
電極を、突起電極と導電性接着剤とを介して前記接続電
極に接続するのが好ましい。
In the present invention, the circuit board has a connection electrode, and the input / output terminal electrode of the light receiving semi-conductor device is connected to the connection electrode via a projection electrode and a conductive adhesive. Is preferred.

【0012】また、本発明においては、前記回路基板は
接続電極を有しており、前記受光用光半導体装置の入出
力端子電極を、半田を介して前記接続電極に接続するの
が好ましい。
In the present invention, it is preferable that the circuit board has a connection electrode, and an input / output terminal electrode of the light receiving optical semiconductor device is connected to the connection electrode via solder.

【0013】以上のようにすれば、回路基板に対して短
い配線距離で確実に接続することができ、これによって
高周波特性のさらなる向上が可能となる。
According to the above-described method, the wiring can be reliably connected to the circuit board with a short wiring distance, so that the high-frequency characteristics can be further improved.

【0014】本発明においては、前記入出力端子電極と
前記接続電極との間の接続部の周囲を、封止樹脂で封止
するのが好ましい。そうすれば、封止樹脂で封止すると
いう簡単な構造でもって、光半導体モジュールを封止す
ることが可能となり、その分、コストダウンを図ること
ができる。
In the present invention, it is preferable that the periphery of the connection between the input / output terminal electrode and the connection electrode is sealed with a sealing resin. Then, the optical semiconductor module can be sealed with a simple structure of sealing with a sealing resin, and the cost can be reduced accordingly.

【0015】この場合、確実に封止を行ううえでは、前
記入出力端子電極と前記接続電極との間の接続部を除く
前記受光用光半導体装置と前記回路基板との間の対向部
分を、前記封止樹脂で封止するのが好ましい。
In this case, in order to reliably perform sealing, an opposing portion between the optical semiconductor device for light reception and the circuit board, excluding a connection portion between the input / output terminal electrode and the connection electrode, is formed by: It is preferable to seal with the sealing resin.

【0016】本発明においては、前記裏面に、前記実装
面に向かう装着孔を設け、この装着孔に前記光ファイバ
を挿入して固定するのが好ましい。そうすれば、光ファ
イバの固定が容易にしかも確実になる。
In the present invention, it is preferable that a mounting hole facing the mounting surface is provided on the back surface, and the optical fiber is inserted into the mounting hole and fixed. Then, the optical fiber can be easily and reliably fixed.

【0017】本発明においては、前記装着孔が、前記受
光用光半導体装置の光吸収層の近傍に達する深さを有す
るのが好ましい。そうすれば、光吸収効率がさらに良好
なものとなる本発明においては、前記受光用光半導体装
置はPinフォトダイオードを有する化合物半導体基板
であるのが好ましい。そうすれば、Pinフォトダイオ
−ドを用いることによって特性や信頼性が安定した光半
導体モジュ−ルを得ることが可能となる。
In the present invention, it is preferable that the mounting hole has a depth reaching the vicinity of the light absorbing layer of the light receiving optical semiconductor device. Then, in the present invention in which the light absorption efficiency is further improved, it is preferable that the light receiving optical semiconductor device is a compound semiconductor substrate having a Pin photodiode. Then, it is possible to obtain an optical semiconductor module having stable characteristics and reliability by using the Pin photodiode.

【0018】この場合、前記回路基板は接続電極を有し
ており、前記PinフォトダイオードのP極とN極との
うちの少なくとも一方に接続される前記接続電極を、前
記受光用光半導体装置の周縁に対向する前記回路基板の
部位に設けるのが好ましい。そうすれば、回路基板の接
続電極と受光用光半導体装置との間で浮遊容量が生じに
くくなって、高周波特性がさらに向上する。
In this case, the circuit board has a connection electrode, and the connection electrode connected to at least one of the P-pole and the N-pole of the Pin photodiode is connected to the light-receiving optical semiconductor device. It is preferable to provide the circuit board at a position facing the peripheral edge of the circuit board. Then, stray capacitance hardly occurs between the connection electrode of the circuit board and the optical semiconductor device for light reception, and the high-frequency characteristics are further improved.

【0019】本発明においては、 貫通孔を有する装着
補助板をさらに有し、前記光ファイバを前記貫通孔に挿
入固定した状態で、前記装着補助板を前記裏面に固定す
ることで、前記光ファイバを前記受光用光半導体装置に
固定するのが好ましく、そうすれば、光ファイバの固定
が容易にしかも確実になる。
In the present invention, the optical fiber may further comprise a mounting auxiliary plate having a through hole, and the optical fiber may be fixed to the back surface with the optical fiber inserted and fixed in the through hole. Is preferably fixed to the light receiving optical semiconductor device, so that the optical fiber can be fixed easily and reliably.

【0020】この場合、前記入出力端子電極と前記接続
電極との間の接続部の周囲を封止する封止樹脂を有し、
前記装着補助板を前記封止樹脂により前記裏面に固定す
るのが好ましく、そうすれば、光ファイバの固定がさら
に容易にしかも確実になる。
In this case, there is provided a sealing resin for sealing a periphery of a connection portion between the input / output terminal electrode and the connection electrode,
It is preferable that the mounting auxiliary plate is fixed to the back surface by the sealing resin, so that the optical fiber can be fixed more easily and surely.

【0021】なお、本発明の光半導体モジュールは、前
記実装面に設けられた入出力端子電極に突起電極を形成
したうえで、この突起電極に導電性接着剤を供給する工
程と、前記回路基板に設けられた接続電極に前記入出力
端子電極が当接するように前記受光用光半導体装置を前
記回路基板に搭載する工程と、前記導電性接着剤を硬化
させて前記受光用光半導体装置を前記回路基板に実装す
る工程と、前記受光用光半導体装置と前記回路基板との
間の接続部位を、封止樹脂により封止する工程と、前記
裏面に光ファイバを固定する工程とを含んだ方法により
製造することができる。
In the optical semiconductor module of the present invention, a step of forming a projecting electrode on the input / output terminal electrode provided on the mounting surface and supplying a conductive adhesive to the projecting electrode is provided. Mounting the light-receiving optical semiconductor device on the circuit board such that the input / output terminal electrode abuts on the connection electrode provided on the substrate, and curing the conductive adhesive to form the light-receiving optical semiconductor device. A method comprising the steps of: mounting on a circuit board; sealing a connection portion between the light-receiving optical semiconductor device and the circuit board with a sealing resin; and fixing an optical fiber to the back surface. Can be manufactured.

【0022】同様に、本発明の光半導体モジュールは、
前記回路基板に設けられた接続電極に半田を供給する工
程と、前記実装面に設けられた入出力端子電極が前記接
続電極に当接するように前記受光用光半導体装置を前記
回路基板に搭載する工程と、前記半田を溶融させて前記
受光用光半導体装置を前記回路基板に実装する工程と、
前記受光用光半導体装置と前記回路基板との間の接続部
位を、封止樹脂により封止する工程と、前記裏面に光フ
ァイバを固定する工程とを含んだ方法により製造するこ
とができる。
Similarly, the optical semiconductor module of the present invention comprises:
A step of supplying solder to connection electrodes provided on the circuit board, and mounting the light-receiving optical semiconductor device on the circuit board such that input / output terminal electrodes provided on the mounting surface come into contact with the connection electrodes. And a step of mounting the optical semiconductor device for light reception on the circuit board by melting the solder,
It can be manufactured by a method including a step of sealing a connection portion between the light receiving optical semiconductor device and the circuit board with a sealing resin, and a step of fixing an optical fiber to the back surface.

【0023】この場合、前記光ファイバを固定する接着
剤と前記封止樹脂として光線硬化樹脂を用い、前記封止
樹脂と光ファイバ固定用樹脂とを一括に光線硬化するの
が好ましく、そうすれば、各種樹脂の硬化工程の簡略化
を図ることができる。
In this case, it is preferable to use an adhesive for fixing the optical fiber and a light-curing resin as the sealing resin, and to simultaneously light-cur the sealing resin and the resin for fixing the optical fiber. In addition, it is possible to simplify the curing process of various resins.

【0024】また、前記受光用光半導体装置としてPi
nフォトダイオードを有する化合物半導体基板を用いる
場合には、前記化合物半導体基板の短辺側両側面を治具
で挟んだ状態で、前記端子電極に前記突起電極を形成す
るのが好ましく、そうすれば、化合物半導体基板という
比較的破損しやすいものから受光用光半導体装置を構成
しても、その破損を回避することが可能となる。
Further, Pi is used as the optical semiconductor device for receiving light.
When using a compound semiconductor substrate having an n-photodiode, it is preferable to form the protruding electrode on the terminal electrode in a state where both short side surfaces of the compound semiconductor substrate are sandwiched by jigs. Even if the light receiving optical semiconductor device is formed from a compound semiconductor substrate which is relatively easily damaged, the damage can be avoided.

【0025】また,半田を用いて、受光用光半導体装置
を回路基板に実装する場合には、前記半田に熱と荷重を
印加することで、前記半田と前記入出力端子電極との間
で、拡散化合物を生成させるのが好ましく、そうすれ
ば、半田に対してフラックスを塗布するという余分な工
程を経ることなく、確実に接続電極と入出力端子電極と
を接続することが可能となる。
When the optical semiconductor device for light reception is mounted on a circuit board by using solder, heat and a load are applied to the solder so that the solder and the input / output terminal electrode can be connected to each other. It is preferable to generate a diffusion compound, so that the connection electrode and the input / output terminal electrode can be reliably connected without going through an extra step of applying a flux to the solder.

【0026】[0026]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。第1の実施の形態 図1は本発明の第1の実施の形態にかかる光半導体モジ
ュールの概略図である。この光半導体モジュールは、化
合物半導体基板Bからなる受光用光半導体装置Aを有し
ている。化合物半導体基板Bは、InP基板等からなり
その内部に受光素子であるPinフォトダイオード(以
下、PinPDと略す)1が設けられている。PinP
D1のpn接合には逆方向高電圧が印加されており、P
inPD1の光吸収層で生じた電子−ホール対は、pn
接合に印加される高電界によって加速されるようになっ
ている。受光用光半導体装置Aの実装面A1には入出力
端子電極2が設けられている。
Embodiments of the present invention will be described below with reference to the drawings. First Embodiment FIG. 1 is a schematic view of an optical semiconductor module according to a first embodiment of the present invention. This optical semiconductor module has a light receiving optical semiconductor device A composed of a compound semiconductor substrate B. The compound semiconductor substrate B is made of an InP substrate or the like, and a Pin photodiode (hereinafter abbreviated as PinPD) 1 as a light receiving element is provided inside the compound semiconductor substrate B. PinP
A reverse high voltage is applied to the pn junction of D1,
The electron-hole pair generated in the light absorption layer of inPD1 is pn
It is adapted to be accelerated by a high electric field applied to the junction. Input-output terminal electrodes 2 are provided on the mounting surface A 1 of the light-receiving optical semiconductor device A.

【0027】入出力端子電極2上には突起電極3が形成
されている。突起電極3は、導電性接着剤4を介して回
路基板7の接続電極6上に電気的に接続されて固定され
てい基板Bとの間の対向部分)は封止樹脂5により封止
されて補強されている。これにより、受光用光半導体装
置Aは回路基板7に実装されている。なお、封止樹脂
る。入出力端子電極2と接続電極6との間の接続部(回
路基板7と化合物半導体5は、前記接続部の周囲を少な
くとも補強していればよい。また、突起電極3は形成で
きる方法であればワイヤボンディング法、めっき法等、
どんな方法で形成してもよい。
A projecting electrode 3 is formed on the input / output terminal electrode 2. The protruding electrode 3 is electrically connected to and fixed on the connection electrode 6 of the circuit board 7 via the conductive adhesive 4, and the portion facing the substrate B) is sealed with the sealing resin 5. Reinforced. Thereby, the light receiving optical semiconductor device A is mounted on the circuit board 7. The sealing resin is used. A connection portion between the input / output terminal electrode 2 and the connection electrode 6 (the circuit board 7 and the compound semiconductor 5 only need to reinforce at least the periphery of the connection portion. In addition, any method can be used to form the protruding electrode 3. For example, wire bonding method, plating method, etc.
It may be formed by any method.

【0028】このようにして、PinPD1を搭載した
受光用光半導体装置Aが、回路基板7に対してフリップ
チップ実装されている。そして、受光用光半導体装置A
の実装面A1(入出力端子電極形成面)の裏面A2(実装
面A1の反対側に位置する面)に光ファイバ8が接着固
定されている。本実施の形態では、光ファイバ8の先端
を熱硬化性樹脂等からなる接着剤9により受光用光半導
体装置Aに接着している。なお、PinPD1に対して
光を効率よく導き入れるために、光ファイバ8の先端
は、PinPD1の光吸収層に対して対向する位置に配
置している。
As described above, the light receiving optical semiconductor device A on which the PinPD 1 is mounted is flip-chip mounted on the circuit board 7. Then, the light receiving optical semiconductor device A
The optical fiber 8 is bonded and fixed to the back surface A 2 (the surface opposite to the mounting surface A 1 ) of the mounting surface A 1 (the surface on which the input / output terminal electrodes are formed). In the present embodiment, the tip of the optical fiber 8 is bonded to the light receiving optical semiconductor device A with an adhesive 9 made of a thermosetting resin or the like. Note that, in order to efficiently guide light into the PinPD 1, the tip of the optical fiber 8 is disposed at a position facing the light absorbing layer of the PinPD 1.

【0029】以上のように構成することで、本実施の形
態では、回路基板7に対して受光用光半導体装置Aを短
い配線距離で接続することが可能となる。そのため、高
周波特性に優れた光半導体モジュールが実現できる。ま
た、フリップチップ実装することで、受光用光半導体装
置Aの実装面A1から回路基板7に対して直接放熱する
ことも可能になり、従来のパッケージ(樹脂モールド
品)に比べ放熱性も優れた構造となる。さらには、光フ
ァイバ8を、裏面A2を滑らせて最大受光感度のところ
で固定させることができるので、光ファイバ8の位置合
わせがしやすくなるうえに、優れた受光特性を確保する
こともできる。特に、受光用光半導体装置Aの裏面A2
は鏡面仕上げされていて面の平坦性が確保されているこ
とが多いため、光半導体モジュールの生産性が高くな
る。
With the above configuration, in the present embodiment, it is possible to connect the light receiving optical semiconductor device A to the circuit board 7 with a short wiring distance. Therefore, an optical semiconductor module having excellent high-frequency characteristics can be realized. In addition, by flip-chip mounting, also it becomes possible to dissipate heat directly from the mounting surface A 1 of the light-receiving optical semiconductor device A with respect to the circuit board 7, excellent heat dissipation compared with the conventional package (resin mold product) Structure. Furthermore, the optical fiber 8, it is possible to fix at the maximum light receiving sensitivity by sliding the back surface A 2, on top made easier position Awasegashi of the optical fiber 8, it is also possible to ensure excellent light properties . In particular, the back surface A 2 of the light receiving optical semiconductor device A 2
The mirror surface finish is often used to ensure the flatness of the surface, which increases the productivity of the optical semiconductor module.

【0030】なお、受光用光半導体装置Aに対する光フ
ァイバ8の位置合わせを行う場合には、回路基板7の表
面に位置合わせ用の溝を設けてここに光ファイバ8を沿
わせることで位置合わせを実施することが考えられる。
しかしながら、このような構成では、溝に対して高い加
工精度が要求されるうえに、受光用光半導体装置Aと溝
との位置合わせにも高い精度が要求され、このことが製
造コストを上昇させる要因となる。これに対して、受光
用光半導体装置Aの裏面A2に光ファイバ8を固定する
構成では、このような不都合を全く生じさせない。
When positioning the optical fiber 8 with respect to the light receiving optical semiconductor device A, a positioning groove is provided on the surface of the circuit board 7 and the optical fiber 8 is moved along the groove. It is possible to carry out.
However, in such a configuration, high processing accuracy is required for the groove, and high accuracy is also required for the alignment between the light receiving optical semiconductor device A and the groove, which increases the manufacturing cost. It becomes a factor. In contrast, in the configuration for fixing the optical fiber 8 on the back surface A 2 of the light-receiving optical semiconductor device A, not cause any such inconveniences.

【0031】次に、本発明において実施対象とした受光
用光半導体装置について考察する。PinPDやAPD
といった受光用光半導体装置においては、その構造上、
半導体装置を構成する積層膜の厚み方向に沿った方向が
受光方向となる一方、積層膜の膜面方向に沿った方向は
受光方向とならない。そして、受光用光半導体装置にお
いては、通常、前記積層膜の面方向と平行に実装面A1
が形成される。本発明は、このような特徴を有する受光
用光半導体装置において実装面A1に光ファイバ8を固
定することで上述した各種の効果を得ている。したがっ
て、本発明を実現するうえで、受光用光半導体装置の基
本構造に対して何ら変更を加える必要がなく、その分、
本発明の実現が容易となる。
Next, an optical semiconductor device for light reception which is an object of the present invention will be considered. PinPD and APD
In the optical semiconductor device for light reception such as described above,
The direction along the thickness direction of the laminated film forming the semiconductor device is the light receiving direction, while the direction along the film surface direction of the laminated film is not the light receiving direction. In the light receiving optical semiconductor device, usually, the mounting surface A 1 is parallel to the surface direction of the laminated film.
Is formed. The present invention, to obtain various effects described above by fixing the optical fiber 8 to the mounting surface A 1 in the light-receiving optical semiconductor device having such a feature. Therefore, in realizing the present invention, it is not necessary to make any changes to the basic structure of the optical semiconductor device for light reception, and
The present invention can be easily realized.

【0032】これに対して、発光用光半導体装置におい
ては、受光用光半導体装置と異なり、半導体装置を構成
する積層膜の膜面方向と平行な方向(厚み方向と直交す
る方向)が発光方向となる一方、積層膜の膜面方向と直
交する方向(厚み方向と平行な方向)は受光方向となら
ない。しかしながら、発光用光半導体装置においても、
受光用光半導体装置と同様、通常、前記積層膜の面方向
と平行に実装面A1が形成される。そのため、このよう
な特徴を有する発光用光半導体装置において本発明を実
施しようとすると、半導体装置の積層膜の膜面方向と直
交する面を実装面にするという、発光用光半導体装置の
基本構造に対して変更を加える必要が生じる。
On the other hand, in the light emitting optical semiconductor device, unlike the light receiving optical semiconductor device, the direction parallel to the film surface direction of the laminated film constituting the semiconductor device (the direction perpendicular to the thickness direction) is the light emitting direction. On the other hand, the direction orthogonal to the film surface direction of the laminated film (the direction parallel to the thickness direction) is not the light receiving direction. However, even in an optical semiconductor device for light emission,
As with the light-receiving optical semiconductor device, usually, a plane direction parallel to the mounting surface A 1 of the laminated film is formed. Therefore, when trying to implement the present invention in a light emitting optical semiconductor device having such features, the basic structure of the light emitting optical semiconductor device is that the surface orthogonal to the film surface direction of the laminated film of the semiconductor device is used as the mounting surface. Needs to be changed.

【0033】なお、本実施の形態においては、受光用光
半導体装置Aと回路基板7との接続を突起電極3と導電
性接着剤4とを用いて行ったが、突起電極と半田、異方
性導電膜(ACF:Anisotropic Conductive Film)、異
方性導電ペースト(ACP:Anisotropic Conductive Pa
ste)、半田あるいは金属どうしの接合など接続できる
方法があれば何でもよい。
In the present embodiment, the connection between the light receiving optical semiconductor device A and the circuit board 7 is made by using the projecting electrode 3 and the conductive adhesive 4, but the projecting electrode and the solder, Anisotropic Conductive Film (ACF), Anisotropic Conductive Pa (ACP)
ste), any method can be used as long as there is a connection method such as joining of solder or metal.

【0034】次に、本実施の形態の光半導体モジュール
について、その信頼性を測定した結果を、図2を参照し
て説明する。ここでは、本実施の形態の一例として次の
ものを用いて測定している。すなわち、厚みが0.1μ
mのInP基板からなる化合物半導体基板BにPinP
D1を内蔵してなる受光用光半導体装置Aを用意し、こ
の受光用光半導体装置Aの入出力端子電極2に、ワイヤ
ボンディング法により突起電極3を形成する。そして、
突起電極3と導電性接着剤4とを介して、受光用光半導
体装置Aを回路基板7の接続電極6に実装することで光
半導体モジュールを構成している。このように構成され
た本実施の形態の光半導体モジュールの信頼性を測定し
た。
Next, the result of measuring the reliability of the optical semiconductor module of the present embodiment will be described with reference to FIG. Here, measurement is performed using the following as an example of the present embodiment. That is, the thickness is 0.1 μ
compound semiconductor substrate B composed of InP substrate
A light receiving optical semiconductor device A incorporating D1 is prepared, and a projection electrode 3 is formed on the input / output terminal electrode 2 of the light receiving optical semiconductor device A by a wire bonding method. And
The optical semiconductor module is configured by mounting the light receiving optical semiconductor device A on the connection electrode 6 of the circuit board 7 via the protruding electrode 3 and the conductive adhesive 4. The reliability of the thus configured optical semiconductor module of the present embodiment was measured.

【0035】図2(A)は、(270℃−5サイクル)
の半田耐熱試験(逆バイアス0〜15v印加)を実施し
たうえで、暗電流がどの程度増加するかを測定した結果
を示している。図2(B)は、(85℃、85%RH)
の高温高湿試験(1712h)を実施したうえで、暗電
流がどの程度増加するかを測定した結果を示している。
図2(C−1)、図2(C−2)は、(−40℃〜12
5℃)の温度サイクル試験を400サイクル実施したう
えで、暗電流がどの程度増加するかを測定した結果を示
している。
FIG. 2A shows (270 ° C.-5 cycles)
3 shows the results of measuring the increase in dark current after performing a soldering heat test (applying a reverse bias of 0 to 15 V). FIG. 2 (B) shows (85 ° C., 85% RH)
4 shows the results of measuring the increase in dark current after performing the high-temperature and high-humidity test (1712h).
FIGS. 2 (C-1) and 2 (C-2) show (−40 ° C. to 12
5 shows a result of measuring how much the dark current increases after 400 cycles of a temperature cycle test (5 ° C.).

【0036】図2の各データに示すように、本実施の形
態の光半導体モジュールにおいては、暗電流の劣化がほ
とんどなく、本実施の形態の構造が信頼性において優れ
ていることが明らかである。これは、回路基板7に対し
て受光用光半導体装置Aを短い配線距離で接続している
ことが一つの要因であると考えられる。さらには、導電
性接着剤4により受光用光半導体装置Aを回路基板7に
実装することで、比較的小さな加圧力(突起電極形成時
はおおよそ40g/端子電極、実装時は5g/端子電
極、程度)でもって受光用光半導体装置Aを回路基板7
に実装でき、そのために受光用光半導体装置Aにダメー
ジを与えないことも要因の一つであると考えられる。
As shown in the data of FIG. 2, in the optical semiconductor module of this embodiment, the dark current hardly deteriorates, and it is clear that the structure of this embodiment is excellent in reliability. . This is considered to be one reason that the light receiving optical semiconductor device A is connected to the circuit board 7 with a short wiring distance. Furthermore, by mounting the light receiving optical semiconductor device A on the circuit board 7 with the conductive adhesive 4, a relatively small pressing force (approximately 40 g / terminal electrode at the time of forming the protruding electrode, 5 g / terminal electrode at the time of mounting, The optical semiconductor device A for receiving light is
It is considered that one of the factors is that the optical semiconductor device A for light reception is not damaged.

【0037】ここで、PinPD1の光吸収層は、2族
元素のZn、Cd、Hg、3族元素のB、Al、Ga、
In、Tl、5族元素のN、P、As、Sb、Bi、6
族元素のO、S、Se、Te、Poの少なくともいずれ
かの組み合わせで構成されているのが好ましい。また、
導電性接着剤4の導電性フィラ−はAg、Pd、Ni、
Au、Cu、C、Ptの少なくとも1つを含んでいるの
が好ましい。封止樹脂5はエポキシ系樹脂を主成分とし
て含み、無機物の粒子を有するものが好ましい。無機物
の粒子としてはSiO2、Al23、SiN、AlNな
どがある。
Here, the light absorption layer of PinPD1 is made of Zn, Cd, Hg of a group 2 element, B, Al, Ga, of a group 3 element.
In, Tl, Group 5 elements N, P, As, Sb, Bi, 6
It is preferable to be constituted by a combination of at least one of group elements O, S, Se, Te and Po. Also,
The conductive filler of the conductive adhesive 4 is made of Ag, Pd, Ni,
It preferably contains at least one of Au, Cu, C, and Pt. It is preferable that the sealing resin 5 contains an epoxy resin as a main component and has inorganic particles. Examples of the inorganic particles include SiO 2 , Al 2 O 3 , SiN, and AlN.

【0038】次に、本実施の形態や以下に説明する各実
施の形態を含む本発明において、受光用光半導体装置A
としてPinPD1を内蔵した化合物半導体基板Bを用
いる理由を説明する。
Next, in the present invention including this embodiment and each of the embodiments described below, the light receiving optical semiconductor device A
The reason for using the compound semiconductor substrate B with the built-in PinPD1 will be described.

【0039】超格子アバランシェフォトダイオード(A
PD)は、超格子構造のバンド不連続を介したイオン化
率比制御を基本動作原理としており、シリコン(Si)
基板に形成されたAPDは既に商品化されている。しか
しながら、シリコン(Si)のAPDは光ファイバを用
いた信号伝達で用いられる1.55μm帯、および1.
3μm帯に対する感度がない。
A superlattice avalanche photodiode (A
PD) is based on the principle of ionization rate control through band discontinuity of the superlattice structure, and is based on silicon (Si).
The APD formed on the substrate has already been commercialized. However, silicon (Si) APDs are used in the 1.55 μm band used for signal transmission using optical fibers, and 1.
There is no sensitivity for the 3 μm band.

【0040】このような不都合を解消するAPDとし
て、InP基板上にInGaAs(P)/InAlA
s、In(Al)GaAs/InAlAs系材料を格子
整合したものが提案されている。このAPDは上記信号
伝達帯域において、高利得帯域幅積・高感度であること
が実証されている。
As an APD for solving such inconvenience, InGaAs (P) / InAlA is formed on an InP substrate.
s, In (Al) GaAs / InAlAs-based materials lattice-matched have been proposed. It has been demonstrated that this APD has a high gain bandwidth product and high sensitivity in the signal transmission band.

【0041】しかしながら、各種の文献に示されている
ように、光吸収層で生成される電子−ホール対を、その
場の高電界で加速してアバランシェ増倍させると、電子
とホール双方とがそれぞれ増倍され、良好な高周波特性
を得ることができない。
However, as shown in various documents, when an electron-hole pair generated in a light absorbing layer is accelerated by an in-situ high electric field and avalanche-multiplied, both electrons and holes are converted. Each is multiplied, and good high-frequency characteristics cannot be obtained.

【0042】これに対して、光吸収層とアバランシェ増
倍層とを分離して、電子のみを増倍層に注入することに
よって、電子を選択的に増倍する構造が考えられてい
る。しかしながら、この構造においては、電界緩和層の
価電子帯の電子が、高電界によって超格子増倍層の伝導
帯へトンネルし、これが暗電流発生の原因となる。
On the other hand, a structure has been considered in which the light absorption layer and the avalanche multiplication layer are separated from each other, and only electrons are injected into the multiplication layer, thereby selectively multiplying the electrons. However, in this structure, electrons in the valence band of the electric field relaxation layer tunnel to the conduction band of the superlattice multiplication layer due to the high electric field, which causes dark current.

【0043】さらには、APDでは、パッケージを気密
封止することが前提となっており、例えばデバイスごと
ケースの中に入れ、気密を保ちながら封止することで水
分の浸入を少しでも防ぐパッケージ構造を採用してい
る。しかしながら、このことが低コストでAPDを作製
するうえでの隘路になっている。
Further, the APD is premised on hermetically sealing the package. For example, a package structure in which a device is put in a case and sealed while maintaining airtightness to prevent any entry of moisture. Is adopted. However, this is a bottleneck in producing APDs at low cost.

【0044】このように、APDに関しては、特性や信
頼性の確保に関してはまだまだ課題が多く残っており、
十分実用化されるにはいたっていない。また、デバイス
ごとケースに収納して封止する等の構造を採用して気密
封止を図っているが、このことが、コストダウンを図る
うえでの障害となっている。また、メサ型の場合メサエ
ッチ部の界面準位の制御が特に問題となり、暗電流劣化
の要因となる。このためにパッシベーション膜形成は重
要であるが、最適な構造は得られていない。
As described above, with respect to the APD, there are still many problems in securing the characteristics and reliability.
It has not yet been fully commercialized. In addition, a structure in which the device is housed in a case and sealed is adopted to achieve hermetic sealing, but this is an obstacle to cost reduction. Further, in the case of the mesa type, control of the interface state of the mesa etched portion is particularly problematic, and causes deterioration of dark current. For this reason, formation of a passivation film is important, but an optimal structure has not been obtained.

【0045】一方、PinPDは、通常、化合物半導体
基板に形成されるが、製造プロセスを気相成長や液相成
長などにより実施できるために安定しており、信頼性は
APDに比べると格段に高い。しかしながら、超格子増
倍層がないためにキャリアの増幅作用がなく、高い性能
を求められるときには仕様マ−ジンが狭いという不都合
がある。
On the other hand, PinPD is usually formed on a compound semiconductor substrate, but is stable because its manufacturing process can be performed by vapor phase growth or liquid phase growth, and its reliability is much higher than that of APD. . However, since there is no superlattice multiplication layer, there is no carrier amplification effect, and when high performance is required, there is an inconvenience that the specification margin is narrow.

【0046】そこで、本発明では、キャリアの増倍作用
がないため潜在的な特性はAPDに比べ劣っているが、
特性や信頼性が安定しているPinPDを用いること
で、特性や信頼性がさらに向上した光半導体モジュ−ル
を実現している。
Therefore, in the present invention, the potential characteristics are inferior to those of APD because there is no carrier multiplication effect.
By using PinPD having stable characteristics and reliability, an optical semiconductor module with further improved characteristics and reliability is realized.

【0047】次に、本実施の形態の光半導体モジュール
を作製する方法を、図3を参照して説明する。
Next, a method for manufacturing the optical semiconductor module of the present embodiment will be described with reference to FIG.

【0048】まず、図3(A)に示すように、受光用光
半導体装置Aの入出力端子電極2に突起電極3を形成す
る。次に、図3(B)に示すように、容器C内に導電性
接着剤4を一定の膜厚で形成配置したうえで、突起電極
3の先端を導電性接着剤4に浸漬させることで、突起電
極3に導電性接着剤4を転写させる。
First, as shown in FIG. 3A, the protruding electrode 3 is formed on the input / output terminal electrode 2 of the light receiving optical semiconductor device A. Next, as shown in FIG. 3B, the conductive adhesive 4 is formed and arranged in a constant thickness in the container C, and the tip of the protruding electrode 3 is immersed in the conductive adhesive 4. Then, the conductive adhesive 4 is transferred to the protruding electrodes 3.

【0049】その後、図3(C)に示すように、導電性
接着剤4を介して入出力端子電極2を接続電極6に接続
固定することで、受光用光半導体装置Aを回路基板7に
実装する。さらに、図3(D)に示すように、回路基板
7と化合物半導体基板Bとの間の対向部分にある接続部
の周囲を封止樹脂5で封止して補強する。ここで、封止
樹脂5は接続部の周りが少なくとも補強されていればよ
い。
Thereafter, as shown in FIG. 3 (C), the input / output terminal electrode 2 is connected and fixed to the connection electrode 6 via the conductive adhesive 4, so that the light receiving optical semiconductor device A is mounted on the circuit board 7. Implement. Further, as shown in FIG. 3 (D), the periphery of the connection portion at the opposing portion between the circuit board 7 and the compound semiconductor substrate B is sealed with a sealing resin 5 and reinforced. Here, the sealing resin 5 only needs to be reinforced at least around the connection portion.

【0050】最後に、図3(E)に示すように、Pin
PD1に対して光吸収効率が最大になるように、光ファ
イバ8を、受光用光半導体装置A(詳細にいえばPin
PD1)の光吸収層の上に位置決めしたうえで、受光用
光半導体装置Aの裏面A2に熱硬化樹脂等の接着剤9に
より接着固定する。このようにして、光ファイバ8を受
光用光半導体装置Aの裏面A2に沿って固定する場合に
は次のようにすることが可能となる。すなわち、光ファ
イバ8を、受光用光半導体装置Aの裏面A2に沿って滑
らせて位置決めすることができ、これによって受光用光
半導体装置Aが最大受光感度となったところで光ファイ
バ8を固定することが可能となる。これにより、受光用
光半導体装置Aの特性を高く維持した状態で光半導体モ
ジュールを作製することができる。しかも、光ファイバ
8の位置決めが容易となる分、製造コストを低く抑える
ことができる。特に、受光用光半導体装置Aの裏面A2
は鏡面仕上げされていることが多く、その平坦性が確保
されている。そのため、光ファイバ8の位置決め精度が
さらに高くなるうえにその位置決めも容易になる。
Finally, as shown in FIG.
The optical fiber 8 is connected to the light-receiving optical semiconductor device A (specifically, Pin
After having positioned on the light absorbing layer PD1), it is bonded and fixed by an adhesive 9 of thermosetting resin or the like on the back surface A 2 of the light-receiving optical semiconductor device A. In this way, it becomes possible to make the following in the case of fixed along the optical fiber 8 on the back surface A 2 of the light-receiving optical semiconductor device A. That is, the optical fiber 8, slide along the rear face A 2 of the light-receiving optical semiconductor device A can be positioned, the optical fiber 8 where the light-receiving optical semiconductor device A becomes the maximum light receiving sensitivity by this fixed It is possible to do. Thus, the optical semiconductor module can be manufactured in a state where the characteristics of the light receiving optical semiconductor device A are kept high. In addition, since the positioning of the optical fiber 8 is facilitated, the manufacturing cost can be reduced. In particular, the back surface A 2 of the light receiving optical semiconductor device A 2
Is often mirror-finished to ensure its flatness. Therefore, the positioning accuracy of the optical fiber 8 is further improved, and the positioning is also facilitated.

【0051】光ファイバ8を裏面A2上で滑らせながら
受光用光半導体装置Aの受光感度を調べ、その最大感度
を示す位置に光ファイバ8を位置合わせした際の測定デ
ータを、図4,図5に示す。図4は受光用光半導体装置
Aの裏面A2上で光ファイバ8を滑らせた状態を示す斜
視図、図5はそのときの受光感度の変化をそれぞれ重ね
合わせたグラフである。なお、図5における◆、■、
△、×は、図4(A)における原点からX軸方向にそれ
ぞれ移動した地点(◆=230μm移動、■=250μ
m移動、△=270μm移動、×=300μm移動)か
ら、Y方向に沿って光ファイバ8を各距離地点まで移動
した際において、受光用光半導体装置Aが出力する光電
流値を示している。図5に示すように、感度が最大の所
で光が最も多く電気に変換されることから電流が多く流
れる。この例では、X軸方向270μm、Y軸方向21
0μm移動した地点において、最大受光感度を示してい
る。
While the optical fiber 8 is slid on the back surface A 2 , the light receiving sensitivity of the light receiving optical semiconductor device A is checked, and the measured data when the optical fiber 8 is aligned with the position showing the maximum sensitivity is shown in FIG. As shown in FIG. Figure 4 is a graph obtained by superimposing the respective back surface A perspective view showing a state in which slide the optical fiber 82 on, FIG. 5 is a change in light reception sensitivity at that time of the light-receiving optical semiconductor device A. Note that ◆, ■,
Δ and × indicate points respectively moved in the X-axis direction from the origin in FIG. 4A (◆ = 230 μm, 移動 = 250 μ)
(m movement, △ = 270 μm movement, x = 300 μm movement), the photocurrent value output by the light receiving optical semiconductor device A when the optical fiber 8 is moved to each distance point along the Y direction. As shown in FIG. 5, a large amount of current flows because light is converted to electricity most where the sensitivity is maximum. In this example, 270 μm in the X-axis direction and 21 in the Y-axis direction
The maximum light receiving sensitivity is shown at the point moved by 0 μm.

【0052】なお、光吸収層のある場所が受光用光半導
体装置の設計段階でわかっているから、裏面A2におい
て光吸収層が存在すると思われる地点の付近において光
ファイバ8を移動させてその光電流値を測定すれば、効
率的に最大受光感度の場所を特定することができる。第2の実施の形態 上述した第1の実施の形態では、導電性接着剤4を用い
て、受光用光半導体装置Aを回路基板7に実装したが、
本発明は、このような接着媒体に限定されるものではな
い。第2の実施の形態は、図6に示すように、導電性接
着剤4に換えて、半田10を用いて受光用光半導体装置
Aの入出力端子電極2を回路基板7の接続電極6に接続
固定している。さらには、本実施の形態の構造では、突
起電極3を設けることなく半田10だけで実装してい
る。なお、その他の構造については、基本的に第1の実
施の形態と同様であるため、それらについての説明は省
略する。また、受光用光半導体装置Aの大きさや化合物
半導体基板Bの材質が関係する熱ひずみに対する信頼性
が確保できる場合には、封止樹脂5の補強はなくてもよ
い。また、半田10はSn、Ag、Pb、Bi、Cu、
Zn、Sbの少なくとも1つは含んでいるのが好まし
い。
[0052] Incidentally, since the location of the light absorbing layer is known at the design stage of the light-receiving optical semiconductor device, by moving the optical fiber 8 in the vicinity of the point you think that the light absorbing layer is present on the back surface A 2 thereof By measuring the photocurrent value, it is possible to efficiently specify the location of the maximum light receiving sensitivity. Second Embodiment In the above-described first embodiment, the light receiving optical semiconductor device A is mounted on the circuit board 7 using the conductive adhesive 4.
The present invention is not limited to such an adhesive medium. In the second embodiment, as shown in FIG. 6, the input / output terminal electrode 2 of the light receiving optical semiconductor device A is connected to the connection electrode 6 of the circuit board 7 by using solder 10 instead of the conductive adhesive 4. Connection is fixed. Furthermore, in the structure of the present embodiment, mounting is performed only by the solder 10 without providing the protruding electrodes 3. Note that other structures are basically the same as those of the first embodiment, and a description thereof will be omitted. In addition, when the size of the optical semiconductor device for light reception A and the reliability with respect to the thermal strain related to the material of the compound semiconductor substrate B can be ensured, the sealing resin 5 need not be reinforced. The solder 10 is made of Sn, Ag, Pb, Bi, Cu,
It is preferable that at least one of Zn and Sb is contained.

【0053】次に、本実施の形態の光半導体モジュール
の作製する第1の方法を、図7を参照して説明する。
Next, a first method for manufacturing the optical semiconductor module of the present embodiment will be described with reference to FIG.

【0054】まず、図7(A)に示すように、回路基板
7の接続電極6に対し半田10を印刷により供給する。
具体的には、スクリーンマスク11を介して半田10を
スキージ12で掻き入れることにより、接続電極6の表
面に半田10を設ける。
First, as shown in FIG. 7A, solder 10 is supplied to the connection electrodes 6 of the circuit board 7 by printing.
Specifically, the solder 10 is provided on the surface of the connection electrode 6 by scraping the solder 10 with the squeegee 12 through the screen mask 11.

【0055】次に、図7(B)に示すように、入出力端
子電極2を接続電極6に対して位置合わせしたうえで受
光用光半導体装置Aを回路基板7上に搭載し、この状態
でリフロ−処理等を施すことで半田10を溶融させて入
出力端子電極2を接続電極6に接続させる。
Next, as shown in FIG. 7B, after the input / output terminal electrode 2 is positioned with respect to the connection electrode 6, the light receiving optical semiconductor device A is mounted on the circuit board 7. Then, the solder 10 is melted by performing a reflow process or the like to connect the input / output terminal electrode 2 to the connection electrode 6.

【0056】そして、図7(C)に示すように、封止樹
脂5により上記接続部を封止することで補強する。ここ
で、封止樹脂5は接続部の周りが少なくとも補強されて
いればよい。また、受光用光半導体装置Aの大きさや化
合物半導体基板Bと回路基板7との材質等が関係する熱
ひずみに対する信頼性が確保できる場合には、封止樹脂
5の補強はなくてもよい。
Then, as shown in FIG. 7C, the connection portion is sealed with a sealing resin 5 to reinforce it. Here, the sealing resin 5 only needs to be reinforced at least around the connection portion. In addition, if the size of the light receiving optical semiconductor device A and the reliability against the thermal strain related to the material of the compound semiconductor substrate B and the circuit board 7 can be ensured, the sealing resin 5 need not be reinforced.

【0057】最後に、図7(D)に示すように、受光用
光半導体装置Aの光吸収層の光吸収効率が最大になるよ
うに、光ファイバ8を受光用光半導体装置Aの裏面A2
に位置決めしたうえで、光ファイバ8を、接着剤9によ
り、受光用光半導体装置Aに接着する。
Finally, as shown in FIG. 7D, the optical fiber 8 is connected to the back surface A of the light receiving optical semiconductor device A so that the light absorption efficiency of the light absorbing layer of the light receiving optical semiconductor device A is maximized. Two
Then, the optical fiber 8 is bonded to the light receiving optical semiconductor device A with an adhesive 9.

【0058】次に、本実施の形態の光半導体モジュール
の第2の製造方法を図8を参照して説明する。
Next, a second method for manufacturing an optical semiconductor module according to the present embodiment will be described with reference to FIG.

【0059】まず、図8(A)に示すように、回路基板
7の接続電極6上に半田10をめっき処理により形成す
る。そして、図8(B)に示すように、受光用光半導体
装置Aの入出力端子電極2を回路基板7の接続電極6に
対して、熱と荷重を併用して接続固定する。このとき、
半田10は熱と荷重により半田表面の酸化膜が破れて、
入出力端子電極2との間に金属間化合物を生成する。そ
のため、入出力端子電極2と接続電極6とは機械的にも
電気的にも強固に接続される。
First, as shown in FIG. 8A, a solder 10 is formed on the connection electrodes 6 of the circuit board 7 by plating. Then, as shown in FIG. 8B, the input / output terminal electrode 2 of the optical semiconductor device for light reception A is connected and fixed to the connection electrode 6 of the circuit board 7 by using both heat and load. At this time,
The oxide film on the solder surface of the solder 10 is broken by heat and load,
An intermetallic compound is generated between the input and output terminal electrodes 2. Therefore, the input / output terminal electrode 2 and the connection electrode 6 are firmly connected both mechanically and electrically.

【0060】次に、図8(C)に示すように、受光用光
半導体装置Aと回路基板7との間の接続部を封止樹脂5
で封止することで補強する。ここで、封止樹脂5は接続
部の周りが少なくとも補強されていればよい。また、受
光用光半導体装置Aの大きさや化合物半導体基板Bと回
路基板7との材質が関係する熱ひずみに対する信頼性が
確保できる場合には、封止樹脂5の補強はなくてもよ
い。
Next, as shown in FIG. 8C, the connection between the light receiving optical semiconductor device A and the circuit board 7 is
It is reinforced by sealing with. Here, the sealing resin 5 only needs to be reinforced at least around the connection portion. In addition, when the size of the light receiving optical semiconductor device A and the reliability against the thermal strain related to the material of the compound semiconductor substrate B and the circuit board 7 can be ensured, the sealing resin 5 need not be reinforced.

【0061】最後に、図8(D)に示すように、受光用
光半導体装置Aの光吸収層の光吸収効率が最大になるよ
うに、光ファイバ8を受光用光半導体装置Aの裏面A2
に位置決めしたうえで、光ファイバ8を、接着剤9によ
り受光用光半導体装置Aに接着する。
Finally, as shown in FIG. 8D, the optical fiber 8 is connected to the back surface A of the light receiving optical semiconductor device A so that the light absorption efficiency of the light absorbing layer of the light receiving optical semiconductor device A is maximized. Two
Then, the optical fiber 8 is bonded to the light receiving optical semiconductor device A with an adhesive 9.

【0062】なお、上述した本実施の形態の説明では、
受光用光半導体装置Aと回路基板7との間の接続部を覆
って封止樹脂を設けることで、接続部を補強していた
が、図9に示すように、受光用光半導体装置Aの周縁だ
けに封止樹脂5を設けてもよい。
In the above description of the present embodiment,
The connection portion was reinforced by providing a sealing resin to cover the connection portion between the light receiving optical semiconductor device A and the circuit board 7, but as shown in FIG. The sealing resin 5 may be provided only on the peripheral edge.

【0063】図9の光半導体モジュールの製造方法を、
図10を参照して説明する。まず、図7(A),図7
(B)を参照して説明した方法と同一の方法である図1
0(A),図10(B)の方法により、受光用光半導体
装置Aを回路基板7に実装する。その後、少なくとも受
光用光半導体装置Aと回路基板7との間の接続部に受光
用光半導体装置Aの周縁に沿って光線硬化型樹脂(紫外
線硬化型樹脂等)からなる封止樹脂5を未硬化状態で配
置する。この状態でさらに、光ファイバ8を受光用光半
導体装置Aの裏面A2に対して、同様の光線硬化型樹脂
(未硬化状態)からなる接着剤9を介して当接配置す
る。
The method of manufacturing the optical semiconductor module shown in FIG.
This will be described with reference to FIG. First, FIGS. 7A and 7
FIG. 1 which is the same as the method described with reference to FIG.
The light receiving optical semiconductor device A is mounted on the circuit board 7 by the method shown in FIG. Thereafter, the sealing resin 5 made of a light-curable resin (ultraviolet-curable resin or the like) is not provided along at least the connection portion between the light-receiving optical semiconductor device A and the circuit board 7 along the periphery of the light-receiving optical semiconductor device A. Place in a cured state. Further in this state, the optical fiber 8 the rear surface A 2 of the light-receiving optical semiconductor device A, via the adhesive 9 made of the same radiation curable resin (uncured) abuts arrangement.

【0064】そして、封止樹脂5と接着剤9とに対して
同時に紫外線を照射することで、封止樹脂5、接着剤9
の表面だけを硬化させる。これにより、接続部に対する
封止樹脂5の流れ込みを防いだうえで、光ファイバ8の
位置決めを行う。その後、封止樹脂5と接着剤9とに対
して加熱することで、これらの本硬化を行う。第3の実施の形態 上述した第2の実施の形態では、半田10だけを用い
て、受光用光半導体装置Aを回路基板7に実装したが、
本発明は、このような接着媒体に限定されるものではな
い。第3の実施の形態は、図11に示すように、入出力
端子電極2に突起電極3を形成したうえで、突起電極3
と接続電極6との間に半田10を介装させることで、受
光用光半導体装置Aの入出力端子電極2を回路基板7の
接続電極6に接続固定している。半田10はペースト状
態で回路基板7の接続電極6に形成したのち、リフロー
処理により溶融させることで接続電極6と入出力端子電
極2とを接続固定している。さらには、フラックスを供
給することなく半田10を接続電極6に形成したのち、
熱と荷重の併用により半田10の酸化膜を破ることで、
半田10と突起電極3との間に金属間化合物を形成し、
これにより、接続電極6と入出力端子電極2とを接続固
定することもできる。
By simultaneously irradiating the sealing resin 5 and the adhesive 9 with ultraviolet rays, the sealing resin 5 and the adhesive 9 are irradiated.
Only the surface is cured. Thus, the optical fiber 8 is positioned while preventing the sealing resin 5 from flowing into the connection portion. Thereafter, the main curing is performed by heating the sealing resin 5 and the adhesive 9. Third Embodiment In the above-described second embodiment, the light receiving optical semiconductor device A is mounted on the circuit board 7 using only the solder 10.
The present invention is not limited to such an adhesive medium. In the third embodiment, as shown in FIG. 11, after forming the projecting electrode 3 on the input / output terminal electrode 2, the projecting electrode 3
The input / output terminal electrode 2 of the light receiving optical semiconductor device A is connected and fixed to the connection electrode 6 of the circuit board 7 by interposing the solder 10 between the connection electrode 6 and the semiconductor device. After the solder 10 is formed on the connection electrode 6 of the circuit board 7 in a paste state, the connection electrode 6 and the input / output terminal electrode 2 are connected and fixed by being melted by a reflow process. Furthermore, after forming the solder 10 on the connection electrode 6 without supplying a flux,
By breaking the oxide film of solder 10 by the combined use of heat and load,
Forming an intermetallic compound between the solder 10 and the bump electrode 3;
Thereby, the connection electrode 6 and the input / output terminal electrode 2 can be connected and fixed.

【0065】なお、その他の構造については、基本的に
第1の実施の形態と同様であるため、それらについての
説明は省略する。また、受光用光半導体装置Aの大きさ
や化合物半導体基板Bの材質が関係する熱ひずみに対す
る信頼性が確保できる場合、封止樹脂5の補強はなくて
もよい。また、半田10はSn、Ag、Pb、Bi、C
u、Zn、Sbの少なくとも1つは含んでいるのが好ま
しい。
Note that the other structures are basically the same as those of the first embodiment, and a description thereof will be omitted. In addition, when the size of the light receiving optical semiconductor device A and the reliability with respect to the thermal strain related to the material of the compound semiconductor substrate B can be ensured, the sealing resin 5 does not need to be reinforced. The solder 10 is made of Sn, Ag, Pb, Bi, C
It is preferable that at least one of u, Zn, and Sb is contained.

【0066】以上説明した第1〜第3の実施の形態は、
受光用光半導体装置Aと回路基板7との間の接続構造に
おいて、それぞれ特徴を有する本発明の実施の形態であ
る。次に、光ファイバ8の取り付け構造に関してそれぞ
れ特徴を有する本発明の第4〜第6の実施の形態、およ
びさらにその他の特徴を有する本発明の第7、第8の実
施の形態を説明する。
The first to third embodiments described above are:
This is an embodiment of the present invention that has features in the connection structure between the light receiving optical semiconductor device A and the circuit board 7. Next, a description will be given of fourth to sixth embodiments of the present invention each having a feature with respect to the mounting structure of the optical fiber 8, and seventh and eighth embodiments of the present invention having further other features.

【0067】なお、以下、説明する各実施の形態では、
受光用光半導体装置Aと回路基板7との間の接続構造に
ついては特に特徴がない。そのため、受光用光半導体装
置Aと回路基板7との間の接続部位については、単に接
続部14として記述する。ここでいう接続部14として
は、導電性接着剤4による接続構造や半田10による接
続構造を含めたものであるのはいうまでもない。第4の実施の形態 図12は第4の実施の形態にかかる光半導体モジュール
の概略図である。この光半導体モジュールにおいては、
受光用光半導体装置Aが接続部14を介して回路基板A
に実装されており、さらには、受光用光半導体装置Aの
裏面A2には、装着孔13が形成されている。装着孔1
3は、基板Bの厚み方向に沿って、実装面(端子電極形
成面)A1に向かって底の有る状態で形成されており、
さらには、光ファイバ8が挿入可能な大きさに形成され
ている。
In each of the embodiments described below,
There is no particular feature in the connection structure between the light receiving optical semiconductor device A and the circuit board 7. Therefore, a connection portion between the light receiving optical semiconductor device A and the circuit board 7 is simply described as a connection portion 14. Needless to say, the connection portion 14 includes a connection structure using the conductive adhesive 4 and a connection structure using the solder 10. Fourth Embodiment FIG. 12 is a schematic diagram of an optical semiconductor module according to a fourth embodiment. In this optical semiconductor module,
The light receiving optical semiconductor device A is connected to the circuit board A via the connection portion 14.
Is implemented in news, on the back surface A 2 of the light-receiving optical semiconductor device A, the mounting hole 13 is formed. Mounting hole 1
3, along the thickness direction of the substrate B, and is formed in a state where there is a mounting surface (terminal electrode formation surface) toward the A 1 of the bottom,
Furthermore, the optical fiber 8 is formed in a size that allows insertion.

【0068】光ファイバ8の先端は、装着孔13に挿入
された状態で接着剤9によって受光用光半導体装置Aに
固定されている。これにより、PinPD1の光吸収層
に対して光ファイバ8の先端が可及的に接近するため、
十分な受光感度を確保することができる。第5の実施の形態 図13は本発明の第5の実施の形態にかかる光半導体モ
ジュールの概略図である。この光半導体モジュールにお
いては、受光用光半導体装置Aが接続部14を介して回
路基板Aに実装されており、受光用光半導体装置Aの裏
面A2には、装着補助板16が面着固定されている。装
着補助板16には、その厚み方向に沿って装着孔17が
形成されている。装着孔17は、装着補助板16を貫通
して形成されており、さらには、光ファイバ8が挿入可
能な大きさに形成されている。
The distal end of the optical fiber 8 is fixed to the light receiving optical semiconductor device A by the adhesive 9 while being inserted into the mounting hole 13. As a result, the tip of the optical fiber 8 approaches the light absorption layer of the PinPD 1 as much as possible.
Sufficient light receiving sensitivity can be secured. Fifth Embodiment FIG. 13 is a schematic diagram of an optical semiconductor module according to a fifth embodiment of the present invention. In this optical semiconductor module, the light receiving optical semiconductor device A is mounted on the circuit board A via the connection portion 14, and the mounting auxiliary plate 16 is fixed on the back surface A 2 of the light receiving optical semiconductor device A. Have been. A mounting hole 17 is formed in the mounting auxiliary plate 16 along its thickness direction. The mounting hole 17 is formed so as to penetrate the mounting auxiliary plate 16, and has a size that allows the optical fiber 8 to be inserted.

【0069】光ファイバ8の先端は、装着孔17に挿入
された状態で接着剤9によって装着補助板16に固定さ
れており、これにより光ファイバ8は、装着補助板16
を介して、受光用光半導体装置Aに固定されている。こ
の構成では、受光用光半導体装置A(化合物半導体基板
B)の機械的強度を装着補助板16により補強すること
が可能となり、その分、受光用光半導体装置A(化合物
半導体基板B)の厚みを薄くすることができる。そのた
め、本実施の形態では、受光用光半導体装置Aの厚みを
薄くすることが可能になる分、PinPD1の光吸収層
に対して光ファイバ8の先端を接近させて十分な受光感
度を確保することができる。
The tip of the optical fiber 8 is fixed to the mounting auxiliary plate 16 by the adhesive 9 while being inserted into the mounting hole 17, whereby the optical fiber 8 is attached to the mounting auxiliary plate 16.
Is fixed to the optical semiconductor device for light reception A through the light emitting device. In this configuration, the mechanical strength of the light receiving optical semiconductor device A (compound semiconductor substrate B) can be reinforced by the mounting auxiliary plate 16, and the thickness of the light receiving optical semiconductor device A (compound semiconductor substrate B) is correspondingly increased. Can be made thinner. Therefore, in the present embodiment, since the thickness of the light receiving optical semiconductor device A can be reduced, the tip of the optical fiber 8 is made closer to the light absorbing layer of the PinPD 1 to secure sufficient light receiving sensitivity. be able to.

【0070】なお、図14に示すように、装着孔17の
大きさを、光ファイバ8の外形と略一致させることで、
光ファイバ8を装着孔17に圧入固定するようにしても
よい。
As shown in FIG. 14, by making the size of the mounting hole 17 substantially coincide with the outer shape of the optical fiber 8,
The optical fiber 8 may be press-fitted and fixed in the mounting hole 17.

【0071】また、本実施の形態の装着補助板16は、
封止樹脂5によって装着固定することができ、そうすれ
ば、装着補助板16単独の取り付け工程を必要とせず、
その分、製造工程の簡略化を図ってコストダウンを実現
することができる。第6の実施の形態 図15は本発明の第6の実施の形態にかかる光半導体モ
ジュールの概略図である。この光半導体モジュールにお
いては、受光用光半導体装置Aが接続部14を介して回
路基板Aに実装されており、さらには、回路基板7に
は、装着孔18が形成されている。装着孔18は、回路
基板7の厚み方向に沿って、回路基板7を貫通して形成
されており、さらには、光ファイバ8が挿入可能な大き
さに形成されている。
The mounting auxiliary plate 16 of the present embodiment is
The mounting auxiliary plate 16 can be mounted and fixed by the sealing resin 5, so that the mounting step of the mounting auxiliary plate 16 alone is not required,
To that extent, the manufacturing process can be simplified and the cost can be reduced. Sixth Embodiment FIG. 15 is a schematic view of an optical semiconductor module according to a sixth embodiment of the present invention. In this optical semiconductor module, the optical semiconductor device A for light reception is mounted on the circuit board A via the connection portion 14, and further, the mounting hole 18 is formed in the circuit board 7. The mounting hole 18 is formed to penetrate the circuit board 7 along the thickness direction of the circuit board 7, and is formed to have a size in which the optical fiber 8 can be inserted.

【0072】光ファイバ8の先端は、装着孔13に挿入
された状態で封止樹脂5によって受光用光半導体装置A
に対してその実装面A1側(入出力端子電極形成面側)
に固定されている。これにより、PinPD1の光吸収
層に対して光ファイバ8の先端が可及的に接近するた
め、十分な受光感度を確保することができる。
The tip of the optical fiber 8 is inserted into the mounting hole 13 by the encapsulating resin 5 to receive the light-receiving optical semiconductor device A.
Its mounting surface A 1 side of the (input-output terminal electrode forming surface)
Fixed to. Thereby, the tip of the optical fiber 8 approaches the light absorption layer of the PinPD 1 as much as possible, and thus sufficient light receiving sensitivity can be secured.

【0073】なお、図16に示すように、回路基板7の
表裏いずれか一方の面側(図16では、入出力電極形成
面側)において、装着孔18を囲んで位置決めブロック
19を配置しておいてもよい。そうすれば、光ファイバ
8の位置決めが容易になる。位置決めブロック19はレ
ジストでもよいし、チップ部品など、回路基板7の配線
回路を阻害しないものであれば何でもよい。図16の構
造の場合には、光ファイバ8を接着剤9により固定する
とともに、封止樹脂5を受光用光半導体装置Aの周縁に
のみ設けている。しかしながら、これは、一例にすぎ
ず、封止樹脂5により接続部14の周囲を完全に封止し
てもよいし、光ファイバ8を装着孔18に圧入固定して
もよいのはいうまでもない。第7の実施の形態 図17は本発明の第7の実施の形態にかかる光半導体モ
ジュールの概略図である。図17(A)は受光用光半導
体装置Aの配線電極20を上から見た図であり、図17
(B)は、受光用光半導体装置Aを回路基板7に実装し
た状態の断面図である。
As shown in FIG. 16, a positioning block 19 is arranged so as to surround the mounting hole 18 on one of the front and back surfaces of the circuit board 7 (in FIG. 16, the input / output electrode forming surface). You may leave. Then, the positioning of the optical fiber 8 becomes easy. The positioning block 19 may be a resist, or any other component such as a chip component as long as it does not hinder the wiring circuit of the circuit board 7. In the case of the structure shown in FIG. 16, the optical fiber 8 is fixed by the adhesive 9, and the sealing resin 5 is provided only on the periphery of the optical semiconductor device A for light reception. However, this is only an example, and it goes without saying that the periphery of the connection portion 14 may be completely sealed by the sealing resin 5 or the optical fiber 8 may be press-fitted and fixed in the mounting hole 18. Absent. Seventh Embodiment FIG. 17 is a schematic view of an optical semiconductor module according to a seventh embodiment of the present invention. FIG. 17A is a view of the wiring electrode 20 of the optical semiconductor device A for light reception as viewed from above.
2B is a cross-sectional view showing a state in which the light receiving optical semiconductor device A is mounted on the circuit board 7.

【0074】受光用光半導体装置Aでは、下地とした化
合物半導体基板B全体がN極になることがあり、P極か
ら引き出された接続部14が受光用光半導体装置Aの中
心にあると、そこまで引き回された回路基板7の接続電
極6とN極である受光用光半導体装置Aの下地とした化
合物半導体基板Bとの間で浮遊容量が発生することが危
惧される。このような浮遊容量は、高周波特性を著しく
劣化させる要因になりかねない。これに対して、本実施
の形態では、図17(B)に示すように、P極となった
接続部14につながる回路基板7の接続電極6を、設計
上可能な限り受光用光半導体装置Aの外側に位置するよ
うに配置している。これにより、浮遊容量の発生による
特性劣化を防ぐことが可能となり、高周波特性に優れた
光半導体モジュールが実現できる。
In the light-receiving optical semiconductor device A, the entire compound semiconductor substrate B serving as a base may become an N-pole. If the connecting portion 14 drawn from the P-pole is located at the center of the light-receiving optical semiconductor device A, It is feared that a stray capacitance is generated between the connection electrode 6 of the circuit board 7 routed so far and the compound semiconductor substrate B serving as a base of the light receiving optical semiconductor device A as the N pole. Such stray capacitance may cause a significant deterioration of high frequency characteristics. On the other hand, in the present embodiment, as shown in FIG. 17 (B), the connection electrode 6 of the circuit board 7 connected to the connection portion 14 serving as the P-pole is connected to the light receiving optical semiconductor device as much as possible in design. It is arranged so that it may be located outside A. This makes it possible to prevent characteristic degradation due to the generation of stray capacitance, and realize an optical semiconductor module having excellent high-frequency characteristics.

【0075】なお、化合物半導体基板Bはへき開面をも
っており、シリコン(Si)基板と比較すると強度が弱
く脆い。そのため、本発明の各実施の形態において突起
電極3を設ける必要がある場合においては、ワイヤボン
ディング法を用いて突起電極3を形成しようすると、化
合物半導体基板Bに破損が生じる可能性がある。その場
合には、図18に示すように化合物半導体基板Bの短辺
Ba側を治具21で挟んでうえで、ワイヤボンディング
により突起電極3を形成すると、化合物半導体基板Bの
破損(割れ等)を著しく軽減することができ、これによ
って受光用光半導体装置の高周波特性及び電流特性(暗
電流や光電流など)の劣化をさらに防ぐことができる。
なお、図18中、符号19はボンディングステージであ
る。
The compound semiconductor substrate B has a cleaved surface, and has a weak strength and is brittle as compared with a silicon (Si) substrate. Therefore, in each of the embodiments of the present invention, when it is necessary to provide the bump electrode 3, if the bump electrode 3 is formed by using the wire bonding method, the compound semiconductor substrate B may be damaged. In this case, as shown in FIG. 18, when the projecting electrode 3 is formed by wire bonding after sandwiching the short side Ba of the compound semiconductor substrate B with the jig 21, the compound semiconductor substrate B is damaged (crack, etc.). Can be remarkably reduced, whereby deterioration of the high-frequency characteristics and current characteristics (dark current, photocurrent, etc.) of the optical semiconductor device for light reception can be further prevented.
In FIG. 18, reference numeral 19 denotes a bonding stage.

【0076】[0076]

【発明の効果】以上説明したように、本発明によれば、
フリップチップ実装構造とすることで、封止樹脂により
気密封止することが可能となるため、別途、パッケージ
構造によって気密封止する必要がなくなる。これは、従
来確立されていなかったことである。これにより、飛躍
的な低コスト化が実現できる。また、高周波特性や電流
特性(暗電流や光電流など)、信頼性に優れた光半導体
モジュールを実験することができる。
As described above, according to the present invention,
With the flip-chip mounting structure, it is possible to hermetically seal with a sealing resin, so that it is not necessary to separately perform hermetic sealing with a package structure. This has not been established before. Thereby, dramatic cost reduction can be realized. In addition, an optical semiconductor module having excellent high-frequency characteristics and current characteristics (such as dark current and photocurrent) and excellent reliability can be tested.

【0077】また、受光用光半導体装置においては、気
相成長や液相成長など安定したプロセスで作製されたも
のを用いることができるので、従来のように湿度に対す
る特性劣化がないのでより安定な実装構造が得られる。
Further, in the light receiving optical semiconductor device, a device manufactured by a stable process such as vapor phase growth or liquid phase growth can be used. A mounting structure is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態に従う光半導体モ
ジュールの構造を示す断面図である。
FIG. 1 is a sectional view showing a structure of an optical semiconductor module according to a first embodiment of the present invention.

【図2】 図2(A)〜図2(C−2)は、第1の実施
の形態に従う光半導体モジュールの特性データを示す図
である。
FIGS. 2A to 2C are diagrams showing characteristic data of the optical semiconductor module according to the first embodiment.

【図3】 図3(A)〜図3(E)は、第1の実施の形
態に従う光半導体モジュールの製造方法を示す概略図で
ある。
FIGS. 3A to 3E are schematic views showing a method for manufacturing an optical semiconductor module according to the first embodiment.

【図4】 光ファイバの位置合わせ方法の概略を示す斜
視図である。
FIG. 4 is a perspective view schematically showing an optical fiber alignment method.

【図5】 光ファイバの移動に対する光電流の変化の度
合を示すグラフである。
FIG. 5 is a graph showing the degree of change in photocurrent with respect to movement of an optical fiber.

【図6】 本発明の第2の実施の形態に従う光半導体モ
ジュールの構造を示す断面図である。
FIG. 6 is a sectional view showing a structure of an optical semiconductor module according to a second embodiment of the present invention.

【図7】 図7(A)〜図7(D)は、第2の実施の形
態に従う光半導体モジュールの第1の製造方法を示す概
略図である。
FIGS. 7A to 7D are schematic views showing a first method for manufacturing an optical semiconductor module according to the second embodiment.

【図8】 図8(A)〜図8(D)は、第2の実施の形
態に従う光半導体モジュールの第2の製造方法を示す概
略図である。
FIGS. 8A to 8D are schematic views showing a second method for manufacturing an optical semiconductor module according to the second embodiment.

【図9】 第2の実施の形態に従う光半導体モジュール
の変形例を示す断面図である。
FIG. 9 is a sectional view showing a modification of the optical semiconductor module according to the second embodiment.

【図10】 図10(A)〜図10(D)は、第2の実
施の形態に従う光半導体モジュールの変形例の製造方法
を示す概略図である。
FIGS. 10A to 10D are schematic diagrams illustrating a method of manufacturing a modified example of the optical semiconductor module according to the second embodiment.

【図11】 本発明の第3の実施の形態に従う光半導体
モジュールの構造を示す断面図である。
FIG. 11 is a sectional view showing a structure of an optical semiconductor module according to a third embodiment of the present invention.

【図12】 本発明の第4の実施の形態に従う光半導体
モジュールの構造を示す断面図である。
FIG. 12 is a sectional view showing a structure of an optical semiconductor module according to a fourth embodiment of the present invention.

【図13】 本発明の第5の実施の形態に従う光半導体
モジュールの構造を示す断面図である。
FIG. 13 is a sectional view showing a structure of an optical semiconductor module according to a fifth embodiment of the present invention.

【図14】 第5の実施の形態に従う光半導体モジュー
ルの変形例を示す断面図である。
FIG. 14 is a sectional view showing a modification of the optical semiconductor module according to the fifth embodiment.

【図15】 本発明の第6の実施の形態に従う光半導体
モジュールの構造を示す断面図である。
FIG. 15 is a sectional view showing a structure of an optical semiconductor module according to a sixth embodiment of the present invention.

【図16】 第6の実施の形態に従う光半導体モジュー
ルの変形例を示す断面図である。
FIG. 16 is a sectional view showing a modification of the optical semiconductor module according to the sixth embodiment.

【図17】 図17(A),図17(B)は、本発明の
第7の実施の形態に従う光半導体モジュールの構造を示
す概略図である。
FIGS. 17A and 17B are schematic diagrams showing a structure of an optical semiconductor module according to a seventh embodiment of the present invention.

【図18】 本発明のすべての実施の形態に係る変形例
の構造を示す概略図である。
FIG. 18 is a schematic diagram showing a structure of a modification according to all embodiments of the present invention.

【符号の説明】[Explanation of symbols]

A 受光用光半導体装置 A1 実装面 A2 裏面 B 化合物半導体基板 1 PinPD 2 入出力端
子電極 3 突起電極 4 導電性接着剤 5 封止樹脂 6 接続電極 7 回路基板 8 光ファイバ 9 接着剤 C 容器 10 半田 13 装着孔(化合物半導体基板) 14 接続部 16 装着補助板 17 装着孔(装着板) 18装着孔(回路基板) 19 位置決めブロ
ック
A Optical semiconductor device for light reception A 1 Mounting surface A 2 Back surface B Compound semiconductor substrate 1 PinPD 2 Input / output terminal electrode 3 Protrusion electrode 4 Conductive adhesive 5 Sealing resin 6 Connection electrode 7 Circuit board 8 Optical fiber 9 Adhesive C Container REFERENCE SIGNS LIST 10 solder 13 mounting hole (compound semiconductor substrate) 14 connecting portion 16 mounting auxiliary plate 17 mounting hole (mounting plate) 18 mounting hole (circuit board) 19 positioning block

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 回路基板と、 前記回路基板にフリップチップ実装された受光用光半導
体装置と、 前記受光用光半導体装置の実装面もしくは前記実装面の
裏面に固定された光ファイバと、 を有する光半導体モジュール。
1. A circuit board, a light receiving optical semiconductor device flip-chip mounted on the circuit board, and an optical fiber fixed to a mounting surface of the light receiving optical semiconductor device or a back surface of the mounting surface. Optical semiconductor module.
【請求項2】 前記受光用光半導体装置は光吸収層を有
しており、前記光ファイバを、前記実装面と直交する方
向に沿って前記光吸収層に対向する位置に固定する、 請求項1に記載の光半導体モジュール。
2. The light receiving optical semiconductor device has a light absorbing layer, and fixes the optical fiber at a position facing the light absorbing layer along a direction orthogonal to the mounting surface. 2. The optical semiconductor module according to 1.
【請求項3】 前記回路基板は接続電極を有しており、
前記実装面に設けられた前記受光用光半導体装置の入出
力端子電極を、突起電極と導電性接着剤とを介して前記
接続電極に接続する、 請求項1に記載の光半導体モジュール。
3. The circuit board has connection electrodes,
The optical semiconductor module according to claim 1, wherein an input / output terminal electrode of the optical semiconductor device for light reception provided on the mounting surface is connected to the connection electrode via a protruding electrode and a conductive adhesive.
【請求項4】 前記入出力端子電極と前記接続電極との
間の接続部の周囲を、封止樹脂で封止する、 請求項3に記載の光半導体モジュ−ル。
4. The optical semiconductor module according to claim 3, wherein a periphery of a connection between the input / output terminal electrode and the connection electrode is sealed with a sealing resin.
【請求項5】 前記接続部を除く前記受光用光半導体装
置と前記回路基板との間の対向部分を、前記封止樹脂で
封止する、 請求項4に記載の光半導体モジュ−ル。
5. The optical semiconductor module according to claim 4, wherein an opposing portion between the light receiving optical semiconductor device and the circuit board except for the connection portion is sealed with the sealing resin.
【請求項6】 前記回路基板は接続電極を有しており、
前記実装面に設けられた前記受光用光半導体装置の入出
力端子電極を、半田を介して前記接続電極に接続する、 請求項1に記載の光半導体モジュール。
6. The circuit board has connection electrodes,
The optical semiconductor module according to claim 1, wherein an input / output terminal electrode of the optical semiconductor device for light reception provided on the mounting surface is connected to the connection electrode via solder.
【請求項7】 前記入出力端子電極と前記接続電極との
間の接続部の周囲を、封止樹脂で封止する、 請求項6に記載の光半導体モジュ−ル。
7. The optical semiconductor module according to claim 6, wherein a periphery of a connection between the input / output terminal electrode and the connection electrode is sealed with a sealing resin.
【請求項8】 前記接続部を除く前記受光用光半導体装
置と前記回路基板との間の対向部分を、前記封止樹脂に
より封止する、 請求項7に記載の光半導体モジュ−ル。
8. The optical semiconductor module according to claim 7, wherein an opposing portion between the optical semiconductor device for light reception and the circuit board except for the connection portion is sealed with the sealing resin.
【請求項9】 前記光ファイバを、接着樹脂により前記
裏面に固定する、請求項1に記載の光半導体モジュー
ル。
9. The optical semiconductor module according to claim 1, wherein the optical fiber is fixed to the back surface with an adhesive resin.
【請求項10】 前記裏面に、前記実装面に向かう装着
孔を設け、この装着孔に前記光ファイバを挿入して固定
する、 請求項9に記載の光半導体モジュ−ル。
10. The optical semiconductor module according to claim 9, wherein a mounting hole facing the mounting surface is provided on the back surface, and the optical fiber is inserted and fixed in the mounting hole.
【請求項11】 前記装着孔は、前記受光用光半導体装
置の光吸収層の近傍に達する深さを有する、 請求項10に記載の光半導体モジュ−ル。
11. The optical semiconductor module according to claim 10, wherein said mounting hole has a depth reaching a vicinity of a light absorbing layer of said optical semiconductor device for light reception.
【請求項12】 前記受光用光半導体装置はPinフォ
トダイオードを有する化合物半導体基板である、 請求項1に記載の光半導体モジュール。
12. The optical semiconductor module according to claim 1, wherein the light receiving optical semiconductor device is a compound semiconductor substrate having a pin photodiode.
【請求項13】 前記回路基板は接続電極を有してお
り、前記PinフォトダイオードのP極とN極とのうち
の少なくとも一方に接続される前記接続電極を、前記受
光用光半導体装置の周縁に対向する前記回路基板の部位
に設ける、 請求項12に記載の光半導体モジュール。
13. The light receiving optical semiconductor device according to claim 13, wherein the circuit board has a connection electrode, and the connection electrode connected to at least one of a P pole and an N pole of the Pin photodiode is located at a periphery of the optical semiconductor device for light reception. The optical semiconductor module according to claim 12, wherein the optical semiconductor module is provided in a portion of the circuit board facing the optical semiconductor module.
【請求項14】 貫通孔を有する装着補助板をさらに有
し、前記光ファイバを前記貫通孔に挿入固定した状態
で、前記装着補助板を前記裏面に固定することで、前記
光ファイバを前記受光用光半導体装置に固定する、 請求項9に記載の光半導体モジュ−ル。
14. The optical fiber according to claim 1, further comprising a mounting auxiliary plate having a through hole, wherein said optical fiber is inserted into said through hole and fixed to said back surface to fix said optical fiber to said light receiving means. The optical semiconductor module according to claim 9, wherein the optical semiconductor module is fixed to an optical semiconductor device for use.
【請求項15】 前記入出力端子電極と前記接続電極と
の間の接続部の周囲を封止する封止樹脂を有し、 前記装着補助板を前記封止樹脂により前記裏面に固定す
る、 請求項14に記載の光半導体モジュ−ル。
15. A sealing resin that seals a periphery of a connection portion between the input / output terminal electrode and the connection electrode, wherein the mounting auxiliary plate is fixed to the back surface by the sealing resin. Item 15. An optical semiconductor module according to item 14.
【請求項16】 回路基板と、前記回路基板にフリップ
チップ実装された受光用光半導体装置と、前記受光用光
半導体装置の実装面の裏面に固定された光ファイバとを
有する光半導体モジュールの製造方法であって、 前記実装面に設けられた入出力端子電極に突起電極を形
成したうえで、この突起電極に導電性接着剤を供給する
工程と、 前記回路基板に設けられた接続電極に前記入出力端子電
極が当接するように前記受光用光半導体装置を前記回路
基板に搭載する工程と、 前記導電性接着剤を硬化させて前記受光用光半導体装置
を前記回路基板に実装する工程と、 前記受光用光半導体装置と前記回路基板との間の接続部
位を、封止樹脂により封止する工程と、 前記裏面に光ファイバを固定する工程と、 を含む、 光半導体モジュ−ルの製造方法。
16. Production of an optical semiconductor module having a circuit board, an optical semiconductor device for light-receiving mounted on the circuit board by flip-chip, and an optical fiber fixed to the back surface of the mounting surface of the optical semiconductor device for light-receiving. A method of forming a projecting electrode on an input / output terminal electrode provided on the mounting surface, and then supplying a conductive adhesive to the projecting electrode; A step of mounting the optical semiconductor device for light reception on the circuit board such that a writing output terminal electrode contacts, and a step of mounting the optical semiconductor device for light reception on the circuit board by curing the conductive adhesive; A step of sealing a connection portion between the light-receiving optical semiconductor device and the circuit board with a sealing resin; and a step of fixing an optical fiber to the back surface. Law.
【請求項17】 前記光ファイバを固定する接着剤と前
記封止樹脂として光線硬化樹脂を用い、 前記封止樹脂と前記接着剤とを一括に光線硬化する、 請求項16に記載の光半導体モジュ−ルの実装方法。
17. The optical semiconductor module according to claim 16, wherein a light-curing resin is used as an adhesive for fixing the optical fiber and the sealing resin, and the sealing resin and the adhesive are collectively light-cured. -How to implement the rules.
【請求項18】 前記受光用光半導体装置としてPin
フォトダイオードを有する化合物半導体基板を用い、 前記化合物半導体基板の短辺側両側面を治具で挟んだ状
態で、前記入出力端子電極に前記突起電極を形成する、 請求項16に記載の光半導体モジュ−ルの製造方法。
18. A light receiving optical semiconductor device comprising a pin
17. The optical semiconductor according to claim 16, wherein the projecting electrode is formed on the input / output terminal electrode while using a compound semiconductor substrate having a photodiode and sandwiching both short side surfaces of the compound semiconductor substrate with a jig. 18. A method for manufacturing a module.
【請求項19】 回路基板と、前記回路基板にフリップ
チップ実装された受光用光半導体装置と、前記受光用光
半導体装置の実装面の裏面に固定された光ファイバとを
有する光半導体モジュールの製造方法であって、 前記回路基板に設けられた接続電極に半田を供給する工
程と、 前記実装面に設けられた入出力端子電極が前記接続電極
に当接するように前記受光用光半導体装置を前記回路基
板に搭載する工程と、 前記半田を溶融させて前記受光用光半導体装置を前記回
路基板に実装する工程と、 前記受光用光半導体装置と前記回路基板との間の接続部
位を、封止樹脂により封止する工程と、 前記裏面に光ファイバを固定する工程と、を含む、 光半導体モジュ−ルの製造方法。
19. Manufacturing of an optical semiconductor module having a circuit board, an optical semiconductor device for light-receiving mounted flip-chip on the circuit substrate, and an optical fiber fixed to the back surface of the mounting surface of the optical semiconductor device for light-receiving. A method of supplying solder to a connection electrode provided on the circuit board, and the light-receiving optical semiconductor device so that an input / output terminal electrode provided on the mounting surface contacts the connection electrode. Mounting the optical semiconductor device for light reception on the circuit board by melting the solder; sealing a connection portion between the optical semiconductor device for light reception and the circuit board; A method for manufacturing an optical semiconductor module, comprising: a step of sealing with a resin; and a step of fixing an optical fiber to the back surface.
【請求項20】 前記光ファイバを固定する接着剤と前
記封止樹脂として光線硬化樹脂を用い、 前記封止樹脂と前記接着剤とを一括に光線硬化する、 請求項19に記載の光半導体モジュ−ルの実装方法。
20. The optical semiconductor module according to claim 19, wherein a light-curing resin is used as an adhesive for fixing the optical fiber and the sealing resin, and the sealing resin and the adhesive are collectively light-cured. -How to implement the rules.
【請求項21】 前記半田に熱と荷重を印加すること
で、前記半田と前記端子電極との間で、拡散化合物を生
成させる、 請求項19に記載の光半導体モジュ−ルの製造方法。
21. The method according to claim 19, wherein a diffusion compound is generated between the solder and the terminal electrode by applying heat and a load to the solder.
JP2002009683A 2001-01-19 2002-01-18 Optical semiconductor module and method of manufacturing the same Withdrawn JP2002289882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002009683A JP2002289882A (en) 2001-01-19 2002-01-18 Optical semiconductor module and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001011165 2001-01-19
JP2001-11165 2001-01-19
JP2002009683A JP2002289882A (en) 2001-01-19 2002-01-18 Optical semiconductor module and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002289882A true JP2002289882A (en) 2002-10-04

Family

ID=26607950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002009683A Withdrawn JP2002289882A (en) 2001-01-19 2002-01-18 Optical semiconductor module and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002289882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228569A (en) * 2016-06-20 2017-12-28 日本電信電話株式会社 Avalanche photodiode and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228569A (en) * 2016-06-20 2017-12-28 日本電信電話株式会社 Avalanche photodiode and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US6803639B2 (en) Photo-semiconductor module and method for manufacturing the same
US6368890B1 (en) Top contact VCSEL with monitor
US9507112B2 (en) Photoelectric conversion module and method of manufacturing photoelectric conversion module
JPH10335383A (en) Producing method for semiconductor device
US9341791B2 (en) Optical module, manufacturing method of optical module and optical communication device
JP2003273278A (en) Package type semiconductor device
US7039083B2 (en) High speed optical transmission assembly
TW200531137A (en) Optical coupler and electronic equipment using same
WO2009107671A1 (en) Photoelectric conversion device
JP6984801B1 (en) Semiconductor laser light source device
CN105793979A (en) Optoelectronic packaging assemblies
US20120193742A1 (en) Photoelectric conversion module and method of manufacturing photoelectric conversion module
JP2006351610A (en) Optical module
JP2002289882A (en) Optical semiconductor module and method of manufacturing the same
JP6658910B2 (en) Back-illuminated light receiving element and optical module
JP5898916B2 (en) OPTICAL MODULE, ITS MOUNTING STRUCTURE AND OPTICAL MODULE MANUFACTURING METHOD
WO2022123659A1 (en) Laser light source device
JP4201432B2 (en) Photodetection module
JP3960031B2 (en) Optical receiver module
US11824134B2 (en) Semiconductor device
JP2002217234A (en) Flip chip optical device mounting body
JP5387122B2 (en) Optical transmission module
JP2012230218A (en) Opto-electric composite module
JP2001156303A (en) Rear surface incident type photodetector with concave lens and photodetector module using it, optical receiver module
JPH10247672A (en) Optical receiver module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061102