JP2002286319A - Heat storage type air conditioner - Google Patents

Heat storage type air conditioner

Info

Publication number
JP2002286319A
JP2002286319A JP2001086938A JP2001086938A JP2002286319A JP 2002286319 A JP2002286319 A JP 2002286319A JP 2001086938 A JP2001086938 A JP 2001086938A JP 2001086938 A JP2001086938 A JP 2001086938A JP 2002286319 A JP2002286319 A JP 2002286319A
Authority
JP
Japan
Prior art keywords
heat storage
heat
heat exchanger
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001086938A
Other languages
Japanese (ja)
Inventor
Yasufumi Hatamura
康文 畑村
Daisuke Shimamoto
大祐 嶋本
Moriya Miyamoto
守也 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001086938A priority Critical patent/JP2002286319A/en
Publication of JP2002286319A publication Critical patent/JP2002286319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat storage type air conditioner in which an amount of melted ice during a cooling operation using stored heat is increased in a heat transfer pipe of a heat storage type heat exchanger to which thick ice adheres upon heat storage operation, and an amount of melted ice during the cooling operation using stored heat is decreased in a heat transfer pipe to which thin ice adheres upon heat storage operation. SOLUTION: In the heat storage type air conditioner, the heat storage operation and the cooling operation using the stored heat are carried out. In the heat storage operation, non-azeotrope refrigerant discharged from a compressor 1 is condensed, and then, the condensed refrigerant is thermally insulated and expanded to enter a heat storage device 8 having a heat storage medium 10 and the heat storage type heat exchanger 11 and to stick ice thereto. In the cooling operation using the stored heat, the non-azeotrope refrigerant discharged from the compressor is allowed to enter the heat storage device 8 to which the ice adheres and to be condensed, and the condensed refrigerant is thermally insulated and expanded and evaporated in a using side heat exchanger 15. The flowing directions of the refrigerant in the heat storage type heat exchanger of the heat storage device are the same both during the heat storage operation and during the cooling operation using the stored heat.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、蓄熱式空気調和
装置、特に熱伝達媒体として非共沸混合冷媒を用いた蓄
熱式空気調和装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage type air conditioner, and more particularly to a heat storage type air conditioner using a non-azeotropic mixed refrigerant as a heat transfer medium.

【0002】[0002]

【従来の技術】蓄熱式空気調和装置は、冷房負荷のピー
ク時における電力需要の軽減と、オフピーク時における
電力需要の拡大を図るため、冷房負荷のオフピーク時に
蓄熱媒体に冷熱を蓄え、蓄えた冷熱を冷房運転に寄与さ
せようとするものである。
2. Description of the Related Art A regenerative air conditioner stores cold heat in a heat storage medium during off-peak hours of a cooling load and reduces the power demand at the peak of the cooling load and increases the power demand at off-peak times. Is intended to contribute to the cooling operation.

【0003】従来の蓄熱式空気調和装置の構成を図4に
示す。この図において、1は圧縮機、2は蓄熱利用冷房
用圧縮機、3は上記両圧縮機の吐出部同士を接続する第
1の流路切換弁、4は四方弁、5は非利用側熱交換器、
6は第2の流路切換弁、7は第1の絞り装置、8は蓄熱
装置で、蓄熱槽9と、その内部に収容された水等の蓄熱
媒体10と、蓄熱熱交換器11とを有する。なお、蓄熱
熱交換器11の入口端11Aは第1の絞り装置7に接続
されている。12は蓄熱熱交換器11の出口端11Bと
上記両圧縮機の吸入部との間に接続された第3の流路切
換弁、13は同じく蓄熱熱交換器11の出口端11Bと
蓄熱利用冷房用圧縮機2の吐出部との間に接続された第
4の流路切換弁、14は第2の絞り装置、15は利用側
熱交換器である。なお、冷媒としてはR407C等の非
共沸混合冷媒が使用され、図中の実線矢印は蓄熱運転時
の冷媒の流れを、また、破線矢印は蓄熱利用冷房運転時
の冷媒の流れを示す。
FIG. 4 shows a configuration of a conventional regenerative air conditioner. In this figure, 1 is a compressor, 2 is a compressor for cooling using heat storage, 3 is a first flow path switching valve connecting the discharge portions of both compressors, 4 is a four-way valve, and 5 is a non-use side heat. Exchanger,
Reference numeral 6 denotes a second flow path switching valve, 7 denotes a first throttle device, 8 denotes a heat storage device, which includes a heat storage tank 9, a heat storage medium 10 such as water housed therein, and a heat storage heat exchanger 11. Have. The inlet end 11A of the heat storage heat exchanger 11 is connected to the first expansion device 7. Reference numeral 12 denotes a third flow path switching valve connected between the outlet end 11B of the heat storage heat exchanger 11 and the suction sections of the two compressors, and reference numeral 13 denotes an outlet end 11B of the heat storage heat exchanger 11 and heat storage cooling. A fourth flow path switching valve connected to the discharge section of the compressor 2 for use, 14 a second throttle device, and 15 a use side heat exchanger. A non-azeotropic mixed refrigerant such as R407C is used as the refrigerant. The solid arrows in the drawing indicate the flow of the refrigerant during the heat storage operation, and the broken arrows indicate the flow of the refrigerant during the heat storage cooling operation.

【0004】次に、従来の蓄熱式空気調和装置の動作に
ついて説明する。先ず、蓄熱装置に冷熱を蓄える蓄熱運
転について説明する。圧縮機1から吐出されたガス冷媒
及び蓄熱利用冷房用圧縮機2から吐出され、第1の流路
切換弁3を経て合流したガス冷媒が四方弁4を経て非利
用側熱交換器5で凝縮される。凝縮された冷媒は、第2
の流路切換弁6を経て第1の絞り装置7で断熱膨張して
気液二相状態となり、蓄熱装置8の蓄熱熱交換器11に
入口端11Aから流入して蒸発する。このとき、蓄熱槽
9内の蓄熱媒体10と熱交換し、蓄熱熱交換器11の伝
熱管に同心円状に氷が付着する。蒸発した冷媒は出口端
11Bから第3の流路切換弁12を経て圧縮機1、2へ
戻る。
Next, the operation of the conventional regenerative air conditioner will be described. First, a heat storage operation for storing cold heat in the heat storage device will be described. The gas refrigerant discharged from the compressor 1 and the gas refrigerant discharged from the heat storage cooling compressor 2 and joined through the first flow path switching valve 3 are condensed in the non-use side heat exchanger 5 through the four-way valve 4. Is done. The condensed refrigerant is
Adiabatically expands in the first expansion device 7 through the flow path switching valve 6 and enters a gas-liquid two-phase state, flows into the heat storage heat exchanger 11 of the heat storage device 8 from the inlet end 11A and evaporates. At this time, heat exchange occurs with the heat storage medium 10 in the heat storage tank 9, and ice adheres concentrically to the heat transfer tubes of the heat storage heat exchanger 11. The evaporated refrigerant returns to the compressors 1 and 2 from the outlet end 11B via the third flow path switching valve 12.

【0005】冷媒として使用される非共沸混合冷媒は、
冷媒の状態によって飽和温度が異なり、同一圧力におい
てはガス状態より液状態の方が飽和温度が低い。従っ
て、蓄熱装置8の蓄熱熱交換器11に流入した時、蓄熱
熱交換器11での圧力損失が0(kg/cm)の場合には、
蓄熱熱交換器11の出口端11Bの方が入口端11Aよ
り蒸発温度が高くなる。このため、蓄熱熱交換器11の
伝熱管の断面図を図5に示すように、蓄熱熱交換器の伝
熱管に同心円状に付着する氷10Aの厚さは入口側、即
ち図の左側の方が厚く、出口側、即ち図の右側の方が薄
くなる。
[0005] Non-azeotropic mixed refrigerants used as refrigerants include:
The saturation temperature differs depending on the state of the refrigerant, and at the same pressure, the saturation temperature is lower in the liquid state than in the gas state. Therefore, when the pressure loss in the heat storage heat exchanger 11 when flowing into the heat storage heat exchanger 11 of the heat storage device 8 is 0 (kg / cm 2 ),
The evaporating temperature of the outlet end 11B of the heat storage heat exchanger 11 is higher than that of the inlet end 11A. For this reason, as shown in FIG. 5 which is a cross-sectional view of the heat transfer tube of the heat storage heat exchanger 11, the thickness of the ice 10A concentrically adhering to the heat transfer tube of the heat storage heat exchanger is closer to the inlet side, that is, to the left side of the figure. And the outlet side, that is, the right side in the figure, becomes thinner.

【0006】次に、蓄熱利用冷房運転について説明す
る。蓄熱利用冷房用圧縮機2から吐出されたガス冷媒
は、第4の流路切換弁13を経て出口端11Bから蓄熱
装置8の蓄熱熱交換器11に流入し、蓄熱熱交換器11
の伝熱管に付着している氷によって凝縮される。このと
き、蓄熱熱交換器11では伝熱管に付着した氷10Aが
同心円状に融解するが、冷媒の流入部となる出口端11
Bの方が流出部となる入口端11Aよりも凝縮温度が高
くなるため、出口端11Bに近い部分での融解量が多
く、入口端11Aに向かうに従って融解量が少なくな
る。図6は、その状態を示すもので、ハッチングの外円
は図5と同じく蓄熱運転時に付着した氷10Aの量を示
すものであり、内側のハッチングのない円10Bは蓄熱
利用冷房運転時の融解量を示す。また、蓄熱装置8で凝
縮された冷媒は、第1及び第2の絞り装置7、14で断
熱膨張し、利用側熱交換器15で蒸発した後、四方弁4
を経て蓄熱利用冷房用圧縮機2に戻される。
Next, a cooling operation utilizing heat storage will be described. The gas refrigerant discharged from the heat-storage cooling compressor 2 flows into the heat storage heat exchanger 11 of the heat storage device 8 from the outlet end 11B via the fourth flow path switching valve 13, and the heat storage heat exchanger 11
Is condensed by ice adhering to the heat transfer tubes. At this time, in the heat storage heat exchanger 11, the ice 10A attached to the heat transfer tube is concentrically melted, but the outlet end 11 serving as a refrigerant inflow portion is formed.
Since the condensation temperature of B is higher than that of the inlet end 11A serving as the outlet, the amount of melting near the outlet end 11B is larger, and the amount of melting decreases toward the inlet end 11A. FIG. 6 shows this state, in which the outer circle of hatching shows the amount of ice 10A attached during the heat storage operation as in FIG. 5, and the inner circle 10B without hatching shows the melting during the cooling operation using heat storage. Indicates the amount. The refrigerant condensed in the heat storage device 8 adiabatically expands in the first and second expansion devices 7 and 14, evaporates in the use side heat exchanger 15, and then the four-way valve 4.
Is returned to the heat-storage cooling compressor 2.

【0007】[0007]

【発明が解決しようとする課題】従来の蓄熱式空気調和
装置は以上のように構成され、蓄熱運転と蓄熱利用冷房
運転とで蓄熱装置8の蓄熱熱交換器11に流れる冷媒の
方向が逆になっていたため、蓄熱運転時に厚い氷が付着
する伝熱管では、蓄熱利用冷房運転時の氷の融解量が少
なく、蓄熱運転時に薄い氷が付着する伝熱管では、蓄熱
利用冷房運転時の氷の融解量が多くなる。従って、蓄熱
運転、蓄熱利用冷房運転による着氷、融氷が繰り返され
ると、蓄熱熱交換器11の入口端11A側では氷が次第
に成長し、氷厚が厚くなるため、図7に示すように、入
口端11A側、即ち図7の左側では隣接する伝熱管の氷
が互いに接触し、ブロック化が生じる。ブロック化が生
じると周りを氷で囲まれた水の閉塞部10Cが生じ、こ
の部分が氷化した場合には体積膨張によって伝熱管に応
力が加わり、伝熱管を損傷するという問題点があった。
The conventional regenerative air conditioner is constructed as described above, and the direction of the refrigerant flowing through the regenerator 11 of the regenerator 8 is reversed between the regenerative operation and the regenerative cooling operation. Therefore, the heat transfer tube to which thick ice adheres during heat storage operation has a small amount of ice melted during cooling operation using heat storage, and the heat transfer tube to which thin ice adheres during heat storage operation melts ice during cooling operation using heat storage. The amount increases. Therefore, when icing and melting of ice by the heat storage operation and the heat storage cooling operation are repeated, ice gradually grows on the inlet end 11A side of the heat storage heat exchanger 11 and the ice thickness increases, so that as shown in FIG. 7, on the inlet end 11A side, that is, on the left side of FIG. When blocking occurs, a blockage portion 10C of water surrounded by ice is generated, and when this portion becomes iced, a stress is applied to the heat transfer tube due to volume expansion, and the heat transfer tube is damaged. .

【0008】この発明は、上記の問題点を解消するため
になされたもので、蓄熱運転時に厚い氷が付着する伝熱
管では、蓄熱利用冷房運転時の氷の融解量が多くなり、
蓄熱運転時に薄い氷が付着する伝熱管では、蓄熱利用冷
房運転時の氷の融解量が少なくなるような蓄熱式空気調
和装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem. In a heat transfer tube to which thick ice adheres during a heat storage operation, the amount of ice melted during a heat storage cooling operation increases.
It is an object of the present invention to provide a heat storage type air conditioner in which a heat transfer tube to which thin ice adheres during heat storage operation reduces the amount of ice melted during heat storage cooling operation.

【0009】[0009]

【課題を解決するための手段】この発明に係る蓄熱式空
気調和装置は、圧縮機から吐出された非共沸混合冷媒を
凝縮した後、断熱膨張し、蓄熱媒体と蓄熱熱交換器とを
有する蓄熱装置に流入させて氷を付着させる蓄熱運転
と、圧縮機から吐出された非共沸混合冷媒を着氷後の蓄
熱装置に流入させて凝縮し、凝縮した冷媒を断熱膨張し
て利用側熱交換器で蒸発させる蓄熱利用冷房運転とを行
なうようにした蓄熱式空気調和装置において、蓄熱装置
の蓄熱熱交換器内を流れる冷媒の方向が蓄熱運転時及び
蓄熱利用冷房運転時のいずれにおいても同じとなるよう
にしたものである。
A regenerative air conditioner according to the present invention has a heat storage medium and a heat storage heat exchanger after condensing a non-azeotropic mixed refrigerant discharged from a compressor and then adiabatically expanding the refrigerant. Heat storage operation in which ice flows into the heat storage device to deposit ice, and non-azeotropic mixed refrigerant discharged from the compressor flows into the heat storage device after icing to condense, and the condensed refrigerant is adiabatically expanded to utilize heat on the utilization side. In the regenerative air conditioner that performs the heat storage cooling operation in which the heat is evaporated by the exchanger, the direction of the refrigerant flowing in the heat storage heat exchanger of the heat storage device is the same in both the heat storage operation and the heat storage cooling operation. It is made to become.

【0010】この発明に係る蓄熱式空気調和装置は、ま
た、非共沸混合冷媒を圧縮する圧縮機、この圧縮機から
吐出された冷媒を凝縮する非利用側熱交換器、凝縮され
た冷媒を断熱膨張する絞り装置、この絞り装置に入口端
が接続された蓄熱熱交換器と蓄熱媒体とを有する蓄熱装
置、蓄熱熱交換器の出口端と圧縮機の吸入部との間に設
けられ、蓄熱運転時にのみ開路する切換弁、圧縮機の吐
出部と蓄熱熱交換器の入口端との間に設けられ、蓄熱利
用冷房運転時にのみ開路する切換弁、蓄熱熱交換器の出
口端と他の絞り装置との間に設けられ、蓄熱利用冷房運
転時にのみ開路する切換弁及び他の絞り装置に接続され
た利用側熱交換器を備えたものである。
[0010] The regenerative air conditioner according to the present invention also includes a compressor for compressing a non-azeotropic mixed refrigerant, a non-use side heat exchanger for condensing refrigerant discharged from the compressor, and a condensed refrigerant. An adiabatic expansion device, a heat storage device having a heat storage medium and a heat storage medium having an inlet end connected to the expansion device, and a heat storage device provided between an outlet end of the heat storage heat exchanger and a suction portion of the compressor. A switching valve that opens only during operation, a switching valve that is provided between the discharge part of the compressor and the inlet end of the heat storage heat exchanger, and that opens only during cooling operation using heat storage, the outlet end of the heat storage heat exchanger, and other throttles. It is provided with a switching valve that is provided between the heat exchanger and the heat exchanger and that is opened only during the cooling operation using heat storage, and a use-side heat exchanger connected to another expansion device.

【0011】この発明に係る蓄熱式空気調和装置は、ま
た、非共沸混合冷媒をR407Cとしたものである。
[0011] In the regenerative air conditioner according to the present invention, the non-azeotropic mixed refrigerant is R407C.

【0012】[0012]

【発明の実施の形態】実施の形態1.以下、この発明の
実施の形態1を図にもとづいて説明する。図1は、実施
の形態1の構成を示す冷媒回路図である。この図におい
て、図4と同一または相当部分には同一符号を付して説
明を省略する。図4と異なる点は、蓄熱熱交換器11の
入口端11Aと蓄熱利用冷房用圧縮機2の吐出部とを蓄
熱利用冷房運転時にのみ開路する第5の流路切換弁20
を介して接続すると共に、蓄熱熱交換器11の出口端1
1Bと第2の絞り装置14とを蓄熱利用冷房運転時にの
み開路する第6の流路切換弁21を介して接続した点で
ある。なお、図1において、22は非利用側熱交換器5
の出口側と、第6の流路切換弁21の出口側との間に設
けられた第7の流路切換弁である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a refrigerant circuit diagram showing the configuration of the first embodiment. In this figure, the same or corresponding parts as those in FIG. The difference from FIG. 4 is that the fifth flow path switching valve 20 that opens the inlet end 11A of the heat storage heat exchanger 11 and the discharge portion of the heat storage cooling compressor 2 only during the heat storage cooling operation.
And the outlet end 1 of the heat storage heat exchanger 11
1B and the second expansion device 14 are connected via a sixth flow path switching valve 21 that opens only during the cooling operation using heat storage. In addition, in FIG. 1, 22 is a non-use side heat exchanger 5
And a seventh flow path switching valve provided between the outlet side of the second flow path and the outlet side of the sixth flow path switching valve 21.

【0013】次に、この実施の形態の動作について説明
する。先ず、蓄熱運転について説明する。圧縮機1から
吐出されたガス冷媒及び蓄熱利用冷房用圧縮機2から吐
出され、第1の流路切換弁3を経て合流したガス冷媒が
四方弁4を経て非利用側熱交換器5で凝縮される。凝縮
された冷媒は、第1の絞り装置7で断熱膨張して気液二
相状態となり、蓄熱装置8の蓄熱熱交換器11に入口端
11Aから流入して蒸発する。このとき、蓄熱槽9内の
蓄熱媒体10と熱交換し、蓄熱熱交換器11の伝熱管に
同心円状に氷が付着する。蒸発した冷媒は出口端11B
から第3の流路切換弁12を経て圧縮機1、2へ戻る。
Next, the operation of this embodiment will be described. First, the heat storage operation will be described. The gas refrigerant discharged from the compressor 1 and the gas refrigerant discharged from the heat storage cooling compressor 2 and joined through the first flow path switching valve 3 are condensed in the non-use side heat exchanger 5 through the four-way valve 4. Is done. The condensed refrigerant adiabatically expands in the first expansion device 7 to be in a gas-liquid two-phase state, flows into the heat storage heat exchanger 11 of the heat storage device 8 from the inlet end 11A, and evaporates. At this time, heat exchange occurs with the heat storage medium 10 in the heat storage tank 9, and ice adheres concentrically to the heat transfer tubes of the heat storage heat exchanger 11. The evaporated refrigerant is the outlet end 11B
To the compressors 1 and 2 through the third flow path switching valve 12.

【0014】蓄熱装置8での氷の付着状態説明のため、
単一冷媒であるR22と非共沸混合冷媒であるR407
Cの冷媒蒸発時における伝熱管での圧力損失と蓄熱熱交
換器11の出入口温度差との関係を図3に示す。伝熱管
での圧力損失が0(kg/cm)の場合、単一冷媒であるR
22では、出入口温度差が0℃であるのに対し、非共沸
混合冷媒であるR407Cでは、飽和液温度の方が飽和
ガス温度より低い特性をもつため、出口温度の方が5.2
℃程度高くなる。このため、蓄熱運転時には冷媒の流れ
に沿って蒸発温度が高くなり、冷却能力が低下するた
め、蓄熱熱交換器11の伝熱管に付着する氷10Aの厚
さは、図2に示すように、流入側、即ち図の左側で厚
く、流れに沿って次第に薄くなる。
In order to explain the state of adhesion of ice on the heat storage device 8,
R22 as a single refrigerant and R407 as a non-azeotropic mixed refrigerant
FIG. 3 shows the relationship between the pressure loss in the heat transfer tube and the temperature difference between the inlet and outlet of the heat storage heat exchanger 11 when the refrigerant C is evaporated. When the pressure loss in the heat transfer tube is 0 (kg / cm 2 ), the single refrigerant R
In No. 22, the inlet / outlet temperature difference is 0 ° C., whereas in the non-azeotropic refrigerant mixture R407C, the saturated liquid temperature has a characteristic lower than the saturated gas temperature.
About ℃ higher. Therefore, during the heat storage operation, the evaporating temperature increases along with the flow of the refrigerant, and the cooling capacity decreases, so that the thickness of the ice 10A attached to the heat transfer tube of the heat storage heat exchanger 11 is, as shown in FIG. It is thicker on the inflow side, that is, on the left side of the figure, and becomes gradually thinner along the flow.

【0015】次に、蓄熱利用冷房運転について説明す
る。蓄熱利用冷房用圧縮機2から吐出されたガス冷媒
は、第5の流路切換弁20を経て入口端11Aから蓄熱
熱交換器11に流入し、蓄熱運転時と同方向に流れると
共に、蓄熱熱交換器11の伝熱管に付着している氷によ
って凝縮される。このとき、蓄熱熱交換器11では伝熱
管に付着した氷10Aが同心円状に融解するが、冷媒の
流入部となる入口端11Aの方が出口端11Bよりも凝
縮温度が高くなるため、図2にハッチングを施していな
い円10Bで示すように、入口端11Aに近い部分での
融解量が多く、出口端11Bに向かうに従って融解量が
少なくなる。即ち、厚く着氷した伝熱管での融解量が多
く、薄く着氷した伝熱管での融解量が少なくなる。
Next, the cooling operation using heat storage will be described. The gas refrigerant discharged from the heat storage utilizing cooling compressor 2 flows into the heat storage heat exchanger 11 from the inlet end 11A via the fifth flow path switching valve 20, flows in the same direction as during the heat storage operation, and has the heat storage heat. It is condensed by ice adhering to the heat transfer tube of the exchanger 11. At this time, in the heat storage heat exchanger 11, the ice 10A attached to the heat transfer tube is concentrically melted, but the condensing temperature of the inlet end 11A, which is the inflow portion of the refrigerant, is higher than that of the outlet end 11B. As shown by a circle 10B without hatching, the amount of melting near the inlet end 11A is large, and the amount of melting decreases toward the outlet end 11B. That is, the amount of melting in the heat transfer tube with a thick icing is large, and the amount of melting in the heat transfer tube with a thin icing is small.

【0016】[0016]

【発明の効果】この発明に係る蓄熱式空気調和装置は、
以上のように構成され、蓄熱運転及び蓄熱利用冷房運転
のいずれにおいても蓄熱装置の蓄熱熱交換器内を流れる
非共沸混合冷媒の方向が同じであるため、蓄熱運転と蓄
熱利用冷房運転による着氷、融氷を繰り返しても氷のブ
ロックが生じる程度まで氷が成長せず、従って蓄熱装置
の伝熱管を損傷する恐れがない。また、氷のブロック化
が生じると伝熱面積が減少し、運転効率が悪化するが、
この発明によればそのような問題も生じない。
The regenerative air conditioner according to the present invention has the following features.
Since the direction of the non-azeotropic mixed refrigerant flowing in the heat storage heat exchanger of the heat storage device is the same in both the heat storage operation and the heat storage cooling operation in the above-described configuration, the heat storage operation and the heat storage cooling operation are performed. Ice does not grow to the extent that ice blocks occur even after repeated ice and melting ice, and therefore there is no risk of damaging the heat transfer tubes of the heat storage device. In addition, when the blocking of ice occurs, the heat transfer area decreases and the operating efficiency deteriorates,
According to the present invention, such a problem does not occur.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1の構成を示す冷媒回
路図である。
FIG. 1 is a refrigerant circuit diagram showing a configuration of Embodiment 1 of the present invention.

【図2】 実施の形態1における蓄熱装置の蓄熱熱交換
器に付着する氷及び融解する氷の状態を示す概略図であ
る。
FIG. 2 is a schematic diagram illustrating a state of ice adhering to a heat storage heat exchanger and melting ice of the heat storage device of the heat storage device according to the first embodiment.

【図3】 単一冷媒と非共沸混合冷媒の蒸発時における
伝熱管での圧力損失と蓄熱熱交換器の出入口温度差との
関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a pressure loss in a heat transfer tube and a temperature difference between an inlet and an outlet of a heat storage heat exchanger during evaporation of a single refrigerant and a non-azeotropic mixed refrigerant.

【図4】 従来の蓄熱式空気調和装置の構成を示す冷媒
回路図である。
FIG. 4 is a refrigerant circuit diagram showing a configuration of a conventional heat storage type air conditioner.

【図5】 従来の蓄熱式空気調和装置における蓄熱熱交
換器に付着した氷の状態を示す概略図である。
FIG. 5 is a schematic diagram showing a state of ice attached to a heat storage heat exchanger in a conventional heat storage air conditioner.

【図6】 従来の蓄熱式空気調和装置における蓄熱熱交
換器に付着した氷の融解状態を示す概略図である。
FIG. 6 is a schematic diagram showing a melting state of ice attached to a heat storage heat exchanger in a conventional heat storage air conditioner.

【図7】 従来の蓄熱式空気調和装置において、蓄熱運
転と蓄熱利用冷房運転とを繰り返した場合に蓄熱熱交換
器に付着する氷の状態を示す概略図である。
FIG. 7 is a schematic diagram showing a state of ice adhering to a heat storage heat exchanger when a heat storage operation and a heat storage utilizing cooling operation are repeated in a conventional heat storage type air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機、 2 蓄熱利用冷房用圧縮機、 5
非利用側熱交換器、7 第1の絞り装置、 8 蓄熱
装置、 10 蓄熱媒体、 11 蓄熱熱交換器、
14 第2の絞り装置、 15 利用側熱交換
器、 2第5の流路切換弁、 21 第6の流路切
換弁、 22 第7の流路切換弁。
1 Compressor, 2 Compressor for cooling using heat storage, 5
Non-use side heat exchanger, 7 first throttle device, 8 heat storage device, 10 heat storage medium, 11 heat storage heat exchanger,
14 2nd expansion device, 15 use side heat exchanger, 2nd 5th flow path switching valve, 21 6th flow path switching valve, 22 7th flow path switching valve.

フロントページの続き (72)発明者 宮本 守也 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3L092 TA11 TA17 UA02 UA34 YA13Continued on the front page (72) Inventor Moriya Miyamoto 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation F-term (reference) 3L092 TA11 TA17 UA02 UA34 YA13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機から吐出された非共沸混合冷媒を
凝縮した後、断熱膨張し、蓄熱媒体と蓄熱熱交換器とを
有する蓄熱装置に流入させて氷を付着させる蓄熱運転
と、上記圧縮機から吐出された非共沸混合冷媒を着氷後
の蓄熱装置に流入させて凝縮し、凝縮した冷媒を断熱膨
張して利用側熱交換器で蒸発させる蓄熱利用冷房運転と
を行なうようにした蓄熱式空気調和装置において、上記
蓄熱装置の蓄熱熱交換器内を流れる冷媒の方向が蓄熱運
転時及び蓄熱利用冷房運転時のいずれにおいても同じと
なるようにしたことを特徴とする蓄熱式空気調和装置。
1. A heat storage operation in which a non-azeotropic mixed refrigerant discharged from a compressor is condensed, adiabatically expanded, flows into a heat storage device having a heat storage medium and a heat storage heat exchanger, and adheres ice, and The non-azeotropic mixed refrigerant discharged from the compressor flows into the heat storage device after icing to condense, and the heat storage utilizing cooling operation in which the condensed refrigerant is adiabatically expanded and evaporated in the use side heat exchanger. Wherein the direction of the refrigerant flowing through the heat storage heat exchanger of the heat storage device is the same in both the heat storage operation and the heat storage cooling operation. Harmony equipment.
【請求項2】 非共沸混合冷媒を圧縮する圧縮機、この
圧縮機から吐出された冷媒を凝縮する非利用側熱交換
器、凝縮された冷媒を断熱膨張する絞り装置、この絞り
装置に入口端が接続された蓄熱熱交換器と蓄熱媒体とを
有する蓄熱装置、上記蓄熱熱交換器の出口端と上記圧縮
機の吸入部との間に設けられ、蓄熱運転時にのみ開路す
る切換弁、上記圧縮機の吐出部と上記蓄熱熱交換器の入
口端との間に設けられ、蓄熱利用冷房運転時にのみ開路
する切換弁、上記蓄熱熱交換器の出口端と他の絞り装置
との間に設けられ、蓄熱利用冷房運転時にのみ開路する
切換弁及び上記他の絞り装置に接続された利用側熱交換
器を備えた蓄熱式空気調和装置。
2. A compressor for compressing a non-azeotropic refrigerant mixture, a non-use side heat exchanger for condensing refrigerant discharged from the compressor, a throttle device for adiabatically expanding the condensed refrigerant, and an inlet to the throttle device. A heat storage device having a heat storage heat exchanger and a heat storage medium having ends connected thereto, a switching valve provided between an outlet end of the heat storage heat exchanger and a suction portion of the compressor, and opened only during a heat storage operation, A switching valve that is provided between the discharge part of the compressor and the inlet end of the heat storage heat exchanger and that opens only during the heat storage cooling operation, and that is provided between the outlet end of the heat storage heat exchanger and another throttle device. A regenerative air conditioner, comprising: a switching valve that opens only during a heat storage cooling operation; and a use side heat exchanger connected to the other expansion device.
【請求項3】 非共沸混合冷媒は、R407Cであるこ
とを特徴とする請求項1または請求項2記載の蓄熱式空
気調和装置。
3. The regenerative air conditioner according to claim 1, wherein the non-azeotropic mixed refrigerant is R407C.
JP2001086938A 2001-03-26 2001-03-26 Heat storage type air conditioner Pending JP2002286319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001086938A JP2002286319A (en) 2001-03-26 2001-03-26 Heat storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001086938A JP2002286319A (en) 2001-03-26 2001-03-26 Heat storage type air conditioner

Publications (1)

Publication Number Publication Date
JP2002286319A true JP2002286319A (en) 2002-10-03

Family

ID=18942244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001086938A Pending JP2002286319A (en) 2001-03-26 2001-03-26 Heat storage type air conditioner

Country Status (1)

Country Link
JP (1) JP2002286319A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588241A (en) * 2015-11-09 2016-05-18 青岛海信日立空调系统有限公司 Ice-storage air conditioner and ice-storage method
CN105588360A (en) * 2015-06-30 2016-05-18 青岛海信日立空调系统有限公司 Heat accumulation outdoor unit, heat pump system and control method of heat accumulation outdoor unit and heat pump system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588360A (en) * 2015-06-30 2016-05-18 青岛海信日立空调系统有限公司 Heat accumulation outdoor unit, heat pump system and control method of heat accumulation outdoor unit and heat pump system
CN105588360B (en) * 2015-06-30 2018-09-25 青岛海信日立空调系统有限公司 A kind of accumulation of heat outdoor unit, heat pump system and its control method
CN105588241A (en) * 2015-11-09 2016-05-18 青岛海信日立空调系统有限公司 Ice-storage air conditioner and ice-storage method

Similar Documents

Publication Publication Date Title
JP2865844B2 (en) Refrigeration system
CN101878403B (en) Freezing apparatus
WO1998006983A1 (en) Air conditioner
TW200921030A (en) Economized vapor compression circuit
US20070180853A1 (en) Refrigerator
KR100381634B1 (en) Refrigerator
JPH109713A (en) Refrigerant condensing device and refrigerant condenser
JPH1019418A (en) Refrigerator with deep freezer
CN105588360B (en) A kind of accumulation of heat outdoor unit, heat pump system and its control method
WO2021213548A1 (en) Heat exchange device, water heater, and air conditioner
CN105588241B (en) A kind of ice-storage air-conditioning and ice cold-storage method
JP2002286319A (en) Heat storage type air conditioner
JP2002061992A (en) Air conditioner
JP3360637B2 (en) Refrigeration air conditioner
JP2003185287A (en) Manufacturing system for supercooled water and hot water
JP6887075B2 (en) Heat exchanger and freezing system using it
JP2003279197A (en) Heat exchanger for condensation of freezer-refrigerator system
JP2711879B2 (en) Low temperature refrigerator
JP2004101144A (en) Internal heat exchanger for vapor compression type refrigerator
JP3260418B2 (en) Thermal storage type air conditioner
JP2003254632A (en) Air conditioner
JPH04257660A (en) Two stage compression refrigerating cycle device
CN217465052U (en) Evaporator unit for a refrigeration device and refrigeration device
JP6872694B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
JP3297467B2 (en) Thermal storage type air conditioner