JP2002284502A - Method for manufacturing hydrogen - Google Patents
Method for manufacturing hydrogenInfo
- Publication number
- JP2002284502A JP2002284502A JP2001087524A JP2001087524A JP2002284502A JP 2002284502 A JP2002284502 A JP 2002284502A JP 2001087524 A JP2001087524 A JP 2001087524A JP 2001087524 A JP2001087524 A JP 2001087524A JP 2002284502 A JP2002284502 A JP 2002284502A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- propanol
- producing hydrogen
- hydrogen
- reforming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、2―プロパノール
から水蒸気改質により水素を製造する方法に関する。The present invention relates to a method for producing hydrogen from 2-propanol by steam reforming.
【0002】[0002]
【従来の技術】従来、比較的低コストで水素への改質が
容易なメタノールが早くから離島用燃料電池の燃料とし
て実証試験が行われてきた。また、最近、メタノールは
車載用燃料としても注目されている。2. Description of the Related Art Methanol, which is relatively low-cost and easily reformable to hydrogen, has been used as a fuel for a fuel cell for remote islands. Recently, methanol has also attracted attention as a fuel for vehicles.
【0003】ところで、メタノールの水蒸気改質反応は
下記の通りであり、Cn−Zn触媒を用いて約450℃
で改質する低温改質方式、またはNi系触媒を用いて約
700℃で改質する高温改質方式が一般に広く用いられ
ている。[0003] The steam reforming reaction of methanol is as follows, and is carried out at about 450 ° C using a Cn-Zn catalyst.
A high-temperature reforming method of reforming at about 700 ° C. using a Ni-based catalyst is generally widely used.
【0004】CH3OH+H2O→3H2+CO2 一方、2―プロパノール(IPA)は、メタノールに比
べて毒性が低く取り扱いが容易なことから、最近ではメ
タノールに替わって半導体部品の洗浄剤として多く使わ
れるようになってきた。洗浄後の廃2―プロパノールに
は多量の水分と少量の不純物を含むため、燃焼による加
熱熱源として、また、蒸留による再利用が行われてい
た。CH 3 OH + H 2 O → 3H 2 + CO 2 On the other hand, 2-propanol (IPA) has a low toxicity and is easy to handle as compared with methanol. It is being used. Since the waste 2-propanol after washing contains a large amount of water and a small amount of impurities, it has been reused as a heating heat source by combustion or by distillation.
【0005】これらの利用はいずれも燃焼を伴うため、
CO2を含む排ガスを大気に放出することになる。Since all of these uses involve combustion,
Exhaust gas containing CO 2 will be released to the atmosphere.
【0006】[0006]
【発明が解決しようとする課題】2―プロパノールから
水素を製造する方法としては、特許第2976032号
公報に開示されているように2―プロパノールにアルカ
リを添加する発明があるがあるが、この発明は沸点以下
での製造方法であり、脱水反応で生成するアセトンが含
まれており、燃料電池にはそのままでは適用できない。As a method for producing hydrogen from 2-propanol, there is an invention in which an alkali is added to 2-propanol as disclosed in Japanese Patent No. 2976032. Is a production method at a boiling point or lower, which contains acetone produced by a dehydration reaction, and cannot be directly applied to a fuel cell.
【0007】また、メタノールや都市ガスの水蒸気改質
に用いられるNi触媒やRu触媒による改質では、2−
プロパノールの分解が起こり、不飽和の炭化水素(C2
H4やC3H6)の発生により炭素析出が発生するため、
実用化に至っていないのが現状である。In the reforming with a Ni catalyst or a Ru catalyst used for steam reforming of methanol or city gas, 2-
Decomposition of propanol occurs, and unsaturated hydrocarbons (C 2
H 4 and C 3 H 6 ) generate carbon precipitation,
At present, it has not been put to practical use.
【0008】CH3CH(OH)CH3→C3H6+H2O 本発明は、上記のような問題点を解消するためなされた
もので、2―プロパノールから燃料電池に供給可能な水
素を生成することができる水素製造方法を提供すること
を目的とする。CH 3 CH (OH) CH 3 → C 3 H 6 + H 2 O The present invention has been made to solve the above-mentioned problems, and is intended to reduce the amount of hydrogen that can be supplied from 2-propanol to a fuel cell. An object of the present invention is to provide a method for producing hydrogen that can be produced.
【0009】[0009]
【課題を解決するための手段】本発明は上記の目的を達
成するため、次のような方法により水素を製造するもの
である。In order to achieve the above object, the present invention is to produce hydrogen by the following method.
【0010】請求項1に対応する発明は、2―プロパノ
ールを沸点より高い温度に加熱し、触媒を用いて炭素を
析出することなく水蒸気改質にすることにより炭素を製
造する。[0010] The invention corresponding to claim 1 produces carbon by heating 2-propanol to a temperature higher than the boiling point and performing steam reforming without depositing carbon using a catalyst.
【0011】請求項2に対応する発明は、請求項1に対
応する発明の水素製造方法において、前記触媒は、1.
8wt%以上のロジウムを担体に担持させたものであ
る。According to a second aspect of the present invention, in the method for producing hydrogen according to the first aspect, the catalyst comprises:
Rhodium of 8 wt% or more is supported on a carrier.
【0012】請求項3に対応する発明は、請求項2に対
応する発明の水素製造方法において、前記担体は、アル
ミナ、セリア、酸化ジルコニアの中から選ばれた少なく
とも1種類を用いたものである。According to a third aspect of the present invention, in the hydrogen production method according to the second aspect of the present invention, the carrier uses at least one kind selected from alumina, ceria, and zirconia. .
【0013】請求項4に対応する発明は、請求項2に対
応する発明の水素製造方法において、前記触媒を用いて
触媒層温度が350℃以上で水蒸気改質する。According to a fourth aspect of the present invention, in the hydrogen production method according to the second aspect, steam reforming is performed at a catalyst layer temperature of 350 ° C. or more using the catalyst.
【0014】[0014]
【発明の実施の形態】本発明では、2―プロパノールを
沸点より高い温度に加熱し、触媒を用いて水蒸気改質す
る。この場合、触媒としてロジウム、担体としてアルミ
ナ、酸化ジルコニアの中から選ばれた少なくとも1種類
を用いる。上記担体の中ではアルミナ、セリアが好まし
い。また、金属または酸化物の担持量は3.6wt%以
上担持したものが好適であった。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, 2-propanol is heated to a temperature higher than the boiling point and steam reformed using a catalyst. In this case, at least one selected from rhodium as a catalyst and alumina or zirconia as a carrier is used. Among the above carriers, alumina and ceria are preferred. The amount of the metal or oxide supported was preferably 3.6 wt% or more.
【0015】以下本発明を実施例により具体的に説明す
る。Hereinafter, the present invention will be described specifically with reference to examples.
【0016】実施例1 試験に用いたNi,Ru及びRhなる触媒は、各硝酸塩
水溶液から含浸法により調整し、試験直前に水蒸気流中
で還元処理を行った。Example 1 The catalysts of Ni, Ru and Rh used in the test were prepared from each nitrate aqueous solution by an impregnation method, and were subjected to a reduction treatment in a stream of steam immediately before the test.
【0017】試験は、常圧固定床流通型反応装置を用い
て2―プロパノール1.5ml/minと水13.5ml/minと
を加熱し、その蒸気を含んだキャリアガス(へリウムガ
ス)60ml/minを触媒層に送り、30分間反応させた。
生成した気体はガスクロマトグラフィにより測定したと
ころ、表1に示すような温度400℃での改質結果が得
られた。但し、生成ガス濃度はvol%で示す。In the test, 1.5 ml / min of 2-propanol and 13.5 ml / min of water were heated using an atmospheric pressure fixed bed flow type reactor, and a carrier gas (helium gas) containing the vapor was heated at 60 ml / min. The min was sent to the catalyst layer and reacted for 30 minutes.
When the generated gas was measured by gas chromatography, a reforming result at a temperature of 400 ° C. as shown in Table 1 was obtained. However, the concentration of the produced gas is indicated by vol%.
【0018】[0018]
【表1】 [Table 1]
【0019】上記表1からも明かなように、触媒として
Rhのみが炭素析出の要因となるアセトンやプロピレン
の生成を伴わないで、安定して水素ガスが得られること
が分る。As is clear from Table 1, only Rh as a catalyst can stably produce hydrogen gas without producing acetone or propylene which causes carbon deposition.
【0020】すなわち、Rh触媒では、アセトンを経由
して安定に水蒸気改質が進行するため、炭素の析出が発
生しない。That is, in the case of the Rh catalyst, since steam reforming proceeds stably via acetone, carbon deposition does not occur.
【0021】 CH3CH(OH)CH3→CH3COCH3+H2 CH3COCH3+H2O→3CO+H2O 実施例2 次にロジウム担持量を変えた触媒について上記と同様な
条件で試験を実施したところ表2に示すような改質結果
が得られた。[0021] The CH 3 CH (OH) CH 3 → CH 3 COCH 3 + H 2 CH 3 COCH 3 + H 2 O → 3CO + H 2 O Example 2 then catalyst was changed rhodium supporting amount of the test under the same conditions as above As a result, the modification results as shown in Table 2 were obtained.
【0022】[0022]
【表2】 [Table 2]
【0023】上記表2から明かなようにロジウム担持量
が1.8wt%でアセトンやプロピレンの生成が抑制さ
れ、3.6wt%以上では安定して水素ガスが得られる
ことが分る。As is clear from Table 2, when the supported amount of rhodium is 1.8 wt%, the production of acetone and propylene is suppressed, and when the supported amount is 3.6 wt% or more, hydrogen gas can be obtained stably.
【0024】実施例3 次にAl2O3,CeO2,ZrO2,TiO2等を担体と
する触媒について、上記と同様な条件で試験を実施した
ところ表3に示すような改質結果が得られた。Example 3 Next, a test was conducted on a catalyst using Al2O3, CeO2, ZrO2, TiO2 or the like as a carrier under the same conditions as described above, and the results of reforming as shown in Table 3 were obtained.
【0025】[0025]
【表3】 [Table 3]
【0026】上記表3から明かなようにアルミナ、セリ
ア、酸化ジルコニア単独又はこれらのうちから選ばれた
少なくとも2種類を用いた触媒では、アセトンやプロピ
レンの生成が抑制され、安定して水素ガスが得られるこ
とが分る。As is clear from Table 3, in the catalyst using alumina, ceria, zirconia alone or at least two kinds selected from these, formation of acetone and propylene is suppressed, and hydrogen gas is stably produced. You can see that it is obtained.
【0027】実施例4 触媒として5wt%Rh/Al2O3を用いて改質温度を
変えて上記と同様な条件で試験を実施したところ表4に
示すような改質結果が得られた。Example 4 A test was carried out under the same conditions as above by changing the reforming temperature using 5 wt% Rh / Al 2 O 3 as a catalyst, and the reforming results as shown in Table 4 were obtained.
【0028】[0028]
【表4】 [Table 4]
【0029】上記表3から明かなように改質温度が35
0℃でアセトンやプロピレンの生成が抑制され、400
℃以上では安定して水素ガスが得られることが分る。As apparent from Table 3 above, the reforming temperature was 35
At 0 ° C, the production of acetone and propylene is suppressed,
It is understood that hydrogen gas can be stably obtained at a temperature of not less than ° C.
【0030】[0030]
【発明の効果】以上述べたように本発明によれば、35
0℃の温度条件で2―プロパノールから水蒸気改質によ
る安定して水素を製造することができ、従って水を含む
廃2―プロパノールを燃料電池の燃料として有効に利用
することができる水素製造方法を提供できる。As described above, according to the present invention, 35
A hydrogen production method capable of stably producing hydrogen from 2-propanol by steam reforming at a temperature condition of 0 ° C. and thus effectively utilizing waste 2-propanol containing water as fuel for a fuel cell. Can be provided.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 23/755 H01M 8/06 G H01M 8/06 B01J 23/74 321M (72)発明者 中島 剛 長野県長野市若里4−17−1 信州大学工 学部内 (72)発明者 水野 隆喜 長野県長野市若里4−17−1 信州大学工 学部内 Fターム(参考) 4G040 EA02 EA06 EC03 4G069 AA03 AA08 BA01A BA01B BA05A BA05B BB04A BB04B BB12C BC43A BC43B BC70B BC71A BC71B BC72B BC75B CC25 DA06 FB14 4G140 EA02 EA06 EC03 5H027 AA02 BA01 KK31 KK42 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 23/755 H01M 8/06 G H01M 8/06 B01J 23/74 321M (72) Inventor Tsuyoshi Nakajima Nagano Prefecture 4-17-1 Wakasato, Nagano City Faculty of Engineering, Shinshu University (72) Inventor Takayoshi Mizuno 4-17-1, Wakasato, Nagano City, Nagano Prefecture F-term (Reference) 4G040 EA02 EA06 EC03 4G069 AA03 AA08 BA01A BA01B BA05A BA05B BB04A BB04B BB12C BC43A BC43B BC70B BC71A BC71B BC72B BC75B CC25 DA06 FB14 4G140 EA02 EA06 EC03 5H027 AA02 BA01 KK31 KK42
Claims (4)
加熱し、触媒を用いて水蒸気改質して水素を生成するこ
とを特徴とする水素製造方法。1. A method for producing hydrogen, comprising heating 2-propanol to a temperature higher than the boiling point and producing hydrogen by steam reforming using a catalyst.
前記触媒は、1.8wt%以上のロジウムを担体に担持
させたものであることを特徴とする水素製造方法。2. The method for producing hydrogen according to claim 1, wherein
The method for producing hydrogen, wherein the catalyst has 1.8 wt% or more of rhodium supported on a carrier.
前記担体は、アルミナ、セリア、酸化ジルコニアの中か
ら選ばれた少なくとも1種類を用いたものであることを
特徴とする水素製造方法。3. The method for producing hydrogen according to claim 2, wherein
The method for producing hydrogen, wherein the carrier uses at least one selected from alumina, ceria, and zirconia oxide.
前記触媒を用いて触媒層温度が350℃以上で水蒸気改
質することを特徴とする水素製造方法。4. The method for producing hydrogen according to claim 2, wherein
A method for producing hydrogen, wherein steam reforming is performed at a catalyst layer temperature of 350 ° C. or higher using the catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001087524A JP2002284502A (en) | 2001-03-26 | 2001-03-26 | Method for manufacturing hydrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001087524A JP2002284502A (en) | 2001-03-26 | 2001-03-26 | Method for manufacturing hydrogen |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002284502A true JP2002284502A (en) | 2002-10-03 |
Family
ID=18942760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001087524A Pending JP2002284502A (en) | 2001-03-26 | 2001-03-26 | Method for manufacturing hydrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002284502A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2892323A1 (en) * | 2005-10-20 | 2007-04-27 | Cie D Etudes Des Technologies | Catalyst, useful for the production of gas rich in hydrogen, comprises a support comprising simple or mixed oxide containing cerium base and an active phase deposited on the support |
-
2001
- 2001-03-26 JP JP2001087524A patent/JP2002284502A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2892323A1 (en) * | 2005-10-20 | 2007-04-27 | Cie D Etudes Des Technologies | Catalyst, useful for the production of gas rich in hydrogen, comprises a support comprising simple or mixed oxide containing cerium base and an active phase deposited on the support |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3743995B2 (en) | Methanol reforming catalyst | |
AU2008208613B2 (en) | Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst | |
WO2002038268A1 (en) | Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same | |
CN101646488A (en) | Use the method and system of methane decomposition manufacturing hydrogen-rich fuel on the auxiliary catalyst of microwave | |
JPH02198639A (en) | Catalyst for decomposing ammonia | |
JP5459322B2 (en) | Redox material for thermochemical water splitting and hydrogen production method | |
TWI294413B (en) | Method for converting co and hydrogen into methane and water | |
JP3718092B2 (en) | Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide selective removal method using the catalyst, and solid polymer electrolyte fuel cell system | |
EP2076332A1 (en) | Hydrogen production method by direct decomposition of natural gas and lpg | |
JP2006239551A (en) | Co methanizing catalyst, co removing catalyst device and fuel cell system | |
JP2004196581A (en) | Hydrogen production method and catalyst used for the same | |
JP2002284502A (en) | Method for manufacturing hydrogen | |
Inoue et al. | Hydrogenation of carbon dioxide and carbon monoxide over supported platinum catalysts | |
JP2000342968A (en) | Catalyst and producing method | |
KR101392996B1 (en) | Mesoporous nickel-alumina-zirconia xerogel catalyst and production method of hydrogen by steam reforming of ethanol using said catalyst | |
JP4652834B2 (en) | CO removal catalyst and method for producing the same | |
JP2003305364A (en) | Aqueous gas shift reaction catalyst | |
JP2014181197A (en) | Method for hydrogenation of compounds including double bonds, etc. | |
JP4067503B2 (en) | Method for controlling catalyst activity | |
CN115646499B (en) | Three-dimensional uniform porous copper-cerium catalyst for photo-thermal preferential oxidation of CO at room temperature | |
JP2005131468A (en) | Ethanol/steam reforming catalyst, its manufacturing method and hydrogen manufacturing method | |
JP2004066003A (en) | Catalyst for water gas shift reaction of fuel reformed gas | |
RU2677875C1 (en) | Catalyst and method for obtaining gas mixture enriched by hydrogen from dimethyl ether and air | |
JP2001219069A (en) | Catalytic composition and method for purifying hydrogen | |
JP3976498B2 (en) | Syngas production catalyst and synthesis gas production method |