JP2002282371A - Low voltage drive type ionophoretic element - Google Patents

Low voltage drive type ionophoretic element

Info

Publication number
JP2002282371A
JP2002282371A JP2001091581A JP2001091581A JP2002282371A JP 2002282371 A JP2002282371 A JP 2002282371A JP 2001091581 A JP2001091581 A JP 2001091581A JP 2001091581 A JP2001091581 A JP 2001091581A JP 2002282371 A JP2002282371 A JP 2002282371A
Authority
JP
Japan
Prior art keywords
skin
conductive
needle
layer
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001091581A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kasano
宏之 笠野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polytronics Ltd
Original Assignee
Polytronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polytronics Ltd filed Critical Polytronics Ltd
Priority to JP2001091581A priority Critical patent/JP2002282371A/en
Publication of JP2002282371A publication Critical patent/JP2002282371A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
    • A61N1/303Constructional details
    • A61N1/306Arrangements where at least part of the apparatus is introduced into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M2037/0007Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin having means for enhancing the permeation of substances through the epidermis, e.g. using suction or depression, electric or magnetic fields, sound waves or chemical agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/003Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a lumen

Abstract

PROBLEM TO BE SOLVED: To provide a self-deflection type (inner power drive type) element which is excellent in controlling rapid infiltration of macromolecular drugs and serum concentrations. SOLUTION: A second conductive mineral 6 is layered on one surface of a drug layer 3 that contains non-infiltrating effective components. An insulation layer 2 is provided on the other surface of the drug layer 3. A hollow insulation needle 4 is formed on one surface of the insulating layer 2 opposite to the drug layer 3. On the other hand, an insulation needle with a closed end 5 covered with a first conductive mineral 1 is arranged in the neighborhood of the hollow insulation needle 4. The first conductive mineral 1 that covers the insulation needle with the closed end 5 is advanced in a stripe fashion up to an area not contacting with the skin and is conductively linked with the second conductive mineral 6 in the area not contacting with the skin. The insulation needle with the closed end 5 and the first conductive mineral 1 stripe are separated in space from the hollow insulation needle 4 on the surface of the insulation layer 2 that touches the skin. The materials constituting a free surface of the first and second conductive minerals 1 and 6 are of metals or semiconductors having mutually different electron affinities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被浸透薬剤イオン
の有効成分を電界加速により皮内に浸透させるイオント
フォレシス素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iontophoresis device for permeating an active ingredient of a drug ion to be permeated into the skin by electric field acceleration.

【0002】[0002]

【従来の技術】経皮投薬は、薬剤の血中濃度定量化や局
所投与性に優れ、患者の負担が少ないので望ましい投薬
方法として開発が続けられている。高分子薬剤の浸透促
進法のうち有力な手段のひとつにイオントフォレシスが
ある。イオントフォレシスは、可溶性の被浸透薬剤イオ
ンを電気的に偏倚することによって、通電路の一部であ
る皮内に電界加速して引き込むもので、パルス通電の場
合エレクトロポレーションということもある。イオント
フォレシス素子は、高分子薬剤投与の場合、高い電界強
度、高い電流密度を必要とするため、通電電極下の皮膚
が損傷を受けることが多い。また、通電の安全性を確保
するため、保護装置等電気回路がコストアップになるこ
とは避けられない。さらに皮膚組織と反応する薬剤は、
浸透中に薬効を失いまた皮膚トラブルをを起こすため経
皮投薬できないという問題点があった。
2. Description of the Related Art Transdermal administration has been developed as a desirable administration method because it excels in quantifying the drug concentration in blood and is excellent in local administration and less burdens patients. Iontophoresis is one of the most effective means of promoting the penetration of macromolecular drugs. Iontophoresis is a method in which a soluble ion to penetrate a drug is electrically biased to accelerate an electric field into a skin, which is a part of an electric current path, and is drawn into the skin. In the case of pulse electric current, electroporation is sometimes used. Since the iontophoresis element requires a high electric field strength and a high current density when a polymer drug is administered, the skin under the current-carrying electrode is often damaged. Further, in order to ensure the safety of energization, it is inevitable that the cost of an electric circuit such as a protection device increases. In addition, drugs that react with skin tissue
There is a problem that transdermal administration is not possible due to loss of drug efficacy during permeation and skin trouble.

【0003】本発明者は、低コストで安全性が高く、ま
た皮膚適合性を欠く薬剤投与も可能な方法として、皮接
時生体皮膚を電解質として発電する電池を利用し、かつ
細針で皮膚内部と薬剤層とを導電的に連結する微少侵襲
のインフォレシス素子の出願を行った(特願平9−32
1457号)。この素子は、被浸透薬剤イオンを含む導
電性薬剤層に接触した金属または半導体Aを自由表面に
もつ第1の導電性鉱物と、Aとは異なる電子親和力を有
し前記第1の導電性鉱物及び薬剤層とは絶縁して積層さ
れ接皮して用いられる金属または半導体Bを自由表面に
もつ第2の導電性鉱物とを、それぞれ正極及び負極と
し、皮膚を電解質として発電する生体電池を偏倚用電源
としている。また、薬剤層と第2の導電性鉱物とを電気
的に遮断する絶縁層に中空細針を設け、皮接時にこの細
針を以て穿皮することにより角質層を回避して被浸透薬
剤イオンを皮内に浸透せしめ得る機能を持っている。こ
の結果外部電源を用いることなく、皮膚に損傷を与えな
い程度の低い偏倚電圧によっても高分子薬剤を効率よく
体内に浸透させることが可能となった。また皮膚表面、
特に角質層における薬剤の科学的変化の影響を回避する
ことが出来、多くの薬剤の経皮投与が可能になった。し
かるに、薬剤の急速浸透が必要な場合例えば急性疾患の
場合や、血中濃度制御の場合には、偏倚電源の動作マー
ジンを大きくとることが必要となる。ところが前記素子
は、電極間の電子親和力差を利用した生体電池としてお
り、大出力化は困難である。
The inventor of the present invention has proposed a method of using a battery which generates electricity using living skin as an electrolyte at the time of skin contact, and uses a fine needle to cut off the skin using a low-cost, high-safety method capable of administering a drug lacking skin compatibility. We applied for a minimally invasive inforess element that electrically connects the inside and the drug layer (Japanese Patent Application No. 9-32).
No. 1457). The element comprises a first conductive mineral having a metal or semiconductor A on a free surface in contact with a conductive drug layer containing a permeated drug ion, and the first conductive mineral having an electron affinity different from A. And a second conductive mineral having a free surface of a metal or semiconductor B used as a skin and insulated and insulated from the drug layer, respectively, as a positive electrode and a negative electrode, and biasing a biological battery that generates electricity using the skin as an electrolyte. Power supply. Further, hollow fine needles are provided in an insulating layer for electrically blocking the drug layer and the second conductive mineral, and the skin is punctured with the fine needles at the time of skin contact to avoid the stratum corneum and to prevent the permeated drug ions. It has the ability to penetrate into the skin. As a result, it has become possible to efficiently penetrate the polymer drug into the body even with a bias voltage that is low enough not to damage the skin without using an external power supply. Also the skin surface,
In particular, it was possible to avoid the effects of chemical changes of the drug in the stratum corneum, and it became possible to transdermally administer many drugs. However, when rapid penetration of a drug is required, for example, in the case of an acute disease, or in the case of blood concentration control, it is necessary to increase the operation margin of the bias power supply. However, the device is a biological battery using a difference in electron affinity between electrodes, and it is difficult to increase the output.

【0004】[0004]

【発明が解決しようとする課題】生体電池を電源とする
内部電源式イオントフォレシス素子には、短絡時発電が
自動停止し、また皮膚通電による皮内のpH変化を抑制
するという優れた特徴があるが、その一方上記したよう
に電源の動作マージンが小さいという問題点がある。し
たがって、内部電源式イオントフォレシス素子動作マー
ジンを大きくするには、通電損失なかんずく電池の内部
損失を低減しなければならない。本発明の目的は、比較
的低起電力の内部電源(生体電池)を用いても高分子薬
剤の急速浸透が可能になるように薬剤イオン偏倚の動作
マージンを比較的大きく取り得るイオントフォレシス素
子を提供することである。
The internal power supply type iontophoresis element using a bio-battery as a power supply has the excellent features that power generation is automatically stopped in the event of a short circuit, and that changes in pH in the skin due to electricity supply to the skin are suppressed. However, on the other hand, there is a problem that the operation margin of the power supply is small as described above. Therefore, in order to increase the operation margin of the internal power supply type iontophoresis element, it is necessary to reduce the power loss and, in particular, the internal loss of the battery. SUMMARY OF THE INVENTION An object of the present invention is to provide an iontophoresis element capable of taking a relatively large operating margin for drug ion deflection so that a high-molecular drug can be rapidly penetrated even when an internal power source (biological battery) having a relatively low electromotive force is used. It is to provide.

【0005】[0005]

【課題を解決するための手段】生体皮膚は、角質層、顆
粒層、有棘層、基底層から成る表皮領域と真皮領域およ
び皮下組織からなっている。角質層は、死んだケラチノ
サイトが堆積して形成されるが、表面には皮脂腺が分泌
した脂肪が被っており滑らかさを与えている。角質層の
導電性は、含有する水分によって与えられるが、角質層
は細菌等外敵の侵入を防ぐ目的で緻密に層状分布してい
るため導電性は低い。したがって、皮膚表面に電極を密
着させた時、皮脂層プラス角質層の抵抗値は数百KΩ至
当数MΩに達する。一方、表皮下層である顆粒層以深の
皮膚領域はそれぞれ生きた細胞で構成され、その導電性
は細胞間を流れる体液イオンによって与えられる。それ
ゆえ、この領域の導電性は高く、抵抗率は数百Ω以下で
ある。実験的検討の結果、前記した生体電池の内部損失
の約9割が皮脂層と角質層から成る表皮上部領域で生じ
ていることがわかった。
The living skin is composed of an epidermis region and a dermis region consisting of a stratum corneum, a granular layer, a spiny layer, and a basal layer, and a subcutaneous tissue. The stratum corneum is formed by the accumulation of dead keratinocytes, but the surface is covered with fat secreted by the sebaceous glands to provide smoothness. The conductivity of the stratum corneum is given by the moisture contained therein, but the stratum corneum has a low conductivity because it is densely layered in order to prevent invasion of foreign enemies such as bacteria. Therefore, when the electrode is brought into close contact with the skin surface, the resistance value of the sebum layer plus the stratum corneum reaches several hundred KΩ to several MΩ. On the other hand, the skin region deeper than the granular layer, which is the subepidermal layer, is composed of living cells, and its conductivity is given by body fluid ions flowing between the cells. Therefore, the conductivity of this region is high and the resistivity is several hundred Ω or less. As a result of an experimental study, it was found that about 90% of the internal loss of the above-mentioned biocell occurred in the upper epidermis region composed of the sebum layer and the stratum corneum.

【0006】そこで本発明では、非浸透有効成分を含む
薬剤層と、この薬剤層の第1の表面側に積層され薬剤層
と反対側の面が皮接面となる絶縁体層と、この絶縁体層
に設けられておりその中空部分が導電的に前記薬剤層及
び皮内と繋がりまたは繋がることが可能である解放端を
有しその形状が皮接面から皮内に突出する針状である中
空絶縁体針と、前記薬剤層と皮内とを電気的に遮断する
ような閉端を有しその形状が皮接面から皮内へ突出する
針状である閉端絶縁体針と、前記絶縁体層の皮接面側の
一部と前記閉端絶縁体針上に導電的に連続して設けられ
閉端絶縁体針と共にその一部が穿皮する構造をもつ金属
または半導体Aから成る自由表面を有する第1の導電性
鉱物と、上記薬剤層の第2の表面に接して設けられ且つ
前記第1の導電性鉱物と非皮接領域で電気的に接続され
前記Aとは異なる電子親和力を有する金属または半導体
Bから成る自由表面をもつ第2の導電性鉱物と、より成
る低電圧駆動型のイオントフォレシス素子を開示する。
Therefore, in the present invention, a drug layer containing a non-penetrable active ingredient, an insulator layer laminated on the first surface side of the drug layer and having a surface opposite to the drug layer serving as a skin contact surface, A hollow portion is provided in the body layer, and has a hollow end having a free end which can be electrically connected to or connected to the drug layer and the inside of the skin, and has a needle-like shape projecting into the skin from the skin contact surface. A hollow insulator needle, a closed end insulator needle having a closed end for electrically blocking the drug layer and the skin and having a needle-like shape projecting from the skin contact surface into the skin, It is made of a metal or semiconductor A having a structure in which a part of the insulator layer on the skin contact surface side and the closed end insulator needle are conductively and continuously provided on the closed end insulator needle and a part of which is skinned with the closed end insulator needle. A first conductive mineral having a free surface; and a first conductive mineral provided in contact with a second surface of the drug layer and the first conductive mineral. A low-voltage driven iontophoresis device, comprising: a second conductive mineral electrically connected to an object in a non-contact region and having a free surface made of a metal or semiconductor B having a different electron affinity from A. Is disclosed.

【0007】本発明の素子における中空絶縁体針及び閉
端絶縁体針は穿皮能力の高いものが望まれるので、例え
ば硬質合成樹脂などで形成されるが、薬剤輸送及び導電
性の観点から穿皮深さはすくなくともイオン性体液循環
領域である顆粒層以深である必要がある。素子を皮接す
ると同時に、中空絶縁体針及び閉端絶縁体針が針長まで
穿皮される。中空絶縁体針から浸出したイオン性被浸透
有効成分は、体液と接触し起電した生体電池に偏倚され
て速やかに皮下領域から血管内に浸透する。
The hollow insulator needle and the closed-end insulator needle in the device of the present invention are desired to have high skin piercing ability. For example, they are formed of a hard synthetic resin or the like. The skin depth must be at least deeper than the granular layer, which is the ionic fluid circulation area. At the same time as the element is skinned, the hollow insulator needle and the closed-end insulator needle are skinned to the length of the needle. The ionic permeated active ingredient leached from the hollow insulator needle is biased by the bioelectric cell that comes into contact with the body fluid and quickly penetrates from the subcutaneous region into the blood vessel.

【0008】一方、閉端絶縁体針を被覆した第1の導電
性鉱物は、皮内で体液と接触しつつ起電する。すなわち
この時、第1の導電性鉱物→体液→薬剤層→第2の導電
性鉱物→第1の導電性鉱物という電気的閉回路を電流が
流れる。第1の導電性鉱物が、単に接皮しているだけの
特願平9−321457号の素子においては、第1の導
電性鉱物は表皮上部である角質層を電解質として起電す
るので電解質作用が弱く、また発生した電流が皮内を貫
流する際接触抵抗と角質層抵抗によって大きな内部損失
を発生するので生体電池外部に引き出し得る電力は小さ
なものになる。
On the other hand, the first conductive mineral covering the closed-end insulator needle generates an electromotive force while being in contact with the body fluid in the skin. That is, at this time, a current flows through an electrically closed circuit of the first conductive mineral → the body fluid → the drug layer → the second conductive mineral → the first conductive mineral. In the device of Japanese Patent Application No. 9-32457 in which the first conductive mineral is merely insulated, the first conductive mineral generates an electrolyte using the stratum corneum, which is the upper part of the epidermis, as an electrolyte. In addition, when the generated current flows through the skin, a large internal loss is generated due to the contact resistance and the stratum corneum resistance, so that the power that can be extracted to the outside of the biological battery is small.

【0009】これにたいして本発明の素子では、第1の
導電性鉱物がイオン性体液と接触して起電するため電解
質効果が高い上に内部損失は小さくなる。すなわち外部
に引き出し得る電力が大きくなるのである。第1の導電
性鉱物が体液と接触して化学変化を生ずる場合には、そ
の表面を化学的に安定な導電物質、例えば導電性カーボ
ンや導電性ポリマーで被覆することができる。この素子
においては、第1の導電性鉱物の発電に寄与する部位
は、ほぼ体液に接触する穿皮部位のみであり、接皮部位
はほとんど導線作用を示すにとどまる。これは、角質層
表面と体液との電解質作用の違いに起因するものと考え
られる。本発明で、中空絶縁体針と閉端絶縁体針を空間
的に分離することによって、イオン性薬剤成分と第1の
導電性鉱物、すなわち電池の両極が電解質内で短絡して
発電を停止する危険が著しく減少した。
On the other hand, in the device of the present invention, the first conductive mineral contacts the ionic liquid to generate electricity, so that the electrolyte effect is high and the internal loss is small. That is, the power that can be extracted to the outside increases. When the first conductive mineral contacts the body fluid and undergoes a chemical change, its surface can be coated with a chemically stable conductive material such as conductive carbon or a conductive polymer. In this element, the portion of the first conductive mineral that contributes to power generation is substantially only the perforated portion that comes into contact with body fluids, and the insulated portion only exhibits a conducting wire effect. This is considered to be due to the difference in the electrolyte action between the stratum corneum surface and the body fluid. In the present invention, by spatially separating the hollow insulator needle and the closed-end insulator needle, the ionic drug component and the first conductive mineral, that is, both electrodes of the battery are short-circuited in the electrolyte to stop power generation. The danger has been significantly reduced.

【0010】[0010]

【発明の実施の形態】図1は、本発明の低電圧駆動イオ
ントフォレシス素子を皮接した場合の構造の一例を示す
断面図である。この素子は、薬剤層3と、その上部に設
けられた第2の導電性鉱物6、薬剤層3の下部に接して
設けられた多孔質海面体層7と、その下部に接して設け
られた絶縁体層2と、絶縁体層2の7と反対側表面の一
部に形成された中空絶縁体針4及び閉端絶縁体針5と、
5の表面を被覆し2の平坦部に連続する第1の導電性鉱
物1と、1と6とを非皮接領域で接続する電気的経路E
と、から成る。
FIG. 1 is a sectional view showing an example of a structure in which a low voltage driving iontophoresis element of the present invention is in contact with a skin. This element was provided in contact with a drug layer 3, a second conductive mineral 6 provided thereon, a porous marine body layer 7 provided in contact with a lower portion of the drug layer 3, and a lower portion thereof. An insulator layer 2, a hollow insulator needle 4 and a closed-end insulator needle 5 formed on a part of the surface of the insulator layer 2 opposite to 7,
An electric path E connecting the first conductive mineral 1 covering the surface of No. 5 and continuing to the flat portion 2 and 1 and 6 in a non-skinned region
And consisting of

【0011】この断面図においては、絶縁体層2の皮接
面側の一部に設けられた細針は、開放端を有する中空絶
縁体針4と閉端絶縁体針5とが交互に並んでいる。閉端
絶縁体針5は、第1の導電性鉱物1によって被覆されて
おり、この第1の導電性鉱物1は絶縁体層2の平坦部を
経て非皮接領域で電気的経路Eにより第2の導電性鉱物
6に接続されている様子が省略図として描かれている。
典型的には、細針4及び5の直径は100μm程度、長
さは1mm程度であるが、目的に応じて別の値をとるこ
ともできる。なお、図では、理解を容易にするために細
針部位のサイズを相対的に他の部位よりも誇張して描い
ている。他の素子構造図においても同様である。
In this cross-sectional view, the fine needles provided on a part of the insulator layer 2 on the skin contact surface side are such that hollow insulator needles 4 having open ends and closed end insulator needles 5 are alternately arranged. In. The closed-end insulator needle 5 is coated with a first conductive mineral 1, which passes through a flat portion of the insulator layer 2 and in a non-skinned region via an electric path E. The connection to the second conductive mineral 6 is illustrated as an abbreviated drawing.
Typically, the diameter of the fine needles 4 and 5 is about 100 μm and the length is about 1 mm, but other values can be taken according to the purpose. In the figure, the size of the fine needle portion is relatively exaggerated more than other portions for easy understanding. The same applies to other element structure diagrams.

【0012】絶縁体層2は、細針4の開放端部を除いて
薬剤層3と皮膚または皮内とを電気的に遮断する役割を
もっている。絶縁体層2の細針形成面の反対側の面に
は、多孔質海綿体7及び薬剤層3が積層されている。中
空絶縁体針4は、中空部を介して薬剤層3に繋がる。薬
剤層3は、イオン性浸透有効成分を含んだゲルであるこ
とが多いが、クリーム基剤を用いることもできる。ま
た、薬剤層の被浸透有効成分は、元来生体内に存在しな
い成分には限定されない。例えば、生体構成の蛋白質や
DNA、あるいは幹細胞(ES細胞)などとすることも
可能である。薬剤層3に接する多孔質海綿体7には、導
電性液体、例えば生理的食塩水を含浸させることができ
る。その結果、イオン性薬剤有効成分はこの導電性液体
中に浸出し、導電性液体と共に中空絶縁体針4内に侵入
する。
The insulator layer 2 has a role of electrically blocking the drug layer 3 from the skin or the skin except for the open end of the fine needle 4. On the surface of the insulator layer 2 opposite to the fine needle forming surface, a porous sponge 7 and a drug layer 3 are laminated. The hollow insulator needle 4 is connected to the drug layer 3 via a hollow portion. The drug layer 3 is often a gel containing an ionic osmotic active ingredient, but a cream base can also be used. Further, the effective component to be permeated in the drug layer is not limited to a component that does not originally exist in a living body. For example, it is also possible to use a protein or DNA of a biological constitution or a stem cell (ES cell). The porous sponge 7 in contact with the drug layer 3 can be impregnated with a conductive liquid, for example, physiological saline. As a result, the ionic drug active ingredient is leached into the conductive liquid and penetrates into the hollow insulator needle 4 together with the conductive liquid.

【0013】薬剤層3の多孔質海綿体7接触面と反対側
の面には、第2の導電性鉱物6が導電的に薬剤層3と密
着している。第2の導電性鉱物6の自由表面を形成する
金属または半導体Bが薬剤層3と化学反応する場合に
は、Bの導電性鉱物接触面を化学的に安定な他の導電性
物質、例えば導電性のカーボンやポリマーなどで覆うこ
とができる。前記したように第2の導電性鉱物6の薬剤
層接触面と反対側の面には、第1の導電性鉱物1との間
の電気的経路E(導線または直接第1の導電性鉱物を用
いることが多い)が接続されている。閉端絶縁体針5の
表面に形成された第1の導電性鉱物1の自由表面を成す
金属または半導体Aが穿皮により接触した体液と化学的
に反応する場合にも、上記したA同様安定な他の導電性
材料でその表面を被覆することができる。
A second conductive mineral 6 is conductively in close contact with the drug layer 3 on the surface of the drug layer 3 opposite to the surface where the porous sponge 7 contacts. If the metal or semiconductor B forming the free surface of the second conductive mineral 6 chemically reacts with the drug layer 3, the conductive mineral contact surface of B is made of another chemically stable conductive material such as a conductive material. It can be covered with carbon or polymer of nature. As described above, the surface of the second conductive mineral 6 opposite to the drug layer contacting surface is provided with an electric path E to the first conductive mineral 1 (a conductive wire or a direct conductive mineral. (Often used). Even when the metal or semiconductor A forming the free surface of the first conductive mineral 1 formed on the surface of the closed-end insulator needle 5 chemically reacts with the bodily fluid that has come into contact with the skin by perforation, it is stable as in the case of A described above. The surface can be coated with any other conductive material.

【0014】細針4及び5は、素子を皮接した時その先
端が穿皮して皮脂層、角質層を経て表皮下部の顆粒層/
有棘層/基底層にまで最低限到達しなければならない。
必要に応じて中空絶縁体針4の開放端は、さらに深部の
真皮や皮下組織に至るため、細針4及び5は通常1mm
かそれより長い針長を有する。多孔質海綿体7は、素子
構成の必要条件ではないが、導電性液体を予め含浸させ
ておくことにより素子皮接時に速やかに薬剤イオンを体
液と接触させることが可能となる。第1及び第2の導電
性鉱物1および6は、それぞれの自由表面を構成する金
属または半導体AおよびBがそれぞれ異なる電子親和力
を有するように選択する。薬剤層3に含有される被浸透
薬剤イオン(有効薬剤成分イオン)が負に帯電していれ
ばAよりBの電子親和力が大きく、逆に被浸透薬剤イオ
ンが正に帯電していればBよりAの電子親和力が大きく
なるように材料を選択する。
The fine needles 4 and 5 are perforated at the tip when the element is in contact with the skin, pass through the sebum layer and the stratum corneum, and pass through the granular layer in the subepidermal region.
It must at least reach the spinous / basal layer.
Since the open end of the hollow insulator needle 4 reaches the dermis and subcutaneous tissue at a deeper part if necessary, the fine needles 4 and 5 are usually 1 mm.
Or longer needle length. Although the porous sponge body 7 is not a necessary condition for the element configuration, it can be made to be able to quickly contact the drug ions with the body fluid when the element is in contact with the skin by impregnating the conductive liquid in advance. The first and second conductive minerals 1 and 6 are selected such that the metals or semiconductors A and B constituting the respective free surfaces have different electron affinities. If the permeated drug ion (active drug component ion) contained in the drug layer 3 is negatively charged, the electron affinity of B is greater than A if the permeated drug ion is positively charged. The material is selected so that the electron affinity of A is large.

【0015】絆創膏等の皮接手段によって素子を図示し
たように皮接すると、圧接時に細針4および5が穿皮さ
れるため患者にはわずかに違和感または疼痛感がある
が、穿皮深さが浅いため一瞬のことであり、患者に持続
的な苦痛を与えることはない。圧接によって多孔質海綿
体7が圧迫されて導電性液体が細針中空部を満たし、細
針4の開放端で体液と接触する。皮接後は圧接時より素
子内部の圧力が低下するため素子内は負圧となり、図示
したように中空絶縁体針4の開放端から毛管現象によっ
て体液が素子内へ侵入するため薬剤イオンが体液と容易
に接触する。
When the element is skin-contacted with a skin-contact means such as a bandage as shown in the figure, the fine needles 4 and 5 are pierced at the time of pressing, so that the patient feels slightly uncomfortable or painful. Because of the shallowness of the patient, it is instantaneous and does not cause continuous pain to the patient. The porous sponge body 7 is pressed by the pressure contact, and the conductive liquid fills the hollow portion of the fine needle, and comes into contact with the bodily fluid at the open end of the fine needle 4. After the skin contact, the pressure inside the element is lower than that at the time of the pressure contact, so that the inside of the element becomes a negative pressure. Easily contact with.

【0016】一方、閉端絶縁体針5の穿皮によってその
表面を被覆する導電性鉱物1は少なくとも表皮下部層に
まで到達し、イオン導電性体液と接触する。体液は良好
な電解質であり、また低抵抗である。そこで、素子の皮
接によって電気的閉回路E(第1の導電性鉱物1→皮内
→導電性溶液→多孔質海綿体7→薬剤層3→第2の導電
性鉱物6→第1の導電性鉱物1)が形成されると、金属
または半導体A及びB間の電子親和力差に基づく起電力
によってこの閉回路に電流が流れる。穿皮された中空絶
縁体針4は、いわば人工毛穴的存在であるが、生物由来
の毛穴とは異なり内部の電気抵抗が著しく小さい。ま
た、穿皮された閉端絶縁体針5を被覆する導電性鉱物1
は、少なくとも先端部が体液と接触するので、体液と接
触した領域のみが優先的に発電に寄与し、単に表皮上部
の角質層と接触する部位でほとんど発電しない。したが
って回路電流は、細針4、5のいずれにおいても穿皮さ
れた表皮下層部以深の皮内を選択的に流れ、高抵抗の皮
脂層、角質層領域は通電に寄与しなくなる。
On the other hand, the conductive mineral 1 covering the surface of the closed-end insulator needle 5 by perforation reaches at least the subcutaneous layer and comes into contact with the ionic conductive fluid. Body fluids are good electrolytes and have low resistance. Therefore, the electrical closed circuit E (first conductive mineral 1 → intradermal → conductive solution → porous sponge 7 → drug layer 3 → second conductive mineral 6 → first conductive mineral) When the inorganic mineral 1) is formed, a current flows through this closed circuit by an electromotive force based on the difference in electron affinity between the metal or semiconductor A and B. The perforated hollow insulator needle 4 is, as it were, an artificial pore, but unlike an organism-derived pore, the internal electrical resistance is extremely small. The conductive mineral 1 covering the perforated closed-end insulator needle 5
Since at least the distal end portion comes into contact with body fluid, only the region that comes into contact with body fluid preferentially contributes to power generation, and almost no power is generated simply at the site in contact with the stratum corneum above the epidermis. Accordingly, the circuit current selectively flows in the skin deeper than the subepidermal layer in any of the fine needles 4 and 5, and the high-resistance sebum and stratum corneum regions do not contribute to the conduction.

【0017】前記したAとBとの電子親和力差による起
電力は、コストや安全性、安定性を考慮すると高々1.
5乃至2ボルトが限界である。このような低起電力の場
合、皮脂層や角質層など極めて高抵抗の表皮上部層を通
電経路に含むと通電損失が1乃至1.5ボルトにもなる
ため、イオントフォレシスに利用できる電圧が1ボルト
以下の低い値となり、素子の動作マージンが低下する。
The electromotive force due to the difference in electron affinity between A and B is at most 1. in consideration of cost, safety and stability.
5 to 2 volts is the limit. In the case of such a low electromotive force, when an extremely high-resistance epidermis upper layer such as a sebum layer or a stratum corneum is included in the conduction path, the conduction loss is as high as 1 to 1.5 volts, so that the voltage available for iontophoresis is low. The value is as low as 1 volt or less, and the operation margin of the device is reduced.

【0018】勿論前出願(特願平9−321457号)
に開示した中空絶縁体針4の穿皮によって皮脂層、角質
層領域を回避しつつ高分子薬剤イオンを皮内、したがっ
て血中へ導入することが比較的低電圧で行えるようにな
った。しかし、本発明によって初めて表皮上部層の弱い
電解質作用による起電の不安定性と薬剤導入の低効率性
が克服され、また前記したように動作マージンの低下
(電池の大きな内部損失)が回避された。
Of course, the previous application (Japanese Patent Application No. 9-32457)
By perforating the hollow insulator needle 4 disclosed in (1), it is possible to introduce a high molecular drug ion into the skin and thus into the blood at a relatively low voltage while avoiding the sebum layer and the stratum corneum region. However, the present invention overcomes, for the first time, the instability of electromotive force and the low efficiency of drug introduction due to the weak electrolyte action of the upper epidermal layer, and also avoids a decrease in the operating margin (large internal loss of the battery) as described above. .

【0019】硬質樹脂などで作られた細針4、5の針径
は0.1〜0.2mm程度であり、また針長も1〜2m
m程度であるため、あらかじめ滅菌処理をしておけば穿
皮によっても患者の疼痛感はほとんどなく、また感染の
心配もない。素子を皮膚から除去すれば穿皮個所の皮膚
はただちに閉じるので、出血することも細菌感染の心配
もない。従って、この素子は皮膚内奥部にまで穿皮する
特殊な場合を除き、曲面部を含む身体のさまざまな部位
の皮膚に貼付することが可能である。
The needle diameter of the fine needles 4 and 5 made of a hard resin or the like is about 0.1 to 0.2 mm, and the needle length is also 1 to 2 m.
Since it is about m, if it is sterilized in advance, there is almost no pain in the patient even by perforation, and there is no concern about infection. When the element is removed from the skin, the skin at the perforated area closes immediately, so there is no risk of bleeding or bacterial infection. Therefore, this element can be applied to the skin of various parts of the body including the curved surface part, except for the special case of piercing deep into the skin.

【0020】以下、本発明を具体例に沿ってより詳しく
述べる。 (その1)図2は、具体例における低電圧型イオントフ
ォレシス素子の構造概略を示す図である。図2(A)は
下面図(皮接側から見た底面図)、同(B)及び(C)
は、(A)のN−N’断面図及びM−M’断面図であ
る。なお、図2(A)でK−K’断面を取れば、図1の
ような構造図が得られる。図2において、1は第1の導
電性鉱物、2は絶縁体層、3は薬剤層、4は中空絶縁体
針、5は閉端絶縁体針、6は第2の導電性鉱物、7は多
孔質海綿体である。
Hereinafter, the present invention will be described in more detail with reference to specific examples. (Part 1) FIG. 2 is a view schematically showing the structure of a low-voltage iontophoresis element in a specific example. FIG. 2A is a bottom view (a bottom view as viewed from the skin contact side), and FIGS. 2B and 2C.
3A is an NN ′ cross-sectional view and an MM ′ cross-sectional view of FIG. If the section taken along the line KK 'in FIG. 2A is obtained, a structural view as shown in FIG. 1 is obtained. In FIG. 2, 1 is the first conductive mineral, 2 is the insulator layer, 3 is the drug layer, 4 is the hollow insulator needle, 5 is the closed end insulator needle, 6 is the second conductive mineral, 7 is It is a porous spongy body.

【0021】第1の導電性鉱物1は、1a−1fの六片
に分かれて絶縁体層2上にストライプ状に配置されてい
る。各片は、少なくとも1個の閉端絶縁体針5を内部に
含み5の全体を被覆している。それぞれのストライプ状
導電性鉱物1は、図2(C)で示すように素子背面にお
いて第2の導電性鉱物6に直接接続され電気的経路を成
している。第1の導電性鉱物1を構成する導電性材料A
は、テフロン(登録商標)樹脂板(厚さ50μm)上に
物理蒸着された亜鉛過剰酸化亜鉛(厚さ0.5μm)で
あり、ストライプ幅は1mmである。亜鉛過剰酸化亜鉛
は低抵抗のn型半導体であり絶縁体層2であるテフロン
樹脂板をパターン打ち抜きし、細針加工後にその上に形
成される。各ストライプの非皮接領域では、テフロン樹
脂板のストライプ領域の上下側面上に亜鉛過剰酸化亜鉛
膜が形成され電気的経路を成している。
The first conductive mineral 1 is divided into six pieces 1a-1f and arranged on the insulator layer 2 in a stripe shape. Each piece includes at least one closed end insulator needle 5 therein and covers the entirety of the needle 5. Each of the striped conductive minerals 1 is directly connected to a second conductive mineral 6 on the back surface of the element as shown in FIG. Conductive material A constituting first conductive mineral 1
Is a zinc-excess zinc oxide (thickness 0.5 μm) physically deposited on a Teflon (registered trademark) resin plate (thickness 50 μm), and the stripe width is 1 mm. The zinc-excess zinc oxide is a low-resistance n-type semiconductor, and is formed on a Teflon resin plate serving as the insulator layer 2 by pattern punching and fine needle processing. In the non-contact region of each stripe, a zinc-excess zinc oxide film is formed on upper and lower side surfaces of the stripe region of the Teflon resin plate to form an electrical path.

【0022】薬剤層3は、0.1NのKOHとヒトイン
シュリンを分散させた導電性ゲルである。中空絶縁体針
4及び閉端絶縁体針5は、加熱して可塑性を高めた状態
で金型によるプレスによってテフロン樹脂板(絶縁体層
2)に形成される。細針4、5の全長は約1mm、外径
は約100μm、中空部内径は約50μmである。
The drug layer 3 is a conductive gel in which 0.1N KOH and human insulin are dispersed. The hollow insulator needle 4 and the closed end insulator needle 5 are formed on a Teflon resin plate (insulator layer 2) by pressing with a mold in a state where the plasticity has been increased by heating. The total length of the fine needles 4 and 5 is about 1 mm, the outer diameter is about 100 μm, and the inner diameter of the hollow part is about 50 μm.

【0023】第2の導電性鉱物6を構成する導電性材料
Bは、銅薄板(厚さ40μm)にメッキされた金(厚さ
2μm)である。多孔質海綿体7は、例えばポリウレタ
ン板(厚さ1mm)であり、0.3%のKOH水溶液が
含浸されている。素子サイズは、例えば25×25mm
2である。 この素子を図2で示した底面が皮接する如
くして生体皮膚面に圧接し、非皮接面を絆創膏等で皮膚
に固定する。この結果、細針4、5が穿皮され、その先
端部が真皮にまで到達すると同時に多孔質海綿体7に含
浸されたKOH水溶液が押圧によって細針4の開口部よ
り真皮領域に達する。圧接作業終了によって押圧が緩む
と多孔質海綿体7は膨張するので中空絶縁体針4の中空
部は負圧となり、真皮領域の体液が毛管現象で徐々に中
空絶縁体針4内部に侵入する。同時に第1の導電性鉱物
1と第2の導電性鉱物6を電極とする化学電池が発電を
開始し、1→真皮領域→中空絶縁体針4の中空部位→海
綿体7→薬剤層3→6→1閉回路に電流が流れる。
The conductive material B constituting the second conductive mineral 6 is gold (2 μm thick) plated on a thin copper plate (40 μm thick). The porous sponge 7 is, for example, a polyurethane plate (1 mm thick), and is impregnated with a 0.3% KOH aqueous solution. The element size is, for example, 25 × 25 mm
2 This element is pressed against the skin surface of the living body so that the bottom surface shown in FIG. 2 is in skin contact, and the non-skin contact surface is fixed to the skin with a bandage or the like. As a result, the fine needles 4 and 5 are perforated, and their tips reach the dermis, and at the same time, the KOH aqueous solution impregnated in the porous spongy body 7 reaches the dermis region from the opening of the fine needle 4 by pressing. When the pressing is loosened by the end of the pressing operation, the porous sponge body 7 expands, so that the hollow portion of the hollow insulator needle 4 becomes negative pressure, and the bodily fluid in the dermis region gradually enters the hollow insulator needle 4 by capillary action. At the same time, the chemical battery using the first conductive mineral 1 and the second conductive mineral 6 as electrodes starts power generation, 1 → dermis region → hollow portion of hollow insulator needle 4 → sponge 7 → drug layer 3 → Current flows through the 6 → 1 closed circuit.

【0024】ストレプトゾシンをあらかじめ投与して高
血糖化したヘアレスラットの背部に本実施例のイオント
フォレシス素子を装着し、30分、60分、90分およ
び120分後のラット血中のグルコース濃度を測定し
た。比較のために、図2に示した本発明の素子から閉端
絶縁体針5のみを除き、それ以外は全く同じパターン、
サイズおよび材料で構成した素子を作成し、本実施例同
様高血糖化したラット背部に装着して血中のグルコース
濃度の経時変化を測定した。この比較例の素子において
は、閉端絶縁体針5位置は平坦な絶縁体層2が占めてい
るため、電池負極である亜鉛過剰酸化亜鉛(第1の導電
性鉱物1)は皮膚表面を電解質として発電に寄与し、ま
た閉回路電流は表皮上部を介して生体内部を流れること
になる。
[0024] The iontophoresis device of this example was mounted on the back of a hairless rat hypertensive to which streptozocin had been administered in advance, and the glucose concentration in rat blood after 30, 60, 90, and 120 minutes. Was measured. For comparison, the element of the invention shown in FIG.
An element composed of a size and a material was prepared and mounted on the back of a hyperglycemic rat as in the present example, and the change over time in the glucose concentration in blood was measured. In the device of this comparative example, since the flat insulator layer 2 occupies the position of the closed-end insulator needle 5, the zinc-excess zinc oxide (first conductive mineral 1), which is the battery negative electrode, cleans the skin surface with an electrolyte. As a result, the closed circuit current flows inside the living body through the upper epidermis.

【0025】実施例、比較例とも1群3匹として平均値
を取ったデータを図3に示す。いずれの場合においても
インシュリン投与前の血中グルコース濃度を100とし
て規格化してある。各例において120分皮接後マウス
の皮膚損傷および第1の導電性鉱物表面の変化は認めら
れなかった。図3は、いずれの場合もインシュリンのイ
オントフォレシス効果によって血糖値が大きく低下して
いることを示すが、二つの素子例を比較すると本実施例
の素子では皮接後30分で血糖値がほぼ最低値に到達し
ているのに対し、比較例の素子では約2時間を経過して
ようやく本発明の素子水準まで血糖値が低下しているこ
とがわかる。本発明の素子を用いた場合の30分経過後
の血糖値は、高血糖化したラットに1単位/Kgのイン
シュリンを皮下注射した場合と同じ水準である。皮下注
射した場合も本実施例同様約30分経過後に血糖値は最
低値を記録するが、約1時間を経過して血糖値は急激に
増加し始めることがわかった。図3から示唆されるよう
に、本実施例の素子を用いた場合薬剤層中のインシュリ
ン濃度が低下しない限り長時間にわたって安定的に低い
血糖値を保つことが可能である。
FIG. 3 shows data obtained by averaging three animals per group in Examples and Comparative Examples. In each case, the blood glucose concentration before insulin administration was standardized as 100. In each case, no mouse skin damage and no change in the surface of the first conductive mineral were observed after 120 minutes of skin contact. FIG. 3 shows that in each case, the blood glucose level was greatly reduced due to the iontophoretic effect of insulin. However, comparing the two element examples, the blood glucose level of the element of this example was 30 minutes after skin contact. It can be seen that the blood glucose level of the device of the comparative example has dropped to the level of the device of the present invention only after about 2 hours, while it has almost reached the minimum value. When the device of the present invention was used, the blood glucose level after 30 minutes was the same level as when 1 unit / Kg of insulin was subcutaneously injected into hyperglycemic rats. In the case of subcutaneous injection, the blood glucose level recorded the lowest value after about 30 minutes as in this example, but it was found that the blood glucose level began to increase rapidly after about 1 hour. As suggested from FIG. 3, when the device of this example is used, a low blood glucose level can be stably maintained for a long time as long as the insulin concentration in the drug layer does not decrease.

【0026】薬剤層3を除去して第2の導電性鉱物6を
直接多孔質海綿体7に接触させ、非皮接位置における第
1の導電性鉱物1と第2の導電性鉱物6間の電気的経路
に直接電圧計を設置し、ヌードマウス背部に装着して化
学電池の外部に取り出された電圧を測定すると、本実施
例の場合約1.8ボルトであったのに対し比較例では約
0.7ボルトであった。この結果は、第1の導電性鉱物
1を真皮領域まで穿皮して配置した本実施例の素子で
は、高い電解質効果による電池出力の増加と表皮上部層
による電位降下(電池の内部損失)の低減が同時に図ら
れ、薬剤層へのより高い電圧印加によってイオントフォ
レシス効果が高まったことを示している。
The chemical layer 3 is removed and the second conductive mineral 6 is brought into direct contact with the porous spongy body 7, so that the first conductive mineral 1 and the second conductive mineral 6 at the non-skin contact position are located between the first conductive mineral 1 and the second conductive mineral 6. A voltmeter was installed directly on the electrical path, and the voltage taken out of the chemical battery was measured by attaching it to the back of the nude mouse. It was about 0.7 volts. This result indicates that, in the device of the present embodiment in which the first conductive mineral 1 is perforated to the dermis region, the battery output increases due to the high electrolyte effect and the potential drop (internal loss of the battery) due to the upper skin layer. Reduction was achieved at the same time, indicating that the higher voltage applied to the drug layer enhanced the iontophoretic effect.

【0027】(その2)図4は、本発明の別の実施例に
おけるイオントフォレシス素子の構成を示す図である。
図4(A)は皮接側から見た素子底面図、同(B)は
(A)のN−N’断面図、同(C)は(A)のM−M’
断面図である。この素子は、前実施例の場合と異なり多
孔質海綿体を用いてはいないが、第1の導電性鉱物1と
第2の導電性鉱物6とを非皮接領域で接続する電気的経
路20にダイオード10と容量11を並列接続した負荷
を挿入している。このタイプの素子は、皮接時に生ずる
化学電池を電源とするパルス素子で、通電電流を単極性
パルス化することができる(特願平8−24245
号)。
(Part 2) FIG. 4 is a diagram showing a configuration of an iontophoresis element according to another embodiment of the present invention.
4A is a bottom view of the element viewed from the skin contact side, FIG. 4B is a cross-sectional view of NN ′ of FIG. 4A, and FIG. 4C is MM ′ of FIG.
It is sectional drawing. This element does not use a porous spongy body unlike the case of the previous embodiment, but has an electric path 20 for connecting the first conductive mineral 1 and the second conductive mineral 6 in a non-skinned region. , A load in which a diode 10 and a capacitor 11 are connected in parallel is inserted. This type of element is a pulse element generated by a chemical battery as a power source at the time of skin contact, and is capable of unidirectionally pulsing an energizing current (Japanese Patent Application No. Hei 8-24245).
issue).

【0028】図において、8は可撓性のあるポリウレタ
ン性の絶縁性枠(厚さ2mm)であり、この枠が薬剤層
3のリザーバーとなっている。薬剤層3は0.1%Na
3含有の尿素クリームに1%の塩化デカリニウム(D
equalinium Chloride)を分散させ
たものである。また、9はこの素子を生体皮膚へ貼付す
るための絆創膏である。第1の導電性鉱物1は閉端絶縁
体針を含む硬質フッ素樹脂絶縁層2にストライプ状に物
理蒸着した金(厚さ0.5μm)を導電性材料Aとして
成る。金ストライプは、図4(C)で示したように素子
の非皮接領域にまで至り、その位置で電位的経路である
導線20Aに接続している。中空絶縁体針4及び閉端絶
縁体針5は外径100μm、長さ1mmである。素子の
外径寸法は30×30mm2とした。
In the figure, reference numeral 8 denotes a flexible polyurethane insulating frame (thickness: 2 mm), which serves as a reservoir for the drug layer 3. Drug layer 3 is 0.1% Na
N 3 containing urea cream 1% of dequalinium chloride (D
(Equalinium Chloride). Reference numeral 9 denotes an adhesive bandage for attaching this element to the skin of a living body. The first conductive mineral 1 is made of gold (thickness 0.5 μm) which is physically vapor-deposited in stripes on the hard fluororesin insulating layer 2 including closed-end insulator needles as the conductive material A. The gold stripe reaches the non-contact region of the element as shown in FIG. 4C, and is connected to the conductive wire 20A as a potential path at that position. The hollow insulator needle 4 and the closed end insulator needle 5 have an outer diameter of 100 μm and a length of 1 mm. The outer diameter of the element was 30 × 30 mm 2 .

【0029】一方、第2の導電性材料6は、厚さ40μ
mのアルミ箔上に導電性材料BとしてA1−Zn−Mg
合金を約0.5μm厚みに物理蒸着し、さらに薬剤層3
の接触面には導電性炭素膜を保護材として形成して成
る。薬剤層3の非接触面の一部は導線20に接続し、絆
創膏9の裏面(素子の非皮接面)で前記した並列負荷を
介して第1の導電性鉱物1に導電接続される。本実施例
の場合電子親和力は第1の導電性鉱物構成のAの方が第
2の導電性鉱物材料のBより大きく、かつA及びBとも
に金属材料である。並列負荷は、逆耐圧1.1ボルトの
ダイオード10及び20pFの容量11より成る。
On the other hand, the second conductive material 6 has a thickness of 40 μm.
A1-Zn-Mg as conductive material B on aluminum foil
Physically vapor-deposited the alloy to a thickness of about 0.5 μm,
Is formed on the contact surface with a conductive carbon film as a protective material. A part of the non-contact surface of the drug layer 3 is connected to the conductive wire 20 and is conductively connected to the first conductive mineral 1 via the parallel load on the back surface (non-skin contact surface of the element) of the bandage 9. In this embodiment, the electron affinity of A in the first conductive mineral composition is larger than B of the second conductive mineral material, and both A and B are metal materials. The parallel load consists of a diode 10 with a reverse breakdown voltage of 1.1 volts and a capacitance 11 of 20 pF.

【0030】ヘアレスラットの背部に本実施例の素子を
装荷し、一定時間毎に薬剤由来成分の血中濃度を測定し
た。血中濃度測定は、ラット3匹を1群としその平均値
を取った。素子装荷時、導線20Aに測定器を設置して
調べたピーク電圧は2.3ボルトであり、周波数300
ないし400Hzの鋸子状波パルス電流が観測された。
比較のために、図4の素子における閉端絶縁体針5を除
去し、それ以外は本実施例と同じ材料、寸法、構成のイ
オントフォレシス素子を作成し本実施例同様ヘアレスラ
ット背部に装着して薬剤浸透実験を行った。この場合も
通電パルス電流の周波数は300−400Hzであった
が、ピーク電圧は1.2ボルトにとどまった。素子装荷
後30分、60分、90分、120分における導入薬剤
由来成分の血中濃度の変化を図5に示す。図示したよう
に、本実施例の場合血中濃度の立ち上がりは速やかであ
り、装荷後100分前後で血中濃度は飽和値に達する。
しかし、比較例では装荷後2時間を経過してもなお血中
濃度は増加中であり、濃度制御性が悪いことがわかる。
The element of this example was loaded on the back of a hairless rat, and the blood concentration of a drug-derived component was measured at regular intervals. In the measurement of blood concentration, three rats were regarded as one group, and the average value was taken. When the element was loaded, the peak voltage measured by installing a measuring instrument on the conductor 20A was 2.3 volts, and the frequency was 300 volts.
A sawtooth pulse current of ~ 400 Hz was observed.
For comparison, the closed-end insulator needle 5 in the device of FIG. 4 was removed, and an iontophoresis device having the same material, dimensions, and configuration as that of the present embodiment was prepared and attached to the back of a hairless rat as in the present embodiment. Then, a drug penetration experiment was performed. Also in this case, the frequency of the energizing pulse current was 300-400 Hz, but the peak voltage remained at 1.2 volts. FIG. 5 shows changes in the blood concentration of the component derived from the introduced drug at 30, 60, 90, and 120 minutes after the device was loaded. As shown in the figure, in the case of the present embodiment, the blood concentration rapidly rises, and the blood concentration reaches a saturation value about 100 minutes after loading.
However, in the comparative example, the blood concentration was still increasing 2 hours after loading, indicating that the concentration controllability was poor.

【0031】(その3)図6は、本発明のさらに別の実
施例におけるイオントフォレシス素子の構造概略を示
す。図の(A)は底面図、(B)はK−K’断面図であ
る。この素子は、前実施例の場合と異なり、薬剤皮内濃
度の検出回路と薬剤血中濃度の制御回路を有しているた
め血中濃度の制御性に優れた特性を発揮する。すなわ
ち、図示したように、絶縁体層2の皮接面側で中空絶縁
体針4の配置されていない箇所に、空間的に分離されて
一対の検出用電極21、22が配置されており、その信
号が計測回路25を経てCPU26に伝達されることに
よりCPU26からの帰還信号が制御回路27に発せら
れる仕組みになっている。その結果、設定値より高いま
たは低い血中濃度が非侵襲的に常時補正される(特願2
000−103298号)。一対の検出用電極21、2
2はそれぞれ第1の導電性鉱物1及び第2の導電性鉱物
6から成り、皮接面側では表面が絶縁処理された導線2
3,24によって検出信号が絆創膏裏面の計測回路25
に伝達される。
(Part 3) FIG. 6 shows a schematic structure of an iontophoresis element according to still another embodiment of the present invention. (A) of the figure is a bottom view, and (B) is a sectional view taken along the line KK '. Unlike the previous embodiment, this element has a circuit for detecting the intradermal concentration of the drug and a control circuit for the blood concentration of the drug, so that it exhibits excellent characteristics of controlling the blood concentration. That is, as shown in the figure, a pair of detection electrodes 21 and 22 are spatially separated and arranged at a place where the hollow insulator needle 4 is not arranged on the skin contact surface side of the insulator layer 2, When the signal is transmitted to the CPU 26 via the measuring circuit 25, a feedback signal from the CPU 26 is transmitted to the control circuit 27. As a result, the blood concentration higher or lower than the set value is constantly corrected non-invasively (Japanese Patent Application No. 2000-214,197).
000-103298). A pair of detection electrodes 21 and 2
Reference numeral 2 denotes a first conductive mineral 1 and a second conductive mineral 6, each of which is a conductive wire 2 whose surface is insulated on the skin contact side.
The detection signal is measured by the measurement circuit 25 on the back of the bandage
Is transmitted to

【0032】この素子は、計測回路25及びCPU26
の駆動用電源として電池(EB)28を内蔵している
が、イオトフォレシス自体及び薬剤皮下濃度の検出は第
1の導電性鉱物1と第2の導電性鉱物6との電子親和力
差に起因する化学電池によって行われる。そして、素子
の絆創膏9及び9より皮接側の部分が使い捨てとなり、
9の裏側回路部分が再使用箇所となる。素子の皮接面側
直径は30mmである。第1導電性鉱物1は厚さ50μ
mのテフロンシート上に物理蒸着されたn−Ge0.7
0.3(厚さ約1μm),第2の導電性鉱物6は厚さ40
μmのA1シート上に物理蒸着された厚さ1μmのパラ
ジウムである。薬剤層3は、導電性ゲルに0.5%の塩
酸モルヒネを分散させたものであり、厚みは1mmであ
る。多孔質海綿体7には生理的食塩水が含浸されてい
る。
This element comprises a measuring circuit 25 and a CPU 26
(E B ) 28 is built in as a power supply for driving the device, but the iontophoresis itself and the detection of the subcutaneous concentration of the drug are caused by the difference in electron affinity between the first conductive mineral 1 and the second conductive mineral 6. This is done by a chemical battery. Then, the portion of the element which is closer to the skin than the bandages 9 and 9 is disposable,
The back circuit portion 9 is a reused portion. The diameter of the element on the skin contact surface side is 30 mm. The first conductive mineral 1 has a thickness of 50 μm.
n-Ge 0.7 S physical vapor deposited on m Teflon sheet
i 0.3 (about 1 μm thickness), the second conductive mineral 6 has a thickness of 40
1 μm thick palladium physically deposited on a 1 μm A1 sheet. The drug layer 3 is a conductive gel in which 0.5% morphine hydrochloride is dispersed, and has a thickness of 1 mm. The porous sponge 7 is impregnated with physiological saline.

【0033】NWY系ヘアレスラットの背部にこの素子
を装荷して血中濃度制御した経皮投薬実験を行った。装
荷直後に測定すると、穿皮された閉端絶縁体針5と第2
の導電性鉱物6をそれぞれ電極とする化学電池の皮外取
り出し電圧(すなわち薬剤層印加電圧)は約1.2ボル
トであった。また、同時に測定した一対の検出用電極2
1、22間の電圧は0.35ボルトであった。まず最初
に、薬剤濃度の生体検量線を作るために、薬剤層3中に
分散させた塩酸モルヒネ濃度の異なる前記素子を何種類
か用意し、HWY系ヘアレスラットの背部に装着して一
定時間経過毎に測定を行った。測定は、所定時間経過後
にCPU26を作動させて計測回路25の二つの標準抵
抗を切り替えて読み取った標準抵抗両端の電位降下から
検出用電極21、22の間の皮内における抵抗値Rd
演算し、その時間毎に採血し化学分析によって求めたモ
ルヒネの血中濃度〔M〕と対比させるものである(特願
2000−103298号)。この時制御回路27は駆
動させず、抵抗ゼロの状態で短絡してある。このように
して求めたRdvs.〔M〕検量線を用いて、次に血中
濃度制御の実験を行った。
A transdermal drug administration experiment was carried out in which this element was loaded on the back of a NWY hairless rat and the blood concentration was controlled. When measured immediately after loading, the perforated closed-end insulator needle 5 and the second
Of the chemical battery using the conductive minerals 6 as the electrodes respectively (that is, the drug layer applied voltage) was about 1.2 volts. In addition, a pair of detection electrodes 2 measured simultaneously.
The voltage between 1 and 22 was 0.35 volts. First, in order to prepare a biocalibration curve of a drug concentration, several kinds of the above-mentioned elements having different concentrations of morphine hydrochloride dispersed in the drug layer 3 were prepared, attached to the back of a HWY type hairless rat, and passed for a certain period of time. The measurement was performed every time. The measurement is performed by operating the CPU 26 after a predetermined time has elapsed, switching the two standard resistances of the measurement circuit 25, and calculating the resistance value R d in the skin between the detection electrodes 21 and 22 from the potential drop across the standard resistance read. The blood is collected at each time, and compared with the blood concentration [M] of morphine obtained by chemical analysis (Japanese Patent Application No. 2000-103298). At this time, the control circuit 27 is not driven, and is short-circuited in a state of zero resistance. R d vs. thus obtained. [M] Using the calibration curve, an experiment on blood concentration control was performed next.

【0034】塩酸モルヒネ濃度0.5%の薬剤層3を用
いた図6の素子をHWY系ヘアレスラットに装着し、1
0分毎にRdを測定した。上述の検量線(図示せず)を
利用してその時点のモルヒネ血中濃度〔M〕を求め、設
定した血中濃度〔M〕。と対比しつつ濃度制御を行っ
た。すなわち、その時点で計測した血中濃度〔M〕が設
定値〔M〕。より低ければ、制御回路27の負荷抵抗を
小さくして薬剤層へ印加される電圧を高くし、逆に
〔M〕が設定値〔M〕。より高ければ、27の負荷抵抗
を大きくして薬剤層3に印加される電圧を下げるのであ
る。得られた制御結果を比較例の場合と共に示したの
が、図7である。比較例は、図6に示した素子において
第1の導電性鉱物1のストライプ中にある閉端絶縁体針
5のみを除去し、その他は材料、サイズ、構成をまった
く変えない素子を用いて濃度制御実験を行ったものであ
る。
The device shown in FIG. 6 using the drug layer 3 having a morphine hydrochloride concentration of 0.5% was attached to an HWY hairless rat, and
Rd was measured every 0 minutes. The morphine blood concentration [M] at that time was determined using the above-mentioned calibration curve (not shown), and the set blood concentration [M] was obtained. Concentration control was performed in contrast to the above. That is, the blood concentration [M] measured at that time is the set value [M]. If it is lower, the load resistance of the control circuit 27 is reduced to increase the voltage applied to the drug layer, and conversely, [M] is the set value [M]. If it is higher, the load resistance of 27 is increased, and the voltage applied to the drug layer 3 is reduced. FIG. 7 shows the obtained control results together with the case of the comparative example. In the comparative example, only the closed-end insulator needle 5 in the stripe of the first conductive mineral 1 was removed from the device shown in FIG. This is a control experiment.

【0035】本実施例では、約30分後に血中濃度がほ
ぼ〔M〕。に収束しており優れた濃度制御性が示されて
いるが、比較例では濃度制御に約3時間を要することが
わかる。これは、比較例の場合、第1の導電性鉱物1と
第2の導電性鉱物6とをそれぞれ電極とする化学電池の
皮外取り出し電圧が第1の導電性鉱物1直下の接触抵抗
及び皮脂層・角質層抵抗によって大きく低下し(装着直
後計測で約0.3ボルト)、イオントフォレシスが充分
有効に惹起せず、かつ制御のための動作マージンが小さ
くなったために設定値〔M〕。からのズレが大きくなっ
たことに起因すると考えられる。
In this embodiment, the blood concentration is approximately [M] after about 30 minutes. And excellent density controllability is shown, but it can be seen that the density control takes about 3 hours in the comparative example. This is because, in the case of the comparative example, the external take-out voltage of the chemical battery using the first conductive mineral 1 and the second conductive mineral 6 as electrodes, respectively, is such that the contact resistance and the sebum just below the first conductive mineral 1 The set value [M] because the resistance greatly decreased due to the resistance of the stratum corneum and the stratum corneum (approximately 0.3 volts measured immediately after mounting), iontophoresis did not sufficiently occur, and the operating margin for control was small. This is considered to be due to the increase in deviation from the distance.

【0036】以上、具体的な実施例によって本発明を詳
しく述べたが、本発明は上記実施例にとどまるものでは
ない。例えば、穿皮する絶縁体針4、5の素材は金属と
し、その表面を絶縁性膜で被覆した複合材料を用いるこ
とも可能である。穿皮長は原理的に角質層を回避する程
度で良いので0.5mm程度あればよい。ただし、皮内
深部まで到達すればその分薬剤の送達効率が向上するこ
とはいうまでもない。本発明の素子は、針径が鍼灸治療
針程度に細いので、注射などのように薬剤を圧入するに
は不向きであるが、イオントフォレシスによって患者に
苦痛を与えることなく必要濃度の薬剤を持続的に投与す
ることができる。化学電池電極として用いた第1及び第
2の導電性鉱物材料も実施例にとどまることなく、目的
に応じて多くの金属、半導体群から選択することができ
ることは自明である。
Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above embodiments. For example, the material of the insulator needles 4 and 5 to be perforated may be metal, and a composite material whose surface is covered with an insulating film may be used. The length of the perforation may be such that the stratum corneum is avoided in principle, and may be about 0.5 mm. However, it goes without saying that the delivery efficiency of the drug is improved by reaching the deep part of the skin. The element of the present invention has a needle diameter as small as an acupuncture treatment needle, so it is not suitable for injecting a drug such as injection, etc., but maintains a required concentration of the drug without causing pain to the patient by iontophoresis. Can be administered in a controlled manner. It is obvious that the first and second conductive mineral materials used as the electrodes for the chemical battery can be selected from many metals and semiconductor groups according to the purpose without being limited to the examples.

【0037】[0037]

【発明の効果】以上述べたように、本発明によれば、自
己偏倚型(イオントフォレシス素子において非常に低い
電圧の薬剤層印加によっても薬剤を効率よく皮内に送達
できるのみならず、起電領域の内部損失を大きく低減す
ることによって素子の動作マージンを大きく取ることが
可能となった。この結果、薬剤血中濃度の制御性を著し
く向上させることができる。また、皮膚に損傷を与える
ことなく薬剤の高濃度投与や急速浸透も可能になる。さ
らに、イオントフォレシス偏倚用の内部電源電池を構成
する電極材料(金属または半導体)の選択範囲を広げる
ことができる。内部電源電池の二つの電極のうち非薬剤
側電極は穿皮され体液と接触する穿皮部位のみが発電に
寄与して接皮部位はほとんど導電路としての働きしか示
さないので、発汗などによる極間短絡、発電停止事故を
防ぐことができる。
As described above, according to the present invention, the self-biasing type (in the iontophoresis device, not only can the drug be efficiently delivered into the skin by applying a very low voltage drug layer, By greatly reducing the internal loss in the power region, it is possible to increase the operation margin of the device, thereby significantly improving the controllability of the drug blood concentration and damaging the skin. In addition, it is possible to administer the drug at a high concentration and to rapidly penetrate the drug, and to widen the selection range of the electrode material (metal or semiconductor) constituting the internal power supply battery for iontophoresis bias. Of the two electrodes, the non-drug side electrode is perforated and only the perforated part that comes into contact with body fluids contributes to power generation, and the skin contacted part shows almost only a function as a conductive path, so sweating It is possible to prevent the inter-electrode short circuit due to etc., the power generation stop accident.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のイオントフォレシス素子の皮膚装着時
を示す図である。
FIG. 1 is a diagram showing the iontophoresis element of the present invention when worn on the skin.

【図2】実施態様における素子構成を示す図である。FIG. 2 is a diagram showing an element configuration in an embodiment.

【図3】実施例による薬剤血中浸透効果を比較例と対比
して示す図である。
FIG. 3 is a diagram showing a drug blood penetration effect according to an example in comparison with a comparative example.

【図4】別の実施態様における素子構成を示す図であ
る。
FIG. 4 is a diagram showing an element configuration according to another embodiment.

【図5】図4のイオントフォレシス素子による薬剤浸透
効果を比較例と対比して示す図である。
5 is a diagram showing a drug permeation effect by the iontophoresis device of FIG. 4 in comparison with a comparative example.

【図6】さらに別の実施態様における素子構成を示す図
である。
FIG. 6 is a diagram showing an element configuration according to still another embodiment.

【図7】図6のイオントフォレシス素子による薬剤血中
濃度の制御性を比較例と対比して示す図である。
FIG. 7 is a diagram showing controllability of a drug blood concentration by the iontophoresis element of FIG. 6 in comparison with a comparative example.

【符号の説明】[Explanation of symbols]

1 第1の導電性鉱物 2 絶縁対層 3 薬剤層 4 中空絶縁体針 5 閉端絶縁体針 6 第2の導電性鉱物 7 多孔質海綿体 8 絶縁体枠 9 絆創膏 10 ダイオード 11 容量 20、23、24 導線 21、22 一対の検出用電極 25 計測回路 26 CPU 27 制御回路 28 電池 A、B 金属または半導体 REFERENCE SIGNS LIST 1 First conductive mineral 2 Insulating pair layer 3 Drug layer 4 Hollow insulator needle 5 Closed-end insulator needle 6 Second conductive mineral 7 Porous sponge body 8 Insulator frame 9 Adhesive plaster 10 Diode 11 Capacity 20, 23 , 24 Conducting wires 21, 22 A pair of detecting electrodes 25 Measurement circuit 26 CPU 27 Control circuit 28 Battery A, B Metal or semiconductor

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 被浸透有効成分を含む薬剤層と、 該薬剤層の第1の表面側に積層され、薬剤層と反対側の
面が皮接面となる絶縁体層と、 該絶縁体層に設けられており、その中空部分が導電的に
前記薬剤層及び皮内と繋がり又は繋がることが可能であ
る開放端を有し、その形状が皮接面から皮内に突出する
針状である中空絶縁体針と、 その形状が皮接面から皮内に突出する針状を成す閉端絶
縁体針と、 前記絶縁体層の皮接面側の一部と前記閉端絶縁体針上に
導電的に連続して設けられており、閉端絶縁体針と共に
その一部が穿皮する構造を持つ金属又は半導体Aから成
る自由表面を有する第1の導電性鉱物と、 上記薬剤層の第2の表面に接して設けられ、且つ前記第
1の導電性鉱物と非皮接領域で電気的に接続され、前記
Aとは異なる電子親和力を有する金属又は半導体Bから
成る第2の導電性鉱物と、 より成る低電圧駆動型イオントフォレシス素子。
1. A drug layer containing an active ingredient to be permeated, an insulator layer laminated on a first surface side of the drug layer, and a surface opposite to the drug layer serving as a skin contact surface, and the insulator layer The hollow portion has an open end that can be electrically connected to or connected to the drug layer and the inside of the skin, and has a needle-like shape protruding into the skin from the skin contacting surface. A hollow insulator needle, a needle-like closed end insulator needle whose shape protrudes into the skin from the skin contact surface, a part of the insulator layer on the skin contact surface side, and the closed end insulator needle. A first conductive mineral having a free surface made of metal or semiconductor A having a structure in which a part thereof is perforated with a closed-end insulator needle, the conductive mineral being provided continuously in a conductive manner; 2 and is electrically connected to the first conductive mineral in a non-contact region, and is different from A A second conductive minerals made of a metal or semiconductor B has a force, more made low voltage drive type iontophoresis device.
【請求項2】 前記中空絶縁体針の中空部分はあらかじ
め導電性液が充填されており、及び又は前記薬剤層側を
前記開放端側に比して負圧とし得る構成とした請求項1
記載の低電圧駆動型イオントフォレシス素子。
2. The hollow portion of the hollow insulator needle is filled with a conductive liquid in advance, and / or the drug layer side can be set to a negative pressure as compared with the open end side.
The low voltage drive type iontophoresis device according to the above.
【請求項3】 前記被浸透有効成分が皮膚に対して陰イ
オン性又は電気的陰性である場合には、前記Aが前記B
より低い電子親和力を持つ金属又は半導体であり、 前記被浸透有効成分が皮膚に対して陽イオン性又は電気
的に陽性である場合には、前記Aが前記Bより高い電子
親和力を持つ金属又は半導体である請求項1又は2記載
の低電圧駆動型イオントフォレシス素子。
3. When the active ingredient to be permeated is anionic or electronegative with respect to the skin, the A is the B
A metal or a semiconductor having a lower electron affinity, wherein the A has a higher electron affinity than the B if the permeated active ingredient is cationic or electrically positive with respect to the skin The low voltage drive type iontophoresis device according to claim 1 or 2, wherein
【請求項4】 前記中空絶縁体針及び前記閉端絶縁体針
が、穿皮時に表皮領域の顆粒層より深い位置まで達する
程度の長さを有して成る請求項1乃至3のいずれかに記
載の低電圧駆動型イオントフォレシス素子。
4. The method according to claim 1, wherein said hollow insulator needle and said closed-end insulator needle have a length such that they reach a position deeper than a granular layer in an epidermis region during perforation. The low voltage drive type iontophoresis device according to the above.
【請求項5】 前記絶縁体層が、所定の厚みを有する透
水性柔軟絶縁体層と前記中空絶縁体針及び閉端絶縁体針
を具備した非透水性絶縁体層との積層体から成る請求項
1乃至4のいずれかに記載の低電圧駆動型イオントフォ
レシス素子。
5. The insulator layer comprises a laminate of a water-permeable flexible insulator layer having a predetermined thickness and a non-water-permeable insulator layer having the hollow insulator needle and the closed end insulator needle. Item 5. The low voltage drive type iontophoresis device according to any one of Items 1 to 4.
【請求項6】 前記第1の導電性鉱物が、電気的に互い
に分離された複数本のストライプ状膜として前記絶縁体
層上に配置されており、各ストライプ状膜は非皮接領域
で前記第2の導電性鉱物に導電接続されている請求項1
乃至5のいずれかに記載の低電圧駆動型イオントフォレ
シス素子。
6. The first conductive mineral is disposed on the insulator layer as a plurality of striped films electrically separated from each other, and each of the striped films is a non-skinned region. 2. A conductive connection to the second conductive mineral.
6. The low-voltage driven iontophoresis device according to any one of claims 1 to 5.
【請求項7】 前記第1及び第2の導電性鉱物間を非皮
接領域で接続する電気経路上に通電電流を断続化してパ
ルス化するための電気的手段を設けて成る請求項1乃至
6のいずれかに記載の低電圧駆動型イオントフォレシス
素子。
7. An electric circuit for intermittently pulsing an electric current on an electric path connecting the first and second conductive minerals in a non-contact region. 7. The low voltage drive type iontophoresis element according to any one of 6.
【請求項8】 前記絶縁体層の皮接面側表面に、前記被
浸透有効成分の皮内又は血中濃度を測定するセンサが設
けられており、該センサの出力を計測してこれを前記第
1及び第2の導電性鉱物間を非皮接領域で接続する電気
的経路に帰還し電気的に被浸透薬剤濃度を制御する装置
を該電気的経路上に組み込んで成る請求項1乃至7のい
ずれかに記載の低電圧駆動型イオントフォレシス素子。
8. A sensor for measuring the intradermal or blood concentration of the effective ingredient to be permeated is provided on the surface of the insulator layer on the skin contacting surface, and the output of the sensor is measured and 8. A device for controlling the concentration of a drug to be penetrated by returning to an electric path connecting the first and second conductive minerals in a non-skin contact area, and incorporating a device on the electric path. The low voltage drive type iontophoresis device according to any one of the above.
JP2001091581A 2001-03-28 2001-03-28 Low voltage drive type ionophoretic element Pending JP2002282371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001091581A JP2002282371A (en) 2001-03-28 2001-03-28 Low voltage drive type ionophoretic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001091581A JP2002282371A (en) 2001-03-28 2001-03-28 Low voltage drive type ionophoretic element

Publications (1)

Publication Number Publication Date
JP2002282371A true JP2002282371A (en) 2002-10-02

Family

ID=18946169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001091581A Pending JP2002282371A (en) 2001-03-28 2001-03-28 Low voltage drive type ionophoretic element

Country Status (1)

Country Link
JP (1) JP2002282371A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538512A (en) * 2005-02-11 2008-10-30 ボストン サイエンティフィック リミティッド In-vivo medical device for therapeutic drug delivery with power supply
JP2011204890A (en) * 2010-03-25 2011-10-13 Nec Corp Module, and method of manufacturing module
JP2012250044A (en) * 2004-06-24 2012-12-20 Sphergen Device transferring molecule to cell by use of electric force
JP2015173901A (en) * 2014-03-17 2015-10-05 国立大学法人東京工業大学 Microneedle and device including the same
JP2017113579A (en) * 2005-06-17 2017-06-29 日東電工株式会社 Permeant delivery system and methods for use thereof
WO2017204366A1 (en) * 2016-05-27 2017-11-30 国立大学法人東北大学 Probe, epidermal electric potential measuring device, epidermal electric potential measuring method, and cosmetic method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012250044A (en) * 2004-06-24 2012-12-20 Sphergen Device transferring molecule to cell by use of electric force
JP2008538512A (en) * 2005-02-11 2008-10-30 ボストン サイエンティフィック リミティッド In-vivo medical device for therapeutic drug delivery with power supply
US8538515B2 (en) 2005-02-11 2013-09-17 Boston Scientific Scimed, Inc. Internal medical devices for delivery of therapeutic agent in conjunction with a source of electrical power
JP2017113579A (en) * 2005-06-17 2017-06-29 日東電工株式会社 Permeant delivery system and methods for use thereof
JP2011204890A (en) * 2010-03-25 2011-10-13 Nec Corp Module, and method of manufacturing module
JP2015173901A (en) * 2014-03-17 2015-10-05 国立大学法人東京工業大学 Microneedle and device including the same
WO2017204366A1 (en) * 2016-05-27 2017-11-30 国立大学法人東北大学 Probe, epidermal electric potential measuring device, epidermal electric potential measuring method, and cosmetic method
EP3466332A4 (en) * 2016-05-27 2020-04-08 Tohoku University Probe, epidermal electric potential measuring device, epidermal electric potential measuring method, and cosmetic method

Similar Documents

Publication Publication Date Title
US6591133B1 (en) Apparatus and methods for fluid delivery using electroactive needles and implantable electrochemical delivery devices
EP2788075B1 (en) Device for reducing patient transthoracic impedance
US9101778B2 (en) Device and method for reducing patient transthoracic impedance for the purpose of delivering a therapeutic current
US7013179B2 (en) Percutaneous electrode array
US7113821B1 (en) Tissue electroperforation for enhanced drug delivery
AU2001259324B2 (en) Tissue ablation by shear force for sampling biological fluids and delivering active agents
US7315758B2 (en) Transdermal delivery of therapeutic agent
US20070185432A1 (en) Electrokinetic system and method for delivering methotrexate
JP4955634B2 (en) Drug administration device
US20070016268A1 (en) Percutaneous electrode array
US20060264805A1 (en) Permeabilization of biological membranes
AU2001259324A1 (en) Tissue ablation by shear force for sampling biological fluids and delivering active agents
EP1355697A1 (en) Apparatus and methods for fluid delivery using electroactive needles and implantable electrochemical delivery devices
JP2002282371A (en) Low voltage drive type ionophoretic element
EP2172152A1 (en) Electrode for medical applications.
US20080033492A1 (en) Electro-therapy method
JP4182555B2 (en) Iontophoresis element for transdermal administration
CN114733061A (en) Microneedle patch and permeation-promoting device
CN218529538U (en) Microneedle patch and permeation-promoting device
JP2016002368A (en) Percutaneous drug delivery system