JP2002280045A - Fuel cell built-in type hydrogen fermentation bioreactor - Google Patents

Fuel cell built-in type hydrogen fermentation bioreactor

Info

Publication number
JP2002280045A
JP2002280045A JP2001082208A JP2001082208A JP2002280045A JP 2002280045 A JP2002280045 A JP 2002280045A JP 2001082208 A JP2001082208 A JP 2001082208A JP 2001082208 A JP2001082208 A JP 2001082208A JP 2002280045 A JP2002280045 A JP 2002280045A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
bioreactor
gas
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001082208A
Other languages
Japanese (ja)
Other versions
JP3891544B2 (en
Inventor
Yoshiyuki Ueno
嘉之 上野
Masahiro Tatara
昌浩 多田羅
Masafumi Goto
雅史 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2001082208A priority Critical patent/JP3891544B2/en
Publication of JP2002280045A publication Critical patent/JP2002280045A/en
Application granted granted Critical
Publication of JP3891544B2 publication Critical patent/JP3891544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/08Bioreactors or fermenters combined with devices or plants for production of electricity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell built-in type hydrogen fermentation bioreactor of a method to keep hydrogen partial pressure of the bioreactor by using hydrogen consumption of a fuel cell. SOLUTION: A gaseous phase part 2 of a bioreactor 1 having the gaseous phase part 2 to which hydrogen gas generated by microorganisms gathers and a hydrogen intake port 11 of the fuel cell 10 to generate electric power by sucking hydrogen gas 26 and oxygen 27 are communicated to each other by a fuel channel 22. An air blower 20 is connected to an oxygen inlet pot 12 of the fuel cell 10, the oxygen 27 to be consumed in accordance with an electric power load is supplied to the fuel cell 10 by the air blower 20, and the hydrogen gas 26 is sucked into the fuel cell 10 from the gaseous phase part 2 of the bioreactor 1 by lowering of hydrogen partial pressure of the hydrogen intake port 11 in accordance with consumption of the hydrogen gas 26 in the fuel cell 10. Favourably, the fuel cell 10 is made a solid high polymer type fuel cell, and further favourably, a desulfurizer 23 is provided in the fuel channel 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃料電池組込み型水
素発酵バイオリアクターに関し、とくに発電を行うと共
に微生物の水素生成効率を向上させることができる燃料
電池組込み型水素発酵バイオリアクターに関する。
The present invention relates to a hydrogen fermentation bioreactor with a built-in fuel cell, and more particularly to a hydrogen fermentation bioreactor with a built-in fuel cell that can generate power and improve the efficiency of hydrogen production by microorganisms.

【0002】[0002]

【従来の技術】水素は、燃焼した場合にも炭酸ガスを放
出しないクリーンなエネルギー源であるばかりでなく、
単位重量あたりの発熱エネルギーが石油の三倍もあり、
燃料電池に供給することにより電気エネルギーとするこ
ともできる。燃料電池は、ガスタービンやガスエンジン
に比し発電効率が高いので、その分二酸化炭素の発生が
少ない。また燃料電池は、NOx、SOx、煤塵の発生が殆ど
なく騒音、振動も少ない発電システムであり、環境対策
のうえから普及が期待されている。
2. Description of the Related Art Hydrogen is not only a clean energy source that does not emit carbon dioxide gas when burned,
Heat generation energy per unit weight is three times that of oil,
Electric energy can be obtained by supplying the fuel cell to the fuel cell. Fuel cells have higher power generation efficiency than gas turbines and gas engines, and therefore generate less carbon dioxide. A fuel cell is a power generation system that generates almost no NOx, SOx, and dust and has little noise and vibration, and is expected to spread from environmental measures.

【0003】図3を参照して、燃料電池の原理を本発明
の理解に必要な程度において説明する。燃料電池10は、
基本的には水素極(又は燃料極)15と酸素極(又は空気
極)16とにより電解質17を挟持した構造であり、水素と
酸素とを電気化学的に反応させて直流電力を発生する。
交流電流を取り出す場合は、直流電力を交流電力に変換
する電力変換装置を設ける。同図は、電解質17としてリ
ン酸水溶液を用いたリン酸型燃料電池における電気化学
反応の原理を示す。水素極15は通気性を有し、水素極15
の電解質17と反対側面にある水素吸入口11から供給され
た水素は水素極15内を拡散して電解質17側に到達する。
水素極15の電解質側面には白金粉末が分散されており、
白金の触媒作用により水素ガスは下記(1)式に示すよう
に水素イオン(H+)と電子(e-)とになる。電解質17
は、イオンを通すが電子を殆ど通さない性質を有するも
のである。このため、水素イオンは電解質17を通過して
酸素極16へ向かうのに対し、電解質を通過できない電子
は外部回路18を介して酸素極16へ向かう。供給した水素
のうち水素極15で未反応のものは、未反応水素排出口13
から放出される。
Referring to FIG. 3, the principle of the fuel cell will be described to the extent necessary for understanding the present invention. The fuel cell 10
Basically, it has a structure in which an electrolyte 17 is sandwiched between a hydrogen electrode (or fuel electrode) 15 and an oxygen electrode (or air electrode) 16, and generates DC power by electrochemically reacting hydrogen and oxygen.
When taking out an alternating current, a power converter for converting direct current power into alternating current power is provided. This figure shows the principle of an electrochemical reaction in a phosphoric acid fuel cell using a phosphoric acid aqueous solution as the electrolyte 17. The hydrogen electrode 15 has air permeability, and the hydrogen electrode 15
The hydrogen supplied from the hydrogen suction port 11 on the opposite side of the electrolyte 17 diffuses through the hydrogen electrode 15 and reaches the electrolyte 17 side.
Platinum powder is dispersed on the electrolyte side of the hydrogen electrode 15,
By the catalytic action of platinum, hydrogen gas is converted into hydrogen ions (H + ) and electrons (e ) as shown in the following equation (1). Electrolyte 17
Has the property of allowing ions to pass but not electrons. For this reason, the hydrogen ions pass through the electrolyte 17 and travel to the oxygen electrode 16, whereas the electrons that cannot pass through the electrolyte travel to the oxygen electrode 16 via the external circuit 18. Of the supplied hydrogen, those that have not reacted at the hydrogen electrode 15
Released from

【0004】酸素極16も通気性を有し、電解質側面に白
金の触媒層が設けられている。酸素極16の電解質17と反
対側面にある酸素吸入口12から供給された酸素(又は空
気)は、酸素極16内を拡散して白金触媒層に達し、白金
の触媒作用により、電解質通過後の水素イオン及び外部
回路通過後の電子と結合して水(H2O)となる((2)
式)。供給した酸素のうち酸素極16で未反応のものは、
未反応酸素排出口14から放出される。燃料電池の全体の
反応は(3)式のように表すことができる。実際の燃料電
池では、大きな電圧を得るため、図3に示す構造の最小
単位のセル(単セル)をセパレータにより直列に積層し
たスタック(stack)として用いる。リン酸型燃料電池
のほか、溶融炭素塩型燃料電池、固体酸化物型燃料電
池、固体高分子型燃料電池等が開発されているが、これ
らの燃料電池の構造も原理的には図3と同様のものであ
る。
[0004] The oxygen electrode 16 also has air permeability, and a platinum catalyst layer is provided on the side surface of the electrolyte. Oxygen (or air) supplied from the oxygen inlet 12 on the side opposite to the electrolyte 17 of the oxygen electrode 16 diffuses inside the oxygen electrode 16 to reach the platinum catalyst layer, and the catalytic action of platinum causes the platinum to pass through the electrolyte. Combines with hydrogen ions and electrons after passing through the external circuit to form water (H 2 O) ((2)
formula). Of the supplied oxygen, those that have not reacted at the oxygen electrode 16
Released from the unreacted oxygen outlet 14. The overall reaction of the fuel cell can be expressed as in equation (3). In an actual fuel cell, in order to obtain a large voltage, the minimum unit cell (single cell) having the structure shown in FIG. 3 is used as a stack in which separators are stacked in series. In addition to phosphoric acid type fuel cells, molten carbon salt type fuel cells, solid oxide type fuel cells, polymer electrolyte type fuel cells, etc. have been developed. It is similar.

【0005】[0005]

【化1】 水素極での反応 H2→2H++2e- ……………………………(1) 酸素(空気)極での反応 2H++(1/2)O2+2e-→H2O ……………(2) 全体の反応 H2+(1/2)O2→H2O ……………………(3)## STR1 ## Reaction H 2 → 2H + + 2e in the hydrogen electrode - ................................. (1) the reaction 2H + + (1/2) in an oxygen (air) electrode O 2 + 2e - → H 2 O ………… (2) Overall reaction H 2 + (1/2) O 2 → H 2 O ……………… (3)

【0006】燃料電池に用いる水素は、ナフサの熱分解
や水の電気分解等により製造することができる。しか
し、この水素製造方法は製造過程において化石燃料を消
費するため環境汚染を招く問題がある。また、化石燃料
の使用は削減することが強く望まれている。
[0006] Hydrogen used in fuel cells can be produced by thermal decomposition of naphtha, electrolysis of water, or the like. However, this hydrogen production method consumes fossil fuel in the production process, and thus has a problem of causing environmental pollution. There is also a strong desire to reduce the use of fossil fuels.

【0007】化石燃料に依存しない水素生産方法とし
て、微生物を利用した水素生産が注目されている。その
一例は、メタン発酵によってメタンガスを生成し、生成
したメタンガスを改質器に通して水素に改質するもので
ある。メタン発酵は、複数の異なる微生物群(以下、メ
タン発酵微生物群ということがある。)による共同作業
で有機性基質をメタンガスに変換するものであり、各種
の有機性廃水や生ごみ等を材料とすることができる。但
し、メタン発酵で生成したメタンガスを水素に改質する
改質反応は吸熱反応であり、改質器内の加熱に外部から
のエネルギー供給を必要とするため、省エネルギーの観
点から問題点を残している。
[0007] As a method for producing hydrogen that does not depend on fossil fuels, hydrogen production using microorganisms has attracted attention. In one example, methane gas is generated by methane fermentation, and the generated methane gas is passed through a reformer and reformed into hydrogen. Methane fermentation is the conversion of organic substrates into methane gas by the joint work of a plurality of different microorganism groups (hereinafter sometimes referred to as methane fermentation microorganism groups). Various types of organic wastewater and garbage are used as materials. can do. However, since the reforming reaction for reforming methane gas generated by methane fermentation into hydrogen is an endothermic reaction and requires external energy supply for heating the reformer, there remains a problem from the viewpoint of energy saving. I have.

【0008】これに対し、光合成微生物や嫌気性微生物
等の水素生成微生物によって、改質の必要がない水素ガ
スを直接生成する方法が開発されている。光合成微生物
は、光エネルギーを原料に光合成を行い、そこで得られ
る還元力を用いて水の分解を行い水素を発生するもので
ある。また嫌気性微生物は、主に発酵で生じる還元力に
より水素ガスを発生するものであり、純粋菌を使用する
場合とミクロフローラ(以下、混合微生物群ということ
がある。)を使用する場合とがある。水素生成微生物に
よる水素生成と燃料電池との組み合わせによる発電は、
化石燃料に依存せず、しかも二酸化炭素を発生させな
い、環境対策の面からは究極の発電方法といえる。
On the other hand, a method has been developed in which hydrogen gas that does not require reforming is directly generated by a hydrogen-producing microorganism such as a photosynthetic microorganism or an anaerobic microorganism. Photosynthetic microorganisms perform photosynthesis using light energy as a raw material, and use the reducing power obtained there to decompose water to generate hydrogen. Anaerobic microorganisms mainly generate hydrogen gas by the reducing power generated by fermentation, and there are cases where pure bacteria are used and cases where microflora (hereinafter sometimes referred to as a mixed microorganism group) is used. is there. Power generation by the combination of hydrogen generation by hydrogen-producing microorganisms and fuel cells
This is the ultimate power generation method in terms of environmental measures that does not rely on fossil fuels and does not generate carbon dioxide.

【0009】[0009]

【発明が解決しようとする課題】しかし、従来の微生物
による水素生成は、必ずしも安定的・効率的に水素を生
産することが難しい問題点がある。水素生成効率を下げ
る原因の一つは、微生物による水素生成効率が、微生物
の種類に関わらず、菌体外部における水素分圧により影
響を受けることにある。すなわち、微生物による水素生
成では反応が進行するに従って気相及び液相の水素分圧
が徐々に上昇するが、菌体外部の水素分圧が高くなると
水素生成微生物の水素発生能力は著しく低下してしま
う。微生物による水素生成は、菌体内に生成した還元力
が酵素ヒドロゲナーゼによってプロトンを還元した結
果、水素ガスとして放出されることにより起こる。水素
分圧が高い状態では、この還元力が水素以外の他の還元
的物質の生産に利用されてしまうため水素生成効率が低
下する。具体的には、純粋菌の場合は菌の代謝自体が水
素生成からエタノールや乳酸などの他の還元的物質の生
成に反応が移行してしまう。また混合微生物群の場合
は、エタノールや乳酸などの生産菌の優先化を引き起こ
し、これらの生成菌による水素消費により外部に取り出
せる水素の生成効率が低下する。
However, conventional hydrogen production by microorganisms has a problem that it is difficult to produce hydrogen stably and efficiently. One of the causes for lowering the hydrogen generation efficiency is that the hydrogen generation efficiency of the microorganism is affected by the hydrogen partial pressure outside the cells regardless of the type of the microorganism. In other words, in the hydrogen generation by microorganisms, the hydrogen partial pressure in the gas phase and the liquid phase gradually increases as the reaction proceeds, but when the hydrogen partial pressure outside the cells increases, the hydrogen generating ability of the hydrogen-producing microorganism decreases significantly. I will. Hydrogen generation by microorganisms occurs when the reducing power generated in the cells reduces protons by the enzyme hydrogenase and is released as hydrogen gas. When the hydrogen partial pressure is high, this reducing power is used for the production of other reducing substances other than hydrogen, so that the hydrogen generation efficiency is reduced. Specifically, in the case of a pure bacterium, the reaction of the metabolism of the bacterium shifts from hydrogen production to production of other reducing substances such as ethanol and lactic acid. In the case of a mixed microorganism group, production bacteria such as ethanol and lactic acid are prioritized, and the production efficiency of hydrogen that can be taken out is reduced due to consumption of hydrogen by these production bacteria.

【0010】逆に、水素分圧が低い場合は、何れの微生
物の場合も反応が水素の放出に傾くため、水素生成効率
は増加する。この微生物の代謝に関する説明は、図4に
示す一般的な代謝マップを用いることで説明することも
できる。乳酸やエタノールの生成は還元力の消費であ
り、これらの生成は結果的に水素生成の妨げとなる。図
4の代謝マップから、水素分圧が水素生成反応の進行に
影響する重要な因子であることが示される。
Conversely, when the hydrogen partial pressure is low, the reaction tends to release hydrogen in any of the microorganisms, so that the efficiency of hydrogen generation increases. The explanation of the metabolism of the microorganism can be explained using a general metabolic map shown in FIG. The production of lactic acid and ethanol is the consumption of reducing power, and these productions eventually hinder the production of hydrogen. The metabolic map of FIG. 4 shows that hydrogen partial pressure is an important factor affecting the progress of the hydrogen production reaction.

【0011】従来、水素発酵バイオリアクターの気相及
び液相の水素分圧を下げて水素生成の効率を高めるた
め、バイオリアクターの気相からの水素の除去、アルゴ
ンガス等の不活性ガスのリアクター液相中への連続的バ
ブリング等の方法等が行われている。しかし従来の方法
は何れも、水素分圧を下げるためにエネルギーや不活性
ガス等の物質を供給する必要があり、コストが嵩む問題
点がある。また、外部からのエネルギー供給は、微生物
による水素生成と燃料電池との組み合わせによるシステ
ム全体の発電効率の点からも問題がある。
Conventionally, in order to reduce the hydrogen partial pressure in the gas phase and the liquid phase of a hydrogen fermentation bioreactor and to increase the efficiency of hydrogen production, hydrogen has been removed from the gas phase of the bioreactor, and an inert gas reactor such as argon gas has been used. Methods such as continuous bubbling into a liquid phase and the like are performed. However, all of the conventional methods need to supply a substance such as energy or an inert gas in order to lower the hydrogen partial pressure, and thus have a problem that the cost increases. Further, external energy supply has a problem in terms of power generation efficiency of the entire system due to a combination of hydrogen generation by a microorganism and a fuel cell.

【0012】そこで本発明の目的は、燃料電池の水素消
費を利用してバイオリアクターの水素分圧を低く保つ方
式の燃料電池組込み型水素発酵バイオリアクターを提供
することにある。
An object of the present invention is to provide a fuel cell-integrated hydrogen fermentation bioreactor in which the hydrogen partial pressure of the bioreactor is kept low by utilizing the hydrogen consumption of the fuel cell.

【0013】[0013]

【課題を解決するための手段】図1の実施例を参照する
に、本発明の燃料電池組込み型水素発酵バイオリアクタ
ーは、微生物により生成された水素ガスが集まる気相部
2を有するバイオリアクター1、水素ガス26と酸素27と
を吸入して発電する燃料電池10、バイオリアクター1の
気相部2と燃料電池10の水素吸入口11とを連通する燃料
流路22、及び燃料電池10の酸素吸入口12に接続した送気
器20を備え、電力負荷に応じて消費される酸素27を送気
器20により燃料電池10へ供給し、燃料電池10における水
素ガス26の消費に応じた水素吸入口11の水素分圧の低下
によりバイオリアクター1の気相部2から燃料電池10へ
水素ガス26を吸入してなるものである。
Referring to the embodiment shown in FIG. 1, a hydrogen fermentation bioreactor incorporating a fuel cell according to the present invention has a bioreactor 1 having a gas phase portion 2 in which hydrogen gas generated by microorganisms is collected. , A fuel cell 10 that generates electricity by inhaling hydrogen gas 26 and oxygen 27, a fuel flow path 22 that communicates between the gas phase part 2 of the bioreactor 1 and the hydrogen inlet 11 of the fuel cell 10, An air blower 20 connected to the suction port 12 is provided, and oxygen 27 consumed according to an electric power load is supplied to the fuel cell 10 by the air blower 20, and hydrogen is sucked according to consumption of hydrogen gas 26 in the fuel cell 10. The hydrogen gas 26 is sucked into the fuel cell 10 from the gas phase 2 of the bioreactor 1 due to a decrease in the hydrogen partial pressure at the port 11.

【0014】好ましくは、燃料電池10を固体高分子型燃
料電池とする。更に好ましくは、燃料流路22に脱硫器23
を設ける。
Preferably, the fuel cell 10 is a polymer electrolyte fuel cell. More preferably, a desulfurizer 23 is
Is provided.

【0015】[0015]

【発明の実施の形態】図1に示すバイオリアクター1
は、メタン発酵微生物群が流動可能に保持され、有機性
基質を前記微生物群中の水素生成微生物の増殖時間より
長く且つ前記微生物群中の水素消費微生物の増殖時間よ
り短い水理学的滞留時間に亘り滞留させつつ通過させ、
前記有機性基質の通過に抗してバイオリアクター中で増
殖する微生物群により水素ガスを生成させるものであ
る。メタン発酵では、先ずメタン発酵微生物群中の水素
生成微生物により有機性基質が酸化されて有機酸、水
素、二酸化炭素等にまで分解されることが知られてい
る。しかし、生成された水素はメタン生成菌等の他の水
素消費微生物によって直ちに消費される中間代謝産物で
あり、通常のメタン発酵では水素ガスが系外へ放出され
ることはない。本発明者は、メタン発酵微生物群を流動
可能に保持したバイオリアクターにおける有機性基質の
水理学的滞留時間(以下、HRTということがある。)
を短くすることにより、水素ガスを取り出せることを実
験的に見出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A bioreactor 1 shown in FIG.
Means that the methane fermenting microorganisms are kept fluent and the organic substrate is brought to a hydraulic residence time longer than the growth time of the hydrogen-producing microorganisms in the microorganisms and shorter than the growth time of the hydrogen-consuming microorganisms in the microorganisms. Let pass through while staying over,
Hydrogen gas is generated by a group of microorganisms growing in a bioreactor against the passage of the organic substrate. In methane fermentation, it is known that an organic substrate is first oxidized by hydrogen-producing microorganisms in the methane fermentation microorganism group to be decomposed into organic acids, hydrogen, carbon dioxide, and the like. However, the generated hydrogen is an intermediate metabolite immediately consumed by other hydrogen-consuming microorganisms such as methanogens, and hydrogen gas is not released out of the system in normal methane fermentation. The inventor of the present invention has a hydraulic retention time (hereinafter, sometimes referred to as HRT) of an organic substrate in a bioreactor holding a methane fermenting microorganism group in a flowable manner.
It has been found experimentally that hydrogen gas can be taken out by shortening.

【0016】図2は、完全攪拌混合型のバイオリアクタ
ー1にメタン発酵微生物群を流動可能に保持させ、有機
性基質のHRTを徐々に短くしていきながらメタンガス
(CH 4)、有機酸及び水素ガス(H2)の生成量を計測し
た実験結果を示す。同図に示すように、HRTを短くし
ていくとメタン生成菌がリアクター外へ流出し、酸生成
量と共に水素の生成量が増加する。但し、メタン発酵微
生物群中にはメタン生成菌以外にもホモ酢酸菌等の水素
消費微生物が存在するので、生成した水素はそれらの水
素消費微生物によって消費されてしまい、回収できる水
素ガスの量はまだ少ない。更に有機性基質のHRTを短
くし、メタン発酵微生物群中の水素生成微生物の増殖時
間より長いが該微生物群中の水素消費微生物の増殖時間
より短くすることにより、メタン発酵微生物群中の水素
消費微生物をその増殖前にバイオリアクター1の外へ流
出させ、バイオリアクター1内に水素生成微生物のみが
増殖可能な環境を作り出すことができる。すなわち、H
RTの短縮により液相部3における水素消費を最小限に
抑え、気相部2において水素ガスを効率的に回収できる
水素発酵バイオリアクター1とすることができる。水素
生産に適するHRTは有機性基質の組成等により変り得
るが、好ましくはHRTを0.01〜3.0日程度にまで短縮
する。
FIG. 2 shows a completely stirred and mixed type bioreactor.
-1 to keep the methane fermentation microorganisms in a flowable state
Methane gas while gradually shortening the HRT of the reactive substrate
(CH Four), Organic acids and hydrogen gas (HTwo) To measure the amount of
Experimental results are shown. As shown in the figure, shorten the HRT
As it progresses, methanogens flow out of the reactor and produce acid
The amount of hydrogen produced increases with the amount. However, methane fermentation fine
Among the organisms, hydrogen such as homoacetic bacteria other than methanogens
Due to the presence of consuming microorganisms, the hydrogen produced
Water that is consumed by element-consuming microorganisms and can be recovered
The amount of raw gas is still small. Shorter HRT for organic substrates
During growth of hydrogen-producing microorganisms in the methane-fermenting microorganisms
The growth time of the hydrogen-consuming microorganisms in the microbial community longer than
By making it shorter, hydrogen in the methane-fermenting microbial community
Consuming microorganisms flow out of bioreactor 1 before their growth
And only hydrogen-producing microorganisms are contained in bioreactor 1.
It can create a proliferable environment. That is, H
Minimize hydrogen consumption in liquid phase 3 by shortening RT
Hydrogen gas can be efficiently recovered in the gas phase part 2
The hydrogen fermentation bioreactor 1 can be used. hydrogen
HRT suitable for production may vary depending on the composition of the organic substrate, etc.
But preferably shorten the HRT to about 0.01 to 3.0 days
I do.

【0017】本発明は、バイオリアクター1の気相部2
と燃料電池10の水素吸入口11とを燃料流路22により連通
する。従って、バイオリアクター1内の水素発酵が進
み、気相部2の水素分圧が燃料電池10の水素吸入口11の
水素分圧に比し相対的に高くなると、燃料流路22を介し
て気相部2から水素吸入口11へ水素ガス26が流入する。
燃料電池10をリン酸型燃料電池とした場合は、前記(1)
式に示すように、水素吸入口11から進入した水素ガス26
が水素極15内を拡散して電解質17側に到達し、水素イオ
ンと電子とになる。更に水素イオンは電解質17を通過し
て酸素極16に至り、前記式(2)に示すように、酸素極16
から電解質17に到達した酸素と結合して水になる。この
水生成反応により、気相部2から流入した水素ガス26が
消費される。
According to the present invention, the gas phase 2 of the bioreactor 1
And the hydrogen inlet 11 of the fuel cell 10 are communicated by the fuel flow path 22. Therefore, when the hydrogen fermentation in the bioreactor 1 proceeds and the hydrogen partial pressure of the gas phase part 2 becomes relatively higher than the hydrogen partial pressure of the hydrogen inlet 11 of the fuel cell 10, the gas flows through the fuel passage 22. The hydrogen gas 26 flows into the hydrogen inlet 11 from the phase 2.
When the fuel cell 10 is a phosphoric acid fuel cell, the above (1)
As shown in the equation, hydrogen gas 26 entering from the hydrogen inlet 11
Diffuses through the hydrogen electrode 15 to reach the electrolyte 17 side, where they become hydrogen ions and electrons. Further, the hydrogen ions pass through the electrolyte 17 and reach the oxygen electrode 16, and as shown in the above formula (2), the oxygen electrode 16
From water to the electrolyte 17 to form water. By this water generation reaction, the hydrogen gas 26 flowing from the gas phase part 2 is consumed.

【0018】従って、電力負荷に応じて送気器20から燃
料電池10の酸素吸入口12へ酸素(又は空気)を送り込む
ことにより、前記式(3)に示す水生成反応を連続的に起
こし、燃料電池10の水素吸入口11の水素分圧をバイオリ
アクター1の気相部2に比し低い状態に保ち、気相部2
から燃料電池10へ水素ガス26を連続的に吸入することが
できる。また、外部回路18から電力を継続的に取り出す
ことができる。よって、バイオリアクター1の気相部2
における水素分圧の上昇を抑え、気相部2の水素分圧を
低く保つことができる。気相部2のガス分圧の低下は、
液相部3のガス分圧の低下を引き起こし、液相部3に存
在する水素生成微生物の水素生成を促進し、バイオリア
クター1における高い水素生成効率を維持することがで
きる。
Therefore, by sending oxygen (or air) from the air blower 20 to the oxygen inlet 12 of the fuel cell 10 according to the electric power load, the water generation reaction shown in the above formula (3) is continuously caused, The hydrogen partial pressure of the hydrogen inlet 11 of the fuel cell 10 is kept lower than that of the gas phase 2 of the bioreactor 1,
, The hydrogen gas 26 can be continuously sucked into the fuel cell 10. Further, power can be continuously extracted from the external circuit 18. Therefore, the gas phase part 2 of the bioreactor 1
, The rise of the hydrogen partial pressure in the gas phase part 2 can be suppressed, and the hydrogen partial pressure of the gas phase part 2 can be kept low. The decrease in the gas partial pressure of the gas phase part 2 is as follows.
This causes a decrease in the gas partial pressure of the liquid phase part 3, promotes the hydrogen generation of the hydrogen-producing microorganisms present in the liquid phase part 3, and can maintain a high hydrogen generation efficiency in the bioreactor 1.

【0019】[実験例1]バイオリアクター1の気相部
2と燃料電池10の水素吸入口11とを燃料流路22で連通し
た場合におけるバイオリアクター1の水素生成効率を確
認するため、図1に示す嫌気性バイオリアクター(連続
反応装置)を用いて実験を行った。本実験では、メタン
発酵微生物群として他のメタン発酵槽から採取したメタ
ン発酵汚泥を用い、蒸留水1リットル中にKH2P04 1.5
g、Na2HP04・H20 4.2g、NH4Cl 0.5g、MgCl2・6H20
0.18g、酵母エキス 5g、及びセルロースパウダー 10
gが含まれる人工廃水を、有機性基質取入口4から連続
的に流入させた。図中の符号5は処理液排出口を示す。
バイオリアクター1の液相部3におけるセルロース含有
量、C2〜C8の低級脂肪酸、TOC(全有機炭素)をそ
れぞれ経時的に測定し、生成したガスはpH3以下の水を
用いた水上置換法で定量して組成をガスクロマトグラフ
TCD法で分析した。
[Experimental Example 1] In order to confirm the hydrogen generation efficiency of the bioreactor 1 when the gas phase part 2 of the bioreactor 1 and the hydrogen inlet 11 of the fuel cell 10 are communicated with each other through the fuel flow path 22, FIG. An experiment was performed using an anaerobic bioreactor (continuous reactor) shown in FIG. In this experiment, methane fermentation sludge collected from another methane fermentation tank was used as the methane fermentation microorganism group, and KH 2 P0 4 1.5
g, Na 2 HP0 4 · H 2 0 4.2g, NH 4 Cl 0.5g, MgCl 2 · 6H 2 0
0.18 g, yeast extract 5 g, and cellulose powder 10
g of artificial wastewater was continuously flowed in from the organic substrate intake 4. Reference numeral 5 in the drawing indicates a processing liquid outlet.
Cellulose content, lower fatty acids of C2 to C8, and TOC (total organic carbon) in the liquid phase part 3 of the bioreactor 1 were each measured over time, and the generated gas was quantified by a water displacement method using water of pH 3 or less. The composition was analyzed by gas chromatography TCD.

【0020】バイオリアクター1をpH7.4、温度60℃に
保ち、先ずHRTを5日としてメタン発酵を行ってメタ
ンガスの安定的な生成を確認したのち、HRTを徐々に
短くしていったところ、HRTを0.5日とすることによ
り水素の生成が顕著に認められ、リアクター容積1リッ
トルあたり30ミリモル/日(30mmol/l-reactor/day)の
水素ガスを連続して生産することができた。発生したガ
スの組成は水素80%、二酸化炭素20%であった。この状
態におけるセルロースから水素への変換効率(水素生成
効率)はヘキソース1モルあたり約1モル(1mol/mol-
hexose)であった。
The bioreactor 1 was maintained at pH 7.4 and a temperature of 60 ° C. First, methane fermentation was performed with the HRT set to 5 days to confirm the stable generation of methane gas, and then the HRT was gradually shortened. By setting the HRT at 0.5 day, hydrogen generation was remarkably recognized, and hydrogen gas of 30 mmol / l-reactor / day per liter of the reactor volume could be continuously produced. The composition of the generated gas was 80% hydrogen and 20% carbon dioxide. In this state, the conversion efficiency from cellulose to hydrogen (hydrogen production efficiency) is about 1 mol (1 mol / mol-
hexose).

【0021】水素の連続的生産を確認した後、バイオリ
アクター1の気相部2に設けた水素取出口21と固体高分
子型燃料電池ユニット10の水素吸入口11とを燃料流路22
で接続し、燃料電池10の酸素吸入口12に接続した例えば
ポンプである送気器20により空気を吹き付けたところ、
燃料電池10で発電が起こった。燃料電池10の発電時にお
ける水素生成効率は、ヘキソース1モルあたり約2モル
(2mol/mol-hexose)となり、燃料電池10を接続する前
のヘキソース1モルあたり約1モルに比し水素生成効率
の向上を確認できた。また、水素の生成に伴い、バイオ
リアクター1の液相部3中に副成していたエタノールの
量の減少を確認できた。このエタノール量の減少は、図
4の代謝マップに示すように、バイオリアクター1中の
液相部3中の水素分圧低下によるものと考えられる。な
お、送気器20の駆動電力は燃料電池10の発電で賄うこと
ができる。
After confirming the continuous production of hydrogen, the fuel outlet 22 provided in the gas phase part 2 of the bioreactor 1 and the hydrogen inlet 11 of the polymer electrolyte fuel cell unit 10 are connected to the fuel passage 22.
When the air was blown by an air blower 20 which is, for example, a pump connected to the oxygen inlet 12 of the fuel cell 10,
Power generation occurred in the fuel cell 10. The hydrogen generation efficiency of the fuel cell 10 at the time of power generation is about 2 mol per mol of hexose (2 mol / mol-hexose), which is lower than that of about 1 mol per mol of hexose before connecting the fuel cell 10. The improvement was confirmed. In addition, a decrease in the amount of ethanol by-produced in the liquid phase portion 3 of the bioreactor 1 was confirmed with the generation of hydrogen. This decrease in the amount of ethanol is considered to be due to a decrease in the partial pressure of hydrogen in the liquid phase part 3 in the bioreactor 1, as shown in the metabolic map of FIG. The driving power of the air blower 20 can be covered by the power generation of the fuel cell 10.

【0022】予備的に、バイオリアクター1の気相部2
に連通するガスホルダー31を設けたところ、ガスホルダ
ー31に数%の水素ガスを含む二酸化炭素が蓄積すること
を確認できた。ガスホルダー31に接続して水酸化ナトリ
ウム溶液を蓄えたシール瓶32を設け、気相部2のガスを
水酸化ナトリウム溶液経由で収集したところ、二酸化炭
素をトラップすることができ、ガスホルダー31に蓄積さ
れていたガスは燃料電池で反応しきれなかったと思われ
る微量の水素ガスのみとなった。このことから、気相部
2の水素ガス26のほとんどが燃料電池10の発電に利用さ
れていることが確認できた。
Preliminarily, the gas phase part 2 of the bioreactor 1
When a gas holder 31 communicating with was provided, it was confirmed that carbon dioxide containing several percent of hydrogen gas was accumulated in the gas holder 31. A seal bottle 32 storing a sodium hydroxide solution is provided connected to the gas holder 31. When the gas in the gas phase 2 is collected via the sodium hydroxide solution, carbon dioxide can be trapped. The stored gas was only a trace amount of hydrogen gas, which was considered to have failed to react in the fuel cell. From this, it was confirmed that most of the hydrogen gas 26 in the gas phase part 2 was used for power generation of the fuel cell 10.

【0023】こうして本発明の目的である「燃料電池の
水素消費を利用してバイオリアクターの水素分圧を低く
保つ方式の燃料電池組込み型水素発酵バイオリアクタ
ー」の提供を達成できる。
Thus, it is possible to achieve the object of the present invention to provide a fuel cell-incorporated hydrogen fermentation bioreactor in which the hydrogen partial pressure of the bioreactor is kept low by utilizing the hydrogen consumption of the fuel cell.

【0024】なお、図示例の燃料流路22には、気相部2
中に含まれる硫黄分を除去する脱硫器23を設けている。
改質器を用いる場合は、硫黄分が改質器の触媒を劣化さ
せるため、改質器へ送入する前にガス中の硫黄分を取り
除く必要がある。また、硫化水素(H2S)等は燃料電池
の膜を不活化し効率を低下させるおそれがある。但し、
本発明は改質器を必要としないので、気相部2中に含ま
れる硫黄分が高濃度でない限り、脱硫器23は必須のもの
ではない。
It should be noted that the fuel flow path 22 in the illustrated example is
A desulfurizer 23 for removing sulfur contained therein is provided.
When a reformer is used, the sulfur content degrades the catalyst of the reformer, so it is necessary to remove the sulfur content in the gas before sending the gas to the reformer. In addition, hydrogen sulfide (H 2 S) or the like may inactivate the membrane of the fuel cell and lower the efficiency. However,
Since the present invention does not require a reformer, the desulfurizer 23 is not essential unless the sulfur content in the gas phase 2 is high.

【0025】また図示例では、バイオリアクター1に液
相部3の攪拌装置6を設けている。攪拌装置6で液相部
3を攪拌することにより、液相部3の溶存水素ガスを気
相部2へ効果的に移行させ、液相部3における水素生成
の一層の効率化を図ることができる。攪拌装置6の駆動
電力を燃料電池10の出力電力で賄うことも可能である。
In the illustrated example, the bioreactor 1 is provided with a stirring device 6 for the liquid phase 3. By stirring the liquid phase portion 3 with the stirrer 6, the dissolved hydrogen gas in the liquid phase portion 3 is effectively transferred to the gas phase portion 2, and the efficiency of hydrogen generation in the liquid phase portion 3 is further improved. it can. The driving power of the stirring device 6 can be covered by the output power of the fuel cell 10.

【0026】[0026]

【実施例】図1のバイオリアクター1で用いる有機性基
質としては、微生物の培養に常用される炭素源、ミネラ
ル、ビタミンその他からなる人工基質のほか、農産物加
工工場、ジュース工場、食品工場等の各種製造工場から
排出される有機性廃水、下水、屎尿等有機性の各種廃
水、スラリー化した生ごみ等を使用できる。これらの基
質は、必要に応じて希釈、混合、粉砕したり、必要な成
分を添加して、水素の生成や廃水の処理がスムーズに行
われるよう適宜調製することができる。
Examples of organic substrates used in the bioreactor 1 shown in FIG. 1 include artificial substrates composed of carbon sources, minerals, vitamins, and the like commonly used for culturing microorganisms, and agricultural processing plants, juice factories, food factories, and the like. Organic wastewater such as organic wastewater, sewage, and human waste discharged from various manufacturing plants, slurried garbage, and the like can be used. These substrates can be appropriately prepared by diluting, mixing, pulverizing, or adding necessary components as necessary so that hydrogen generation and wastewater treatment can be smoothly performed.

【0027】また前記実験例1では、混合微生物群であ
るメタン発酵微生物群を流動可能に保持したバイオリア
クター1を用いたが、水素生成可能な他の嫌気性微生物
又は光合成微生物を利用したバイオリアクターと燃料電
池とを組み合わせることにより、バイオリアクター中の
水素分圧の低下を図り、水素生成効率が高い本発明の水
素発酵バイオリアクターとすることが可能である。ま
た、嫌気性微生物を純粋菌の系で利用する場合は、バイ
オリアクターにおけるHRTを短くすることにより、水
素生成効率を高めることができる。
In Experimental Example 1, the bioreactor 1 in which the methane-fermenting microorganisms, which are the mixed microorganisms, are held in a flowable manner was used. However, the bioreactor using other anaerobic microorganisms capable of producing hydrogen or photosynthetic microorganisms was used. By combining the fuel cell with the fuel cell, it is possible to reduce the hydrogen partial pressure in the bioreactor and obtain a hydrogen fermentation bioreactor of the present invention having high hydrogen generation efficiency. Further, when the anaerobic microorganism is used in a pure bacterial system, the hydrogen generation efficiency can be increased by shortening the HRT in the bioreactor.

【0028】[実験例2]製糖工場廃水にクロストリジ
ウム(Clostridium)属に属する水素生成嫌気性微生物
を接種し、温度30℃に保たれたバッチ式バイオリアクタ
ーに投入して水素発酵を行った。その結果、培養72時間
で培地1リットルあたり約2800ミリリットル(約2800ml
/l-culture)のガスが生成した。ガスの組成は水素60
%、二酸化炭素40%であった。製糖工場廃水中の炭水化
物分解量から水素生成効率を計算したところ、その水素
への変換効率はグルコース1モルあたり約1.8モル(1.8
mol/mol-glucose)であった。この状態で、実験例1と
同様の固体高分子型燃料電池ユニット10の水素吸入口11
とバイオリアクターの気相部2とを接続して送気器20に
より酸素を供給したところ、燃料電池10で発電が起こ
り、炭水化物から水素への変換率はグルコース1モルあ
たり約2.6モル(2.6mol/mol-g1ucose)にまで増加し
た。即ち、クロストリジウム属の純粋菌を用いたバイオ
リアクターにおいても、燃料電池と組み合わせることに
より、水素生成効率を向上できることが確認できた。な
お、この実験における高分子型燃料電池での発電効率は
約40%であり、生成した水素ガスを燃焼した場合の約40
%の熱量を電気エネルギーとして回収できた。
[Experimental Example 2] Hydrogen-producing anaerobic microorganisms belonging to the genus Clostridium were inoculated into wastewater of a sugar factory and fed into a batch-type bioreactor maintained at a temperature of 30 ° C to perform hydrogen fermentation. As a result, about 2800 ml (about 2800 ml)
/ L-culture) of gas. Gas composition is hydrogen 60
% And carbon dioxide 40%. When the hydrogen production efficiency was calculated from the amount of carbohydrate decomposition in the sugar mill wastewater, the conversion efficiency to hydrogen was approximately 1.8 mol / mol glucose (1.8 mol / mol).
mol / mol-glucose). In this state, the hydrogen inlet 11 of the polymer electrolyte fuel cell unit 10 similar to that of the experimental example 1 was used.
When oxygen is supplied by an air blower 20 by connecting the gas to the gas phase part 2 of the bioreactor, power generation occurs in the fuel cell 10 and the conversion rate of carbohydrates to hydrogen is about 2.6 mol / mol glucose (2.6 mol / mol). / mol-g1ucose). That is, it was confirmed that even in a bioreactor using a pure bacterium belonging to the genus Clostridium, the hydrogen generation efficiency can be improved by combining it with a fuel cell. The power generation efficiency of the polymer fuel cell in this experiment was about 40%, which was about 40% when the generated hydrogen gas was burned.
% Of heat was recovered as electrical energy.

【0029】[実験例3]乳酸1g/リットルを電子供
与体とした合成培地に、光の照射下で水素生成可能な紅
色非硫黄細菌Rhodobacter sp.を接種し、その細菌によ
る水素生成に必要とされる条件、例えば強度の光の照射
手段を設けたバイオリアクターに投入して、窒素制限下
でタングステンランプにより10,000ルックスの光を照射
しながら光水素発酵を行った。培養24時間目以降に水素
ガスの生成が認められたので、実験例1と同様の固体高
分子型燃料電池ユニット10の水素吸入口11とバイオリア
クターの気相部2とを接続して送気器20により酸素を供
給したところ、水素発生に伴う発電をその後4日間に亘
り続けることができた。この実験における水素ガスによ
る燃料電池の発電効率は約50%であった。
[Experimental Example 3] A synthetic non-sulfur bacterium, Rhodobacter sp. , Capable of producing hydrogen under light irradiation was inoculated into a synthetic medium containing 1 g / liter of lactic acid as an electron donor, and it was necessary for the bacteria to produce hydrogen . The reaction was performed, for example, into a bioreactor provided with a means for irradiating light of high intensity, and photohydrogen fermentation was performed while irradiating light of 10,000 lux with a tungsten lamp under nitrogen limitation. Since the generation of hydrogen gas was observed after 24 hours of culturing, the hydrogen inlet 11 of the polymer electrolyte fuel cell unit 10 and the gas phase part 2 of the bioreactor were connected and air was supplied as in Experimental Example 1. When oxygen was supplied by the reactor 20, power generation accompanying the generation of hydrogen could be continued for four days thereafter. The power generation efficiency of the fuel cell using hydrogen gas in this experiment was about 50%.

【0030】固体高分子型燃料電池は、常温での発電が
できるので起動停止が容易であり、出力密度が高いため
小型・軽量化、低コスト化が可能である等の特徴を有す
るので、比較的容易にバイオリアクター1との組み合わ
せることができる。但し、本発明に適用可能な燃料電池
はこの例に限定されず、リン酸型燃料電池、溶融炭素塩
型燃料電池、固体酸化物型燃料電池等を用いて本発明の
バイオリアクターとすることが可能である。
The polymer electrolyte fuel cell has characteristics that it can generate power at room temperature, so that it can be easily started and stopped, and that it has a high output density, so that it can be reduced in size, weight, and cost. It can be easily combined with the bioreactor 1. However, the fuel cell applicable to the present invention is not limited to this example, and a phosphoric acid fuel cell, a molten carbon salt fuel cell, a solid oxide fuel cell, or the like can be used as the bioreactor of the present invention. It is possible.

【0031】更に本発明では、燃料電池10の起電力をモ
ニターすることでバイオリアクター1における微生物の
水素生成量そのものをモニターすることができる。従
来、水素発酵バイオリアクターにおける水素ガス発生量
は、発生した水素ガスをガスホルダーに捕集するか、又
はガスメータを用いて計量する必要があった。本発明で
は、燃料電池10の起電力から水素生成量をモニターでき
るので、ガスホルダーやガスメータを必要としない。
Further, in the present invention, the amount of hydrogen generated by the microorganisms in the bioreactor 1 can be monitored by monitoring the electromotive force of the fuel cell 10. Conventionally, the amount of hydrogen gas generated in a hydrogen fermentation bioreactor has to be collected in a gas holder or measured using a gas meter. In the present invention, the amount of hydrogen generated can be monitored from the electromotive force of the fuel cell 10, so that no gas holder or gas meter is required.

【0032】[0032]

【発明の効果】以上説明したように、本発明の燃料電池
組込み型水素発酵バイオリアクターは、バイオリアクタ
ーの気相部と燃料電池の水素吸入口とを燃料流路で連通
し、電力負荷に応じて消費される酸素を送気器により燃
料電池へ供給し、燃料電池における水素の消費に応じた
水素吸入口の水素分圧の低下によりバイオリアクターの
気相部から燃料電池へ水素を吸入するので、次の顕著な
効果を奏する。
As described above, the fuel cell-integrated hydrogen fermentation bioreactor of the present invention communicates the gas phase of the bioreactor with the hydrogen inlet of the fuel cell through the fuel flow path, and responds to the power load. Oxygen is supplied to the fuel cell by the air blower, and hydrogen is sucked into the fuel cell from the gas phase of the bioreactor by decreasing the hydrogen partial pressure at the hydrogen inlet according to the consumption of hydrogen in the fuel cell. Has the following remarkable effects.

【0033】(イ)バイオリアクターで生成した水素ガ
スを直接燃料電池に導くので、燃料ガスの改質を必要と
せず、改質のためのエネルギー供給を必要としない。 (ロ)燃料電池の発電によってバイオリアクターの気相
部水素分圧の低下を促進し、バイオリアクターにおける
高い水素生成効率を維持できる。 (ハ)従来の水素発酵バイオリアクターをそのまま利用
して、燃料電池を組み込むことにより、本発明の水素バ
イオリアクターに転用することができる。 (ニ)メタン発酵微生物群を用いて水素を発生させるバ
イオリアクターを利用することにより、メタン発酵微生
物群が利用可能な有機性廃棄物等を原料とすることがで
き、水素の生成のみならず廃水処理の効率化を図ること
ができ、公害防止技術としての利用も期待できる。 (ホ)クリーンなエネルギー源である水素を安定的に高
効率で生産できるので、環境を汚染しないエネルギー生
産技術としての利用が期待できる。
(A) Since the hydrogen gas generated in the bioreactor is led directly to the fuel cell, no reforming of the fuel gas is required, and no energy supply for reforming is required. (B) The power generation of the fuel cell promotes a decrease in the hydrogen partial pressure in the gas phase of the bioreactor, and can maintain a high hydrogen generation efficiency in the bioreactor. (C) By utilizing a conventional hydrogen fermentation bioreactor as it is and incorporating a fuel cell, it can be diverted to the hydrogen bioreactor of the present invention. (D) By using a bioreactor that generates hydrogen using methane-fermenting microorganisms, organic wastes and the like that can be used by methane-fermenting microorganisms can be used as raw materials. It can improve the efficiency of treatment and can be expected to be used as pollution control technology. (E) Hydrogen, which is a clean energy source, can be produced stably with high efficiency, so that its use as an energy production technology that does not pollute the environment can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明の一実施例の説明図である。FIG. 1 is an explanatory diagram of one embodiment of the present invention.

【図2】は、メタン発酵微生物群が流動可能に保持され
た嫌気性バイオリアクターにおける、有機性基質の水理
学的滞留時間(HRT)と水素ガス(H2)の生成量との
関係を示すグラフである。
FIG. 2 shows the relationship between the hydraulic retention time (HRT) of an organic substrate and the amount of generated hydrogen gas (H 2 ) in an anaerobic bioreactor in which methane fermenting microorganisms are maintained in a flowable state. It is a graph.

【図3】は、燃料電池の説明図である。FIG. 3 is an explanatory diagram of a fuel cell.

【図4】は、水素生成微生物における代謝マップの一例
である。
FIG. 4 is an example of a metabolic map in a hydrogen-producing microorganism.

【符号の説明】[Explanation of symbols]

1…水素発酵バイオリアクター 2…気相部 3…液相部 4…有機性基質取入口 5…処理液排出口 6…攪拌装置 7…モータ 10…燃料電池 11…水素吸入口 12…酸素吸入口 13…未反応水素排出口 14…未反応酸素排出口 15…水素(燃料)極 16…酸素(空気)極 17…電解質 18…外部回路 20…送気器 21…水素取出口 22…燃料流路 23…脱硫カラム 31…ガスホルダー 32…水酸化ナトリウム瓶(シール瓶) DESCRIPTION OF SYMBOLS 1 ... Hydrogen fermentation bioreactor 2 ... Gas phase 3 ... Liquid phase 4 ... Organic substrate inlet 5 ... Treatment liquid outlet 6 ... Agitator 7 ... Motor 10 ... Fuel cell 11 ... Hydrogen inlet 12 ... Oxygen inlet 13 ... unreacted hydrogen outlet 14 ... unreacted oxygen outlet 15 ... hydrogen (fuel) electrode 16 ... oxygen (air) electrode 17 ... electrolyte 18 ... external circuit 20 ... air supply 21 ... hydrogen outlet 22 ... fuel flow path 23 ... desulfurization column 31 ... gas holder 32 ... sodium hydroxide bottle (sealed bottle)

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/10 H01M 8/10 //(C12M 1/00 (C12M 1/00 H C12R 1:00) C12R 1:00) (C12M 1/107 (C12M 1/107 C12R 1:00) C12R 1:00) (72)発明者 後藤 雅史 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 Fターム(参考) 4B029 AA02 AA27 BB01 DA07 DB01 5H026 AA06 5H027 AA06 DD05 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) H01M 8/10 H01M 8/10 // (C12M 1/00 (C12M 1/00 H C12R 1:00) C12R 1:00 (C12M 1/107 (C12M 1/107 C12R 1:00) C12R 1:00) (72) Inventor Masafumi Goto 2-7 Motomoto Akasaka, Minato-ku, Tokyo F-term in Kashima Construction Co., Ltd. ) 4B029 AA02 AA27 BB01 DA07 DB01 5H026 AA06 5H027 AA06 DD05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】微生物により生成された水素ガスが集まる
気相部を有するバイオリアクター、水素ガスと酸素とを
吸入して発電する燃料電池、前記バイオリアクターの気
相部と前記燃料電池の水素吸入口とを連通する燃料流
路、及び前記燃料電池の酸素吸入口に接続した送気器を
備え、電力負荷に応じて消費される酸素を前記送気器に
より前記燃料電池へ供給し、前記燃料電池における水素
ガスの消費に応じた水素吸入口の水素分圧低下により前
記バイオリアクターの気相部から前記燃料電池へ水素ガ
スを吸入してなる燃料電池組込み型水素発酵バイオリア
クター。
1. A bioreactor having a gas phase for collecting hydrogen gas generated by microorganisms, a fuel cell for generating electricity by sucking hydrogen gas and oxygen, a gas phase for the bioreactor, and hydrogen suction for the fuel cell A fuel flow path communicating with a port, and an air blower connected to an oxygen inlet of the fuel cell, wherein oxygen consumed according to an electric power load is supplied to the fuel cell by the air blower, and the fuel A hydrogen fermentation bioreactor with a built-in fuel cell, wherein hydrogen gas is sucked into the fuel cell from a gas phase part of the bioreactor by lowering a hydrogen partial pressure at a hydrogen inlet according to consumption of hydrogen gas in the battery.
【請求項2】請求項1のバイオリアクターにおいて、前
記燃料電池を固体高分子型燃料電池としてなる燃料電池
組込み型水素発酵バイオリアクター。
2. The bioreactor according to claim 1, wherein the fuel cell is a polymer electrolyte fuel cell.
【請求項3】請求項1又は2のバイオリアクターにおい
て、前記燃料流路に脱硫器を設けてなる燃料電池組込み
型水素発酵バイオリアクター。
3. The bioreactor according to claim 1, wherein a desulfurizer is provided in the fuel flow path.
【請求項4】請求項1から3の何れかのバイオリアクタ
ーにおいて、前記バイオリアクターを、メタン発酵微生
物群が流動可能に保持され、有機性基質を前記微生物群
中の水素生成微生物の増殖時間より長く且つ前記微生物
群中の水素消費微生物の増殖時間より短い水理学的滞留
時間に亘り滞留させつつ通過させ、前記有機性基質の通
過に抗してバイオリアクター中で増殖する微生物群によ
り水素ガスを生成するものとしてなる燃料電池組込み型
水素発酵バイオリアクター。
4. The bioreactor according to any one of claims 1 to 3, wherein the bioreactor is maintained so that a group of methane-fermenting microorganisms can flow, and an organic substrate is determined based on a growth time of hydrogen-producing microorganisms in the group of microorganisms. The hydrogen gas is passed by the microorganisms growing in the bioreactor against the passage of the organic substrate while being allowed to pass for a long period of time and shorter than the growth time of the hydrogen-consuming microorganisms in the microorganisms. A hydrogen fermentation bioreactor with a built-in fuel cell to be produced.
【請求項5】請求項4のバイオリアクターにおいて、前
記有機性基質を有機性廃棄物としてなる燃料電池組込み
型水素発酵バイオリアクター。
5. A hydrogen fermentation bioreactor incorporating a fuel cell according to claim 4, wherein the organic substrate is an organic waste.
【請求項6】請求項1から3の何れかのバイオリアクタ
ーにおいて、前記バイオリアクターを、光の照射下で水
素を生成する光合成微生物が保持され、該光合成微生物
による水素生成に必要とされる条件の光の照射手段を有
するものとしてなる燃料電池組込み型水素発酵バイオリ
アクター。
6. The bioreactor according to claim 1, wherein the bioreactor holds a photosynthetic microorganism that generates hydrogen under irradiation of light, and the conditions required for hydrogen generation by the photosynthetic microorganism. A hydrogen fermentation bioreactor with a built-in fuel cell having a light irradiation means.
JP2001082208A 2001-03-22 2001-03-22 Hydrogen fermentation bioreactor with built-in fuel cell Expired - Fee Related JP3891544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001082208A JP3891544B2 (en) 2001-03-22 2001-03-22 Hydrogen fermentation bioreactor with built-in fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001082208A JP3891544B2 (en) 2001-03-22 2001-03-22 Hydrogen fermentation bioreactor with built-in fuel cell

Publications (2)

Publication Number Publication Date
JP2002280045A true JP2002280045A (en) 2002-09-27
JP3891544B2 JP3891544B2 (en) 2007-03-14

Family

ID=18938181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001082208A Expired - Fee Related JP3891544B2 (en) 2001-03-22 2001-03-22 Hydrogen fermentation bioreactor with built-in fuel cell

Country Status (1)

Country Link
JP (1) JP3891544B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303601A (en) * 2003-03-31 2004-10-28 Sharp Corp Energy recovery system
JP2006059745A (en) * 2004-08-23 2006-03-02 Iwatani Internatl Corp Apparatus for monitoring cell voltage of hydrogen fuel cell, and method for using the same
JP2006217829A (en) * 2005-02-08 2006-08-24 Research Institute Of Innovative Technology For The Earth Hydrogen-producing apparatus using microorganism, and fuel battery system using the same
JP2007180029A (en) * 2005-12-28 2007-07-12 Samsung Sdi Co Ltd Fuel composite for fuel cell and its manufacturing method, as well as fuel cell
WO2009072396A1 (en) * 2007-12-07 2009-06-11 Sony Corporation New fuel cell, and power supply device and electronic device using the fuel cell
CN100510088C (en) * 2005-12-30 2009-07-08 中国科学院大连化学物理研究所 Method of photolyzing seawater by tetraselmis chui to produce hydrogen using fuel cell hydrogen consuming technique
JP2009544276A (en) * 2006-02-13 2009-12-17 ナガルジュナ、エナジー、プライベート、リミテッド Mass production method of hydrogen
WO2013051569A1 (en) * 2011-10-04 2013-04-11 国立大学法人静岡大学 Bioreactor, methane generation method and hydrogen gas generation method using same, and self-provision system for water/gas/electricity
JP2015081799A (en) * 2013-10-21 2015-04-27 東西化学産業株式会社 Measuring apparatus and measuring method of dissolved hydrogen concentration
CN112331891A (en) * 2020-10-19 2021-02-05 国科微城市智能科技(南京)有限责任公司 Method for promoting hydrogen atoms of hydrogen fuel cell to be decomposed in accelerated manner

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303601A (en) * 2003-03-31 2004-10-28 Sharp Corp Energy recovery system
JP2006059745A (en) * 2004-08-23 2006-03-02 Iwatani Internatl Corp Apparatus for monitoring cell voltage of hydrogen fuel cell, and method for using the same
JP4659410B2 (en) * 2004-08-23 2011-03-30 岩谷産業株式会社 Cell voltage monitoring device for hydrogen fuel cell and method of using the same
JP2006217829A (en) * 2005-02-08 2006-08-24 Research Institute Of Innovative Technology For The Earth Hydrogen-producing apparatus using microorganism, and fuel battery system using the same
JP4574375B2 (en) * 2005-02-08 2010-11-04 財団法人地球環境産業技術研究機構 Hydrogen production apparatus using microorganisms and fuel cell system using the same
US7976993B2 (en) 2005-12-28 2011-07-12 Samsung Sdi Co., Ltd. Fuel composition for fuel cell and fuel cell using the same
JP2007180029A (en) * 2005-12-28 2007-07-12 Samsung Sdi Co Ltd Fuel composite for fuel cell and its manufacturing method, as well as fuel cell
JP4685752B2 (en) * 2005-12-28 2011-05-18 三星エスディアイ株式会社 Fuel composition for fuel cell, method for producing the same, and fuel cell
CN100510088C (en) * 2005-12-30 2009-07-08 中国科学院大连化学物理研究所 Method of photolyzing seawater by tetraselmis chui to produce hydrogen using fuel cell hydrogen consuming technique
JP2009544276A (en) * 2006-02-13 2009-12-17 ナガルジュナ、エナジー、プライベート、リミテッド Mass production method of hydrogen
WO2009072396A1 (en) * 2007-12-07 2009-06-11 Sony Corporation New fuel cell, and power supply device and electronic device using the fuel cell
WO2013051569A1 (en) * 2011-10-04 2013-04-11 国立大学法人静岡大学 Bioreactor, methane generation method and hydrogen gas generation method using same, and self-provision system for water/gas/electricity
JPWO2013051569A1 (en) * 2011-10-04 2015-03-30 国立大学法人静岡大学 Bioreactor, methane production method and hydrogen gas production method using the same, and water / gas / electricity self-supply system
JP2017153497A (en) * 2011-10-04 2017-09-07 国立大学法人静岡大学 Bioreactor and methane production and hydrogen-gas production method using the same, and water/gas/electric self-supply system
JP2015081799A (en) * 2013-10-21 2015-04-27 東西化学産業株式会社 Measuring apparatus and measuring method of dissolved hydrogen concentration
CN112331891A (en) * 2020-10-19 2021-02-05 国科微城市智能科技(南京)有限责任公司 Method for promoting hydrogen atoms of hydrogen fuel cell to be decomposed in accelerated manner

Also Published As

Publication number Publication date
JP3891544B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
Yang et al. A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies
Wang et al. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell
Hamelers et al. New applications and performance of bioelectrochemical systems
US20110315560A1 (en) Process for the production of chemicals
US7439047B2 (en) Process for producing hydrogen
JP5063905B2 (en) Bioreactor / microbial fuel cell hybrid system
CN103881905A (en) Embedded bioelectricity synthesis system and method
CN104828938B (en) The device of hydrogen phosphide is produced in a kind of phosphor-containing organic wastewater multistage dephosphorization
CN110078225A (en) A kind of microorganism electrolysis cell and oxidation operation are degraded synchronous CO2Methanation process
CN104762635A (en) Method and device for co-production of methane by electrically assisted conversion of ethanol into acetic acid
JP3891544B2 (en) Hydrogen fermentation bioreactor with built-in fuel cell
CN103482830B (en) Device for concentrating and digesting sludge and generating power synchronously
Naha et al. Bioelectrosynthesis of organic and inorganic chemicals in bioelectrochemical system
KR100841736B1 (en) A system for bioelectrochemical hydrogen production using sun light
Kadier et al. Hydrogen production through electrolysis
CN104673843A (en) Method of electrically-assisting electroactive methane oxidizing bacteria to catalyze methane to produce methanol or formic acid
CN104651875A (en) Method for producing methane when converting ethanol into acetic acid
JP2005013045A (en) Method for continuously producing hydrogen from organic waste
Rahimnejad Biohydrogen generation and MECs
CN204625799U (en) Electricity is auxiliary ethanol conversion is acetic acid while methanogenic device
CN213416792U (en) Electrical stimulation coupling dark fermentation hydrogen production microorganism electrochemical system
CN204625647U (en) The device of the active methane-oxidizing bacteria catalytic methane methanol of electricity auxiliary electrical or formic acid
CN216863748U (en) Microbial fuel cell for synchronous sewage treatment based on A2/O process
NL2029926B1 (en) A process to treat a carbon dioxide comprising gas
CN104818313A (en) Method for converting ethanol into acetic acid and producing methane by co-culture microorganisms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Ref document number: 3891544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151215

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees