JP2002280041A - Fuel cell electric power generating system - Google Patents

Fuel cell electric power generating system

Info

Publication number
JP2002280041A
JP2002280041A JP2001080036A JP2001080036A JP2002280041A JP 2002280041 A JP2002280041 A JP 2002280041A JP 2001080036 A JP2001080036 A JP 2001080036A JP 2001080036 A JP2001080036 A JP 2001080036A JP 2002280041 A JP2002280041 A JP 2002280041A
Authority
JP
Japan
Prior art keywords
fuel cell
heat insulating
insulating layer
main body
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001080036A
Other languages
Japanese (ja)
Inventor
Masahiro Kuroishi
正宏 黒石
Susumu Aikawa
進 相川
Hiroaki Takeuchi
弘明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2001080036A priority Critical patent/JP2002280041A/en
Publication of JP2002280041A publication Critical patent/JP2002280041A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell electric power generating system set with a heat insulating layer around respective peripheries of a fuel cell main body and its ancillary device to keep respective optimum temperature capable of solving a problem that a heat insulating material layer becomes thicker as driving temperature increases higher, capacity of the fuel cell main body or the ancillary device of the fuel cell main body increases or a surface area of the fuel battery main body or the ancillary device of the fuel cell main body increases as the heat insulating material layer becomes thicker and accordingly, a heat radiating area increases and heat radiating loss increases. SOLUTION: A vacuum heat insulating layer is set at least at a part of the heat insulating layer in the periphery of at least the fuel cell main body or the ancillary device of the fuel cell main body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池発電シス
テムに関し、さらに詳細には燃料電池本体と、該燃料電
池本体の付帯装置と、からなる燃料電池発電システムの
断熱構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation system, and more particularly, to a heat insulation structure of a fuel cell power generation system including a fuel cell main body and an auxiliary device for the fuel cell main body.

【0002】[0002]

【従来の技術】燃料電池発電システムは、一般的に燃料
電池本体と燃料電池本体の付帯装置から構成される。
2. Description of the Related Art A fuel cell power generation system generally comprises a fuel cell body and an auxiliary device for the fuel cell body.

【0003】燃料電池本体には、固体酸化物形燃料電
池、溶融炭酸塩形燃料電池、リン酸形燃料電池および固
体高分子形燃料電池等の種類があり、それぞれの運転温
度はこの順に、約1000℃、約650℃、約250℃
および約80℃となっている。燃料電池本体は、基本的
に電解質に対向するように空気極と燃料極が形成されて
おり、空気極側に酸化剤ガスとして一般的に空気が供給
され、燃料極側に燃料ガスとして水素ガスあるいは水素
リッチガスが一般的に供給されることにより、電気化学
反応が起こり電力と熱を発生するものである。燃料電池
の種類により上記の最適な運転温度があり、この運転温
度を維持しなければ所定の発電反応が行われず発電効率
を低下させることとなる。
[0003] There are various types of fuel cell bodies such as a solid oxide fuel cell, a molten carbonate fuel cell, a phosphoric acid fuel cell, and a polymer electrolyte fuel cell. 1000 ℃, about 650 ℃, about 250 ℃
And about 80 ° C. The fuel cell body has an air electrode and a fuel electrode basically formed so as to face the electrolyte.Generally, air is supplied to the air electrode as an oxidizing gas, and hydrogen gas is used as a fuel gas to the fuel electrode. Alternatively, when a hydrogen-rich gas is generally supplied, an electrochemical reaction occurs to generate electric power and heat. Depending on the type of the fuel cell, there is the above-mentioned optimum operating temperature, and if this operating temperature is not maintained, a predetermined power generation reaction is not performed and the power generation efficiency is reduced.

【0004】一方、燃料電池本体の付帯装置には、燃料
ガス処理装置、燃料ガス混合器、熱交換器、燃料ガス用
ブロワ、酸化剤ガス用ブロワなどが挙げられる。付帯装
置は、燃料電池の種類、使用条件等によって適宜最適な
仕様、最適な組合せが検討されるものである。例えば、
燃料ガス処理装置は、改質器、CO変成器などから構成
されるが、一般的に改質器の運転温度は約700℃、C
O変成器の運転温度は約350℃と言われており、この
運転温度を維持しなければ所定の改質反応、シフト反応
が行われず、所定の組成の燃料ガスを生成することがで
きない。その他の熱交換器などについてもそれぞれに適
した運転温度を維持することが重要である。
On the other hand, as ancillary devices of the fuel cell body, there are a fuel gas processing device, a fuel gas mixer, a heat exchanger, a blower for a fuel gas, a blower for an oxidizing gas, and the like. For the auxiliary device, optimal specifications and optimal combinations are appropriately examined depending on the type of fuel cell, usage conditions, and the like. For example,
The fuel gas treatment device is composed of a reformer, a CO shift converter, and the like.
The operating temperature of the O-transformer is said to be about 350 ° C. Unless this operating temperature is maintained, a predetermined reforming reaction and a shift reaction are not performed, and a fuel gas having a predetermined composition cannot be generated. It is important to maintain an appropriate operating temperature for other heat exchangers and the like.

【0005】燃料電池本体あるいは燃料電池本体の付帯
装置の運転温度を維持するために、燃料電池本体あるい
は燃料電池本体の付帯装置の外面に断熱材層を設けて、
放熱ロスを低減する方法が取られている。燃料電池本体
あるいは燃料電池本体の付帯装置の運転温度とその設置
環境の外気温度の関係などから断熱材層を構成する断熱
材の選定と厚さの選定がなされる。
[0005] In order to maintain the operating temperature of the fuel cell main body or the auxiliary device of the fuel cell main body, a heat insulating material layer is provided on the outer surface of the fuel cell main body or the auxiliary device of the fuel cell main body,
A method for reducing heat loss has been adopted. The selection of the heat insulating material and the thickness of the heat insulating material layer are made based on the relationship between the operating temperature of the fuel cell main body or the auxiliary device of the fuel cell main body and the outside air temperature of the installation environment.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、運転温
度が高温になればなるほど断熱材層は厚くなり、燃料電
池本体あるいは燃料電池本体の付帯装置の占める容積を
増大させる。また、断熱材層が厚くなることにより、燃
料電池本体あるいは燃料電池本体の付帯装置の表面積が
増大し、これにより放熱面積が増大し、放熱ロスを増加
させるということにもなりかねない。この傾向は高温型
燃料電池(例えば固体酸化物型)において燃料電池の規
模が小さい場合に顕著であり、発電システム全体として
の容積が増大してしまうとういう問題があった。
However, the higher the operating temperature is, the thicker the heat insulating material layer is, which increases the volume occupied by the fuel cell main body or the auxiliary device of the fuel cell main body. In addition, as the heat insulating material layer becomes thicker, the surface area of the fuel cell main body or ancillary devices of the fuel cell main body increases, which may increase the heat radiation area and increase the heat radiation loss. This tendency is remarkable when the size of the fuel cell in a high-temperature fuel cell (for example, a solid oxide fuel cell) is small, and there is a problem that the volume of the entire power generation system increases.

【0007】[0007]

【課題を解決するための手段】上記課題解決するため
に、第1の発明では、燃料電池と該燃料電池に燃料等を
供給および排気する設備等からなる燃料電池本体と、該
燃料電池本体の付帯装置と、からなる燃料電池発電シス
テムにおいて、該燃料電池本体および該付帯装置は周囲
に断熱層を持ち、該断熱層の少なくとも一部に真空断熱
層を有することを特徴とする燃料電池発電システムを提
供する。本発明によれば、燃料電池本体や付帯装置の断
熱層の少なくとも一部に真空断熱層を設置することによ
り、真空断熱層は従来のセラミックス系断熱材に比べ熱
伝導率が小さいために、燃料電池の運転温度を保持しつ
つ燃料電池本体等の断熱層全体の厚みを薄くできる。こ
れによりシステムの容積を削減でき、さらに断熱層の表
面積を小さくできるため放熱ロスを削減できる。
According to a first aspect of the present invention, there is provided a fuel cell body including a fuel cell, equipment for supplying and exhausting fuel and the like to and from the fuel cell, A fuel cell power generation system comprising: an auxiliary device; wherein the fuel cell main body and the auxiliary device have a heat insulation layer around the fuel cell power generation system, and at least a part of the heat insulation layer has a vacuum heat insulation layer. I will provide a. According to the present invention, by providing a vacuum heat insulating layer on at least a part of the heat insulating layer of the fuel cell main body or the auxiliary device, the vacuum heat insulating layer has a lower thermal conductivity than a conventional ceramic heat insulating material, so that the fuel The thickness of the entire heat insulating layer such as the fuel cell body can be reduced while maintaining the operating temperature of the cell. Thereby, the volume of the system can be reduced, and the heat loss can be reduced because the surface area of the heat insulating layer can be reduced.

【0008】第2の発明では、前記燃料電池本体および
前記燃料電池本体の付帯装置の周囲の断熱層のうち、最
も運転温度の高い部分周辺あるいは最も容積の大きな燃
料電池本体やその付帯装置の周辺の断熱層の少なくとも
一部に真空断熱層を有することを特徴とする燃料電池発
電システムを提供する。本発明によれば、システムのう
ち最も温度の高くなる部分の近傍に真空断熱層を設ける
ことにより、真空断熱層による断熱層全体の厚みの削減
効果を最も高くでき、システム容積を効率的に削減でき
る。また、断熱層によって囲まれた部分が最も大きい装
置などの部分の近傍に真空断熱層を設けることにより、
断熱層が薄くできるとこのために削減できる容積は大き
くなる。これによりシステム全体の容積を削減でき、さ
らに断熱層の表面積を小さくできるため放熱ロスを削減
できる。
According to a second aspect of the present invention, in the heat insulating layer around the fuel cell main body and the auxiliary device of the fuel cell main body, the periphery of the portion having the highest operating temperature or the periphery of the fuel cell main body having the largest volume and the peripheral device thereof. A fuel cell power generation system characterized by having a vacuum heat insulating layer in at least a part of the heat insulating layer. According to the present invention, by providing a vacuum heat insulating layer in the vicinity of a portion where the temperature is highest in the system, the effect of reducing the thickness of the entire heat insulating layer by the vacuum heat insulating layer can be maximized, and the system volume can be efficiently reduced. it can. In addition, by providing a vacuum heat insulating layer near a portion such as a device where the portion surrounded by the heat insulating layer is the largest,
If the heat insulation layer can be made thinner, the volume that can be reduced increases. As a result, the volume of the entire system can be reduced, and the heat loss can be reduced because the surface area of the heat insulating layer can be reduced.

【0009】第3の発明はでは、前記真空断熱層の形状
の少なくとも一部を筒型であることを特徴とする燃料電
池発電システムを提供する。本発明によれば、たとえば
燃料電池本体あるいは付帯装置が円筒形をしている場
合、真空断熱層を筒状とすると燃料電池本体あるいは付
帯設備の断熱層を最もコンパクトにすることができ、シ
ステム全体の容積を削減することができる。
According to a third aspect of the present invention, there is provided a fuel cell power generation system characterized in that at least a part of the shape of the vacuum heat insulating layer is cylindrical. According to the present invention, for example, when the fuel cell main body or the auxiliary device has a cylindrical shape, if the vacuum heat insulating layer is cylindrical, the heat insulating layer of the fuel cell main body or the auxiliary device can be made the most compact, and the entire system Volume can be reduced.

【0010】第4の発明は、前記真空断熱層の少なくと
も一部がパネル型であることを特徴とする燃料電池発電
システムを提供する。たとえば燃料電池本体の大きさは
出力規模により、電池数が変わるため、変化する。ま
た、燃料電池本体規模が変化すると付帯装置に求められ
る大きさも変化する。本発明によれば、このような場合
に燃料電池本体あるいは付帯設備の断面形状が方形であ
れば、パネル型真空断熱層をその断面形状の辺長に合わ
せることにより最もコンパクトにすることができ、シス
テム全体の容積を削減することができる。
A fourth aspect of the present invention provides a fuel cell power generation system, wherein at least a part of the vacuum heat insulating layer is of a panel type. For example, the size of the fuel cell body changes because the number of cells changes depending on the output scale. Further, when the size of the fuel cell body changes, the size required for the auxiliary device also changes. According to the present invention, in such a case, if the cross-sectional shape of the fuel cell main body or the auxiliary equipment is rectangular, the panel-type vacuum heat-insulating layer can be most compact by adjusting the side length of the cross-sectional shape, The volume of the entire system can be reduced.

【0011】第5の発明は、前記真空断熱層の少なくと
も一部がジャケット型であることを特徴とする燃料電池
発電システムを提供する。本発明によれば、保温したい
設備の形状に合わせてジャケット型真空断熱層を構成す
ると、当然断熱層をコンパクトにできる。
A fifth invention provides a fuel cell power generation system, wherein at least a part of the vacuum heat insulating layer is a jacket type. According to the present invention, when the jacket-type vacuum heat insulating layer is formed according to the shape of the equipment to be kept warm, the heat insulating layer can be made compact naturally.

【0012】第6の発明は、前記燃料電池本体が固体酸
化物形燃料電池であることを特徴とする燃料電池発電シ
ステムを提供する。固体酸化物型燃料電池は運転温度が
1000℃近くと、燃料電池の中では最も高温である。
したがって、固体酸化物型燃料電池の断熱層は非常に厚
くなっている。本発明によれば、固体酸化物型燃料電池
本体の断熱層に真空断熱層を設置することにより断熱層
の厚みの削減効果は大きなものになり、システムの容積
を大幅に削減でき、さらに断熱層の表面積を小さくでき
るため放熱ロスを削減できる。
A sixth invention provides a fuel cell power generation system, wherein the fuel cell body is a solid oxide fuel cell. The operating temperature of a solid oxide fuel cell is close to 1000 ° C., which is the highest temperature among fuel cells.
Therefore, the heat insulating layer of the solid oxide fuel cell is very thick. According to the present invention, the effect of reducing the thickness of the heat insulating layer is increased by installing the vacuum heat insulating layer on the heat insulating layer of the solid oxide fuel cell body, and the volume of the system can be significantly reduced. Since the surface area can be reduced, heat dissipation loss can be reduced.

【0013】第7の発明は、前記燃料電池本体の付帯装
置が燃料ガス処理装置であることを特徴とする燃料電池
発電システムを提供する。燃料ガス処理装置は、改質
器、CO変成器などから構成され、一般的に改質器の運
転温度は約700℃、CO変成器の運転温度は約350
℃と言われている。本発明によれば、比較的高温になる
燃料ガス処理装置の断熱層に真空断熱層を設けることに
より燃料ガス処理装置の運転温度を保持しつつ断熱層全
体の厚みを薄くできる。これにより当該装置の容積を削
減でき、さらに断熱層の表面積を小さくできるため放熱
ロスを削減できる。
According to a seventh aspect of the present invention, there is provided a fuel cell power generation system, wherein the auxiliary device of the fuel cell main body is a fuel gas processing device. The fuel gas processing apparatus is composed of a reformer, a CO converter, and the like. Generally, the operating temperature of the reformer is about 700 ° C., and the operating temperature of the CO converter is about 350
It is said to be ° C. ADVANTAGE OF THE INVENTION According to this invention, the thickness of the whole heat insulation layer can be made thin, maintaining the operating temperature of a fuel gas treatment apparatus by providing a vacuum heat insulation layer in the heat insulation layer of a fuel gas treatment apparatus which becomes relatively high temperature. Thus, the volume of the device can be reduced, and the heat loss can be reduced because the surface area of the heat insulating layer can be reduced.

【0014】第8の発明は、前記燃料電池本体の付帯装
置が燃料ガス混合器であることを特徴とする燃料電池発
電システムを提供する。燃料ガス混合器では燃料電池反
応において未反応ガスとして排出される燃料を外部から
供給される反応前燃料ガスと混合するものであり、未反
応ガスは燃料電池の運転温度程度の高温になっている。
本発明によれば、燃料ガス混合器からの放熱を抑える断
熱層の厚みを薄くすることができ、当該装置の容積を削
減できる。さらに断熱層の表面積を小さくできるため放
熱ロスを削減でき、未反応ガスの顕熱を反応前燃料ガス
に効率的に与えることができる。
According to an eighth aspect of the present invention, there is provided a fuel cell power generation system, wherein the auxiliary device of the fuel cell main body is a fuel gas mixer. In a fuel gas mixer, fuel discharged as unreacted gas in a fuel cell reaction is mixed with a pre-reaction fuel gas supplied from the outside, and the unreacted gas has a high temperature about the operating temperature of the fuel cell. .
ADVANTAGE OF THE INVENTION According to this invention, the thickness of the heat insulation layer which suppresses the heat radiation from a fuel gas mixer can be made thin, and the volume of the said apparatus can be reduced. Furthermore, since the surface area of the heat insulating layer can be reduced, heat loss can be reduced, and the sensible heat of the unreacted gas can be efficiently given to the pre-reacted fuel gas.

【0015】第9の発明は、前記燃料電池本体の付帯装
置が熱交換器であることを特徴とする燃料電池発電シス
テムを提供する。熱交換器では燃料電池の高温排ガスと
新たに供給される燃料や空気あるいはその他熱利用のた
めの媒体と熱交換するためのものであり、高温排ガスは
燃料電池の運転温度程度の高温になっている。本発明に
よれば、熱交換器からの放熱を抑える断熱層の厚みを薄
くすることができ、当該装置の容積を削減できる。さら
に断熱層の表面積を小さくできるため放熱ロスを削減で
き、高温排ガスの顕熱を熱交換の対象とする媒体に効率
的に与えることができる。
A ninth invention provides a fuel cell power generation system, wherein the auxiliary device of the fuel cell main body is a heat exchanger. The heat exchanger is used to exchange heat between the high temperature exhaust gas of the fuel cell and the newly supplied fuel, air or other medium for utilizing heat. I have. ADVANTAGE OF THE INVENTION According to this invention, the thickness of the heat insulation layer which suppresses the heat radiation from a heat exchanger can be made thin, and the volume of the said apparatus can be reduced. Further, since the surface area of the heat insulating layer can be reduced, heat loss can be reduced, and the sensible heat of the high-temperature exhaust gas can be efficiently given to the medium to be subjected to heat exchange.

【0016】[0016]

【発明の実施の形態】燃料電池発電システムは、一般的
に燃料電池本体と燃料電池本体の付帯装置から構成され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A fuel cell power generation system generally comprises a fuel cell main body and an auxiliary device for the fuel cell main body.

【0017】燃料電池には、固体酸化物形燃料電池、溶
融炭酸塩形燃料電池、リン酸形燃料電池および固体高分
子形燃料電池等の種類がある。
There are various types of fuel cells, such as a solid oxide fuel cell, a molten carbonate fuel cell, a phosphoric acid fuel cell, and a polymer electrolyte fuel cell.

【0018】それぞれの燃料電池は基本的に電解質に対
向するように空気極と燃料極が形成されており、空気極
側に酸化剤ガスとして一般的に空気が供給され、燃料極
側に燃料ガスとして水素ガスあるいは水素リッチガスが
一般的に供給されることにより、電気化学反応が起こり
電力と熱を発生するものである。燃料電池の種類により
上記の最適な運転温度があり、この運転温度を維持しな
ければ所定の発電反応が行われず発電効率を低下させる
こととなる。
Each fuel cell basically has an air electrode and a fuel electrode formed so as to face the electrolyte. Generally, air is supplied to the air electrode side as an oxidizing gas, and the fuel gas is supplied to the fuel electrode side. When a hydrogen gas or a hydrogen-rich gas is generally supplied, an electrochemical reaction occurs to generate electric power and heat. Depending on the type of the fuel cell, there is the above-mentioned optimum operating temperature, and if this operating temperature is not maintained, a predetermined power generation reaction is not performed and the power generation efficiency is reduced.

【0019】本発明で言う、燃料電池本体は、上記燃料
電池燃料電池そのもの、酸化剤あるいは燃料を供給およ
び排気する設備等からなり、最適温度を保つための断熱
層が周囲にある。一方、本発明で言う燃料電池本体の付
帯装置には、燃料ガス処理装置、燃料ガス混合器、熱交
換器、燃料ガス用ブロワ、酸化剤ガス用ブロワなどが挙
げられる。付帯装置は、燃料電池の種類、使用条件等に
よって適宜最適な仕様、最適な組合せが検討されるもの
である。例えば、燃料ガス処理装置は、改質器、CO変
成器などから構成されるが、一般的に改質器の運転温度
は約700℃、CO変成器の運転温度は約350℃と言
われており、この運転温度を維持しなければ所定の改質
反応、シフト反応が行われず、所定の組成の燃料ガスを
生成することができない。その他の熱交換器などについ
てもそれぞれに適した運転温度を維持することが重要で
ある。このため、燃料電池本体の付帯装置の周囲には最
適な温度を保つために断熱層がある。
The fuel cell body referred to in the present invention comprises the fuel cell itself, equipment for supplying and exhausting an oxidant or fuel, and a heat insulating layer for maintaining an optimum temperature around the fuel cell. On the other hand, the auxiliary device of the fuel cell body referred to in the present invention includes a fuel gas processing device, a fuel gas mixer, a heat exchanger, a blower for a fuel gas, a blower for an oxidizing gas, and the like. For the auxiliary device, optimal specifications and optimal combinations are appropriately examined depending on the type of fuel cell, usage conditions, and the like. For example, a fuel gas processing apparatus is composed of a reformer, a CO converter, and the like. Generally, the operating temperature of the reformer is about 700 ° C., and the operating temperature of the CO converter is about 350 ° C. Therefore, unless the operating temperature is maintained, a predetermined reforming reaction and a shift reaction are not performed, and a fuel gas having a predetermined composition cannot be generated. It is important to maintain an appropriate operating temperature for other heat exchangers and the like. For this reason, a heat insulating layer is provided around the auxiliary device of the fuel cell main body to maintain an optimum temperature.

【0020】以下に図面を参照して本発明をより具体的
に説明する。図1は本発明の一実施例を示す燃料電池シ
ステムの構成図である。燃料電池セル1は、有底筒状の
固体酸化物形燃料電池セルであり、複数本の燃料電池セ
ル1が発電反応室5に収納されている。発電反応室5の
上部には隔壁7によって仕切られた排空気室6が形成さ
れ、発電反応室5の下部には燃料ガス室4が形成されて
いる。発電反応室5、排空気室6および燃料ガス室4か
らなる燃料電池本体16の周囲には断熱層10が配設さ
れてる。
Hereinafter, the present invention will be described more specifically with reference to the drawings. FIG. 1 is a configuration diagram of a fuel cell system showing one embodiment of the present invention. The fuel cell 1 is a solid oxide fuel cell having a bottomed cylindrical shape, and a plurality of fuel cells 1 are housed in a power generation reaction chamber 5. An exhaust air chamber 6 partitioned by a partition wall 7 is formed above the power generation reaction chamber 5, and a fuel gas chamber 4 is formed below the power generation reaction chamber 5. A heat insulating layer 10 is disposed around a fuel cell main body 16 including the power generation reaction chamber 5, the exhaust air chamber 6, and the fuel gas chamber 4.

【0021】それぞれの燃料電池セル1の内側には、空
気を供給するための細長い空気導入管2が内挿されてお
り、その下端は燃料電池セル1の底近くにまで達してい
る。この空気導入管2の下端から、空気が燃料電池セル
1の底に供給される。燃料電池セル1の底に供給された
空気は、上述の発電反応に寄与しつつ燃料電池セル1の
内側を上方に向かい、排空気室6を通って排空気として
排出される。燃料電池セル1の外側には、燃料ガス室4
から燃料ガス供給口3を介して上方に向けて、燃料ガス
(H2、CO、CH4等)が供給される。燃料ガスは、上
述の発電反応に寄与しつつ燃料電池セル1の外側を上方
に向かう。
Inside each fuel cell 1, an elongated air introduction pipe 2 for supplying air is inserted, and its lower end reaches near the bottom of the fuel cell 1. From the lower end of the air introduction pipe 2, air is supplied to the bottom of the fuel cell 1. The air supplied to the bottom of the fuel cell 1 goes upward inside the fuel cell 1 while contributing to the above-described power generation reaction, and is discharged as exhaust air through the exhaust air chamber 6. Outside the fuel cell 1, a fuel gas chamber 4
The fuel gas (H 2, CO, CH 4, etc.) is supplied upward from the fuel gas supply port 3. The fuel gas goes upward outside the fuel cell 1 while contributing to the above-described power generation reaction.

【0022】また、燃料電池本体16には空気供給用ブ
ロア15、燃料供給用ブロア13、上記反応で消費され
なかった排燃料と供給燃料を混合する混合器12、燃料
処理器11、排空気室6から排気された排空気を利用し
た熱交換器14などの付帯装置が設置され、必要に応じ
断熱層10が周囲に設置されている。
The fuel cell body 16 has an air supply blower 15, a fuel supply blower 13, a mixer 12 for mixing the supplied fuel and the exhausted fuel not consumed in the above reaction, a fuel processor 11, an exhausted air chamber. Ancillary devices such as a heat exchanger 14 utilizing the exhaust air exhausted from 6 are installed, and a heat insulating layer 10 is installed around the periphery as necessary.

【0023】このとき、断熱層10の一部に真空断熱層
8を設置している。この真空断熱層8はたとえば従来よ
く使用されるセラミック系断熱材に比べ熱伝導率が1/
5程度であるため、従来品に比べ内部の熱が伝わりにく
く従来品に比べ厚みを薄くしても表面温度が従来と同程
度にできる。このため、断熱層10と真空断熱層8を合
わせた厚みは、断熱層10のみの場合よりも薄くでき
る。従って、全体の容積が小さくでき設置床面積を小さ
くでき、表面積も小さくなるため、表面温度は同じでも
放熱量は小さくでき、エネルギーロスは小さくできる。
At this time, the vacuum heat insulating layer 8 is provided on a part of the heat insulating layer 10. This vacuum heat insulating layer 8 has, for example, a heat conductivity of 1 / compared to a ceramic heat insulating material often used conventionally.
Since it is about 5, the internal heat is hardly transmitted as compared with the conventional product, and the surface temperature can be made the same as that of the conventional product even if the thickness is smaller than that of the conventional product. For this reason, the total thickness of the heat insulating layer 10 and the vacuum heat insulating layer 8 can be made thinner than the case where only the heat insulating layer 10 is used. Therefore, the total volume can be reduced, the installation floor area can be reduced, and the surface area can be reduced. Therefore, even if the surface temperature is the same, the amount of heat radiation can be reduced and the energy loss can be reduced.

【0024】図1では発電反応室5の略側面に設置して
いるが、上部や下部に設置しても同様の効果は得られ
る。さらに、燃料電池本体の付帯装置の周囲にある断熱
層10の一部に真空断熱層8を設けても同様に、表面温
度は断熱層10のみの時と同程度に保ちつつ、断熱層1
0と真空断熱層8の合計の厚みは減少できて容積は小さ
くでき、上記と同様の効果が得れる。
In FIG. 1, it is installed on substantially the side of the power generation reaction chamber 5, but the same effect can be obtained by installing it on the upper or lower part. Further, even if the vacuum heat insulating layer 8 is provided on a part of the heat insulating layer 10 around the auxiliary device of the fuel cell main body, the surface temperature is maintained at the same level as when only the heat insulating layer 10 is used.
The total thickness of 0 and the vacuum heat insulating layer 8 can be reduced and the volume can be reduced, and the same effect as described above can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料電池の1実施例を略示する図FIG. 1 is a diagram schematically showing one embodiment of a fuel cell according to the present invention.

【図2】従来の燃料電池の1実施例を略示する図であ
る。
FIG. 2 is a diagram schematically showing one embodiment of a conventional fuel cell.

【符号の説明】[Explanation of symbols]

1:セル 2:空気導入管 3:燃料ガス供給口 4:燃料ガス室 5:発電反応室 6:排空気室 7:隔壁 8:真空断熱層 9:モジュール容器 10:断熱材層 16:燃料電池本体 1: Cell 2: Air introduction pipe 3: Fuel gas supply port 4: Fuel gas chamber 5: Power generation reaction chamber 6: Exhaust air chamber 7: Partition wall 8: Vacuum heat insulating layer 9: Module container 10: Heat insulating material layer 16: Fuel cell Body

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H026 AA04 AA05 AA06 CV02 CV03 CX10 5H027 AA04 AA05 AA06 BA01 BA17 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H026 AA04 AA05 AA06 CV02 CV03 CX10 5H027 AA04 AA05 AA06 BA01 BA17

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】燃料電池に燃料等を供給および排気する設
備等からなる燃料電池本体と、該燃料電池本体の付帯装
置と、からなる燃料電池発電システムにおいて、 前記燃料電池本体および前記付帯装置は周囲に断熱層を
持ち、前記断熱層の少なくとも一部に真空断熱層を有す
ることを特徴とする燃料電池発電システム。
1. A fuel cell power generation system comprising: a fuel cell main body including equipment for supplying and exhausting fuel and the like to and from a fuel cell; and an auxiliary device for the fuel cell main body. A fuel cell power generation system having a heat insulating layer around the periphery and a vacuum heat insulating layer in at least a part of the heat insulating layer.
【請求項2】最も運転温度の高い部分周辺及び/又は最
も容積の大きな燃料電池本体やその付帯装置の周辺の断
熱層に真空断熱層を設けたことを特徴とする請求項1に
記載の燃料電池発電システム。
2. A fuel according to claim 1, wherein a vacuum heat insulating layer is provided on a heat insulating layer around a portion where the operating temperature is the highest and / or around the fuel cell body having the largest volume or an auxiliary device therefor. Battery power generation system.
【請求項3】前記真空断熱層の少なくとも一部が筒型で
あることを特徴とする請求項1または2に記載の燃料電
池発電システム。
3. The fuel cell power generation system according to claim 1, wherein at least a part of the vacuum heat insulating layer is cylindrical.
【請求項4】前記真空断熱層の少なくとも一部がパネル
型であることを特徴とする請求項1または2に記載の燃
料電池発電システム。
4. The fuel cell power generation system according to claim 1, wherein at least a part of the vacuum heat insulating layer is of a panel type.
【請求項5】前記真空断熱層の少なくとも一部がジャケ
ット型であることを特徴とする請求項1または2に記載
の燃料電池発電システム。
5. The fuel cell power generation system according to claim 1, wherein at least a part of the vacuum heat insulating layer is of a jacket type.
【請求項6】前記燃料電池本体が固体酸化物形燃料電池
であることを特徴とする請求項1〜5のいずれか一項に
記載の燃料電池発電システム。
6. The fuel cell power generation system according to claim 1, wherein the fuel cell body is a solid oxide fuel cell.
【請求項7】前記燃料電池本体の付帯装置が燃料ガス処
理装置であることを特徴とする請求項1〜5のいずれか
一項に記載の燃料電池発電システム。
7. The fuel cell power generation system according to claim 1, wherein the auxiliary device of the fuel cell main body is a fuel gas processing device.
【請求項8】前記燃料電池本体の付帯装置が燃料ガス混
合器であることを特徴とする請求項1〜5のいずれか一
項に記載の燃料電池発電システム。
8. The fuel cell power generation system according to claim 1, wherein an auxiliary device of the fuel cell main body is a fuel gas mixer.
【請求項9】前記燃料電池本体の付帯装置が熱交換器で
あることを特徴とする請求項1〜5のいずれか一項に記
載の燃料電池発電システム。
9. The fuel cell power generation system according to claim 1, wherein an auxiliary device of the fuel cell main body is a heat exchanger.
JP2001080036A 2001-03-21 2001-03-21 Fuel cell electric power generating system Pending JP2002280041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001080036A JP2002280041A (en) 2001-03-21 2001-03-21 Fuel cell electric power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001080036A JP2002280041A (en) 2001-03-21 2001-03-21 Fuel cell electric power generating system

Publications (1)

Publication Number Publication Date
JP2002280041A true JP2002280041A (en) 2002-09-27

Family

ID=18936389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001080036A Pending JP2002280041A (en) 2001-03-21 2001-03-21 Fuel cell electric power generating system

Country Status (1)

Country Link
JP (1) JP2002280041A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089504A (en) * 2001-07-09 2003-03-28 Mitsubishi Heavy Ind Ltd Apparatus for reforming fuel
JP2004227846A (en) * 2003-01-21 2004-08-12 Mitsubishi Materials Corp Fuel cell module
JP2005158530A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel cell assembly
JP2005243649A (en) * 2004-02-26 2005-09-08 Samsung Sdi Co Ltd Reformer of fuel cell system and fuel cell system
JP2005285425A (en) * 2004-03-29 2005-10-13 Toshiba Fuel Cell Power Systems Corp Fuel cell device and driving method of the same
JP2006190603A (en) * 2005-01-07 2006-07-20 Toyota Motor Corp Tubular membrane-electrode assembly for fuel cell with heat insulation tube
JP2007018855A (en) * 2005-07-07 2007-01-25 Nissan Motor Co Ltd Fuel cell stack structural body
JP2015118843A (en) * 2013-12-19 2015-06-25 パナソニック株式会社 Fuel cell system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089504A (en) * 2001-07-09 2003-03-28 Mitsubishi Heavy Ind Ltd Apparatus for reforming fuel
JP2004227846A (en) * 2003-01-21 2004-08-12 Mitsubishi Materials Corp Fuel cell module
JP2005158530A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel cell assembly
JP2005243649A (en) * 2004-02-26 2005-09-08 Samsung Sdi Co Ltd Reformer of fuel cell system and fuel cell system
JP2005285425A (en) * 2004-03-29 2005-10-13 Toshiba Fuel Cell Power Systems Corp Fuel cell device and driving method of the same
JP4612320B2 (en) * 2004-03-29 2011-01-12 東芝燃料電池システム株式会社 Fuel cell device
JP2006190603A (en) * 2005-01-07 2006-07-20 Toyota Motor Corp Tubular membrane-electrode assembly for fuel cell with heat insulation tube
JP4720185B2 (en) * 2005-01-07 2011-07-13 トヨタ自動車株式会社 Membrane electrode composite for tubular fuel cell with heat insulation tube
JP2007018855A (en) * 2005-07-07 2007-01-25 Nissan Motor Co Ltd Fuel cell stack structural body
JP2015118843A (en) * 2013-12-19 2015-06-25 パナソニック株式会社 Fuel cell system

Similar Documents

Publication Publication Date Title
US6194092B1 (en) Fuel cell apparatus
US7601186B2 (en) Reformer and fuel cell system having the same
US20110250513A1 (en) Fuel cell
US7514170B2 (en) Fuel cell system
US20050191532A1 (en) Reformer for fuel cell system and fuel cell system having the same
JP2005243647A (en) Reformer of fuel cell system and fuel cell system using the same
KR20060087100A (en) Stack for fuel cell and fuel cell system with the same
EP1679758B1 (en) Burner assembly for a reformer of a fuel cell system
JP4956946B2 (en) Fuel cell
US20080286615A1 (en) Method For Operating Fuel Cells For Systems That Are Restricted By Exposure to Thermal Stress and Fuel Cell Stack For Carrying Out Said Method
JP3539562B2 (en) Solid oxide fuel cell stack
JP2004221070A (en) High temperature seal
JP2002280041A (en) Fuel cell electric power generating system
JP2008218277A (en) Fuel cell
WO2008038902A1 (en) Air preheater of fuel cell
EP1641065A2 (en) Fuel cell stack and fuel cell system having the same
JP2008210574A (en) Fuel cell module
TW200305301A (en) Single chamber solid oxide fuel cell architecture for high temperature operation
KR100536201B1 (en) Cooling apparatus for stack and fuel cell system having thereof
US7097929B2 (en) Molten carbonate fuel cell
JP2007005134A (en) Steam generator and fuel cell
JP2004362800A (en) Fuel cell
JP4544055B2 (en) Fuel cell
JP2007073358A (en) Fuel heat exchanger and fuel cell
JP2004119298A (en) Fuel cell power generation system