JP2002275213A - Method and device for producing chlorinated vinyl chloride-based resin - Google Patents

Method and device for producing chlorinated vinyl chloride-based resin

Info

Publication number
JP2002275213A
JP2002275213A JP2001331438A JP2001331438A JP2002275213A JP 2002275213 A JP2002275213 A JP 2002275213A JP 2001331438 A JP2001331438 A JP 2001331438A JP 2001331438 A JP2001331438 A JP 2001331438A JP 2002275213 A JP2002275213 A JP 2002275213A
Authority
JP
Japan
Prior art keywords
vinyl chloride
reaction
chloride resin
powder layer
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001331438A
Other languages
Japanese (ja)
Inventor
Kenji Uejima
健二 上島
Takashi Wachi
俊 和地
Yasuhiro Shioda
裕啓 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2001331438A priority Critical patent/JP2002275213A/en
Priority to PCT/JP2001/011249 priority patent/WO2002055565A1/en
Priority to CNA018219845A priority patent/CN1486334A/en
Priority to US10/250,993 priority patent/US20040048945A1/en
Priority to EP01273190A priority patent/EP1361231A4/en
Priority to CA002434919A priority patent/CA2434919A1/en
Publication of JP2002275213A publication Critical patent/JP2002275213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a chlorinated vinyl chloride-based resin by a gas-solid reaction method having excellent post treatment simplicity and an excellent installation cost property, by which the chlorinated vinyl chloride-based resin allowing a simple removal of hydrogen chloride from the polymer, and having an inherent heat resistance and excellent heat stability can be produced. SOLUTION: This method for producing the chlorinated vinyl chloride-based resin comprises using a rotary reaction device or a stirring reaction device, supplying chlorine in or on the powder layer of a vinyl chloride-based resin in a fluidized state and simultaneously irradiating the powder layer with light from a light source disposed outside the powder layer, thereby rapidly and uniformly chlorinating the vinyl chloride-based resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩素と塩化ビニル
系樹脂の粉体からなる気固接触場を反応場とし、反応促
進の為に光を利用し塩素化塩化ビニル系樹脂を製造する
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for producing a chlorinated vinyl chloride resin by using light to promote the reaction by using a gas-solid contact field composed of powder of chlorine and vinyl chloride resin as a reaction field. About.

【0002】[0002]

【従来の技術】塩化ビニル系樹脂を塩素化して得られる
塩素化塩化ビニル系樹脂は、優れた耐熱性、難燃性、機
械強度、電気特性を有しており、様々な産業で利用され
ている。例えば、通常の塩化ビニル系樹脂のガラス転移
温度は80℃程度であるが、塩素化塩化ビニル系樹脂の
ガラス転移温度は、塩素含有量の増加と共に上昇し、1
20〜130℃に達する。また、ビカット軟化温度も同
様に120℃程度の高い値を示す。この様な高い耐熱性
を有することから、塩素化塩化ビニル系樹脂は、耐熱パ
イプ、耐熱継ぎ手、耐熱バルブ、耐熱シートなどに利用
されている。
2. Description of the Related Art A chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin has excellent heat resistance, flame retardancy, mechanical strength, and electrical properties, and is used in various industries. I have. For example, the glass transition temperature of a normal vinyl chloride resin is about 80 ° C., but the glass transition temperature of a chlorinated vinyl chloride resin increases with an increase in the chlorine content.
Reaches 20-130 ° C. The Vicat softening temperature also shows a high value of about 120 ° C. Due to such high heat resistance, chlorinated vinyl chloride resins are used for heat-resistant pipes, heat-resistant joints, heat-resistant valves, heat-resistant sheets and the like.

【0003】従来の塩素化塩化ビニル系樹脂の合成に
は、主に水懸濁法が用いられてきた。水懸濁法は、固形
分濃度が数%〜数十%である塩化ビニル系樹脂の水懸濁
液を反応容器内に充填し、水懸濁液を攪拌しながら、塩
素を供給して反応を行う方法である。更に、これだけで
は反応が全く進行しないか、極めて遅いので、水懸濁液
に反応促進のための光、熱、触媒などが加えられる。水
懸濁法は、粒子の攪拌や混合が容易であること、水に溶
解した低濃度の塩素を使用するため反応制御が容易であ
ること、塩化ビニル系樹脂が水により可塑化されて塩素
が樹脂内部まで浸透しやすいこと等の様々な利点があ
る。この為、これまで多くの塩素化塩化ビニル系樹脂の
製造設備に採用されてきた。
[0003] In the synthesis of conventional chlorinated vinyl chloride resins, the water suspension method has been mainly used. In the water suspension method, an aqueous suspension of a vinyl chloride resin having a solid content concentration of several percent to several tens percent is filled in a reaction vessel, and the water suspension is stirred while supplying chlorine. How to do. Furthermore, since the reaction does not proceed at all or is very slow, light, heat, a catalyst, and the like for promoting the reaction are added to the aqueous suspension. In the water suspension method, particles are easily stirred and mixed, the reaction control is easy because low-concentration chlorine dissolved in water is used, and vinyl chloride resin is plasticized with water to form chlorine. There are various advantages such as easy penetration into the resin. For this reason, it has been adopted in many chlorinated vinyl chloride-based resin production facilities.

【0004】ところが、水懸濁法は本質的に解決不可能
な問題点を有している。塩化ビニル系樹脂と塩素から塩
素化塩化ビニル系樹脂が生成する反応では、次式に示す
ように塩化水素が発生する。したがって、反応終了後の
塩素化塩化ビニル系樹脂は高濃度の塩酸溶液に懸濁した
状態である。
[0004] However, the water suspension method has a problem that cannot be essentially solved. In a reaction in which a chlorinated vinyl chloride resin is formed from a vinyl chloride resin and chlorine, hydrogen chloride is generated as shown in the following equation. Therefore, the chlorinated vinyl chloride resin after the completion of the reaction is in a state of being suspended in a high-concentration hydrochloric acid solution.

【0005】[0005]

【化1】 通常の塩素化塩化ビニル系樹脂は、最終的な出荷形態は
粉体状態である必要があるし、不純物となる塩化水素を
除去する必要がある。従って、反応後の塩素化塩化ビニ
ル系樹脂の水懸濁液は、脱水・水洗・乾燥される必要が
あり、プロセス全体としては後処理工程に大きな設備費
と乾燥、水洗に伴うランニングコストが必要となる。し
かも、水と塩化水素は共沸状態になるので、最終的には
完全に乾燥状態にするまで、塩化水素を製品から除去す
ることは出来ない。
Embedded image For a normal chlorinated vinyl chloride resin, the final shipping form needs to be in a powder state, and it is necessary to remove hydrogen chloride as an impurity. Therefore, the aqueous suspension of the chlorinated vinyl chloride resin after the reaction needs to be dehydrated, washed and dried, and the entire process requires large equipment costs for the post-treatment step and running costs associated with drying and washing. Becomes Moreover, since water and hydrogen chloride are in an azeotropic state, hydrogen chloride cannot be removed from the product until it is finally completely dried.

【0006】更に、水懸濁法では、反応終了時には反応
溶液が10重量%程度の高濃度の塩酸溶液になる。この
為、水懸濁法では反応装置には、チタン系やチタンパラ
ジウム系の高価な耐食性金属材料を利用するか、グラス
ライニング、フッ素ライニング等の表面処理を施した装
置を利用する必要がある。更に、反応溶液は後処理工程
に持ち込まれる為、後処理工程にも高価な耐食材料を使
用する必要がある。
Further, in the water suspension method, at the end of the reaction, the reaction solution becomes a high-concentration hydrochloric acid solution of about 10% by weight. For this reason, in the water suspension method, it is necessary to use an expensive corrosion-resistant metal material such as a titanium-based or titanium-palladium-based material, or to use a device that has been subjected to a surface treatment such as glass lining or fluorine lining. Further, since the reaction solution is carried into the post-treatment step, it is necessary to use an expensive corrosion-resistant material also in the post-treatment step.

【0007】この様に、水懸濁法の反応装置は、それ自
体は比較的単純であり、制御が容易な装置であるが、後
処理工程まで含めたプロセス全体を考慮すると、設備コ
スト及びランニングコストに大きな負荷が掛かると言う
欠点を有する装置であった。
As described above, the reaction apparatus of the water suspension method is relatively simple in itself and easy to control. However, considering the entire process including the post-treatment step, the equipment cost and the running cost are low. The device has a disadvantage that a large load is imposed on the cost.

【0008】一方、この様な水懸濁法の欠点を補う為
に、塩化ビニル系樹脂の粉体粒子と塩素との気固接触場
を反応場とする気固反応法による塩素化塩化ビニル系樹
脂の合成方法も提案されている。気固反応法では、発生
した塩化水素は気体として系内から排出されるので、反
応終了後に残存する塩化水素は、粉体粒子の隙間に存在
するものと粉体粒子表面に吸着している塩化水素のみで
ある。この様な残存塩化水素は、空気や窒素等のガスを
流通するか、真空ポンプにより系内を脱気することによ
り、容易に除去することができる。したがって、気固反
応法の後処理工程には、水洗・脱水・乾燥などの複雑な
工程を経由せず、不純物である塩化水素含有量が低い製
品を得ることができる。
On the other hand, in order to make up for such a drawback of the water suspension method, a chlorinated vinyl chloride-based resin is produced by a gas-solid reaction method using a gas-solid contact field between powder particles of vinyl chloride resin and chlorine as a reaction field. Resin synthesis methods have also been proposed. In the gas-solid reaction method, the generated hydrogen chloride is discharged from the system as a gas, so that the remaining hydrogen chloride after the reaction is completed is separated from the powder existing in the gaps between the powder particles and the chloride adsorbed on the surface of the powder particles. Only hydrogen. Such residual hydrogen chloride can be easily removed by flowing a gas such as air or nitrogen, or by degassing the system with a vacuum pump. Therefore, a product having a low content of hydrogen chloride as an impurity can be obtained without passing through complicated steps such as washing, dehydration, and drying in the post-treatment step of the gas-solid reaction method.

【0009】更に気固反応法では、反応系内に水が存在
しないか、若しくは微量の水分が粉体粒子に吸着してい
る状態で反応を実施する。この様な無水若しくは微水の
系では、金属材料に対する塩素および塩化水素の腐食性
は弱く、反応装置にはニッケル系等の比較的安価な耐食
性の金属材料を使用することができる。また、後処理工
程に持ち込まれる粉体粒子には、微量の塩素と塩化水素
が残留しているのみであるので、後処理工程にも安価な
金属材料を利用することができる。
Further, in the gas-solid reaction method, the reaction is carried out in a state where water does not exist in the reaction system or a small amount of water is adsorbed on the powder particles. In such an anhydrous or slightly water-based system, the corrosiveness of chlorine and hydrogen chloride to the metal material is weak, and a relatively inexpensive corrosion-resistant metal material such as a nickel system can be used for the reactor. Further, since only trace amounts of chlorine and hydrogen chloride remain in the powder particles brought into the post-processing step, an inexpensive metal material can be used in the post-processing step.

【0010】以上の様に、塩化ビニル系樹脂の粉体層と
塩素を反応させる気固反応法は、設備コスト、廃水処
理、安全性の面から優れた特徴を有する。
As described above, the gas-solid reaction method for reacting chlorine with a powder layer of a vinyl chloride resin has excellent features in terms of equipment cost, wastewater treatment, and safety.

【0011】しかしながら、気固反応法には品質面での
問題があった。即ち、気固反応法では反応を均一に進行
させることが難しく、水懸濁法で得られた同じ反応率の
塩素化塩化ビニル系樹脂と比較すると品質が低下すると
言う欠点があった。品質の低下とは、ビカット軟化温度
やTgが低くなり耐熱性が低下する、加熱成形後の樹脂
が着色してしまい初期着色性が悪化する、成形後の樹脂
を高温下にさらした場合の熱分解が進行し易くなり熱安
定性が低下する等の問題である。この様な品質の低下
は、反応の不均一性が原因であると考えられている。こ
こで、反応が不均一であると言うことは、一つ一つの粒
子毎に反応率が異なると言う巨視的な不均一さと、一つ
の粒子の表面と内部において反応率が異なると言う微視
的な不均一さの両者が含まれている。更に、光を反応促
進に用いる気固反応法では、光源からの発熱により樹脂
が変質してしまい、初期着色性や熱安定性の悪化が指摘
されている。この様に、気固反応法で得られた樹脂は耐
熱性、初期着色性、熱安定性等の品質上の問題点を抱え
ていた。
However, the gas-solid reaction method has a quality problem. That is, the gas-solid reaction method has a drawback that it is difficult to make the reaction proceed uniformly, and the quality is lower than that of a chlorinated vinyl chloride resin having the same conversion obtained by the water suspension method. Deterioration in quality means that the Vicat softening temperature or Tg decreases and the heat resistance decreases, the resin after heat molding becomes colored and the initial colorability deteriorates, and the heat when the resin after molding is exposed to high temperatures. There are problems such as decomposition progressing easily and thermal stability decreasing. It is believed that such degradation is due to non-uniformity of the reaction. Here, that the reaction is non-uniform means that the reaction rate is different for each individual particle, and that the reaction is different between the surface and the inside of one particle. Both non-uniformities. Furthermore, in the gas-solid reaction method using light to promote the reaction, it is pointed out that the resin is deteriorated by the heat generated from the light source, and the initial coloring property and the thermal stability are deteriorated. Thus, the resin obtained by the gas-solid reaction method has quality problems such as heat resistance, initial coloring property, and thermal stability.

【0012】この様な気固反応法の欠点を解決する為の
手段が幾つか提案されている。例えば、気固反応法にお
ける反応の不均一性の原因が、ラジカル発生源である光
が塩化ビニル系樹脂に対して均一に照射されない事に起
因することから、ラジカル発生源を光エネルギー以外に
求める方法である。特開昭59−24705は、塩素中
に少量の酸素を混入する事により、光の不在下で塩化ビ
ニル系樹脂の塩素化を進行させる方法である。また、特
公昭60−2322は、高圧低温下で塩化ビニル系樹脂
に塩素を含浸させた後に、加熱する事により、塩化ビニ
ル系樹脂内において熱ラジカルを発生させて塩素化塩化
ビニル系樹脂を得る方法である。しかし、これらの方法
では、反応時間が長い上に、得られる塩素化塩化ビニル
系樹脂は反応率が低かったり、品質上状の問題が十分に
解決されてはいなかった。一方、光をラジカル発生源と
して用いる方法においても、塩素化塩化ビニル系樹脂の
品質を改善するための方法は提案されている。特公昭5
4−39878では、流動層型反応器の粉体層中に光源
を挿入し、光源の周囲に反応に関与しない波長領域の光
を遮断する溶液を循環させて、光源の熱による塩化ビニ
ル系樹脂の変質を防止する方法が提案されている。しか
し、この様な方法では、光源を塩化ビニル系樹脂の粉体
層に挿入する為、光が光源近傍にしか照射されず、粉体
層が均一に塩素化され難い。特に、生産設備規模の装置
において塩素化の不均一性を改善するためには、多数の
光源を粉体層中に挿入する必要があり、非現実的であ
る。特公昭52−15638では、内部に光源を挿入し
た粉体層を一定流速以上の塩素ガスで流動化させて粉体
粒子間隔を広げることにより、粉体層を不透明化して粉
体層の内部まで光が届くようにしている。しかし、この
様な方法でも、粉体層内に多数の光源を挿入する必要が
あるし、粉体層が不透明化する空塔速度では粉体層が飛
散し、粉体層の回収設備を設置しなければならず、更に
は有毒で腐食性の高い塩素ガスを大量に送気する設備が
必要である。この様な装置は、設備費も高く、メンテナ
ンス性が低い上に通過する塩素の反応率が極めて低いと
言う欠点を有している。
Several means have been proposed for solving the drawbacks of such a gas-solid reaction method. For example, the non-uniformity of the reaction in the gas-solid reaction method is caused by the fact that the light which is the radical generation source is not uniformly irradiated on the vinyl chloride resin. Is the way. JP-A-59-24705 is a method in which a small amount of oxygen is mixed into chlorine to promote chlorination of a vinyl chloride resin in the absence of light. Japanese Patent Publication No. 60-2322 discloses that a vinyl chloride resin is impregnated with chlorine under high pressure and low temperature and then heated to generate thermal radicals in the vinyl chloride resin to obtain a chlorinated vinyl chloride resin. Is the way. However, in these methods, the reaction time is long, and the obtained chlorinated vinyl chloride resin has a low reaction rate and the quality problems have not been sufficiently solved. On the other hand, also in a method using light as a radical generation source, a method for improving the quality of a chlorinated vinyl chloride resin has been proposed. Tokunosho 5
In 4-39878, a light source is inserted into a powder bed of a fluidized-bed reactor, and a solution that blocks light in a wavelength region that does not participate in the reaction is circulated around the light source, and a vinyl chloride resin is generated by heat of the light source There has been proposed a method for preventing the deterioration of the material. However, in such a method, since the light source is inserted into the powder layer of the vinyl chloride resin, light is irradiated only to the vicinity of the light source, and the powder layer is hard to be uniformly chlorinated. In particular, in order to improve the chlorination non-uniformity in a production-scale apparatus, it is necessary to insert a large number of light sources into the powder layer, which is impractical. In Japanese Patent Publication No. 52-15638, the powder layer, in which a light source is inserted, is fluidized with chlorine gas at a constant flow rate or more to widen the powder particle interval, thereby making the powder layer opaque and reaching the inside of the powder layer. Light is allowed to reach. However, even with such a method, it is necessary to insert a large number of light sources into the powder layer, and the powder layer scatters at the superficial velocity at which the powder layer becomes opaque, and a powder layer recovery facility is installed. In addition, equipment for supplying a large amount of toxic and highly corrosive chlorine gas is required. Such a device has disadvantages that the equipment cost is high, the maintainability is low, and the reaction rate of passing chlorine is extremely low.

【0013】以上のように、従来の技術では水懸濁法で
は後処理設備と装置腐食の問題があり、気固反応法では
反応の不均一に起因する品質の低下が問題となってい
た。
As described above, in the prior art, the water suspension method has a problem of post-treatment equipment and equipment corrosion, and the gas-solid reaction method has a problem of quality deterioration due to non-uniform reaction.

【0014】[0014]

【発明が解決しようとする課題】本発明の目的は、後処
理の簡便性と設備コスト性に優れた気固反応法におい
て、耐熱性、熱安定性が高い塩素化塩化ビニル系樹脂を
得る方法および装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for obtaining a chlorinated vinyl chloride resin having high heat resistance and heat stability in a gas-solid reaction method excellent in simplicity of post-treatment and equipment cost. And to provide a device.

【0015】[0015]

【課題を解決するための手段】本発明者らが鋭意検討を
おこなった結果、反応促進用の光源を特定の位置に設置
して塩化ビニル系樹脂と塩素とを気固反応法で反応させ
ることにより、迅速かつ均一に塩素化反応が進行でき、
簡便な後処理により残存塩化水素量を低減でき、しかも
耐熱性と熱安定性が高い塩素化塩化ビニル系樹脂を製造
できることを見いだし、本発明を完成した。
Means for Solving the Problems As a result of intensive studies made by the present inventors, it has been found that a reaction promoting light source is installed at a specific position and a vinyl chloride resin is reacted with chlorine by a gas-solid reaction method. Allows the chlorination reaction to proceed quickly and uniformly,
The inventors have found that the amount of residual hydrogen chloride can be reduced by a simple post-treatment, and that a chlorinated vinyl chloride resin having high heat resistance and high thermal stability can be produced, and the present invention has been completed.

【0016】すなわち、本発明は、(1)流動状態にある
塩化ビニル系樹脂の粉体層中及び/又は粉体層外に塩素
を供給しながら、該粉体層の外部に設置した光源より粉
体層表面に反応促進の為の光を照射し、塩化ビニル系樹
脂を塩素化することを特徴とする塩素化塩化ビニル系樹
脂の製造方法(請求項1)、(2)回転型反応装置若しく
は攪拌型反応装置を用いて、塩化ビニル系樹脂の粉体を
流動状態にさせる請求項1に記載の塩素化塩化ビニル系
樹脂の製造方法(請求項2)、(3)反応装置が回転型反
応装置であり、更に光源が反応装置の内部に設置されて
いる請求項1または2に記載の塩素化塩化ビニル系樹脂
の製造方法(請求項3)、(4)光源が低圧水銀灯、高圧
水銀灯、超高圧水銀灯、メタルハライドランプから選択
される少なくとも一種である請求項1、2または3に記
載の塩素化塩化ビニル系樹脂の製造方法(請求項4)、
(5) 塩素の供給位置が粉体層中である請求項2、3また
は4に記載の塩素化塩化ビニル系樹脂の製造方法(請求
項5)、(6)流動状態にある塩化ビニル系樹脂の粉体層
中及び/又は粉体層外に塩素を供給しながら、該粉体層
の外部に設置した光源より粉体層表面に反応促進の為の
光を照射し、塩化ビニル系樹脂を塩素化することを特徴
とする塩素化塩化ビニル系樹脂の製造装置(請求項
6)、(7)回転型反応装置若しくは攪拌型反応装置を用
いて、塩化ビニル系樹脂の粉体を流動状態にさせる請求
項6に記載の塩素化塩化ビニル系樹脂の製造装置(請求
項7)、(8)反応装置が回転型反応装置であり、更に光
源が反応装置の内部に設置されている請求項6または7
に記載の塩素化塩化ビニル系樹脂の製造装置(請求項
8)、および(9)光源が低圧水銀灯、高圧水銀灯、超高
圧水銀灯、メタルハライドランプから選択される少なく
とも一種である請求項6、7または8に記載の塩素化塩
化ビニル系樹脂の製造装置(請求項9)、(10)塩素ガス
供給ノズルの供給口が下向きに塩素ガスを放出するよう
に配置されている請求項8又は9に記載の塩素化塩化ビ
ニル系樹脂の製造装置(請求項10)、(11)塩素ガス供
給ノズルが粉体層内部に設置されている請求項8、9ま
たは10に記載の塩素化塩化ビニル系樹脂の製造装置
(請求項11)、(12)ガス排出口が粉体層の外部に設置
されている請求項8、9、10または11に記載の記載
の塩素化塩化ビニル系樹脂の製造装置(請求項12)、
(13)反応容器の回転軸線上に配置した円筒状の非回転管
を反応容器内部に挿入し、非回転管と反応容器の間を回
転ガスシールを用いて密閉し、反応容器内部に挿入され
た部分の非回転管に光源、塩素ガス供給ノズル、ガス排
出ノズル、熱電対から選ばれる少なくとも一つ以上の部
品が設置されている請求項8、9、10、11または1
2に記載の塩素化塩化ビニル系樹脂の製造装置(請求項
13)、(14)反応容器の回転軸線と垂直な面に配置され
た円盤状の非回転板を反応容器の開口部に被せ、非回転
板と反応容器の間を回転シールを用いて密閉し、非回転
板に光源、塩素ガス供給ノズル、ガス排出ノズル、熱電
対から選ばれる少なくとも一つ以上の部品が設置されて
いる請求項8、9、10、11、または12に記載の塩
素化塩化ビニル系樹脂の製造装置(請求項14)、(15)
反応容器の回転軸線上であり、且つ非回転管又は非回
転板と反対側の位置に取り付けた2重円管構造のロータ
リージョイントを介してジャケットに冷媒又は熱媒を供
給する請求項13、14に記載の塩素化塩化ビニル系樹
脂の製造装置(請求項15)、に関する。
That is, the present invention relates to (1) a method in which chlorine is supplied into and / or out of a powder layer of a vinyl chloride resin in a fluidized state while a chlorine source is provided outside the powder layer. A method for producing a chlorinated vinyl chloride resin, which comprises irradiating the surface of the powder layer with light for accelerating the reaction and chlorinating the vinyl chloride resin (claim 1), (2) a rotary reactor The method for producing a chlorinated vinyl chloride resin according to claim 1, wherein the powder of the vinyl chloride resin is brought into a fluidized state by using a stirring type reactor (claim 2). The method for producing a chlorinated vinyl chloride resin according to claim 1 or 2, wherein the light source is installed inside the reactor (claim 3), and (4) the light source is a low-pressure mercury lamp or a high-pressure mercury lamp. , Ultra-high pressure mercury lamp, metal halide lamp The method of producing a chlorinated vinyl chloride resin according to claim 1, 2 or 3 (claim 4),
(5) The method for producing a chlorinated vinyl chloride resin according to (2), (3) or (4), wherein the chlorine supply position is in the powder bed, (6) the vinyl chloride resin in a fluidized state. While supplying chlorine into and / or outside the powder layer, the surface of the powder layer is irradiated with light for accelerating the reaction from a light source installed outside the powder layer, and the vinyl chloride resin is removed. A chlorinated vinyl chloride resin manufacturing apparatus characterized in that it is chlorinated (claim 6), and (7) the powder of the vinyl chloride resin is brought into a fluid state using a rotary reactor or a stirring reactor. The apparatus for producing a chlorinated vinyl chloride resin according to claim 6 (claim 7), (8) the reaction apparatus is a rotary reaction apparatus, and the light source is installed inside the reaction apparatus. Or 7
(9) The light source is at least one selected from a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and a metal halide lamp. The apparatus for producing a chlorinated vinyl chloride resin according to claim 8, wherein the supply port of the chlorine gas supply nozzle is disposed so as to discharge chlorine gas downward. (11) The chlorinated vinyl chloride resin according to claim 8, 9 or 10, wherein a chlorine gas supply nozzle is provided inside the powder layer. The apparatus for producing a chlorinated vinyl chloride resin according to claim 8, 9, 10 or 11, wherein the gas discharge port is provided outside the powder layer. Item 12),
(13) A cylindrical non-rotating tube arranged on the rotation axis of the reaction vessel is inserted into the reaction vessel, the space between the non-rotating pipe and the reaction vessel is sealed using a rotating gas seal, and inserted into the reaction vessel. The at least one component selected from the group consisting of a light source, a chlorine gas supply nozzle, a gas discharge nozzle, and a thermocouple is provided on the non-rotating tube of the portion.
2. The apparatus for producing a chlorinated vinyl chloride resin according to claim 2 (claim 13), (14) a disc-shaped non-rotating plate arranged on a plane perpendicular to the rotation axis of the reaction vessel, covering the opening of the reaction vessel; The non-rotating plate and the reaction vessel are hermetically sealed using a rotary seal, and the non-rotating plate is provided with at least one component selected from a light source, a chlorine gas supply nozzle, a gas discharge nozzle, and a thermocouple. The apparatus for producing a chlorinated vinyl chloride resin according to claim 8, 9, 10, 11, or 12, (claim 14), (15)
15. The cooling medium or the heating medium is supplied to the jacket via a rotary joint having a double circular tube structure mounted on the rotation axis of the reaction vessel and opposite to the non-rotating tube or the non-rotating plate. (Claim 15).

【0017】[0017]

【発明の実施の形態】本発明で言う粉体とは、気相中に
おいて単独に移動可能な粒子の集合体であり、各粒子の
粒径の目安としてはおよそ10μm以上2000μm以
下の範囲にある。本発明では、気相中において単独で移
動可能な粒子の一つ一つを粉体粒子、粉体粒子の集合体
を粉体層と呼び、粉体粒子に相当する粒子が水に分散し
た液体を水懸濁液と呼び区別する。
DETAILED DESCRIPTION OF THE INVENTION A powder referred to in the present invention is an aggregate of particles that can move alone in a gas phase, and the size of each particle is in the range of about 10 μm to 2000 μm. . In the present invention, each of the particles that can move alone in the gas phase is referred to as a powder particle, an aggregate of the powder particles is referred to as a powder layer, and a liquid in which particles corresponding to the powder particles are dispersed in water. Is referred to as an aqueous suspension and is distinguished.

【0018】光源の設置位置は本発明において最も重要
な要素である。即ち、本発明では、光源を粉体層の外側
に設置し、粉体層の表面に光を照射することが必須であ
る。光源を粉体層の外側に設置する理由は、第一に、高
温の光源が樹脂に直接接触しないこと、第二に光が広範
囲に分散して照射されること、第三に多様な反応装置が
選択できることが挙げられる。
The installation position of the light source is the most important factor in the present invention. That is, in the present invention, it is essential that the light source is provided outside the powder layer and the surface of the powder layer is irradiated with light. The reasons for installing the light source outside the powder layer are firstly that the high-temperature light source does not directly contact the resin, secondly that light is widely dispersed and irradiated, and thirdly that various types of reactors are used. Can be selected.

【0019】第一の理由である高温の光源が粉体層に直
接接触しないことの利点は、樹脂の品質劣化を低減する
ことにある。塩化ビニル系樹脂の塩素化反応は反応場の
温度を60〜80℃に設定すると反応速度が著しく向上
する。しかし、原料である塩化ビニル系樹脂のガラス転
移温度は80〜85℃程度であり、反応温度をこれ以上
に設定すると樹脂の物性が変化し、熱安定性性および成
型時の着色性が劣化してしまう。ところが、塩化ビニル
系樹脂の塩素化反応は強い発熱反応である為、反応が始
まると同時に除熱操作をする必要がある。この様に、塩
化ビニル系樹脂の塩素化反応は厳密な温度制御を必要と
する。光源を粉体層の内部に設置すると、光源の発熱と
多量に発生する反応熱とにより、光源の周囲の粉体層は
部分的に温度が著しく上昇し、樹脂が物性変化を起こ
し、品質が劣化する。特に、気固反応法では、熱伝導性
が悪く、除熱が困難な為、懸濁法よりも悪影響を及ぼ
す。これに対して、光源を粉体層の外部に設置する本発
明では、光源が樹脂に直接接触せず、光が分散して広範
囲で緩やかな反応が進行する為、樹脂の劣化を低減する
ことが出来る。
The first reason, that the high-temperature light source does not directly contact the powder layer, is to reduce resin quality deterioration. The reaction rate of the chlorination reaction of a vinyl chloride resin is significantly improved when the temperature of the reaction field is set at 60 to 80 ° C. However, the glass transition temperature of the vinyl chloride resin as a raw material is about 80 to 85 ° C., and when the reaction temperature is set higher than this, the physical properties of the resin change, and the thermal stability and the coloring property during molding deteriorate. Would. However, since the chlorination reaction of the vinyl chloride resin is a strongly exothermic reaction, it is necessary to perform a heat removal operation at the same time as the reaction starts. Thus, the chlorination reaction of the vinyl chloride resin requires strict temperature control. When the light source is installed inside the powder layer, the temperature of the powder layer around the light source partially rises significantly due to the heat generated by the light source and a large amount of reaction heat, causing the resin to change its physical properties and reduce the quality. to degrade. In particular, in the gas-solid reaction method, thermal conductivity is poor, and it is difficult to remove heat, so that the gas-solid reaction method has a more adverse effect than the suspension method. On the other hand, in the present invention in which the light source is installed outside the powder layer, the light source does not directly contact the resin, the light is dispersed, and a gentle reaction proceeds over a wide range. Can be done.

【0020】第二の理由である光を分散させることの利
点は、個々の粉体粒子中での反応速度の低下による反応
率の均一化と反応面積の増大を両立できることにある。
The second reason for dispersing light is that the reaction rate can be made uniform and the reaction area can be increased by reducing the reaction rate in each powder particle.

【0021】光を用いて塩化ビニル系樹脂と塩素とを反
応させる場合には、個々の粉体粒子に照射される光が強
力な程、反応速度が速くなる。一見、反応速度が迅速な
方が有利に思えるが、塩化ビニル系樹脂の塩素化反応で
は、粉体粒子内への塩素の拡散も重要な因子であり、個
々の粉体粒子に照射される光は弱い方が良い。
In the case of reacting vinyl chloride resin with chlorine using light, the reaction speed increases as the intensity of the light applied to the individual powder particles increases. At first glance, a faster reaction rate seems to be advantageous, but in the chlorination reaction of vinyl chloride resin, diffusion of chlorine into the powder particles is also an important factor. Is weaker.

【0022】温度と気相部の塩素濃度が一定で有れば、
粉体粒子内への塩素ガスの拡散速度は一定である。図1
aに示す様に、強力な光を粉体粒子に照射すると塩素ガ
スは粉体粒子の表面近傍の樹脂とのみ反応し、内部まで
拡散することができない。この場合には粉体粒子の表面
部分と中心部分の間では反応率に大きな差が生じる。逆
に、本発明の様に光を分散させた場合には、図1bに示
すように粉体粒子中での塩素化反応速度は低下するの
で、粉体粒子内部まで塩素が拡散し易くなり、粉体粒子
の表面部分と中心部分での反応率は均一性は増す。個々
の粉体粒子内部の反応率が均一な樹脂は、耐熱性、熱安
定性、初期着色性に優れた樹脂となる。
If the temperature and the chlorine concentration in the gas phase are constant,
The diffusion rate of chlorine gas into the powder particles is constant. Figure 1
As shown in a, when strong light is applied to the powder particles, the chlorine gas reacts only with the resin near the surface of the powder particles and cannot diffuse to the inside. In this case, a large difference occurs in the reaction rate between the surface portion and the central portion of the powder particles. Conversely, when light is dispersed as in the present invention, the chlorination reaction rate in the powder particles decreases as shown in FIG. 1b, so that chlorine is easily diffused into the powder particles, The reaction rates at the surface portion and the central portion of the powder particles are more uniform. A resin having a uniform reaction rate inside each powder particle becomes a resin having excellent heat resistance, heat stability, and initial coloring properties.

【0023】一方、個々の粉体粒子中での反応速度を低
下させた場合には、反応する粉体粒子の個数を増加させ
なければ粉体層全体としての反応速度が低下してしま
う。したがって、出来るだけ粉体層の広い面積に光を照
射し、且つ全ての粉体粒子に均等に光を照射される機会
を与える必要がある。
On the other hand, when the reaction rate in individual powder particles is reduced, the reaction rate of the entire powder layer is reduced unless the number of reacting powder particles is increased. Therefore, it is necessary to irradiate as large a surface area of the powder layer as possible with light and to give all the powder particles an opportunity to irradiate light uniformly.

【0024】本発明の様に、光源を粉体の外部に設置す
ると、光が照射される領域は図2aの如く粉体層の表面
である。粉体層の表面積は装置の形状により異なるが、
比較的容易に大表面積を得ることができる。逆に、粉体
層内に光源を設置すると、図2bの様に光が照射される
部分は光源周辺に限られてしまう。この様に、本発明で
は、光源を粉体層の外部に設置するという極めて単純な
操作により、個々の粉体粒子中の反応率を均一にし、且
つ粉体層全体としての反応速度は低下させないことがで
きる手法である。
When the light source is installed outside the powder as in the present invention, the area irradiated with light is the surface of the powder layer as shown in FIG. 2A. The surface area of the powder layer depends on the shape of the device,
A large surface area can be obtained relatively easily. Conversely, when a light source is installed in the powder layer, the portion irradiated with light is limited to the vicinity of the light source as shown in FIG. 2B. As described above, in the present invention, the reaction rate in each of the powder particles is made uniform and the reaction rate of the entire powder layer is not reduced by a very simple operation of installing the light source outside the powder layer. It is a technique that can be.

【0025】第三の理由である多様な反応装置を利用で
きることの利点について説明する。光源を粉体外に設置
する本発明では、粉体を流動させ、全ての粉体粒子を粉
体表面に露出させることは、後述するような回転型の粉
体装置や機械攪拌型の粉体装置を使用することが出来、
比較的容易である。穏やかな混合・攪拌により、全ての
粉体粒子を粉体層表面に露出させることができるので、
粉体粒子の飛散も少なく集塵装置なども不要である。
The third reason, the advantage of being able to use various reactors, will be described. In the present invention, in which the light source is installed outside the powder, flowing the powder and exposing all the powder particles to the powder surface is performed by a rotary powder device or a mechanical stirring type powder as described later. Can use the device,
Relatively easy. Because all powder particles can be exposed on the surface of the powder layer by gentle mixing and stirring,
There is little scattering of powder particles, and a dust collection device is not required.

【0026】一方、光源を粉体内に設置する方法では、
特開昭52−15638の様に多数の光源を粉体層内に
挿入する必要があり、装置を回転させたり、粉体層を機
械的に攪拌したりして流動させることは不可能である。
したがって、流動層式の反応装置を使用することが唯一
の方法である。しかし、流動層式の反応装置を用いた場
合には、光源表面に全ての粉体粒子を均等に移動させる
為には、粉体層内の複数箇所に光源を設置し、且つ多量
の塩素ガスで粉体を流動化させる必要がある。この場
合、多量の粒子が飛散するため、集塵装置を設置しなけ
ればならず、更には集塵された粉体粒子を再度、反応槽
内に戻さなければならない。
On the other hand, in the method of installing the light source in the powder,
As in Japanese Patent Application Laid-Open No. 52-15638, it is necessary to insert a large number of light sources into the powder layer, and it is impossible to rotate the apparatus or mechanically agitate the powder layer to make it flow. .
Therefore, the use of a fluidized bed reactor is the only method. However, in the case of using a fluidized bed type reaction apparatus, in order to move all the powder particles evenly on the light source surface, light sources should be installed at a plurality of locations in the powder bed and a large amount of chlorine gas should be used. Need to fluidize the powder. In this case, since a large amount of particles are scattered, a dust collecting device must be installed, and further, the collected powder particles must be returned to the reaction tank.

【0027】以上の様に、光源を粉体層の外部に設置す
る本発明は、塩化ビニル系樹脂を塩素ガスと光反応を利
用して塩素化する場合には、極めて合理的且つ有効な方
法であることが解った。
As described above, the present invention in which the light source is installed outside the powder layer is a very rational and effective method for chlorinating a vinyl chloride resin by utilizing a photoreaction with chlorine gas. It turned out that.

【0028】本発明で用いる塩化ビニル系樹脂は、粉体
である必要がある。本発明で言う粉体とは、前述の様に
気相中において単独に移動可能な粒子の集合体であり、
各粒子の粒径の目安としては、およそ10μm以上20
00μm以下(平均粒径が50〜500μm)の範囲に
ある。本発明では、気相中において単独で移動可能な粒
子の一つ一つを粉体粒子、粉体粒子の集合体を粉体層と
呼び区別する。
The vinyl chloride resin used in the present invention needs to be a powder. The powder referred to in the present invention is an aggregate of particles that can move alone in the gas phase as described above,
As a standard of the particle size of each particle, it is about 10 μm to 20 μm.
It is within a range of 00 μm or less (average particle size is 50 to 500 μm). In the present invention, each of the particles that can move alone in the gas phase is referred to as a powder particle, and an aggregate of the powder particles is referred to as a powder layer and distinguished.

【0029】粉体粒子の粒径分布は、粉体の流動性を高
める観点、および反応を均一に進行させると言う観点か
ら、均一であることが好ましく、粒径の絶対値にも好ま
しい範囲がある。したがって、本発明で用いる塩化ビニ
ル系樹脂の粉体層は、50μm以上、500μm以下の
粒子径が主体となる粉体粒子(平均粒径が100〜30
0μm)の集合体であることが好ましい。個々の粉体粒
子は、塩化ビニル系樹脂の連続相からなっても良いし、
より小さな一次粒子の集合体であっても良い。
The particle size distribution of the powder particles is preferably uniform from the viewpoint of enhancing the fluidity of the powder and allowing the reaction to proceed uniformly, and the absolute value of the particle size also has a preferable range. is there. Therefore, the powder layer of the vinyl chloride resin used in the present invention has powder particles mainly having a particle diameter of 50 μm or more and 500 μm or less (the average particle diameter is 100 to 30 μm).
(0 μm). Individual powder particles may consist of a continuous phase of vinyl chloride resin,
An aggregate of smaller primary particles may be used.

【0030】塩化ビニル系樹脂の製造方法は、懸濁重合
法、塊状重合法、気相重合法、乳化重合法等の様々な方
法があるが、本発明で用いる塩化ビニル系樹脂はいずれ
の方法で得られたものでも任意に使用できる。また、塩
化ビニルと酢酸ビニル等の不飽和炭化水素化合物との共
重合体を用いても良い。重合反応後に得られた塩化ビニ
ル系樹脂が水懸濁液で有れば、乾燥する必要があり、塊
状であれば粉砕等の操作を施す必要がある。塊状重合で
得られる塩化ビニル系樹脂は、粉砕工程が困難であり、
気相重合で合成する塩化ビニル系樹脂は通常は入手困難
である。また、乳化重合法で得られる塩化ビニル系樹脂
は乳化剤が多量に混入している。したがって、本発明に
用いる塩化ビニル系樹脂は、懸濁重合法で得られるもの
が好ましい。本発明では、塩化ビニル系樹脂が流動可能
な粉体層であれば、水分が含まれていても使用できる
が、含水量が多すぎると水懸濁法の説明で前述した様
に、反応により発生する塩化水素が樹脂中から除去し難
くなる。したがって、粉体層中の含水量が5重量%未満
であることが好ましい。又、静電気による粉体粒子の凝
集や容器への付着を防止するために、塩化ビニル系樹脂
の粉体に意図的に5重量%未満の水分を含ませることも
できる。
There are various methods for producing a vinyl chloride resin, such as a suspension polymerization method, a bulk polymerization method, a gas phase polymerization method, and an emulsion polymerization method. Any of those obtained in can be used arbitrarily. Further, a copolymer of vinyl chloride and an unsaturated hydrocarbon compound such as vinyl acetate may be used. If the vinyl chloride resin obtained after the polymerization reaction is a water suspension, it is necessary to dry the resin, and if it is a lump, it is necessary to perform an operation such as pulverization. The vinyl chloride resin obtained by bulk polymerization is difficult to pulverize,
Vinyl chloride resins synthesized by gas phase polymerization are usually difficult to obtain. The vinyl chloride resin obtained by the emulsion polymerization method contains a large amount of an emulsifier. Therefore, the vinyl chloride resin used in the present invention is preferably obtained by a suspension polymerization method. In the present invention, if the vinyl chloride resin is a flowable powder layer, it can be used even if it contains water, but if the water content is too large, as described in the description of the water suspension method, the reaction is carried out. It is difficult to remove the generated hydrogen chloride from the resin. Therefore, the water content in the powder layer is preferably less than 5% by weight. Further, in order to prevent aggregation of the powder particles due to static electricity and to prevent the powder particles from adhering to the container, the vinyl chloride resin powder may intentionally contain less than 5% by weight of water.

【0031】懸濁重合法や乳化重合法により塩化ビニル
系樹脂を合成した場合には、塩化ビニル系樹脂の微粒子
が水に分散した状態であるので、乾燥するだけで粉体粒
子を得られる。しかし、この場合、粉体粒子表面にスキ
ン層と呼ばれる連続層が形成されており、塩素ガスの内
部への浸透を阻害し、反応速度が遅くなったり、反応率
が粉体粒子の半径方向に不均一になる場合がある。した
がって、本発明で用いる塩化ビニル系樹脂の粉体粒子
は、塩素化反応前に予め粉砕し、スキン層を破壊して用
いることも効果的である。
When a vinyl chloride resin is synthesized by a suspension polymerization method or an emulsion polymerization method, fine particles of the vinyl chloride resin are dispersed in water, so that powder particles can be obtained only by drying. However, in this case, a continuous layer called a skin layer is formed on the surface of the powder particles, which impedes the penetration of chlorine gas into the inside, and reduces the reaction rate or the reaction rate in the radial direction of the powder particles. It may be uneven. Therefore, it is also effective that the powder particles of the vinyl chloride resin used in the present invention are pulverized in advance before the chlorination reaction to break the skin layer before use.

【0032】本発明で用いる塩素は、一般に工業的に用
いられている塩素であれば、特に制限はなく使用するこ
とができる。但し、塩素中に酸素が含まれると、得られ
る塩素化塩化ビニル系樹脂の熱安定性や成型時の着色性
が悪化するので、塩素中に含まれる酸素濃度は100p
pm以下であることが好ましく、20ppm以下である
ことが最も好ましい。また、塩素中に水分が含まれる
と、反応により発生する塩化水素が樹脂中から除去し難
くなったり、装置の腐食を引き起こすことがあるので、
1000ppm以下で有ることが好ましい。また、反応
速度や反応温度を調節するために、塩素を窒素やアルゴ
ン等の不活性ガスで希釈しても良い。
The chlorine used in the present invention is not particularly limited as long as it is generally used industrially. However, if oxygen is contained in chlorine, the resulting chlorinated vinyl chloride resin deteriorates in thermal stability and colorability at the time of molding. Therefore, the concentration of oxygen contained in chlorine is 100 p.
pm or less, and most preferably 20 ppm or less. In addition, if water is contained in chlorine, hydrogen chloride generated by the reaction becomes difficult to remove from the resin, or may cause corrosion of the device,
It is preferably at most 1000 ppm. Further, chlorine may be diluted with an inert gas such as nitrogen or argon in order to adjust the reaction rate or the reaction temperature.

【0033】本発明における塩素ガスの供給方法につい
て説明する。本発明においては、反応装置内に供給する
塩素の状態は、気体でも液体でも良い。一般に工業的に
使用される塩素は、液体塩素を高圧ボンベに封入したも
のである。したがって、気体で供給する場合には、液体
塩素ボンベから取り出した液体塩素を別の容器中で気化
させた後に反応容器に供給すれば良い。液体塩素を反応
容器内に供給する場合には、液体塩素ボンベから取り出
した液体塩素を、反応装置内で気化させれば良い。反応
装置内で塩素を気化させる方法は、気化熱が反応熱を奪
い反応装置内の温度上昇を緩和する効果が有り好まし
い。但し、液体塩素が直接塩化ビニル系樹脂に接触する
と、塩化ビニル系樹脂の表面構造及び内部構造が変化し
てしまう為、液体塩素が反応容器内で気化するより以前
に塩化ビニル系樹脂と接触しない工夫をする必要があ
る。
The method for supplying chlorine gas in the present invention will be described. In the present invention, the state of chlorine supplied into the reactor may be gas or liquid. Generally, industrially used chlorine is liquid chlorine sealed in a high-pressure cylinder. Therefore, in the case of supplying gaseous gas, the liquid chlorine removed from the liquid chlorine cylinder may be vaporized in another container and then supplied to the reaction container. When supplying liquid chlorine into the reaction vessel, the liquid chlorine removed from the liquid chlorine cylinder may be vaporized in the reactor. The method of vaporizing chlorine in the reactor is preferable because it has the effect of heat of vaporization depriving the heat of reaction and mitigating a rise in temperature in the reactor. However, if liquid chlorine comes into direct contact with the vinyl chloride resin, the surface structure and internal structure of the vinyl chloride resin will change, so the liquid chlorine will not come into contact with the vinyl chloride resin before vaporizing in the reaction vessel. It needs to be devised.

【0034】反応容器内における塩素の供給位置は任意
である。図3bの様に塩素を塩化ビニル系樹脂の粉体層
中に供給しても良いし、図3aの様に気相部分に供給し
ても良い。a位置に供給すると、塩素が粉体粒子に十分
浸透した後に光が照射されている粉体層表面に達するた
め、反応効率が良い。また、供給口の形状は塩素が粉体
層の下向きに放出されるようにすると良い。気相部に塩
素を供給する場合には、塩素が下向きに放出されること
により、粉体層表面に塩素が効率的に供給される。粉体
層内部に塩素を供給する場合には、塩素が下向きに放出
されることにより、塩素ガスが粉体層内部に均一に拡散
するし、塩素供給口が粉体粒子により詰まることが防止
される。さらに、前述の様に液体塩素と粉体層が接触す
る事は望ましくないので、a位置の様に粉体層の内部に
塩素を供給する場合には、塩素が粉体層に接触するまで
に気化させておくのが望ましい。
The supply position of chlorine in the reaction vessel is arbitrary. Chlorine may be supplied to the vinyl chloride resin powder layer as shown in FIG. 3B, or may be supplied to the gas phase as shown in FIG. 3A. When supplied to the position a, chlorine sufficiently penetrates the powder particles and then reaches the surface of the powder layer to which the light is irradiated, so that the reaction efficiency is high. Further, the shape of the supply port is preferably such that chlorine is discharged downward from the powder layer. When supplying chlorine to the gas phase, chlorine is efficiently supplied to the surface of the powder layer by discharging chlorine downward. When supplying chlorine into the powder layer, the chlorine gas is uniformly diffused into the powder layer by releasing chlorine downward, thereby preventing the chlorine supply port from being clogged with powder particles. You. Further, since it is not desirable that the liquid chlorine and the powder layer come into contact with each other as described above, when chlorine is supplied to the inside of the powder layer as in the position a, it is not until the chlorine comes into contact with the powder layer. It is desirable to vaporize.

【0035】本発明における塩化水素ガスの排出方法に
ついて説明する。塩素化塩化ビニル系樹脂の生産に従来
用いられている懸濁液法では、反応時に生成する塩化水
素は水相に溶解するため、塩化水素の排出を考慮しなく
ても良い。しかし、気固接触場で反応を実施する本発明
では、供給する塩素と同量の塩化水素を装置内部から排
出しなければ、装置内部の圧力が極端に上昇してしま
う。塩化水素の放出方法は任意の方法で良いが、塩化水
素排出時に塩素も同時に排出されると効率が悪いので、
塩化水素の排出口は塩素の供給口と出来るだけ離してお
くことが好ましい。
The method for discharging hydrogen chloride gas in the present invention will be described. In the suspension method conventionally used for the production of chlorinated vinyl chloride resins, hydrogen chloride generated during the reaction dissolves in the aqueous phase, so that it is not necessary to consider the discharge of hydrogen chloride. However, in the present invention in which the reaction is carried out in a gas-solid contact field, unless the same amount of hydrogen chloride as the supplied chlorine is discharged from the inside of the apparatus, the pressure inside the apparatus will increase extremely. Any method of releasing hydrogen chloride may be used, but if chlorine is also discharged at the same time as discharging hydrogen chloride, it is inefficient, so
Preferably, the outlet for hydrogen chloride is as far as possible from the inlet for chlorine.

【0036】最も好ましくは、塩化水素の排出口を粉体
層の外側に設置するのが良い。また、反応容器の回転に
伴い反応容器の壁面に付着した粉体が排出口の上部から
落下し、排出口が目詰まりを起こす可能性があることか
ら、排出口の孔の向きは下向き若しくは横向きであるこ
とが好ましい。
Most preferably, the outlet for hydrogen chloride is located outside the powder layer. Also, as the powder adhering to the wall of the reaction vessel falls from the upper part of the outlet with the rotation of the reaction vessel, the outlet may be clogged. It is preferred that

【0037】次に、本発明での粉体層の流動方法につい
て説明する。本発明で言う流動状態とは、粉体粒子が連
続的、又は断続的に、且つ継続的に運動若しくは移動し
ている状態の全てを指している。したがって、粉体層中
に気体を流通して粒子を運動させる流動層を用いての流
動状態のみに限定されるものではない。本発明での流動
化方法は、従来用いられる粉体の反応装置にある方法を
使用しても良いし、混合装置、攪拌装置、燃焼装置、乾
燥装置、粉砕装置、造粒装置等に利用される方法を応用
しても良い。具体的には、水平円筒型、V型、二重円錐
型、揺動回転型の様な容器回転型装置や、単軸リボン
型、複軸パドル型、回転鋤形、二軸遊星攪拌型、円錐ス
クリュー型等の様な機械攪拌型の装置を使用すると良
い。これらの装置の具体的な形状については、化学工学
便覧(化学工学会編、改訂六版、876頁)に記載され
ている。これらの装置の内、例えば図4、5及び6に示
すような容器回転型の反応装置は、全ての粉体粒子を確
実に流動させ、且つ均一に粉体層表面に露出させること
ができる点で、機械攪拌型の装置や流動層型の装置より
も本発明に対して有効である。
Next, the flow method of the powder layer in the present invention will be described. The fluid state referred to in the present invention refers to all states in which the powder particles are moving or moving continuously or intermittently and continuously. Therefore, the present invention is not limited to a fluidized state using a fluidized bed in which particles are moved by flowing a gas through the powder bed. The fluidization method in the present invention may use a method in a conventionally used powder reactor, or may be used in a mixing device, a stirring device, a combustion device, a drying device, a crushing device, a granulation device, and the like. May be applied. Specifically, a container rotating type device such as a horizontal cylindrical type, a V type, a double cone type, a swing rotary type, a single-shaft ribbon type, a double-shaft paddle type, a rotary plow type, a twin-shaft planetary stirring type, It is preferable to use a mechanical stirring type device such as a conical screw type. The specific shapes of these devices are described in Chemical Engineering Handbook (edited by the Society of Chemical Engineers, 6th revised edition, p. 876). Among these apparatuses, for example, a rotating vessel type reactor as shown in FIGS. 4, 5 and 6 can ensure that all the powder particles flow and can be uniformly exposed to the surface of the powder layer. Thus, the present invention is more effective for the present invention than a mechanical stirring type device or a fluidized bed type device.

【0038】本発明の光の照射方法は、光源が粉体層の
外部に存在し、粉体層の表面に光が照射されれば、任意
の方法を選ぶことができる。図4の様にガラス等の透明
な反応容器の外部に光源を設置しても良いし、反応容器
の外部に設置した光源から光ファイバーや反射鏡、プリ
ズムを用いて、光を反応容器の内部に導いても良い。
The light irradiation method of the present invention can be any method as long as the light source exists outside the powder layer and the surface of the powder layer is irradiated with light. As shown in FIG. 4, a light source may be provided outside a transparent reaction vessel such as glass, or light may be transmitted from the light source provided outside the reaction vessel to the inside of the reaction vessel using an optical fiber, a reflecting mirror, or a prism. You may guide me.

【0039】この様に光源を反応容器の外部に設置する
方法は、光源の熱を反応容器内に持ち込むことを最小限
に押さえることが出来る。また、図5や図6の様に反応
容器の内部に光源を設置することもできる。大型の反応
容器を作製する場合には、図5や図6の様に反応容器の
内部に光源を設置する方法が、光を効率的に利用できる
ので好ましい。
The method of installing the light source outside the reaction vessel as described above can minimize bringing the heat of the light source into the reaction vessel. Further, a light source can be installed inside the reaction vessel as shown in FIGS. When a large-sized reaction vessel is manufactured, a method of installing a light source inside the reaction vessel as shown in FIGS. 5 and 6 is preferable because light can be used efficiently.

【0040】本発明で用いる光源の種類について説明す
る。本発明での光の役割は、塩素を励起して塩素ラジカ
ルを発生させ、塩化ビニル系樹脂への塩素付加反応を促
進させることにある。塩素は、可視域から紫外線までの
幅広い波長にエネルギー吸収帯域を有するので、本発明
では太陽光、人工光の様々な光源を使用することができ
る。塩素は波長が320〜360nmの紫外線に対して
最も強い吸収帯を有するので、この波長範囲を多く含む
光源を用いることが好ましい。具体的には、低圧水銀
灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ
等の紫外線を多く放出する光源が上げられる。光源の保
護、冷却などの目的に応じて、光源を透明のカバーで覆
う事もできる。この場合、透明カバーの材質は、石英、
パイレックス(登録商標)、硬質ガラス、軟質ガラス管
等を使用することが出来るが、塩素化反応に効果的な紫
外線領域の波長を有効に利用する為には、石英若しくは
パイレックス(登録商標)を用いることが好ましく、石
英を用いることが最も好ましい。
The type of light source used in the present invention will be described. The role of light in the present invention is to excite chlorine to generate chlorine radicals and promote the chlorine addition reaction to the vinyl chloride resin. Since chlorine has an energy absorption band in a wide wavelength range from the visible region to ultraviolet light, various light sources such as sunlight and artificial light can be used in the present invention. Since chlorine has the strongest absorption band for ultraviolet light having a wavelength of 320 to 360 nm, it is preferable to use a light source containing a large amount of this wavelength range. Specifically, a light source that emits a large amount of ultraviolet light, such as a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and a metal halide lamp, may be used. The light source can be covered with a transparent cover according to purposes such as protection of the light source and cooling. In this case, the material of the transparent cover is quartz,
Pyrex (registered trademark), hard glass, soft glass tube, etc. can be used, but quartz or Pyrex (registered trademark) is used in order to effectively use the wavelength in the ultraviolet region effective for the chlorination reaction. Preferably, quartz is most preferably used.

【0041】回転型の反応容器を用いる場合には、光
源、塩素供給ノズル、ガス排出ノズル、熱電対等を固定
し、反応容器およびジャケットのみを回転させると共
に、塩素ガス等の有害ガスの反応容器外部への漏洩や空
気等の外部ガスの反応容器内への漏れ込みを防止する必
要がある。この条件を満たす方法の一つとしては、上記
の固定させるべき部品を取り付けた円筒状の非回転管を
反応容器の回転軸線上に配置し、非回転管と反応容器又
は反応容器に取り付けられた蓋との間に回転ガスシール
を取り付ける方法である。もう一つの方法は、上記の固
定させるべき部品を取り付けた蓋を反応容器の回転軸線
と垂直に配置して固定し、蓋と反応容器の間に回転ガス
シールを取り付ける方法である。これらの方法では、粉
体粒子が回転ガスシールの隙間に入り込み、ガス漏れを
起こすこともあるので、ガスシールよりも内側にダスト
シールを取り付けると良い。
When a rotary reaction vessel is used, a light source, a chlorine supply nozzle, a gas discharge nozzle, a thermocouple, and the like are fixed, and only the reaction vessel and the jacket are rotated. It is necessary to prevent leakage into the reaction vessel and leakage of external gas such as air into the reaction vessel. As one method of satisfying this condition, a cylindrical non-rotating tube to which the above-mentioned parts to be fixed were attached was arranged on the rotation axis of the reaction vessel, and the non-rotating tube and the reaction vessel or the reaction vessel were attached. This is a method of attaching a rotary gas seal between the lid and the lid. Another method is a method in which a lid to which the above-mentioned parts to be fixed are attached is arranged and fixed perpendicular to the rotation axis of the reaction vessel, and a rotary gas seal is attached between the lid and the reaction vessel. In these methods, the dust particles may enter the gap of the rotary gas seal and cause gas leakage. Therefore, it is preferable to attach a dust seal inside the gas seal.

【0042】塩化ビニル系樹脂の塩素化反応は発熱反応
なので、粉体層から除熱を実施する必要がある。一方、
反応が開始する為には粉体層を40〜60℃程度まで加
熱する必要がある。したがって、本発明では反応容器に
冷媒および熱媒を流すジャケットを取り付けることが有
効である。冷媒および熱媒には水、スチーム、シリコー
ンオイル等の一般なものを使用することができる。回転
型反応容器を用いる場合には、ジャケットも反応容器と
共に回転する為、二重円管構造のロータリージョイント
を反応容器の回転軸線上に配置し、熱媒および冷媒をジ
ャケットに流通させると良い。更に、ロータリージョイ
ントは、光源、塩素供給ノズル、ガス排出ノズル、熱電
対等を取り付けた非回転管または固定蓋と反対側に設置
すると良い。ここで言うロータリージョイントとは、二
重管と回転シールを組み合わせたジョイントであり、回
転体容器の一ヶ所の回転軸上に取り付けることにより、
流体の流入と流出を同時に実現する装置である。具体的
な製品としては、株式会社昭和工業製のRXE3015
やACシリーズ等が上げられる。
Since the chlorination reaction of the vinyl chloride resin is an exothermic reaction, it is necessary to remove heat from the powder layer. on the other hand,
In order for the reaction to start, it is necessary to heat the powder layer to about 40 to 60 ° C. Therefore, in the present invention, it is effective to attach a jacket for flowing a refrigerant and a heat medium to the reaction vessel. Common materials such as water, steam, and silicone oil can be used as the refrigerant and the heat medium. When a rotary reaction vessel is used, the jacket also rotates together with the reaction vessel. Therefore, it is preferable to arrange a rotary joint having a double circular tube structure on the rotation axis of the reaction vessel and allow the heat medium and the refrigerant to flow through the jacket. Further, the rotary joint is preferably installed on a side opposite to a non-rotating tube or a fixed lid to which a light source, a chlorine supply nozzle, a gas discharge nozzle, a thermocouple, and the like are attached. The rotary joint referred to here is a joint that combines a double pipe and a rotary seal, and by attaching it on one rotation axis of a rotary container,
This is a device that simultaneously achieves inflow and outflow of fluid. Specific products include RXE3015 manufactured by Showa Kogyo Co., Ltd.
And AC series.

【0043】本発明は、粉体と気体との光反応に対して
広く応用することが可能である。例えば、塩素の代わり
にフッ素を用いれば、塩化ビニル系樹脂を光反応により
フッ素化することも可能である。また、ポリプロピレ
ン、ポリエチレン、ポリスチレン、ポリイソブチレン等
の塩化ビニル系樹脂以外の樹脂を塩素化したりフッ素化
したりすることも可能である。
The present invention can be widely applied to photoreaction between powder and gas. For example, if fluorine is used instead of chlorine, the vinyl chloride resin can be fluorinated by a photoreaction. It is also possible to chlorinate or fluorinate resins other than vinyl chloride resins such as polypropylene, polyethylene, polystyrene and polyisobutylene.

【0044】[0044]

【実施例】次に本発明の方法の実施例をあげて具体的に
説明する。但し、本実施例は本発明を限定するものでは
ない。
EXAMPLES Next, the method of the present invention will be specifically described with reference to examples. However, the present embodiment does not limit the present invention.

【0045】(実施例1)図4に示した反応装置を用い
て反応を実施した。反応容器(容量が1000mlのパ
イレックス(登録商標)製ナス型フラスコ)に重合度1
000の塩化ビニル系樹脂(鐘淵化学工業(株)製、S
1001M)の粉体を187.78g=3molを充填
した。塩化ビニル系樹脂は懸濁重合法で合成されてお
り、JIS−Z8801で測定した平均粒径が210μ
mであり、表1に示す粒径分布を有する。反応容器を6
0℃の温浴に浸しながら、反応容器の空間部分に200
ml/minの流速で窒素ガスを60分間流通し、更に
200ml/minの流速で塩素ガスを30分間流通し
た。その後、塩素ガスを600ml/minに増加さ
せ、粉体層上面から35cm離した位置に設置した40
0Wの高圧水銀灯を用いて、粉体層表面に紫外線を照射
した。水銀灯を点灯させると反応が開始し、ガス排出口
からは塩素と塩化水素の混合ガスが排出される。また、
粉体層中に熱電対を挿入し、粉体層の温度を測定したと
ころ、水銀灯の点灯後から反応が開始して反応熱が発生
するので、5分後には粉体層の温度が80℃に達した。
反応の進行に伴い反応速度は低下するので、粉体層の温
度は徐々に低下し、200分間反応を継続した後には6
3℃程度となった。反応開始後、180分後に水銀灯を
消灯して反応を終了させた。反応終了後は、反応容器内
に600ml/minの流速で窒素ガスを流通して塩素
ガスと置換した。窒素置換を100min間継続したも
のをサンプル1とした。
Example 1 A reaction was carried out using the reaction apparatus shown in FIG. A polymerization degree of 1 was added to a reaction vessel (a Pyrex (registered trademark) eggplant-shaped flask having a capacity of 1000 ml).
000 vinyl chloride resin (Kanebuchi Chemical Industry Co., Ltd., S
187.78 g = 3 mol of the powder (1001M). The vinyl chloride resin is synthesized by a suspension polymerization method, and has an average particle size of 210 μm measured according to JIS-Z8801.
m, and has a particle size distribution shown in Table 1. 6 reaction vessels
While immersing in a hot bath at 0 ° C., 200
Nitrogen gas was passed at a flow rate of ml / min for 60 minutes, and chlorine gas was passed at a flow rate of 200 ml / min for 30 minutes. Thereafter, the chlorine gas was increased to 600 ml / min, and the chlorine gas was set at a position 35 cm away from the upper surface of the powder layer.
The surface of the powder layer was irradiated with ultraviolet rays using a 0 W high-pressure mercury lamp. The reaction starts when the mercury lamp is turned on, and a mixed gas of chlorine and hydrogen chloride is discharged from the gas outlet. Also,
When a thermocouple was inserted into the powder layer and the temperature of the powder layer was measured, the reaction started and the reaction heat was generated after the mercury lamp was turned on. After 5 minutes, the temperature of the powder layer was 80 ° C. Reached.
Since the reaction rate decreases as the reaction proceeds, the temperature of the powder layer gradually decreases, and after the reaction is continued for 200 minutes,
It was about 3 ° C. 180 minutes after the start of the reaction, the mercury lamp was turned off to terminate the reaction. After completion of the reaction, nitrogen gas was passed through the reaction vessel at a flow rate of 600 ml / min to replace chlorine gas. Sample 1 was obtained by continuing nitrogen replacement for 100 minutes.

【0046】サンプル1の最終的な塩素含有量は、反応
前後の重量変化から算出された。即ち、塩化ビニル系樹
脂の塩素含有量を56.8重量%とし、反応前後の粉体
樹脂の重量変化が塩化ビニル系樹脂中の水素が塩素と置
換したものと仮定して算出した。その結果、サンプル1
は反応前後で重量が187.78gから244.40g
に増加しており、塩素含有量は、67.5重量%と計算
された。
The final chlorine content of Sample 1 was calculated from the change in weight before and after the reaction. That is, the chlorine content of the vinyl chloride resin was set to 56.8% by weight, and the change in weight of the powder resin before and after the reaction was calculated on the assumption that hydrogen in the vinyl chloride resin was replaced by chlorine. As a result, sample 1
Is 187.78 g to 244.40 g before and after the reaction
And the chlorine content was calculated to be 67.5% by weight.

【0047】サンプル1に残存する塩化水素量は、中和
滴定法により算出した。精秤したサンプルをテトラヒド
ラフランに溶解した後、メタノールと水の混合液で抽出
し、抽出液中の塩酸量を中和滴定した。サンプル1の中
和滴定値と混合液の中和滴定値の差からサンプル1中に
含有される塩酸量を算出した。その結果、サンプル1中
の残存塩化水素量は87ppmであった。
The amount of hydrogen chloride remaining in Sample 1 was calculated by a neutralization titration method. A precisely weighed sample was dissolved in tetrahydrafuran, and then extracted with a mixed solution of methanol and water, and the amount of hydrochloric acid in the extract was subjected to neutralization titration. From the difference between the neutralization titration value of Sample 1 and the neutralization titration value of the mixture, the amount of hydrochloric acid contained in Sample 1 was calculated. As a result, the amount of residual hydrogen chloride in Sample 1 was 87 ppm.

【0048】サンプル1のガラス転移温度を、JIS−
K7121に準じた方法で測定した。その結果、サンプ
ル1のガラス転移温度は、133℃であった。
The glass transition temperature of Sample 1 was determined according to JIS-
It measured by the method according to K7121. As a result, the glass transition temperature of Sample 1 was 133 ° C.

【0049】100重量部のサンプル1に対して、MB
S(鐘淵化学工業製のB31)を10重量部、スズ系安
定剤2重量部、滑剤1.7重量部を配合し、8インチの
ロールにて195℃で3分間混練した。得られたシート
を200℃で10分間プレスして試験片を得た。JIS
−K7206に準じた方法で試験片のビカット軟化温度
を測定したところ、113.4℃であった。
For 100 parts by weight of sample 1, MB
10 parts by weight of S (Kanebuchi Chemical Industry B31), 2 parts by weight of a tin-based stabilizer, and 1.7 parts by weight of a lubricant were blended and kneaded with an 8-inch roll at 195 ° C. for 3 minutes. The obtained sheet was pressed at 200 ° C. for 10 minutes to obtain a test piece. JIS
The Vicat softening temperature of the test piece measured by a method according to -K7206 was 113.4 ° C.

【0050】サンプル1の熱安定性をギアオーブン法で
測定した。100重量部のサンプル1に対して、MBS
(鐘淵化学工業製のB31)を10重量部、スズ系安定
剤2重量部、滑剤1.7重量部を配合し、8インチのロ
ールにて195℃で3分間混練した。得られたシートを
200℃で10分間プレスし、1cm画の大きさに切断
して試験片とした。試験片を200℃のギアオーブンで
加熱し、10分間毎に試験片を取り出して、目視により
試験片の黒化時間を判定した。その結果、試験片は60
〜70分間で黒化した。黒化時間が長い程、熱安定性が
良好であることを示す評価法である。 (実施例2)実施例1と同じ塩化ビニル樹脂(懸濁重合
法で重合したもの)を用い、図4に示した反応装置を用
いて反応を実施した。反応容器(容量が1000mlの
パイレックス(登録商標)製ナス型フラスコ)に塩化ビ
ニル系樹脂の粉体を187.70g=3molを充填し
た。反応容器を50℃の温浴に浸しながら、反応容器の
空間部分に200ml/minの流速で窒素ガスを60
分間流通し、更に200ml/minの流速で塩素ガス
を30分間流通した。塩素ガスの流量を600ml/m
inに増大した後、粉体層上面から35cm離した位置
に設置した400Wの高圧水銀灯を用いて、粉体層表面
に紫外線を照射した。反応開始より350分間反応を行
い、水銀灯を消灯して反応を終了させた。反応終了後は
反応容器内に600ml/minの流速で窒素ガスを流
通して塩素ガスと置換した。窒素置換を100分間継続
したものをサンプル2とした。
The thermal stability of Sample 1 was measured by a gear oven method. For 100 parts by weight of sample 1, MBS
10 parts by weight (Kanebuchi Chemical Industries B31), 2 parts by weight of a tin-based stabilizer, and 1.7 parts by weight of a lubricant were blended and kneaded with an 8-inch roll at 195 ° C. for 3 minutes. The obtained sheet was pressed at 200 ° C. for 10 minutes and cut into a size of 1 cm to obtain a test piece. The test piece was heated in a gear oven at 200 ° C., the test piece was taken out every 10 minutes, and the blackening time of the test piece was visually judged. As a result, the test piece was 60
Blackening took ~ 70 minutes. This is an evaluation method showing that the longer the blackening time, the better the thermal stability. (Example 2) Using the same vinyl chloride resin (polymerized by the suspension polymerization method) as in Example 1, a reaction was carried out using the reaction apparatus shown in FIG. A reaction vessel (pyrex (registered trademark) eggplant-shaped flask having a capacity of 1000 ml) was charged with 38.7 mol of 187.70 g of vinyl chloride resin powder. While immersing the reaction vessel in a warm bath at 50 ° C., nitrogen gas was introduced into the space of the reaction vessel at a flow rate of 200 ml / min.
And then flowed chlorine gas at a flow rate of 200 ml / min for 30 minutes. The flow rate of chlorine gas is 600ml / m
After increasing to in, the surface of the powder layer was irradiated with ultraviolet rays using a 400 W high-pressure mercury lamp installed at a position 35 cm away from the upper surface of the powder layer. The reaction was performed for 350 minutes from the start of the reaction, and the mercury lamp was turned off to terminate the reaction. After completion of the reaction, nitrogen gas was passed through the reaction vessel at a flow rate of 600 ml / min to replace chlorine gas. Sample 2 was obtained after continuous nitrogen replacement for 100 minutes.

【0051】実施例1と同様の方法で、サンプル2の塩
素含有量、残留塩酸量、ガラス転移温度、ビカット軟化
温度、黒化時間を測定した。その結果、塩素含有量は、
67.2重量%、残存塩化水素量は82ppm、ガラス
転移温度は132℃、ビカット軟化温度は113.3
℃、黒化時間は70分間であった。 (実施例3)実施例1と同じ塩化ビニル樹脂(懸濁重合
法で重合したもの)を用い、図4に示した反応装置を用
いて反応を実施した。反応容器(容量が1000mlの
パイレックス(登録商標)製ナス型フラスコ)に懸濁重
合法で合成した塩化ビニル系樹脂の粉体を187.82
g=3molを充填した。反応容器を60℃の温浴に浸
しながら、反応容器の空間部分に200ml/minの
流速で窒素ガスを60分間流通し、更に200ml/m
inの流速で塩素ガスを30分間流通した。塩素ガスの
流量を600ml/minに増大した後、粉体層上面か
ら35cm離した位置に設置した400Wの高圧水銀灯
を用いて、粉体層表面に紫外線を照射した。粉体層中に
は熱電対を挿入し、粉体層の温度を測定した。水銀灯の
点灯後から反応が開始して反応熱が発生するので、5分
後には粉体層の温度が80℃に達した。この後、粉体層
の温度が80℃で一定になる様に温浴の温度を徐々に上
昇させて制御した。反応開始より155分間反応を行
い、水銀灯を消灯して反応を終了させた。反応終了後は
反応容器内に600ml/minの流速で窒素ガスを流
通して塩素ガスと置換した。窒素置換を100分間継続
したものをサンプル3とした。
In the same manner as in Example 1, the chlorine content, residual hydrochloric acid content, glass transition temperature, Vicat softening temperature, and blackening time of Sample 2 were measured. As a result, the chlorine content is
67.2% by weight, residual hydrogen chloride amount 82 ppm, glass transition temperature 132 ° C, Vicat softening temperature 113.3.
C. and the blackening time was 70 minutes. (Example 3) Using the same vinyl chloride resin (polymerized by the suspension polymerization method) as in Example 1, a reaction was carried out using the reaction apparatus shown in FIG. In a reaction vessel (pyrex (registered trademark) eggplant-shaped flask having a capacity of 1000 ml), 187.82 powder of a vinyl chloride resin synthesized by a suspension polymerization method was added.
g = 3 mol was charged. While immersing the reaction vessel in a 60 ° C. warm bath, nitrogen gas was passed through the space portion of the reaction vessel at a flow rate of 200 ml / min for 60 minutes, and further 200 ml / m 2.
At a flow rate of in, chlorine gas was passed for 30 minutes. After increasing the flow rate of chlorine gas to 600 ml / min, the surface of the powder layer was irradiated with ultraviolet rays using a 400 W high-pressure mercury lamp installed at a position 35 cm away from the upper surface of the powder layer. A thermocouple was inserted into the powder layer, and the temperature of the powder layer was measured. Since the reaction started after the lighting of the mercury lamp and the reaction heat was generated, the temperature of the powder layer reached 80 ° C. after 5 minutes. Thereafter, the temperature of the warm bath was gradually increased and controlled so that the temperature of the powder layer became constant at 80 ° C. The reaction was carried out for 155 minutes from the start of the reaction, and the mercury lamp was turned off to terminate the reaction. After completion of the reaction, nitrogen gas was passed through the reaction vessel at a flow rate of 600 ml / min to replace chlorine gas. Sample 3 was obtained by continuously purging with nitrogen for 100 minutes.

【0052】実施例1および2と同様の方法で、サンプ
ル3の塩素含有量、残留塩酸量、ガラス転移温度、ビカ
ット軟化温度、黒化時間を測定した。その結果、塩素含
有量は、67.9重量%、残存塩化水素量は89pp
m、ガラス転移温度は136℃、ビカット軟化温度は1
13.6℃、黒化時間は50分間であった。 (比較例1)実施例1および2で用いたものと同じ塩化
ビニル系樹脂を15kgと水35kgを50Lの反応容
器に投入し、水懸濁液とした。水懸濁液の中に450W
の水銀灯を2本挿入し、真空脱気と窒素置換を実施し
た。水懸濁液を攪拌翼で攪拌しながら、塩素ガスを導入
し、水銀灯を点灯して反応を開始した。反応の開始温度
は50℃で一時間後85℃になるように反応温度を直線
的に上昇させ、60分経過後は一定温度にした。合計1
00分間反応を継続し、塩素ガスと水銀灯を停止して反
応を終了させた。反応終了後の水懸濁液を中和滴定し、
発生した塩化水素量から塩素含有量を測定したところ、
68.2重量%であった。水懸濁液を濾紙とヌッチェを
用いて濾過して得られたケークを水洗し、更に洗浄液と
ケークを濾別した。得られたケークを棚型乾燥機を用
い、55℃で24時間以上乾燥したものを比較サンプル
1とした。
In the same manner as in Examples 1 and 2, the chlorine content, residual hydrochloric acid content, glass transition temperature, Vicat softening temperature, and blackening time of Sample 3 were measured. As a result, the chlorine content was 67.9% by weight, and the residual hydrogen chloride amount was 89 pp.
m, glass transition temperature is 136 ° C, Vicat softening temperature is 1
At 13.6 ° C., the blackening time was 50 minutes. (Comparative Example 1) 15 kg of the same vinyl chloride resin as used in Examples 1 and 2 and 35 kg of water were charged into a 50 L reaction vessel to form an aqueous suspension. 450W in water suspension
, Two vacuum mercury lamps were inserted, and vacuum degassing and nitrogen replacement were performed. While stirring the water suspension with a stirring blade, chlorine gas was introduced, and a mercury lamp was turned on to start the reaction. The starting temperature of the reaction was 50 ° C., and the reaction temperature was linearly increased so as to be 85 ° C. after one hour, and was kept constant after 60 minutes. Total 1
The reaction was continued for 00 minutes, and the reaction was terminated by stopping the chlorine gas and the mercury lamp. Neutralization titration of the aqueous suspension after the reaction is completed,
When the chlorine content was measured from the amount of generated hydrogen chloride,
It was 68.2% by weight. The cake obtained by filtering the aqueous suspension using a filter paper and a Nutsche was washed with water, and the washing liquid and the cake were separated by filtration. The obtained cake was dried at 55 ° C. for 24 hours or more using a shelf type drier to obtain Comparative Sample 1.

【0053】実施例1〜3と同様の方法で、残存塩化水
素量、ガラス転移温度、ビカット軟化温度、黒化時間を
測定した結果、残存塩化水素量は85ppm、ガラス転
移温度は137℃、ビカット軟化温度は113.8℃で
あった。また、実施例3と同様のギアオーブンテストで
黒化時間を測定したところ、40〜50分間であった。
The amount of residual hydrogen chloride, glass transition temperature, Vicat softening temperature, and blackening time were measured in the same manner as in Examples 1 to 3. As a result, the amount of residual hydrogen chloride was 85 ppm, the glass transition temperature was 137 ° C., and the vicat The softening temperature was 113.8 ° C. The blackening time measured by the same gear oven test as in Example 3 was 40 to 50 minutes.

【0054】実施例1、実施例2、実施例3、比較例1
で得られたサンプルの評価結果を表2に記載する。表2
の結果から、本発明の気固反応法で合成された塩素化塩
化ビニル系樹脂は、窒素を流通すると言う単純な後処理
を100分間と言う短時間施したのみであるにも関わら
ず、水懸濁法で合成した後に24時間以上にわたる脱
水、水洗、乾燥と言う複雑な後処理工程を経た塩素化塩
化ビニル樹脂と残存塩化水素量が同等であることがわか
る。また、本発明の気固反応法で合成された塩素化塩化
ビニル系樹脂は、ガラス転移温度やビカット軟化温度が
水懸濁法で得た塩素化塩化ビニル系樹脂と同等であり、
十分な耐熱性を有していることがわかる。更に、本発明
の気固反応法で合成された塩素化塩化ビニル系樹脂は、
ギアオーブンテストでの黒化時間は水懸濁法で得られた
塩素化塩化ビニル系樹脂よりも黒化時間が長く、熱安定
性に優れていることが示された。
Example 1, Example 2, Example 3, Comparative Example 1
Table 2 shows the evaluation results of the samples obtained in the above. Table 2
According to the results, the chlorinated vinyl chloride-based resin synthesized by the gas-solid reaction method of the present invention was subjected to a simple post-treatment of flowing nitrogen for a short time of 100 minutes. It can be seen that the amount of residual hydrogen chloride is equivalent to that of a chlorinated vinyl chloride resin that has undergone complicated post-treatment steps of dehydration, washing, and drying for 24 hours or more after synthesis by a suspension method. The chlorinated vinyl chloride resin synthesized by the gas-solid reaction method of the present invention has a glass transition temperature and a Vicat softening temperature equivalent to those of the chlorinated vinyl chloride resin obtained by the water suspension method.
It turns out that it has sufficient heat resistance. Further, chlorinated vinyl chloride resin synthesized by the gas-solid reaction method of the present invention,
The blackening time in the gear oven test was longer than that of the chlorinated vinyl chloride resin obtained by the water suspension method, indicating that it had excellent thermal stability.

【0055】(実施例4)攪拌翼を装備したステンレス
製オ−トクレ−ブに、イオン交換水400部、平均分子
量200万のポリエチレンオキサイドを0.005重量
部、ヒドロキシプロピルメチルセルロースを0.04重
量部、濃度70%のジ−2−エチルヘキシルパ−オキシ
ジカ−ボネ−トのイソパラフィン溶液0.05重量部を
仕込み、オ−トクレ−ブ内を真空脱気した後、塩化ビニ
ル系単量体100重量部を仕込んだ。その後、攪拌下で
懸濁重合を行い、重合度が約1000である塩化ビニル
系樹脂を得た。塩化ビニル系樹脂の懸濁液を脱水、乾燥
し塩化ビニル系樹脂Aとした。
Example 4 400 parts of ion-exchanged water, 0.005 parts by weight of polyethylene oxide having an average molecular weight of 2,000,000, and 0.04 parts by weight of hydroxypropyl methylcellulose were placed in a stainless steel autoclave equipped with a stirring blade. Parts, 70 parts by weight of di-2-ethylhexylperoxydica carbonate in 0.05 parts by weight of isoparaffin solution, and the autoclave was degassed under vacuum, and then 100 parts by weight of vinyl chloride monomer. The department was charged. Thereafter, suspension polymerization was performed with stirring to obtain a vinyl chloride resin having a polymerization degree of about 1,000. The suspension of the vinyl chloride resin was dehydrated and dried to obtain a vinyl chloride resin A.

【0056】図7に示した反応装置を用いて塩素化反応
を実施した。反応容器(容量が10Lであるハステロイ
C22製の反応容器)に塩化ビニル系樹脂Aの粉体を7
50g=12molを充填した。塩化ビニル系樹脂Aの
嵩密度は、0.5g/cm3であるので、粉体層は反応
容器の回転軸より低い位置まで充填され、光源は反応装
置の内部で且つ粉体層の外部(容器内上部で粉体層の外
側に位置するように)に設置される。反応容器の回転軸
と平行な向きに設置した二本のゴムローラーの上に反応
容器を乗せてゴムローラーを回転させることにより、図
7の矢印の方向に反応容器を回転させた。反応容器のジ
ャケット部分に40℃の温水を流通しながら、粉体層内
部に設置したガス供給口より5000ml/minの流
速で窒素ガスを30分間流通した後、2500ml/m
inの流速で塩素ガスを30分間流通した。その後、反
応容器内部に設置した100Wの高圧水銀灯を用いて、
粉体層表面に紫外線を照射した。水銀灯を点灯させると
反応が開始し、ガス排出口からは塩素と塩化水素の混合
ガスが排出される。また、粉体層中に熱電対を挿入し、
粉体層の温度を測定したところ、水銀灯の点灯後から反
応が開始して反応熱が発生するので、粉体層の温度は1
0分後に48℃に上昇した。更に、ジャケットに流通す
る温水の温度を60℃に上昇させ、反応開始から60分
後に粉体層の温度は約80℃にした。その後、ジャケッ
トに流通する温水の温度を調節し、粉体層の温度を80
℃に保ながら塩素化反応を継続し、紫外線照射開始から
220分後に水銀灯を消灯して反応を終了させた。反応
終了後は、反応容器内に5000ml/minの流速で
窒素ガスを流通して塩素ガスと置換した。窒素置換を9
0min間継続したものをサンプル4とした。サンプル
4は、白色の流動性の粉体であった。
The chlorination reaction was carried out using the reactor shown in FIG. Powder of vinyl chloride resin A was placed in a reaction vessel (a reaction vessel made of Hastelloy C22 having a capacity of 10 L).
50 g = 12 mol was charged. Since the bulk density of the vinyl chloride resin A is 0.5 g / cm 3 , the powder layer is filled to a position lower than the rotation axis of the reaction vessel, and the light source is inside the reaction apparatus and outside the powder layer ( So that it is located outside the powder layer in the upper part of the container). The reaction container was placed on two rubber rollers installed in a direction parallel to the rotation axis of the reaction container, and the rubber roller was rotated, whereby the reaction container was rotated in the direction of the arrow in FIG. While flowing warm water of 40 ° C. through the jacket of the reaction vessel, nitrogen gas was flowed at a flow rate of 5000 ml / min for 30 minutes from a gas supply port provided inside the powder layer, and then 2500 ml / m 2.
At a flow rate of in, chlorine gas was passed for 30 minutes. Then, using a high-pressure mercury lamp of 100 W installed inside the reaction vessel,
The surface of the powder layer was irradiated with ultraviolet rays. The reaction starts when the mercury lamp is turned on, and a mixed gas of chlorine and hydrogen chloride is discharged from the gas outlet. Also, insert a thermocouple into the powder layer,
When the temperature of the powder layer was measured, the reaction started after the mercury lamp was turned on and the reaction heat was generated.
After 0 minutes, the temperature rose to 48 ° C. Further, the temperature of the hot water flowing through the jacket was raised to 60 ° C., and the temperature of the powder layer was set to about 80 ° C. 60 minutes after the start of the reaction. Then, the temperature of the hot water flowing through the jacket was adjusted, and the temperature of the powder layer was adjusted to 80.
The chlorination reaction was continued while the temperature was kept at ° C., and the mercury lamp was turned off 220 minutes after the start of ultraviolet irradiation to terminate the reaction. After the completion of the reaction, nitrogen gas was passed through the reaction vessel at a flow rate of 5000 ml / min to replace the gas with chlorine gas. 9 nitrogen substitutions
The sample that continued for 0 min was designated as Sample 4. Sample 4 was a white fluid powder.

【0057】反応過程での樹脂の塩素含有量について
は、反応ガス中に含まれる塩化水素量から算出した。即
ち、ガス排出口から排出される塩素と塩化水素の混合ガ
スを10Lの水中に通し、水に吸収された塩化水素量を
10分毎に中和滴定して求めた。塩化水素吸収液に少量
溶解する塩素は中和滴定値に影響を与えるので、予めヨ
ウ化カリウムとチオ硫酸ナトリウムの水溶液を添加し、
塩素が中和滴定値に影響を与え無いようにして中和滴定
をおこなった。原料の塩化ビニル系樹脂の塩素含有量を
56.8重量%とし、発生した塩化水素と同量のモル数
の塩素と塩化ビニル系樹脂中の水素とが置換したものと
仮定して算出した。
The chlorine content of the resin during the reaction was calculated from the amount of hydrogen chloride contained in the reaction gas. That is, a mixed gas of chlorine and hydrogen chloride discharged from the gas outlet was passed through 10 L of water, and the amount of hydrogen chloride absorbed in the water was determined by neutralization titration every 10 minutes. Since a small amount of chlorine dissolved in the hydrogen chloride absorbing solution affects the neutralization titration value, add an aqueous solution of potassium iodide and sodium thiosulfate in advance,
Neutralization titration was performed so that chlorine did not affect the neutralization titration value. The calculation was performed on the assumption that the chlorine content of the vinyl chloride resin as the raw material was 56.8% by weight, and the chlorine in the same amount as the generated hydrogen chloride was replaced by hydrogen in the vinyl chloride resin.

【0058】実施例1と同様の方法で、サンプル4のビ
カット軟化温度、黒化時間を測定した。その結果、ビカ
ット軟化温度は113.5℃、黒化時間は60〜70分
間であった。 (実施例5)実施例4と同じ塩化ビニル系樹脂Aを用
い、図7に示した反応装置を用いて反応を実施した。反
応容器(容量が10LであるハステロイC22の製反応
容器)に塩化ビニル系樹脂Aの粉体を2500g=40
molを充填した。塩化ビニル系樹脂Aの嵩密度は、
0.5g/cm3であるので、粉体層は丁度、反応容器
の回転軸の位置まで充填される。実施例4と同様に、光
源は反応装置の内部で且つ粉体層の外部(容器内上部で
粉体層の外側に位置するように)に設置される。反応容
器の回転軸と平行な向きに設置した二本のゴムローラー
の上に反応容器を乗せてゴムローラーを回転させること
により、図7の矢印の方向に反応容器を回転させた。反
応容器のジャケット部分に40℃の温水を流通しなが
ら、反応容器の空間部分に5000ml/minの流速
で窒素ガスを30分間流通し、更に5000ml/mi
nの流速で塩素ガスを30分間流通した。その後、設置
した100Wの高圧水銀灯を用いて、粉体層表面に紫外
線を照射した。水銀灯を点灯させると反応が開始し、ガ
ス排出口からは塩素と塩化水素の混合ガスが排出され
る。また、粉体層中に熱電対を挿入し、粉体層の温度を
測定したところ、水銀灯の点灯後から反応が開始して反
応熱が発生するので、粉体層の温度は10分後に55℃
に上昇した。更に、ジャケットに流通する温水の温度を
60℃に上昇させると、反応開始から50分後に粉体層
の温度は約80℃になった。その後、粉体層の温度を8
0℃に保つ様にジャケットに流通する温水の温度を調節
しながら塩素化反応を継続し、紫外線照射開始から22
0分後に水銀灯を消灯して反応を終了させた。反応終了
後は、反応容器内に5000ml/minの流速で窒素
ガスを流通して塩素ガスと置換した。窒素置換を90m
in間継続したものをサンプル5とした。サンプル5
は、白色の流動性の粉体であった。
In the same manner as in Example 1, the Vicat softening temperature and blackening time of Sample 4 were measured. As a result, the Vicat softening temperature was 113.5 ° C., and the blackening time was 60 to 70 minutes. Example 5 Using the same vinyl chloride resin A as in Example 4, a reaction was carried out using the reactor shown in FIG. In a reaction vessel (a reaction vessel made of Hastelloy C22 having a capacity of 10 L), 2500 g of powder of vinyl chloride resin A was added.
mol. The bulk density of the vinyl chloride resin A is
Since it is 0.5 g / cm 3 , the powder layer is filled up to the position of the rotation axis of the reaction vessel. As in Example 4, the light source is installed inside the reactor and outside the powder layer (located at the top of the container and outside the powder layer). The reaction container was placed on two rubber rollers installed in a direction parallel to the rotation axis of the reaction container, and the rubber roller was rotated, whereby the reaction container was rotated in the direction of the arrow in FIG. While circulating warm water at 40 ° C. through the jacket of the reaction vessel, nitrogen gas was circulated at a flow rate of 5000 ml / min for 30 minutes through the space in the reaction vessel, and further 5,000 ml / mi.
At a flow rate of n, chlorine gas was passed for 30 minutes. Thereafter, the surface of the powder layer was irradiated with ultraviolet rays by using the installed high-pressure mercury lamp of 100 W. The reaction starts when the mercury lamp is turned on, and a mixed gas of chlorine and hydrogen chloride is discharged from the gas outlet. In addition, when a thermocouple was inserted into the powder layer and the temperature of the powder layer was measured, the reaction started after the mercury lamp was turned on and reaction heat was generated. ° C
Rose. Further, when the temperature of the hot water flowing through the jacket was raised to 60 ° C., the temperature of the powder layer became about 80 ° C. 50 minutes after the start of the reaction. Then, the temperature of the powder layer was set at 8
The chlorination reaction was continued while controlling the temperature of the hot water flowing through the jacket to maintain the temperature at 0 ° C.
After 0 minute, the mercury lamp was turned off to terminate the reaction. After completion of the reaction, nitrogen gas was passed through the reaction vessel at a flow rate of 5000 ml / min to replace the gas with chlorine gas. 90m nitrogen replacement
The sample that was continued during the period in was designated as Sample 5. Sample 5
Was a white fluid powder.

【0059】実施例1と同様の方法で、サンプル5の塩
素含有量、ビカット軟化温度、黒化時間を測定した。そ
の結果、ビカット軟化温度は113.4℃、黒化時間は
60〜70分間であった。 (比較例2)実施例4と同じ塩化ビニル系樹脂Aを用
い、図7に示した反応装置の固定部分保持管および光
源、ガス供給口、ガス排出口からなる部品を上下逆さま
に接続した反応装置用いて反応を実施した。この場合、
光源は反応容器の回転軸よりも低い位置(容器内下部で
粉体層内)に設置されることになる。反応容器(容量が
10LであるハステロイC22製の反応容器)に塩化ビ
ニル系樹脂Aの粉体を2500g=40molを充填し
た。塩化ビニル系樹脂Aの嵩密度は、0.5g/cm3
であるので、粉体層は丁度、反応容器の回転軸の位置ま
で充填される。この場合、光源は反応装置の内部で且つ
粉体層の内部に設置される。反応容器の回転軸と平行な
向きに設置した二本のゴムローラーの上に反応容器を乗
せてゴムローラーを回転させることにより、図7の矢印
の方向に反応容器を回転させた。反応容器のジャケット
部分に40℃の温水を流通しながら、反応容器の空間部
分に5000ml/minの流速で窒素ガスを30分間
流通し、更に5000ml/minの流速で塩素ガスを
30分間流通した。その後、反応容器内部に設置した1
00Wの高圧水銀灯を用いて、粉体層内部に紫外線を照
射した。水銀灯を点灯させると反応が開始し、ガス排出
口からは塩素と塩化水素の混合ガスが排出される。ま
た、粉体層中に熱電対を挿入し、粉体層の温度を測定し
たところ、水銀灯の点灯後から反応が開始して反応熱が
発生するので、粉体層の温度は10分後に約56℃に上
昇した。ジャケットに流通する温水の温度を60℃に上
昇させると、反応開始から50分後に粉体層の温度は約
80℃になった。反応開始後、粉体層の温度が80℃程
度になるように調製することを試みたが、温度の変化が
急激であり、温度調整が困難であった。更に、更に反応
開始後100〜160分の間に粉体温度が急上昇した
為、粉体樹脂が融着し、反応容器の回転が停止してしま
った。容器内部の塩素ガスを窒素ガスで置換した後に樹
脂を取り出したところ、樹脂は約15cm大の塊状にな
り光源の周囲に固着し、装置が破損した。
In the same manner as in Example 1, the chlorine content, Vicat softening temperature and blackening time of Sample 5 were measured. As a result, the Vicat softening temperature was 113.4 ° C., and the blackening time was 60 to 70 minutes. (Comparative Example 2) Using the same vinyl chloride resin A as in Example 4, a reaction in which the fixed part holding tube, light source, gas supply port, and gas discharge port of the reactor shown in FIG. 7 were connected upside down. The reaction was performed using the apparatus. in this case,
The light source is installed at a position lower than the rotation axis of the reaction vessel (at the lower part in the vessel and in the powder layer). A reaction vessel (a reaction vessel made of Hastelloy C22 having a capacity of 10 L) was charged with 2500 g = 40 mol of powder of vinyl chloride resin A. The bulk density of the vinyl chloride resin A is 0.5 g / cm 3
Therefore, the powder layer is filled up to the position of the rotation axis of the reaction vessel. In this case, the light source is installed inside the reactor and inside the powder layer. The reaction container was placed on two rubber rollers installed in a direction parallel to the rotation axis of the reaction container, and the rubber roller was rotated, whereby the reaction container was rotated in the direction of the arrow in FIG. While circulating warm water at 40 ° C. through the jacket of the reaction vessel, nitrogen gas was circulated at a flow rate of 5000 ml / min for 30 minutes through the space of the reaction vessel, and chlorine gas was circulated at a flow rate of 5000 ml / min for 30 minutes. Then, the 1 set inside the reaction vessel
The inside of the powder layer was irradiated with ultraviolet rays using a 00 W high-pressure mercury lamp. The reaction starts when the mercury lamp is turned on, and a mixed gas of chlorine and hydrogen chloride is discharged from the gas outlet. When a thermocouple was inserted into the powder layer and the temperature of the powder layer was measured, the reaction started after the mercury lamp was turned on and generated reaction heat. The temperature rose to 56 ° C. When the temperature of the hot water flowing through the jacket was increased to 60 ° C., the temperature of the powder layer became about 80 ° C. 50 minutes after the start of the reaction. After the start of the reaction, an attempt was made to adjust the temperature of the powder layer to about 80 ° C., but the temperature changed rapidly and it was difficult to adjust the temperature. Further, the powder temperature rose rapidly during 100 to 160 minutes after the start of the reaction, so that the powder resin was fused and the rotation of the reaction vessel was stopped. When the chlorine gas in the container was replaced with nitrogen gas, the resin was taken out. As a result, the resin became a mass of about 15 cm and was fixed around the light source, and the device was damaged.

【0060】表3に実施例4,5および比較例1の反応
を実施したときの塩素化塩化ビニル系樹脂中に含有され
る塩素含有量と粉体層の温度の推移を示す。反応容器の
内部且つ粉体層の外部に光源を設置した実施例4および
実施例5では、塩素含有量が上昇しながらも反応温度は
80℃前後に制御されており、反応が円滑に進んでいる
ことがわかる。これに対して、反応容器の内部且つ粉体
層の内部に光源を設置した比較例2では、塩素含有量の
上昇が遅いにも関わらず、粉体層温度の急激な上昇と下
降が繰り返されており、反応が不安定であることがわか
る。更に、粉体層の温度が上昇することにより、樹脂が
融着して反応装置が破壊されてしまった。
Table 3 shows the transition of the chlorine content in the chlorinated vinyl chloride resin and the temperature of the powder layer when the reactions of Examples 4 and 5 and Comparative Example 1 were carried out. In Examples 4 and 5 in which the light source was installed inside the reaction vessel and outside the powder layer, the reaction temperature was controlled at about 80 ° C. while the chlorine content was increased, and the reaction proceeded smoothly. You can see that there is. On the other hand, in Comparative Example 2 in which the light source was installed inside the reaction vessel and inside the powder layer, the temperature of the powder layer rapidly increased and decreased repeatedly despite the slow rise in the chlorine content. This indicates that the reaction was unstable. In addition, the rise in the temperature of the powder layer caused the resin to fuse and destroy the reactor.

【0061】[0061]

【表1】 [Table 1]

【0062】[0062]

【表2】 [Table 2]

【0063】[0063]

【表3】 [Table 3]

【0064】[0064]

【発明の効果】流動状態にある塩化ビニル系樹脂の粉体
に、粉体層中及び/又は粉体層外に塩素を供給しなが
ら、粉体層の外部に設置した光源より光を照射し、塩化
ビニル系樹脂を塩素化することにより、塩化水素を簡便
に除去でき、且つ耐熱性、熱安定性に優れた塩素化塩化
ビニル系樹脂を製造することができる。
According to the present invention, light is radiated from a light source installed outside the powder layer to the vinyl chloride resin powder in a flowing state while supplying chlorine into and / or outside the powder layer. By chlorinating a vinyl chloride resin, hydrogen chloride can be easily removed, and a chlorinated vinyl chloride resin excellent in heat resistance and heat stability can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】塩化ビニル系樹脂の粉体粒子の塩素化のモデル
図である。
FIG. 1 is a model diagram of chlorination of powder particles of a vinyl chloride resin.

【図2】光源を粉体層の内部に設置する場合と外部に設
置する場合に反応が進行する部分を示す模式図である。
FIG. 2 is a schematic view showing a portion where a reaction proceeds when a light source is installed inside a powder layer and when it is installed outside a powder layer.

【図3】塩素を供給する位置を変化させた場合に反応が
進行する部分を示す模式図である。
FIG. 3 is a schematic diagram showing a portion where a reaction proceeds when a position for supplying chlorine is changed.

【図4】本発明において、光源を反応容器の外部に設置
する場合の回転型反応装置の実験装置を示す。
FIG. 4 shows an experimental apparatus of a rotary reactor in which a light source is installed outside a reaction vessel in the present invention.

【図5】本発明の装置の一例であり、光源を反応容器の
内部に設置する場合の回転型反応装置を示す。図中の白
抜きの本体が回転し、斜線の部品が非回転管により固定
されている。粉体層は、光源が接触しない位置まで充填
できる。
FIG. 5 is an example of the apparatus of the present invention, and shows a rotary reaction apparatus when a light source is installed inside a reaction vessel. The white body in the figure rotates, and the hatched parts are fixed by the non-rotating tube. The powder layer can be filled to a position where the light source does not contact.

【図6】本発明の装置の他の例であり、光源を反応容器
の内部に設置する場合の回転型反応装置の図である。図
中の白抜きの部品が回転し、蓋を含む斜線の部品が静止
している。粉体層は、光源が接触しない位置まで充填で
きる。
FIG. 6 is another example of the apparatus of the present invention, and is a view of a rotary type reaction apparatus when a light source is installed inside a reaction vessel. The white parts in the figure are rotating, and the hatched parts including the lid are stationary. The powder layer can be filled to a position where the light source does not contact.

【図7】光源を反応容器の内部に設置する場合の回転型
反応装置の図である。図中の白抜きの部品が回転し、斜
線の部品が非回転管により固定されている。粉体層は、
光源が接触しない位置まで充填できる。
FIG. 7 is a diagram of a rotary type reaction apparatus when a light source is installed inside a reaction vessel. The white parts in the figure rotate, and the hatched parts are fixed by the non-rotating tube. The powder layer is
It can be filled to the position where the light source does not touch.

【符号の説明】[Explanation of symbols]

1 光源 2 粉体層 3 粉体層中で反応する部分 4 光源 5 塩素ガス供給口 6 粉体層 7 光源 8 塩素ガス供給口 9 粉体層 10 恒温槽 11 ガス流量計 12 塩素ボンベ 13 回転型反応容器及び蓋 14 冷媒・熱媒ジャケット 15 ロータリージョイント 16 冷媒・熱媒出入口 17 回転軸保持部 18 塩素ガス供給口 19 Oリング 20 ダストシール 21 回転ガスシール 22 非回転管 23 排ガス処理装置へ 24 塩素ガス供給装置へ 25 粉体層 26 光源 27 熱電対 28 ガス排出口 29 回転型反応容器 30 冷媒・熱媒ジャケット 31 ロータリージョイント 32 冷媒熱媒出入口 33 回転軸保持部 34 塩素ガス供給口 35 Oリング 36 蓋固定リング 37 回転ガスシール 38 塩素ガス供給装置へ 39 排ガス処理装置へ 40 光源 41 ガス排出口 42 粉体層 43 熱電対 44 非回転板および支持棒 45 反応容器 46 冷媒熱媒ジャケット 47 冷媒熱媒流通管 48 ロータリージョイント 49 冷媒熱媒出入口 50 塩素ガス供給口 51 Oリング 52 蓋 53 回転シール 54 非回転管 55 排ガス処理装置へ 56 塩素ガス供給装置へ 57 光源 58 ガス排出口 59 粉体層 REFERENCE SIGNS LIST 1 light source 2 powder layer 3 part reacting in powder layer 4 light source 5 chlorine gas supply port 6 powder layer 7 light source 8 chlorine gas supply port 9 powder layer 10 constant temperature bath 11 gas flow meter 12 chlorine cylinder 13 rotary type Reaction vessel and lid 14 Refrigerant / heat medium jacket 15 Rotary joint 16 Refrigerant / heat medium inlet / outlet 17 Rotating shaft holder 18 Chlorine gas supply port 19 O-ring 20 Dust seal 21 Rotary gas seal 22 Non-rotating pipe 23 To exhaust gas treatment device 24 Chlorine gas To the supply device 25 Powder layer 26 Light source 27 Thermocouple 28 Gas outlet 29 Rotary reaction vessel 30 Refrigerant / heat medium jacket 31 Rotary joint 32 Refrigerant heat medium inlet / outlet 33 Rotation shaft holder 34 Chlorine gas supply port 35 O-ring 36 Lid Retaining ring 37 Rotating gas seal 38 To chlorine gas supply device 39 To exhaust gas treatment device 40 Light source 41 Gas discharge port 42 Powder layer 43 Thermocouple 44 Non-rotating plate and support rod 45 Reaction vessel 46 Refrigerant heat medium jacket 47 Refrigerant heat medium flow pipe 48 Rotary joint 49 Refrigerant heat medium inlet / outlet 50 Chlorine gas supply port 51 O-ring 52 Lid 53 Rotating seal 54 Non-rotating pipe 55 To exhaust gas treatment device 56 To chlorine gas supply device 57 Light source 58 Gas outlet 59 Powder layer

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 流動状態にある塩化ビニル系樹脂の粉
体層中及び/又は粉体層外に塩素を供給しながら、該粉
体層の外部に設置した光源より粉体層表面に反応促進の
為の光を照射し、塩化ビニル系樹脂を塩素化することを
特徴とする塩素化塩化ビニル系樹脂の製造方法。
Claims: 1. While supplying chlorine into and / or out of a powder layer of a vinyl chloride resin in a fluidized state, a reaction is accelerated on a surface of the powder layer by a light source installed outside the powder layer. Chlorinating the vinyl chloride resin by irradiating light for the purpose of the present invention.
【請求項2】 回転型反応装置若しくは攪拌型反応装置
を用いて、塩化ビニル系樹脂の粉体を流動状態にさせる
請求項1に記載の塩素化塩化ビニル系樹脂の製造方法。
2. The method for producing a chlorinated vinyl chloride resin according to claim 1, wherein the powder of the vinyl chloride resin is brought into a fluidized state using a rotary reactor or a stirring reactor.
【請求項3】 反応装置が回転型反応装置であり、更に
光源が反応装置の内部に設置されている請求項1または
2に記載の塩素化塩化ビニル系樹脂の製造方法。
3. The method for producing a chlorinated vinyl chloride-based resin according to claim 1, wherein the reactor is a rotary reactor and a light source is installed inside the reactor.
【請求項4】 光源が低圧水銀灯、高圧水銀灯、超高圧
水銀灯、メタルハライドランプから選択される少なくと
も一種である請求項1、2または3に記載の塩素化塩化
ビニル系樹脂の製造方法。
4. The method for producing a chlorinated vinyl chloride resin according to claim 1, wherein the light source is at least one selected from a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and a metal halide lamp.
【請求項5】 塩素を供給する位置が粉体層中である請
求項2、3または4に記載の塩素化塩化ビニル系樹脂の
製造方法。
5. The method for producing a chlorinated vinyl chloride resin according to claim 2, wherein the position for supplying chlorine is in the powder bed.
【請求項6】 流動状態にある塩化ビニル系樹脂の粉体
層中及び/又は粉体層外に塩素を供給しながら、該粉体
層の外部に設置した光源より粉体層表面に反応促進の為
の光を照射し、塩化ビニル系樹脂を塩素化することを特
徴とする塩素化塩化ビニル系樹脂の製造装置。
6. The reaction of a light source installed outside the powder layer on the surface of the powder layer while supplying chlorine into and / or outside the powder layer of the vinyl chloride resin in a fluidized state, to promote a reaction on the surface of the powder layer. Chlorinating vinyl chloride resin by irradiating it with light for chlorination.
【請求項7】 回転型反応装置若しくは攪拌型反応装置
を用いて、塩化ビニル系樹脂の粉体を流動状態にさせる
請求項6に記載の塩素化塩化ビニル系樹脂の製造装置。
7. The apparatus for producing a chlorinated vinyl chloride-based resin according to claim 6, wherein the powder of the vinyl chloride-based resin is brought into a fluidized state using a rotary reactor or a stirring reactor.
【請求項8】 反応装置が回転型反応装置であり、更に
光源が反応装置の内部に設置されている請求項6または
7に記載の塩素化塩化ビニル系樹脂の製造装置。
8. The apparatus for producing a chlorinated vinyl chloride resin according to claim 6, wherein the reactor is a rotary reactor and a light source is installed inside the reactor.
【請求項9】 光源が低圧水銀灯、高圧水銀灯、超高圧
水銀灯、メタルハライドランプから選択される少なくと
も一種である請求項6、7または8に記載の塩素化塩化
ビニル系樹脂の製造装置。
9. The apparatus for producing a chlorinated vinyl chloride resin according to claim 6, wherein the light source is at least one selected from a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and a metal halide lamp.
【請求項10】 塩素ガス供給ノズルの供給口が下向き
に塩素ガスを放出するように配置されている請求項8又
は9に記載の塩素化塩化ビニル系樹脂の製造装置。
10. The apparatus for producing a chlorinated vinyl chloride resin according to claim 8, wherein the supply port of the chlorine gas supply nozzle is disposed so as to discharge the chlorine gas downward.
【請求項11】 塩素ガス供給ノズルが粉体層内部に設
置されている請求項8,9または10に記載の塩素化塩
化ビニル系樹脂の製造装置。
11. The apparatus for producing a chlorinated vinyl chloride resin according to claim 8, wherein a chlorine gas supply nozzle is provided inside the powder layer.
【請求項12】 ガス排出口が粉体層の外部に設置され
ている請求項8、9、10または11に記載の記載の塩
素化塩化ビニル系樹脂の製造装置。
12. The apparatus for producing a chlorinated vinyl chloride resin according to claim 8, wherein the gas outlet is provided outside the powder layer.
【請求項13】 反応容器の回転軸線上に配置した円筒
状の非回転管を反応容器内部に挿入し、非回転管と反応
容器の間を回転ガスシールを用いて密閉し、反応容器内
部に挿入された部分の非回転管に光源、塩素ガス供給ノ
ズル、ガス排出ノズル、熱電対から選ばれる少なくとも
一つ以上の部品が設置されている請求項8、9、10、
11または12に記載の塩素化塩化ビニル系樹脂の製造
装置。
13. A non-rotatable cylindrical tube arranged on the rotation axis of the reaction vessel is inserted into the reaction vessel, and the space between the non-rotational pipe and the reaction vessel is sealed with a rotary gas seal. 10. The non-rotating tube of the inserted portion is provided with at least one component selected from a light source, a chlorine gas supply nozzle, a gas discharge nozzle, and a thermocouple.
13. The apparatus for producing a chlorinated vinyl chloride resin according to 11 or 12.
【請求項14】 反応容器の回転軸線と垂直な面に配置
された円盤状の非回転板を蓋として反応容器の開口部に
被せ、非回転板と反応容器の間を回転シールを用いて密
閉し、非回転板に光源、塩素ガス供給ノズル、ガス排出
ノズル、熱電対から選ばれる少なくとも一つ以上の部品
が設置されている請求項8、9、10、11または12
に記載の塩素化塩化ビニル系樹脂の製造装置。
14. A disk-shaped non-rotating plate arranged on a plane perpendicular to the rotation axis of the reaction vessel is covered as a lid over the opening of the reaction vessel, and the space between the non-rotating plate and the reaction vessel is sealed using a rotary seal. The non-rotating plate is provided with at least one component selected from a light source, a chlorine gas supply nozzle, a gas discharge nozzle, and a thermocouple.
2. The apparatus for producing a chlorinated vinyl chloride resin according to item 1.
【請求項15】 反応容器の回転軸線上であり、且つ非
回転管又は非回転板と反対側の位置に取り付けた2重円
管構造のロータリージョイントを介してジャケットに冷
媒又は熱媒を供給する請求項13、14に記載の塩素化
塩化ビニル系樹脂の製造装置。
15. A cooling medium or a heating medium is supplied to the jacket via a rotary joint having a double circular tube structure mounted on the rotation axis of the reaction vessel and opposite to the non-rotating tube or the non-rotating plate. An apparatus for producing a chlorinated vinyl chloride resin according to claim 13.
JP2001331438A 2001-01-15 2001-10-29 Method and device for producing chlorinated vinyl chloride-based resin Pending JP2002275213A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001331438A JP2002275213A (en) 2001-01-15 2001-10-29 Method and device for producing chlorinated vinyl chloride-based resin
PCT/JP2001/011249 WO2002055565A1 (en) 2001-01-15 2001-12-21 Method and apparatus for producing chlorinated vinyl chloride resin
CNA018219845A CN1486334A (en) 2001-01-15 2001-12-21 Method and device for producing chlorinated vinyl chloride-based resin
US10/250,993 US20040048945A1 (en) 2001-01-15 2001-12-21 Method and apparatus for producing chlorinated vinyl chloride resin
EP01273190A EP1361231A4 (en) 2001-01-15 2001-12-21 Method and apparatus for producing chlorinated vinyl chloride resin
CA002434919A CA2434919A1 (en) 2001-01-15 2001-12-21 Process for preparing chlorinated vinyl chloride resin and apparatus for the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-6479 2001-01-15
JP2001006479 2001-01-15
JP2001331438A JP2002275213A (en) 2001-01-15 2001-10-29 Method and device for producing chlorinated vinyl chloride-based resin

Publications (1)

Publication Number Publication Date
JP2002275213A true JP2002275213A (en) 2002-09-25

Family

ID=26607700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331438A Pending JP2002275213A (en) 2001-01-15 2001-10-29 Method and device for producing chlorinated vinyl chloride-based resin

Country Status (1)

Country Link
JP (1) JP2002275213A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157346A1 (en) * 2013-03-29 2014-10-02 株式会社カネカ Production method and production device for chlorinated vinyl chloride-based resin
WO2014157617A1 (en) * 2013-03-29 2014-10-02 株式会社カネカ Production device and production method for chlorinated vinyl chloride-based resin
US9944762B2 (en) 2013-05-02 2018-04-17 Kaneka Corporation Method for producing chlorinated polyvinyl chloride resin
WO2018174075A1 (en) * 2017-03-24 2018-09-27 株式会社カネカ Fluidized bed reactor and production method for chlorinated polyvinyl chloride resin
US10590210B2 (en) 2016-02-25 2020-03-17 Kaneka Corporation Method for producing chlorinated vinyl chloride resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157346A1 (en) * 2013-03-29 2014-10-02 株式会社カネカ Production method and production device for chlorinated vinyl chloride-based resin
WO2014157617A1 (en) * 2013-03-29 2014-10-02 株式会社カネカ Production device and production method for chlorinated vinyl chloride-based resin
US9399687B2 (en) 2013-03-29 2016-07-26 Kaneka Corportion Method and apparatus for producing chlorinated vinyl chloride-based resin
US9944762B2 (en) 2013-05-02 2018-04-17 Kaneka Corporation Method for producing chlorinated polyvinyl chloride resin
US10590210B2 (en) 2016-02-25 2020-03-17 Kaneka Corporation Method for producing chlorinated vinyl chloride resin
WO2018174075A1 (en) * 2017-03-24 2018-09-27 株式会社カネカ Fluidized bed reactor and production method for chlorinated polyvinyl chloride resin

Similar Documents

Publication Publication Date Title
EP0057687B1 (en) Process for chlorination of poly(vinyl chloride) with liquid chlorine, and chlorinated poly(vinyl chloride) composition
US20040240316A1 (en) Method for production of water-absorbent resin and plow-shaped mixing device
JP6662791B2 (en) Polymer halogenation equipment
JP2002275213A (en) Method and device for producing chlorinated vinyl chloride-based resin
JP3567379B2 (en) Contact device between free-flowing solid mass and liquid or gas
Dobie et al. An evaluation of the effectiveness of continuous thin film processing in a spinning disc reactor for bulk free-radical photo-copolymerisation
TW201632251A (en) Separation and recovery method for hydrogen fluoride and separation and recovery apparatus for hydrogen fluoride
WO2002055565A1 (en) Method and apparatus for producing chlorinated vinyl chloride resin
KR20110082518A (en) A continuous process for the production of a superabsorbent polymer
JP3249986B2 (en) CFC decomposition treatment method and equipment
Wang et al. Photolytic and photocatalytic degradation of micro pollutants in a tubular reactor and the reaction kinetic models
WO2017065224A1 (en) Chlorinated vinyl chloride resin production method
JP2001163612A (en) Method and device for manufacturing activated carbon
US10590210B2 (en) Method for producing chlorinated vinyl chloride resin
CN209465014U (en) A kind of synthesizer of solid phosgene
Esplugas et al. A reactor model for water photolysis experimental studies in the liquid phase with suspensions of catalytic particles
JP2003183320A (en) Method and apparatus for producing chlorinated polyvinyl chloride resin
KR20110088501A (en) A process for the production of a superabsorbent polymer
JP2004352849A (en) Apparatus and method for producing water-absorbing resin
JP2002317011A (en) Method for producing chlorinated vinyl chloride-based resin
JP2002317010A (en) Method for producing chlorinated vinyl chloride-based resin
JP2003277436A (en) Method for producing chlorinated vinyl chloride resin and apparatus therefor
CN213078418U (en) Microreactor for synthesizing monodisperse polyethylene glycol
CN214514564U (en) Preparation device for Grignard reagent and preparation system for Grignard reagent
JP2002308930A (en) Method for manufacturing chlorinated vinyl chloride- based resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127