JP2002272467A - Base sequence of human kgf-like gene - Google Patents
Base sequence of human kgf-like geneInfo
- Publication number
- JP2002272467A JP2002272467A JP2001078738A JP2001078738A JP2002272467A JP 2002272467 A JP2002272467 A JP 2002272467A JP 2001078738 A JP2001078738 A JP 2001078738A JP 2001078738 A JP2001078738 A JP 2001078738A JP 2002272467 A JP2002272467 A JP 2002272467A
- Authority
- JP
- Japan
- Prior art keywords
- kgf
- gene
- seq
- cells
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、癌及び反復流産に
関与するヒトKGF様新規遺伝子とその塩基配列に関する
ものである。これらの遺伝子は、癌並びに反復流産の診
断に役立つばかりか、癌並びに反復流産の予防もしくは
治療を行うための手段を提供するものである。TECHNICAL FIELD The present invention relates to a novel human KGF-like gene involved in cancer and recurrent miscarriage and its nucleotide sequence. These genes are not only useful for diagnosis of cancer and recurrent miscarriage, but also provide a means for preventing or treating cancer and recurrent miscarriage.
【0002】[0002]
【従来の技術】先に、我々は、反復流産歴のある卵巣癌
既往患者における第9染色体逆位に着目した結果、KGF様
遺伝子をこれら疾患の原因候補遺伝子として挙げるに至
った(特願平11-028705、安原ら)。本患者の第9染色体逆
位は、KGF様遺伝子第2並びに3エクソン内で起こって
いる可能性が示唆されたものの、切断点付近の塩基配列
を正常遺伝子上約50kbに渡って調べた結果、既に存在が
報告されているエクソン2に相当する配列のみ認めら
れ、エクソン1に相当する構造を示す塩基配列の存在は
確認されなかった。即ち、KGFに類似したこの遺伝子産
物が癌や流産の発生・進展に関与する可能性が示唆され
ながら、その構造及び機能については不明のままであっ
た。2. Description of the Related Art As a result of focusing attention on chromosome 9 inversion in ovarian cancer patients with a history of recurrent miscarriage, we have identified KGF-like genes as candidate genes for these diseases (Japanese Patent Application No. 11-028705, Yasuhara et al.). Although it was suggested that the chromosome 9 inversion of this patient might have occurred in the second and third exons of the KGF-like gene, the nucleotide sequence near the breakpoint was examined over about 50 kb on a normal gene, Only the sequence corresponding to exon 2 whose existence was already reported was recognized, and the presence of a nucleotide sequence showing a structure corresponding to exon 1 was not confirmed. That is, it has been suggested that this gene product similar to KGF may be involved in the occurrence and progression of cancer and miscarriage, but its structure and function remain unknown.
【0003】[0003]
【発明が解決しようとする課題】前述の通り、KGF様遺
伝子の構造やその産物の機能を解明することは、先の疾
患とKGF様遺伝子の関連を明らかにするために有効な手
段であると考えられる。更に得られた情報からこれら疾
患の発症機序を解析し、疾患の診断や治療を開発するこ
とも期待される。しかし、これまでKGF様遺伝子構造は
その一部が報告されているのみであった(Proc.Natl.Ac
ad.Sci.USA, 89, 9287-9291(1992), M. J. Kelley
ら)。従って、本発明の目的は、癌や習慣性流産に関与
するKGF様遺伝子転写産物の全構造を決定することにあ
る。As described above, elucidating the structure of the KGF-like gene and the function of its product is an effective means for clarifying the relationship between the above-mentioned disease and the KGF-like gene. Conceivable. It is also expected that the pathogenesis of these diseases will be analyzed from the obtained information to develop diagnosis and treatment of the diseases. However, only a part of the KGF-like gene structure has been reported so far (Proc. Natl. Ac
ad.Sci.USA, 89, 9287-9291 (1992), MJ Kelley
Et al.) Therefore, an object of the present invention is to determine the entire structure of a transcript of a KGF-like gene involved in cancer or habitual abortion.
【0004】[0004]
【課題を解決するための手段】KGF遺伝子の開始コドン
はエクソン1内に存在することが知られている一方(Scie
nce, 245, 752-755(1989), P. W. Finchら)、KGF様遺伝
子についてはエクソン2、3が報告されているのみであり
第1エクソンの構造は不明であった(Proc.Natl.Acad.Sc
i.USA, 89, 9287-9291(1992), M. J. Kelleyら)。ま
た、我々が発見した第9染色体逆位部分に存在するKGF
様遺伝子においても、第1エクソンが存在しなかった。
よって上記の課題を解決すべく、5’-RACEやPCR法を用
いてKGF様 mRNAの5’末側塩基配列決定を行った。従っ
て本発明は、KGF様タンパク質をコードするmRNAとして
特定され塩基配列が決定された様々な遺伝子である。The start codon of the KGF gene is known to be present in exon 1 (Scie
nce, 245, 752-755 (1989), PW Finch et al.) For the KGF-like gene, only exons 2 and 3 have been reported, and the structure of the first exon was unknown (Proc. Natl. Acad. Sc
i.USA, 89, 9287-9291 (1992), MJ Kelley et al.). In addition, the KGF present in the inversion of chromosome 9
Exon 1 was absent in the same gene.
Therefore, in order to solve the above-mentioned problem, the 5′-terminal nucleotide sequence of KGF-like mRNA was determined using 5′-RACE or PCR. Accordingly, the present invention relates to various genes whose nucleotide sequences have been determined and identified as mRNAs encoding KGF-like proteins.
【0005】[0005]
【発明の実施の形態】本発明のcDNAは、以下の実施例に
記載の方法によって得ることができる。また、この発明
の遺伝子は、配列番号9〜25のcDNAをプローブとし
て、例えば既存のヒトcDNAライブラリーから単離するこ
とができる。また、配列番号9〜25のcDNAのプライマ
ーを設計し、ヒトDNAやDNAライブラリーからPCR法によ
って単離することができる。尚、この発明のcDNAは、配
列番号9〜25の遺伝子配列にのみ限定されるものでは
なく、例えば、一定の改変を有する遺伝子や上記特定の
塩基配列と一定の相同性を有する遺伝子であることがで
きる。その改変の程度は、配列番号9〜25のcDNAと同
等の機能を有する同効物であることを前提として、特に
制限されるものではない。例えば、配列番号9〜25の
cDNAの一部を部位特異的変異法等で改変することで、自
在に欠失、置換、付加誘導体を製造することができる。BEST MODE FOR CARRYING OUT THE INVENTION The cDNA of the present invention can be obtained by the method described in the following examples. The gene of the present invention can be isolated from, for example, an existing human cDNA library using the cDNAs of SEQ ID NOS: 9 to 25 as probes. Alternatively, cDNA primers of SEQ ID NOS: 9 to 25 can be designed and isolated from human DNA or DNA libraries by PCR. The cDNA of the present invention is not limited to the gene sequences of SEQ ID NOS: 9 to 25. For example, the cDNA may be a gene having a certain modification or a gene having a certain homology with the above specific base sequence. Can be. The degree of the modification is not particularly limited, provided that the substance has the same function as the cDNA of SEQ ID NOS: 9 to 25. For example, of SEQ ID NO: 9 to 25
By modifying a part of cDNA by site-directed mutagenesis or the like, deletion, substitution, and addition derivatives can be freely produced.
【0006】この発明のcDNAは、その全塩基配列又は一
部配列をプローブとして、各種細胞のKGF様遺伝子の発
現量を見ることにより、癌や反復流産の診断、治療に用
いることができる。また、その全塩基配列又は一部配列
からプライマーを設計し、PCR法により各種細胞のKGF様
遺伝子の発現量を見ることで、癌や反復流産の診断、治
療に用いることができる。また、プライマーを使って、
KGF様遺伝子の変異欠失等を解析することにより、癌や
反復流産の診断、治療に用いることができる。[0006] The cDNA of the present invention can be used for diagnosis and treatment of cancer and recurrent miscarriage by checking the expression level of the KGF-like gene in various cells using the entire base sequence or a partial sequence thereof as a probe. In addition, primers are designed from the entire base sequence or a partial sequence thereof, and the expression level of the KGF-like gene in various cells is determined by PCR, whereby the primers can be used for diagnosis and treatment of cancer and repeated miscarriage. Also, using primer,
By analyzing mutations and deletions of the KGF-like gene, it can be used for diagnosis and treatment of cancer and recurrent miscarriage.
【0007】この発明のcDNAは、その全塩基配列または
一部配列を各種細胞に投与することによってセンスある
いはアンチセンス遺伝子を発現させ、KGF様遺伝子を増
幅したり発現を抑制したりすることができる。これによ
って、癌化や流産を調節したり、制癌剤の治療効果を高
めたり持続させたりする事ができる。また、このcDNAお
よびその改変体から既知の方法により、KGF様タンパク
質を得ることができる。このcDNAおよび改変体を適当な
プラスミドベクター、ウイルスベクター、及びリポソー
ムベクター等のベクターに発現可能に挿入し、適当な宿
主細胞、例えば、大腸菌、酵母、昆虫細胞、COS細胞、
ミンク肺上皮細胞、リンパ細胞、繊維芽細胞、NIH/3T3
細胞、CHO細胞、血液系細胞、及び腫瘍細胞を形質転換
させ、その宿主細胞を培養し、その培養物からKGF様タ
ンパク質またはその誘導体を製造することができる。KG
F様たんぱく質、又は、その部分ペプチドは、これを有
効成分とする医薬品として医薬分野において用いること
ができる。また、このKGF様たんぱく質又は、部分ペプ
チドは抗体作成の為の免疫原として利用することがで
き、既知の方法でそれらに対する抗体を自由に作ること
ができる。この抗体を、癌や流産の診断、治療に用いる
ことができる。The cDNA of the present invention can express a sense or antisense gene by administering the whole nucleotide sequence or a partial sequence thereof to various cells, and can amplify or suppress the expression of a KGF-like gene. . Thereby, canceration and miscarriage can be controlled, and the therapeutic effect of an anticancer drug can be enhanced or maintained. In addition, a KGF-like protein can be obtained from this cDNA and its variant by a known method. The cDNA and the variant are expressively inserted into a suitable plasmid vector, virus vector, and vector such as a liposome vector, and a suitable host cell, for example, E. coli, yeast, insect cell, COS cell,
Mink lung epithelial cells, lymphocytes, fibroblasts, NIH / 3T3
Cells, CHO cells, blood cells, and tumor cells can be transformed, the host cells can be cultured, and a KGF-like protein or a derivative thereof can be produced from the culture. KG
The F-like protein or a partial peptide thereof can be used in the field of medicine as a drug containing this as an active ingredient. In addition, the KGF-like protein or partial peptide can be used as an immunogen for preparing an antibody, and an antibody against them can be freely prepared by a known method. This antibody can be used for diagnosis and treatment of cancer and miscarriage.
【0008】[0008]
【実施例】1. 5’-RACEを用いたヒトKGF-like mRNAの
5’側塩基配列決定 Human Kidney Marathon-Ready cDNA(Clontech)を鋳型
とし、KGF様遺伝子エクソン3内停止コドン付近の塩基配
列に相補的な配列を持つプライマー Ex3-R(配列番号
1)を遺伝子特異的プライマーとして用いPCRを行っ
た。もう一方のプライマーはcDNA添付のAP-1を、ポリメ
ラーゼ、バッファー、dNTP MixはClontech社製を用い、
以下の温度シフト条件下にて反応させた。即ち、94℃1
分保持、94℃30秒後72℃2分保持を5回、続いて94℃30
秒後70℃2分を5回、最後に94℃30秒後68℃2分を25回
繰り返した。得られたPCR産物はTA クローニングキット
(Invitrogen)を用いてプラスミドpCR2.1に導入した。
このプラスミドを用いて形質転換した大腸菌Top10F’株
144株からプラスミドDNAを精製し、EcoRI処理により挿
入されたDNA断片の大きさを確認後、導入されたDNA断片
が明らかに小さいものを除いてその塩基配列を決定し
た。EXAMPLES 1. Human KGF-like mRNA using 5'-RACE
5'-side nucleotide sequence determination Using Human Kidney Marathon-Ready cDNA (Clontech) as a template, a primer Ex3-R (SEQ ID NO: 1) having a sequence complementary to the nucleotide sequence near the stop codon in exon 3 of the KGF-like gene is gene-specific. PCR was performed using the primers. The other primer was AP-1 attached to cDNA, polymerase, buffer and dNTP Mix were manufactured by Clontech.
It was allowed to react at a temperature of less than or equal to shift conditions. That is, 94 ° C1
Hold at 94 ° C for 30 seconds, then hold at 72 ° C for 2 minutes 5 times, then at 94 ° C for 30 minutes.
After 70 seconds, 70 ° C. for 2 minutes was repeated 5 times, and finally, at 94 ° C. for 30 seconds and 68 ° C. for 2 minutes 25 times. The obtained PCR product was introduced into plasmid pCR2.1 using a TA cloning kit (Invitrogen).
E. coli Top 10 F 'strain was transformed with this plasmid
Plasmid DNA was purified from 144 strains, and after confirming the size of the inserted DNA fragment by EcoRI treatment, the nucleotide sequence was determined except for those in which the introduced DNA fragment was clearly small.
【0009】その結果、主に図1及び配列番号9〜25
に示すとおりのKGF様 mRNAの多型が確認された。即ち、
幾つかのユニットをつなぎ合わせた形でエクソン2上流
域が存在していた。図1中右側に記載があるプロトタイ
プはエクソン2、3の塩基配列の多型から分類される(Pr
oc.Natl.Acad.Sci.USA, 89, 9287-9291(1992), M. J. K
elleyら)。これら多型を示すmRNAからアミノ酸配列を
予想すると、そのほとんどはエクソン2直上に存在する
停止コドンのため上流エクソンにコードされる配列がエ
クソン2、3とインフレーム(in frame)になるようにタ
ンパク質に翻訳されることがない。唯一、クローンK1-5
6(配列番号16)の場合のみ開始コドンとなり得るATG
の下流に停止コドンがなく、エクソン2、3とインフレー
ムになるようにタンパク質として翻訳されうる配列であ
った。先に報告した逆位切断点近傍のエクソン2は5’末
端側から30番目がC、32番目がGであることを特徴とする
塩基配列であり、いずれのプロトタイプにも属さないと
考えられた(図2)。しかし、今回塩基配列を決定した
いずれのクローンにおいても32番目は全てGとなってお
り、報告されている全てのプロトタイプで32番目がAと
なっていることとは全く異なる。逆位切断点近傍のKGF
様遺伝子は32番目の違い以外はプロトタイプIIの塩基配
列に一致する。As a result, FIG. 1 and SEQ ID NOS: 9 to 25
The polymorphism of the KGF-like mRNA was confirmed as shown in FIG. That is,
The upstream region of Exon 2 existed with several units connected. The prototypes described on the right side of FIG. 1 are classified based on the polymorphisms of exon 2 and exon 3 (Pr
oc.Natl.Acad.Sci.USA, 89, 9287-9291 (1992), MJ K
elley et al.). When the amino acid sequence is predicted from mRNAs showing these polymorphisms, most of them are proteins such that the sequence encoded by the upstream exon is in frame with exons 2 and 3 due to the stop codon located immediately above exon 2. Will not be translated. Only clone K1-5
ATG that can be the start codon only in case of 6 (SEQ ID NO: 16)
There was no stop codon downstream of, and the sequence could be translated as a protein in frame with exons 2 and 3. Exon 2 near the inversion breakpoint reported earlier is a nucleotide sequence characterized by C at position 30 and G at position 32 from the 5 'end, and was considered not to belong to any prototype. (Figure 2). However, in all the clones whose nucleotide sequences were determined this time, the 32nd was all G, which is completely different from the 32nd being A in all reported prototypes. KGF near the inversion break point
Except for the 32nd difference, the similar gene corresponds to the base sequence of prototype II.
【0010】クローンK1-4(配列番号10)、K1-23
(配列番号13)、K1-61(配列番号17)、K1-85(配
列番号20)に共通のエクソン2直上に存在する配列、
約100bpはエクソン2上流約12kbの位置に存在することが
先に決定した逆位切断点近傍の約50kbの塩基配列との比
較で確認された。一方、これら各クローンの塩基配列を
相同性検索に供したところ、クローンK1-1(配列番号
9)、K1-10(配列番号11)、K1-49(配列番号1
4)、K1-142(配列番号25)に共通のエクソン2直上
に位置する2つのユニットで構成される領域がCpG islan
dとして登録されている塩基配列と一致することが判明
した(NatureGenet.6, 236-244(1994), S. H. Cross
ら)。本配列以外には、データバンクに登録されている
既知の配列と相同性は認められなかった。Clone K1-4 (SEQ ID NO: 10), K1-23
(SEQ ID NO: 13), a sequence present immediately above exon 2 common to K1-61 (SEQ ID NO: 17), K1-85 (SEQ ID NO: 20),
Approximately 100 bp was confirmed to be present at a position about 12 kb upstream of exon 2 by comparison with a base sequence of about 50 kb near the inversion cleavage point previously determined. On the other hand, when the base sequences of these clones were subjected to homology search, clones K1-1 (SEQ ID NO: 9), K1-10 (SEQ ID NO: 11), and K1-49 (SEQ ID NO: 1)
4) The region consisting of two units located immediately above exon 2 common to K1-142 (SEQ ID NO: 25) is CpG islan
The sequence was found to match the nucleotide sequence registered as d (NatureGenet. 6, 236-244 (1994), SH Cross
Et al.) Other than this sequence, no homology was recognized with a known sequence registered in the data bank.
【0011】2. PCRによるKGF様遺伝子転写の確認 上述の実験から存在が示唆されたmRNA多型の発現状況を
調べるため、新たにヒトcDNAパネル(Clontech)を鋳型
としたPCRを行った。実際に発現しているmRNAの長さを
確認するためのPCRはパネルのコントロールcDNAを鋳型
とし、プライマーには前述のEx3-R(配列番号1)とKGF
様mRNAの多型の各ユニットから設計した前進プライマー
1〜7(配列番号2〜8) を用い、前進性cDNA PCRキッ
ト(Clontech)を使用して行った。2. Confirmation of KGF-like gene transcription by PCR In order to examine the expression status of mRNA polymorphism whose existence was suggested from the above-mentioned experiment, PCR was newly performed using a human cDNA panel (Clontech) as a template. PCR for confirming the length of the actually expressed mRNA was performed using the control cDNA of the panel as a template, and the primers Ex3-R (SEQ ID NO: 1) and KGF
Using a forward cDNA PCR kit (Clontech), using forward primers 1 to 7 (SEQ ID NOs: 2 to 8) designed from each unit of the same mRNA polymorphism.
【0012】PCR反応は、94℃2分保持、94℃40秒変性後
60℃40秒アニーリングし72℃90秒で伸長させるサイクル
を35回繰り返して行った。一方、各臓器における発現特
異性を確認するPCRにはパネルの各cDNAを鋳型とし、前
進プライマー1(配列番号2)とEx3-R(配列番号1)
をプライマーとして前進性cDNA PCR キットを用いた。K
GF様遺伝子の塩基配列を用いたヒトcDNAライブラリーに
対するPCRの結果は図3に示すとおりである。ヒト各臓器
から調製したcDNA混合物を鋳型として用いた場合、 前
進プライマー1〜7(配列番号2〜8)とEx3-R(配列番
号1)によりそれぞれ予想される長さのDNA断片が増幅
され、先の5’-RACEの結果が人工産物でないことが示唆
された。前進プライマー1(配列番号2)とEx3-R(配
列番号1)による増幅産物については、pCR2.1にサブク
ローニングしたのち幾つかのクローンについて塩基配列
を決定した結果、図3上段に示すとおりのクローンの存
在が確認された。また、ヒト各臓器由来cDNAを鋳型にし
た場合、 前進プライマー1(配列番号2)とEx3-R(配
列番号1)のプライマーを用いてPCRを行った結果、図
3下段に示すとおり2,3種類の多型が普遍的に発現し
ていることが確認された。The PCR reaction is maintained at 94 ° C. for 2 minutes and denatured at 94 ° C. for 40 seconds.
A cycle of annealing at 60 ° C. for 40 seconds and extending at 72 ° C. for 90 seconds was repeated 35 times. On the other hand, each cDNA for PCR The panel confirm the expression specificity in each organ as a template, the forward primer 1 (SEQ ID NO: 2) and Ex3-R (SEQ ID NO: 1)
Using forward of cDNA PCR kit as primers. K
The results of PCR on a human cDNA library using the base sequence of the GF-like gene are as shown in FIG. When a cDNA mixture prepared from each human organ is used as a template, DNA fragments of the expected lengths are amplified by forward primers 1 to 7 (SEQ ID NOs: 2 to 8) and Ex3-R (SEQ ID NO: 1), respectively. It was suggested that the result of the previous 5'-RACE was not an artifact. With respect to the amplification product of forward primer 1 (SEQ ID NO: 2) and Ex3-R (SEQ ID NO: 1), the base sequence was determined for several clones after subcloning into pCR2.1. Was confirmed. When cDNA derived from human organs was used as a template, PCR was performed using the forward primer 1 (SEQ ID NO: 2) and the Ex3-R (SEQ ID NO: 1) primer. As shown in the lower part of FIG. It was confirmed that various types of polymorphisms were universally expressed.
【0013】3. monoclomosomal細胞に対するKGF-like
遺伝子のゲノムPCR 9番染色体逆位の報告において用いたヒトモノ染色体細
胞ライン(特願平11-028705、安原ら)よりQIA amp tis
sue kit(QIAGEN)を用いて染色体DNAを精製し、Advant
age GC ゲノムPCRキット(Clontech)を用いてPCRを行
った。PCRには前述の配列番号1と配列番号7をプライ
マーとして用いた。PCR反応条件は、95℃1分保持、94
℃30秒で変性後55℃30秒でアニーリングし68℃12分で伸
長させるサイクルを35回繰り返し、最後に68℃12分保持
とした。3. KGF-like for monoclomosomal cells
Genomic PCR of genes QIA amp tis from the human monochromosome cell line (Japanese Patent Application No. 11-028705, Yasuhara et al.) Used in the report of chromosome 9 inversion
Purify chromosomal DNA using sue kit (QIAGEN)
PCR was performed using age GC genomic PCR kit (Clontech). For PCR, SEQ ID NO: 1 and SEQ ID NO: 7 were used as primers. PCR reaction conditions were 95 ° C for 1 minute, 94
A cycle of denaturation at 30 ° C. for 30 seconds, annealing at 55 ° C. for 30 seconds and extension at 68 ° C. for 12 minutes was repeated 35 times, and finally kept at 68 ° C. for 12 minutes.
【0014】KGF様遺伝子は第9染色体以外に、第2、1
5、18、21染色体上にも存在することが知られている。
今回得られたクローン群がいずれの染色体上に存在する
かについてゲノムPCR法にて調べた。 前進プライマー6
(配列番号7)とEx3-R(配列番号1)を用いて行ったP
CRの結果を図4に示す。第2、9、15、18、21染色体を持
つ各monoclomosomal細胞のうち、第9染色体を持つ細胞
株2209から精製したゲノムDNAを鋳型にした場合にのみ
増幅産物が確認された。[0014] The KGF-like gene is not only chromosome 9 but also
It is also known to be present on chromosomes 5, 18, and 21.
On which chromosome the clones obtained this time were examined by genomic PCR. Forward primer 6
(SEQ ID NO: 7) and Ex3-R (SEQ ID NO: 1) was carried out using the P
The results of CR are shown in FIG. Among the monoclomosomal cells having chromosomes 2, 9, 15, 18, and 21, amplification products were confirmed only when genomic DNA purified from cell line 2209 having chromosome 9 was used as a template.
【0015】[0015]
【配列表】 SEQUENCE LISTING <110> Asahi Breweries, Ltd. <120> Basic sequences of human KGF-like gene <130> 2000-18P <160> 25 <170> PatentIn Ver. 2.0 <210> 1 <211> 30 <212> DNA <213> Homo sapiens <400> 1 aagttattgc cataggaaga aagtgggctg 30 <210> 2 <211> 31 <212> DNA <213> Homo sapiens <400> 2 tgacccagtc agtgcccttc agttaaagac c 31 <210> 3 <211> 28 <212> DNA <213> Homo sapiens <400> 3 cgcatagact ttacctgcgc acgcgtcg 28 <210> 4 <211> 33 <212> DNA <213> Homo sapiens <400> 4 ccctaaagga tgatctgtct tctcatcatt ttg 33 <210> 5 <211> 29 <212> DNA <213> Homo sapiens <400> 5 gatgtaacaa aacaaaggag tcttcaatg 29 <210> 6 <211> 32 <212> DNA <213> Homo sapiens <400> 6 catgctcaag ctatcctctg accttagcct cc 32 <210> 7 <211> 32 <212> DNA <213> Homo sapiens <400> 7 catctgtacg gttgggacaa gtacagtaac cc 32 <210> 8 <211> 28 <212> DNA <213> Homo sapiens <400> 8 cgcatagact ttacctgcgc acgcgtcg 28 <210> 9 <211> 790 <212> DNA <213> Homo sapiens <400> 9 gaaaacgggc aatgggtgga ttcgggtcca gattctggca ggagggagtt tgggatcgag 60 atctggaaaa aagcactaga ctggaagagg acgcgatgga gtcggagccg ctngcgggga 120 caaaaaccag aggccgggna aggcgccggt gggaggcaag gcgcgcatag actttacctg 180 cgcacgcgtc gcagccatct ccgtgcacag tggtggccac cgcgactggt gctgaagtgt 240 cggcgcgtgc cgggcgctcc gctgggaccc gggttgctcg ccctgagtct cagctttctc 300 atctgtacgg ttgggacaag tacagtaacc ctcgcccgtc aagacgggcc agggctgtgg 360 cgagggtcca cgccttagag caggcaccta tcttgtgcag ggccctgaga cggggtctga 420 ctcagttcct gcggggaact tcaccagtga cccagtcagt gcccttcagt taaagaccac 480 caggagcaca cttatatcat ggaaatcagg acagtggcag ttgggattgt ggcaatcaaa 540 ggggtggaaa gtgaattcta tcttgcaacg aacgaggaag gaaaactcta tgcagagaag 600 gaatacaatg aagattgtaa cttcaaagat ctaattctgg aaaaccatta caacacatat 660 gcagcagcta aatggacaaa caacggaggg gaaatgtttg tggccttaaa tcaaaagggg 720 attcctgtaa gaggaaaaaa aaaaaagaaa gaacaaaaaa cagcccactt tcttcctatg 780 gcaataactt 790 <210> 10 <211> 577 <212> DNA <213> Homo sapiens <400> 10 aaaaaaaaaa aaaaaaagcg accgctgcaa gacgggccag ggctgtggcg agggtccacg 60 ccttagagca ggcacctatc ttgtgcaggg ccctgagacg gggtctgact cagttcctgc 120 ggggaacttc accagtgacc cagtcagtgc ccttcagtta aagaccacca ggagcacact 180 tgctggagtg cagtggcatg accatggctc actacagtct tgaactttca tgctcaagct 240 atcctctgac cttagcctcc tgagtagctg gaactacaga tatcatggaa atcaggacag 300 tagcagttgg gattgtggca atcaaagggg tggaaagtga attctatctt gcaacgaacg 360 aggaaggaaa actctatgca aagaaggaat acaatgaaga ttgtaacttc aaagatctaa 420 ttctggaaaa ccattacaac acatatgcag cagctaaatg gacaancaac ggaggggaaa 480 tgtttgtggc cttaaatcaa aaggggattc ctgtaagagg aaaaaaaaaa aaagaaagaa 540 caaaanncag cccactttct tcctatggca ataactt 577 <210> 11 <211> 581 <212> DNA <213> Homo sapiens <400> 11 caccgcgact ggtgctgaag tgtcggcgtg tgccgggcgc tccgctggga cccgggttgc 60 tcgccctgag tctcagcttt ctcatctgta cggttgggac aagtacagta accctcgccc 120 gtcaagacgg gccagggctg tggcgagggt ccacgcctta gagcaggcac ctatcttgtg 180 cagggccctg agatggggtc tgactcagtt cctgcgggga acttcaccag tgacccagtc 240 agtgcccttc agttaaagac caccaggagc acacttatat catggaaatc aggacagtgg 300 cagttcggat tgtggcaatc aaaggggtgg aaagtgaatt ctatcttgca atgaacgagg 360 aaggaaaact ctatgcaaag aaagaatgca atgaagattg taacttcaaa gaactaattc 420 tggaaaacca ttacaacaca tatgcagcag ctaaatggac acacaatgga ggggaaatgt 480 ttgttgcctt aaatcaaaag gggattcctg taagaggaaa aaaaacgaag aaagaacaaa 540 aaacagccca ctttcttcct atggcaataa cttaagccga a 581 <210> 12 <211> 683 <212> DNA <213> Homo sapiens <400> 12 caccgcgact ggtgctgaag tgtcggcgtg tgccgggcgc tccgctggga cccgggttgc 60 tcgccctgag tctcagcttt ctcatctgta cggttgggac aagtacagta accctcgccc 120 gtcaagacgg gccagggctg tggcgagggt ccacgcctta gagcaggcac ctatcttgtg 180 cagggccctg agatggggtc tgactcagtt cctgcgggga acttcaccag tgacccagtc 240 agtgcccttc agttaaagac caccaggagc acacttcatt gctgttggaa aggctgatgc 300 caatcaaaac caatttttcc ctaaaggatg atctgtcttc tcatcatttt gacaggatgt 360 aacaaaacaa aggagtcttc aatgttatat catggaaatc aggacagtgg cagttcggat 420 tgtggcaatc aaaggggtgg aaagtgaatt ctatcttgca atgaacgagg aaggaaaact 480 ctatgcaaag aaagaatgca atgaagattg taacttcaaa gaactaattc tggaaaacca 540 ttacaacaca tatgcagcag ctaaatggac acacaatgga ggggaaatgt ttgttgcctt 600 aaatcaaaag gggattcctg taggaggaaa aaaaacgaag aaagaacaaa aaacagccca 660 ctttcttcct atggcaataa ctt 683 <210> 13 <211> 388 <212> DNA <213> Homo sapiens <400> 13 tgcagtggca tgaccatggc tcactacagt cttgaacttt catgctcaag ctatcctctg 60 actttagcct cctgagtagc tggaactaca gatatcatgg aaatcaggac agtagcagtt 120 gggattgtgg caatcaaagg ggtggaaagt gaattctatc ttgcaacgaa cgaggaagga 180 aaactctatg caaagaagga atgcaatgaa gattgtaact tcaaagatct aattctggaa 240 aaccattaca acacatatgc agcagctaaa tggacaaaca acggagggga aatgtttgtg 300 gccttaaatc aaaaggggat tcctgtaaga ggaaaaaaaa caaagaaaga acaaaaaaca 360 gcccactttc ttcctatggc aataactt 388 <210> 14 <211> 949 <212> DNA <213> Homo sapiens <400> 14 cagtaacaaa catggctccc tgaagccgct caggctcaag agcaacatgg aggtctgcac 60 ttaatcgctc ctctccgggg gcggccatac tgaggaggca tctcttccgt gcaggcaggc 120 tctcctgggg acctcaaaga ttctctccag cggcagcaga aaacgggcaa tgggtggatt 180 cgggtccaga ttctggcagg agggagtttg ggatcgagat ctggaaaaaa gcactagact 240 ggaagaggac gcgatggagt cggagccgct ggcggggaca aaaaccagag gccggggaag 300 gcgccggtgg gaggcaaggc acggatggac tttacctgcg cacgcgtcgc agccatctcc 360 gcgcacagtg gtggcccacc gcgactggtg ctgaagtgtc ggcgcgtgcc gggcgctccg 420 ctgggacccg ggttgctggc cctgagtgtc agctttctca tctgtacggt tgggacaagt 480 acagtaaccc tcgcccgtca agacgggcca gggctgtggc gagggtccac gccttagagc 540 aggcacctat cttgtgcagg gccctgagat ggggtctgac tcagttcctg cggggaactt 600 caccagtgac ccagtcagtg cccttcagtt aaagaccacc aggagcacac ttatatcatg 660 gaaatcagga cagtagcagt tgggattgtg gcaatcaaag gggtggaaag tgaattctat 720 cttgcaacga acgaggaagg aaaactctat gcaaagaagg aatgcaatga agattgtaac 780 ttcaaagatc taattctgga aaaccattac aacacatatg cagcagctaa atggacaaac 840 aacggagggg aaatgtttgt ggccttaaat caaaagggga ttcctgtaag aggaaaaaaa 900 acaaagaaag aacaaaaaac agcccacttt cttcctatgg caataactt 949 <210> 15 <211> 729 <212> DNA <213> Homo sapiens <400> 15 ggacccgggt tgctcgccct gagtctcagc tttctcatct gtacggttgg gacaagtaca 60 gtaaccctcg cccgtcaaga cgggccaggg ctgtggcgag ggtccacgcc ttagagcagg 120 cacctatctt gtgcagggcc ctgagatggg gtctgactca gttcctgcgg ggaacttcac 180 cagtgaccca gtcagtgccc ttcagttaaa gaccaccagg agcacactta gatggggttt 240 cgccttgctg cccacgctgg tcctgaaccc ctgagctcag gtgatccacc cacctcggcc 300 tcccatactg ctgggattac agcattgctg ttggaaaggc tgatgccaat caaaaccaat 360 ttttccctaa aggatgatct gtcttctcat cattttgaca ggatgtaaca aaacaaagga 420 gtcttcaatg ttatatcatg gaaatcagga cagtagcagt tgggattgtg gcaatcaaag 480 gggtggaaag tgaattctat cttgcaacga acgaggaagg aaaactctat gcaaagaagg 540 aatgcaatga agattgtaac ttcaaagatc taattctgga aaaccattac aacacatatg 600 cagcagctaa atggacaaac aacggagggg aaatgtttgt ggccttaaat caaaagggga 660 ttcctgtaag aggaaaaaaa acaaagaaag aacaaaaaac agcccacttt cttcctatgg 720 caataactt 729 <210> 16 <211> 468 <212> DNA <213> Homo sapiens <400> 16 ctagaattca gcggccgttt cttagagcag gcacctatct tgtgcagggc cctgagatgg 60 ggtctgactc agttcctgcg gggaacttca ccagtgaccc agtcagtgcc cttcagttaa 120 agaccaccag gagcacactt gatgtaacaa aacaaaggag tcttcaatgt tatatcatgg 180 aaatcaggac agtggcagtt cggattgtgg caatcaaagg ggtggaaagt gaattctatc 240 ttgcaatgaa cgaggaagga aaactctatg caaagaaaga atgcaatgaa gattgtaact 300 tcaaagaact aattctggaa aaccattaca acacatatgc agcagctaaa tggacacaca 360 atggagggga aatgtttgtt gccttaaatc aaaaggggat tcctgtaaga ggaaaaaaaa 420 cgaagaaaga acaaaaaaca gcccactttc ttcctatggc aataactt 468 <210> 17 <211> 418 <212> DNA <213> Homo sapiens <400> 17 catgttttta ccctgttgcc caggctggag tgcagtggca tgaccatggc tcactacagt 60 cttgaacttt catgctcaag ctatcctctg accttagcct cctgagtagc tggaactaca 120 gatatcatgg aaatcaggac agtagcagtt gggattgtgg caatcaaagg ggtggaaagt 180 gaattctatc ttgcaacgaa cgaggaagga aaactctatg caaagaagga atacaatgaa 240 gattgtaact tcaaagatct aattctggaa aaccattaca acacatatgc agcagctaaa 300 tggacaaaca acggagggga aatgtttgtg gccttaaatc aaaaggggat tcctgtaaga 360 ggaaaaaaaa caaagaaaga acaaaaaaca gcccactttc ttcctatggc aataactt 418 <210> 18 <211> 779 <212> DNA <213> Homo sapiens <400> 18 ccgcgactgg tgctgaagtg tcggcgcgtg ccgggcgctc cgctgggacc cgggttgctc 60 gccctgagtc tcagctttct catctgtacg gttgggacaa gtacagtaac cctcgcccgt 120 caagacgggc cagggctgtg gcgagggtcc acgccttaga gcaggcacct atcttgtgca 180 gggccctgag acggggtctg actcagttcc tgcggggaac ttcaccagtg acccagtcag 240 tgcccttcag ttaaagacca ccaggagcac acttcattgc tgttggaaag gctgatgcca 300 atcaaaacca atttttccct aaaggatgat ctgtcttctc atcattttga caggatgtaa 360 caaaacaaag gagtcttcaa tgttgctgga gtgcagtggc atgaccatgg ctcactacag 420 tcttgaactt tcatgctcaa gctatcctct gaccttagcc tcctgagtag ctggaactac 480 agatatcatg gaaatcagga cagtagcagt tgggattgtg gcaatcaaag gggtggaaag 540 tgaattctat cttgcaacga acgaggaagg aaaactctat gcaaagaagg aatacaatga 600 agattgtaac ttcaaagatc taattctgga aaaccattac aacacatatg cagcagctaa 660 atggacaaac aacggagggg aaatgtttgt ggccttaaat caaaagggga ttcctgtaag 720 aggaaaaaaa acaaagaaag aacaaaaaac agcccacttt cttcctatgg caataactt 779 <210> 19 <211> 998 <212> DNA <213> Homo sapiens <400> 19 tgcctgttga tttatggaaa caattatgat tctgctggag aacttttcag ctgagaaata 60 gtttgtagct acagtagaaa ggctcaagtt gcaccaggca gacaacagac atggaattct 120 tatatatcca gctgttagca acaaaacaaa agtcaaatag caaacagcgt cacagcaact 180 gaacttacta cgaactgttt ttatgaggat ttatcaacag agttatttaa ggaggaatcc 240 tgtgttgtta tcaggaacta aaaggataag gctaacaatt tggaaagagc aactactctt 300 tcttaaatca atctacaatt cacagatagg aagaggtcaa tgacctagga gtaacaatca 360 actcaagatt cattttcatt atgttattca tgaacacccg gagcactaca ctataatgca 420 caaatggata ctgacatgga tcctgccaac tttgctctac agatcatgct ttcacattat 480 ctgtctagtg ggtactatat ctttagcttg caatgacatg actccagagc aaatggctac 540 aaatgtgaac tgttccagcc ctgagcgaca cacaagaagt tatgattaca tggaaggagg 600 ggatataaga gtgagaagac tcttctgtcg aacacagtgg tacctgagga tcgataaaag 660 aggcaaagta aaagggaccc aagagatgaa gaataattac aatatcatgg aaatcgggac 720 agtggcagtt ggaattgtgg caatcaaagg ggtggaaagt gaattctatc ttgcaatgaa 780 caaggaagga aaactctatg caaagaaaga atgcaatgaa gattgtaact tcaaagaact 840 aattctggaa aaccattaca acacatatgc atcagctaaa tggacacaca acggagggga 900 aatgtttgtt gccttaaatc aaaaggggat tcctgtaaga ggaaaaaaaa cgaagaaaga 960 acaaaaaaca gcccactttc ttcctatggc aataactt 998 <210> 20 <211> 669 <212> DNA <213> Homo sapiens <400> 20 ccgcgactgg tgctgaagtg tcggcgcgtg ccgggcgctc cgctgggacc cgggttgctc 60 gccctgagtc tcagctttct catctgtacg gttgggacaa gtacagtaac cctcgcccgt 120 caagacgggc cagggctgtg gcgagggtcc acgccttaga gcaggcacct atcttgtgca 180 gggccctgag acggggtctg actcagttcc tgcggggaac ttcaccagtg acccagtcag 240 tgcccttcag ttaaagacca ccaggagcac acttgctgga gtgcagtggc atgaccatgg 300 ctcactacag tcttgaactt tcatgctcaa gctatcctct gaccttagcc tcctgagtag 360 ctggaactac agatatcatg gaaatcagga cagtagcagt tgggattgtg gcaatcaaag 420 gggtggaaag tgaattctat cttgcaacga acgaggaagg aaaactctat gcaaagaagg 480 aatacaatga agattgtaac ttcaaagatc taattctgga aaaccattac aacacatatg 540 cagcagctaa atggacaaac aacggagggg aaatgtttgt ggccttaaat caaaagggga 600 ttcctgtaag aggaaaaaaa aaaaagaaag aacaaaaaac agcccacttt cttcctatgg 660 caataactt 669 <210> 21 <211> 467 <212> DNA <213> Homo sapiens <400> 21 aaaaaaaaaa ggcggccgct gaatcagtgc ccttcagtta aagaccacca ggagcacact 60 tcattgctgt tggaaaggct gatgccaatc aaaaccaatt tttccctaaa ggatgatctg 120 tcttctcatc attttgacag gatgtaacaa aacaaaggag tcttcaatgt tatatcatgg 180 aaatcaggac agtggcagtt cggattgtgg caatcaaagg ggtggaaagt gaattctatc 240 ttgcaatgaa cgaggaagga aaactctatg caaagaaaga atgcaatgaa gattgtaact 300 tcaaagaact aattctggaa aaccattaca acacatatgc agcagctaaa tggacacaca 360 atggagggga aatgtttgtt gccttaaatc aaaaggggat tcctgtaaga gnnaaaaaac 420 gaagaaagaa caaaaaacag cccactttct tcctatggca ataactt 467 <210> 22 <211> 640 <212> DNA <213> Homo sapiens <400> 22 ataatctcaa agtcattagc agaggtctat atttcagggt agctgtcaga agctttttat 60 ttttttcatg aaccttcttg aagaaaaaaa aaaaaaaaaa aaaaaaaaaa gcggcgccgc 120 tgaattctga acctgagtct cagctttctc atctgtacgg ttgggacaag tacagtaacc 180 ctcgcccgtc aagacgggcc agggctgtgg cgagggtcca cgccttagag caggcaccta 240 tcttgtgcag ggccctgaga tggggtctga cccagttcct gcggggaact tcaccagtga 300 cccagtcagt gcccttcagt taaagaccac caggagcaca cttatatcat ggaaatcagg 360 acagtggcag ttcggattgt ggcaatcaaa ggggtggaaa gtgaattcta tcttgcaatg 420 aacgaggaag gaaaactcta tgcaaagaaa gaatgcaatg aagattgtaa cttcaaagaa 480 ctaattctgg aaaaccatta caacacatat gcagcagcta aatggacaca caatggaggg 540 gaaatgtttg ttgccttaaa tcaaaagggg attcctgtaa gaggaaaaaa aaacgaagaa 600 agaacaaaaa cagcccactt tcttcctatg gcaataactt 640 <210> 23 <211> 721 <212> DNA <213> Homo sapiens <400> 23 ccatcctaat acgactcact atagggcttc gagcggccgc ccgggcaggt gacaattagt 60 aaatctgttt gaagtcaaag gatcttctaa gttgtagaag aaaaatggga gaaaattatg 120 taggctggag tcagattttg gagagctttg gatagtaaat aaaagaggtt tttgtttgct 180 tttgttttta atagagtata ccactgaaac ttttgaagca gaagagtaac ctttataaca 240 tatatcttat gaatacataa agggttaaag tcagaagggc tggaggcaaa ggtctagcta 300 agaaactata ataatagttg aggcacaaga aaatgaaggc ctggactaat gtgatggcaa 360 tggaaacaga agagaacggc tggatataca ttggtaatat agagaggaaa cataattgtt 420 tctgatatca tggaaatcag gacagtggca gttggaattg tggcaatcaa aggggtggaa 480 agtgaattct atcttgcaat gaacaaggaa ggaaaactct atgcaaagaa agaatgcaat 540 gaagattgta acttcaaaga actaattctg gaaaaccatt acaacacata tgcatcagct 600 aaatggacac acaacggagg ggaaatgttt gttgccttaa atcaaaaggg gattcctgta 660 agaggaaaaa aaacgaagaa agaacaaaaa acagcccact ttcttcctat ggcaataact 720 t 721 <210> 24 <211> 626 <212> DNA <213> Homo sapiens <400> 24 ccatcctaat acgactcact atagggctcg agcggccgcc cgggcaggtg taaccctcgc 60 ccgtcaagac gggccagggc tgtggcgagg gtccacgcct tagagcaggc acctatcttg 120 tgcagggccc tgagacgggg tctgactcag ttcctgcggg gaacttcacc agtgacccag 180 tcagtgccct tcagttaaag accaccagga gcacacttca ttgctgttgg aaaggctgat 240 gccaatcaaa accaattttt ccctaaagga tgatctgtct tctcatcatt ttgacaggat 300 gtaacaaaac aaaggagtct tcaatgttat atcatggaaa tcaggacagt agcagttggg 360 attgtggcaa tcaaaggggt ggaaagtgaa ttctatcttg caacgaacga ggaaggaaaa 420 ctctatgcaa agaaggaata caatgaagat tgtaacttca aagatctaat tctggaaaac 480 cattacaaca catatgcagc agctaaatgg acaaacaacg gaggggaaat gtttgtggcc 540 ttaaatcaaa aggggattcc tgtaagagga aaaaaaacan agaaagaaca aaaaacagcc 600 cacttttctt cctatggcaa taactt 626 <210> 25 <211> 632 <212> DNA <213> Homo sapiens <400> 25 cctaatacga ctcactatag ggctcagcgn ccgcccgggc aggtgcgcac agtggtggcc 60 accgcgactg gtgctgaagt gtcggcgcgt gccgggcgct ccgctgggac ccgggttgct 120 ggccctgagt gtcagctttc tcatctgtac ggttgggaca agtacagtaa ccctcgcccg 180 tcaagacggg ccagggctgt ggcgagggtc cacgccttag agcaggcacc tatcttgtgc 240 agggccctga gatggggtct gactcagttc ctgcggggaa cttcaccagt gacccagtca 300 gtgcccttca gttaaagacc accaggagca cacttatatc atggaaatca ggacagtggc 360 agttcggatt gtggcaatca aaggggtgga aagtgaattc tatcttgcaa tgaacgagga 420 aggaaaactc tatgcaaaga aagaatgcaa tgaagattgt aacttcaaag aactaattct 480 ggaaaaccat tacaacacat atgcagcagc taaatggaca cacaatggag gggaaatgtt 540 tgttgcctta aatcaaaagg ggattcctgt aagaggaaaa aaaacgaaga aagaacaaaa 600 aacagcccac tttcttccta tggcaataac tt 632[Sequence List] SEQUENCE LISTING <110> Asahi Breweries, Ltd. <120> Basic sequences of human KGF-like gene <130> 2000-18P <160> 25 <170> PatentIn Ver. 2.0 <210> 1 <211> 30 <212> DNA <213> Homo sapiens <400> 1 aagttattgc cataggaaga aagtgggctg 30 <210> 2 <211> 31 <212> DNA <213> Homo sapiens <400> 2 tgacccagtc agtgcccttc agttaaagac c 31 <210> 3 <211> 28 <212> DNA <213> Homo sapiens <400> 3 cgcatagact ttacctgcgc acgcgtcg 28 <210> 4 <211> 33 <212> DNA <213> Homo sapiens <400> 4 ccctaaagga tgatctgtct tctcatcatt ttg 33 <210> 5 <211 > 29 <212> DNA <213> Homo sapiens <400> 5 gatgtaacaa aacaaaggag tcttcaatg 29 <210> 6 <211> 32 <212> DNA <213> Homo sapiens <400> 6 catgctcaag ctatcctctg accttagcct cc 32 <210> 7 < 211> 32 <212> DNA <213> Homo sapiens <400> 7 catctgtacg gttgggacaa gtacagtaac cc 32 <210> 8 <211> 28 <212> DNA <213> Homo sapiens <400> 8 cgcatagact ttacctgcgc acgcgtcg 28 <210> 9 <211> 790 <212> DNA <213> Homo sapiens <400> 9 gaaaacgggc aatgggtgga ttcgggtcca gattctggca ggagggagtt tgggatcga g 60 atctggaaaa aagcactaga ctggaagagg acgcgatgga gtcggagccg ctngcgggga 120 caaaaaccag aggccgggna aggcgccggt gggaggcaag gcgcgcatag actttacctg 180 cgcacgcgtc gcagccatct ccgtgcacag tggtggccac cgcgactggt gctgaagtgt 240 cggcgcgtgc cgggcgctcc gctgggaccc gggttgctcg ccctgagtct cagctttctc 300 atctgtacgg ttgggacaag tacagtaacc ctcgcccgtc aagacgggcc agggctgtgg 360 cgagggtcca cgccttagag caggcaccta tcttgtgcag ggccctgaga cggggtctga 420 ctcagttcct gcggggaact tcaccagtga cccagtcagt gcccttcagt taaagaccac 480 caggagcaca cttatatcat ggaaatcagg acagtggcag ttgggattgt ggcaatcaaa 540 ggggtggaaa gtgaattcta tcttgcaacg aacgaggaag gaaaactcta tgcagagaag 600 gaatacaatg aagattgtaa cttcaaagat ctaattctgg aaaaccatta caacacatat 660 gcagcagcta aatggacaaa caacggaggg gaaatgtttg tggccttaaa tcaaaagggg 720 attcctgtaa gaggaaaaaa aaaaaagaaa gaacaaaaaa cagcccactt tcttcctatg 780 gcaataactt 790 <210> 10 <211> 577 <212> DNA <213> Homo sapiens <400> 10 aaaaaaaaaa aaaaaaagcg accgctgcaa gacgggccag ggctgtggcg agggtccacg 60 ccttagagca ggc acctatc ttgtgcaggg ccctgagacg gggtctgact cagttcctgc 120 ggggaacttc accagtgacc cagtcagtgc ccttcagtta aagaccacca ggagcacact 180 tgctggagtg cagtggcatg accatggctc actacagtct tgaactttca tgctcaagct 240 atcctctgac cttagcctcc tgagtagctg gaactacaga tatcatggaa atcaggacag 300 tagcagttgg gattgtggca atcaaagggg tggaaagtga attctatctt gcaacgaacg 360 aggaaggaaa actctatgca aagaaggaat acaatgaaga ttgtaacttc aaagatctaa 420 ttctggaaaa ccattacaac acatatgcag cagctaaatg gacaancaac ggaggggaaa 480 tgtttgtggc cttaaatcaa aaggggattc ctgtaagagg aaaaaaaaaa aaagaaagaa 540 caaaanncag cccactttct tcctatggca ataactt 577 <210> 11 <211> 581 <212> DNA <213> Homo sapiens <400> 11 caccgcgact ggtgctgaag tgtcggcgtg tgccgggcgc tccgctggga cccgggttgc 60 tcgccctgag tctcagcttt ctcatctgta cggttgggac aagtacagta accctcgccc 120 gtcaagacgg gccagggctg tggcgagggt ccacgcctta gagcaggcac ctatcttgtg 180 cagggccctg agatggggtc tgactcagtt cctgcgggga acttcaccag tgacccagtc 240 agtgcccttc agttaaagac caccaggagc acacttatat catggaaatc aggacagtgg 300 cag ttcggat tgtggcaatc aaaggggtgg aaagtgaatt ctatcttgca atgaacgagg 360 aaggaaaact ctatgcaaag aaagaatgca atgaagattg taacttcaaa gaactaattc 420 tggaaaacca ttacaacaca tatgcagcag ctaaatggac acacaatgga ggggaaatgt 480 ttgttgcctt aaatcaaaag gggattcctg taagaggaaa aaaaacgaag aaagaacaaa 540 aaacagccca ctttcttcct atggcaataa cttaagccga a 581 <210> 12 <211> 683 <212> DNA <213> Homo sapiens <400> 12 caccgcgact ggtgctgaag tgtcggcgtg tgccgggcgc tccgctggga cccgggttgc 60 tcgccctgag tctcagcttt ctcatctgta cggttgggac aagtacagta accctcgccc 120 gtcaagacgg gccagggctg tggcgagggt ccacgcctta gagcaggcac ctatcttgtg 180 cagggccctg agatggggtc tgactcagtt cctgcgggga acttcaccag tgacccagtc 240 agtgcccttc agttaaagac caccaggagc acacttcatt gctgttggaa aggctgatgc 300 caatcaaaac caatttttcc ctaaaggatg atctgtcttc tcatcatttt gacaggatgt 360 aacaaaacaa aggagtcttc aatgttatat catggaaatc aggacagtgg cagttcggat 420 tgtggcaatc aaaggggtgg aaagtgaatt ctatcttgca atgaacgagg aaggaaaact 480 ctatgcaaag aaagaatgca atgaagattg taacttcaaa gaactaattc tg gaaaacca 540 ttacaacaca tatgcagcag ctaaatggac acacaatgga ggggaaatgt ttgttgcctt 600 aaatcaaaag gggattcctg taggaggaaa aaaaacgaag aaagaacaaa aaacagccca 660 ctttcttcct atggcaataa ctt 683 <210> 13 <211> 388 <212> DNA <213> Homo sapiens <400> 13 tgcagtggca tgaccatggc tcactacagt cttgaacttt catgctcaag ctatcctctg 60 actttagcct cctgagtagc tggaactaca gatatcatgg aaatcaggac agtagcagtt 120 gggattgtgg caatcaaagg ggtggaaagt gaattctatc ttgcaacgaa cgaggaagga 180 aaactctatg caaagaagga atgcaatgaa gattgtaact tcaaagatct aattctggaa 240 aaccattaca acacatatgc agcagctaaa tggacaaaca acggagggga aatgtttgtg 300 gccttaaatc aaaaggggat tcctgtaaga ggaaaaaaaa caaagaaaga acaaaaaaca 360 gcccactttc ttcctatggc aataactt 388 <210> 14 <211> 949 <212> DNA < 213> Homo sapiens <400> 14 cagtaacaaa catggctccc tgaagccgct caggctcaag agcaacatgg aggtctgcac 60 ttaatcgctc ctctccgggg gcggccatac tgaggaggca tctggtccgt gcagg aggtcagca tggcc acctcaag gg gat ctggaaaaaa gcactagact 240 ggaagaggac gcgatggagt cggagccgct ggcggggaca aaaaccagag gccggggaag 300 gcgccggtgg gaggcaaggc acggatggac tttacctgcg cacgcgtcgc agccatctcc 360 gcgcacagtg gtggcccacc gcgactggtg ctgaagtgtc ggcgcgtgcc gggcgctccg 420 ctgggacccg ggttgctggc cctgagtgtc agctttctca tctgtacggt tgggacaagt 480 acagtaaccc tcgcccgtca agacgggcca gggctgtggc gagggtccac gccttagagc 540 aggcacctat cttgtgcagg gccctgagat ggggtctgac tcagttcctg cggggaactt 600 caccagtgac ccagtcagtg cccttcagtt aaagaccacc aggagcacac ttatatcatg 660 gaaatcagga cagtagcagt tgggattgtg gcaatcaaag gggtggaaag tgaattctat 720 cttgcaacga acgaggaagg aaaactctat gcaaagaagg aatgcaatga agattgtaac 780 ttcaaagatc taattctgga aaaccattac aacacatatg cagcagctaa atggacaaac 840 aacggagggg aaatgtttgt ggccttaaat caaaagggga ttcctgtaag aggaaaaaaa 900 acaaagaaag aacaaaaaac agcccacttt cttcctatgg caataactt 949 <210> 15 <211> 729 <212> DNA < 213> Homo sapiens <400> 15 ggacccgggt tgctcgccct gagtctcagc tttctcatct gtacggttgg gacaagtaca 60 gtaaccctcg cccgt caaga cgggccaggg ctgtggcgag ggtccacgcc ttagagcagg 120 cacctatctt gtgcagggcc ctgagatggg gtctgactca gttcctgcgg ggaacttcac 180 cagtgaccca gtcagtgccc ttcagttaaa gaccaccagg agcacactta gatggggttt 240 cgccttgctg cccacgctgg tcctgaaccc ctgagctcag gtgatccacc cacctcggcc 300 tcccatactg ctgggattac agcattgctg ttggaaaggc tgatgccaat caaaaccaat 360 ttttccctaa aggatgatct gtcttctcat cattttgaca ggatgtaaca aaacaaagga 420 gtcttcaatg ttatatcatg gaaatcagga cagtagcagt tgggattgtg gcaatcaaag 480 gggtggaaag tgaattctat cttgcaacga acgaggaagg aaaactctat gcaaagaagg 540 aatgcaatga agattgtaac ttcaaagatc taattctgga aaaccattac aacacatatg 600 cagcagctaa atggacaaac aacggagggg aaatgtttgt ggccttaaat caaaagggga 660 ttcctgtaag aggaaaaaaa acaaagaaag aacaaaaaac agcccacttt cttcctatgg 720 caataactt 729 <210> 16 <211> 468 <212> DNA <213> Homo sapiens <400> 16 ctagaattca gcggccgttt cttagagcag gcacctatct tgtgcagggc cctgagatgg 60 ggtctgactc agttcctgcg gggaacttca ccagtgaccc agtcagtgcc cttcagttaa 120 agaccaccag gagcacactt gatgtaacaa aac aaaggag tcttcaatgt tatatcatgg 180 aaatcaggac agtggcagtt cggattgtgg caatcaaagg ggtggaaagt gaattctatc 240 ttgcaatgaa cgaggaagga aaactctatg caaagaaaga atgcaatgaa gattgtaact 300 tcaaagaact aattctggaa aaccattaca acacatatgc agcagctaaa tggacacaca 360 atggagggga aatgtttgtt gccttaaatc aaaaggggat tcctgtaaga ggaaaaaaaa 420 cgaagaaaga acaaaaaaca gcccactttc ttcctatggc aataactt 468 <210> 17 <211> 418 <212> DNA <213> Homo sapiens <400> 17 catgttttta ccctgttgcc caggctggag tgcagtggca tgaccatggc tcactacagt 60 cttgaacttt catgctcaag ctatcctctg accttagcct cctgagtagc tggaactaca 120 gatatcatgg aaatcaggac agtagcagtt gggattgtgg caatcaaagg ggtggaaagt 180 gaattctatc ttgcaacgaa cgaggaagga aaactctatg caaagaagga atacaatgaa 240 gattgtaact tcaaagatct aattctggaa aaccattaca acacatatgc agcagctaaa 300 tggacaaaca acggagggga aatgtttgtg gccttaaatc aaaaggggat tcctgtaaga 360 ggaaaaaaaa caaagaaaga acaaaaaaca gcccactttc ttcctatggc aataactt 418 <210> 18 <211> 779 <212> DNA <213> Homo sapiens <400> 18 ccgcgactgg tgctgaagtg tcggc gcgtg ccgggcgctc cgctgggacc cgggttgctc 60 gccctgagtc tcagctttct catctgtacg gttgggacaa gtacagtaac cctcgcccgt 120 caagacgggc cagggctgtg gcgagggtcc acgccttaga gcaggcacct atcttgtgca 180 gggccctgag acggggtctg actcagttcc tgcggggaac ttcaccagtg acccagtcag 240 tgcccttcag ttaaagacca ccaggagcac acttcattgc tgttggaaag gctgatgcca 300 atcaaaacca atttttccct aaaggatgat ctgtcttctc atcattttga caggatgtaa 360 caaaacaaag gagtcttcaa tgttgctgga gtgcagtggc atgaccatgg ctcactacag 420 tcttgaactt tcatgctcaa gctatcctct gaccttagcc tcctgagtag ctggaactac 480 agatatcatg gaaatcagga cagtagcagt tgggattgtg gcaatcaaag gggtggaaag 540 tgaattctat cttgcaacga acgaggaagg aaaactctat gcaaagaagg aatacaatga 600 agattgtaac ttcaaagatc taattctgga aaaccattac aacacatatg cagcagctaa 660 atggacaaac aacggagggg aaatgtttgt ggccttaaat caaaagggga ttcctgtaag 720 aggaaaaaaa acaaagaaag aacaaaaaac agcccacttt cttcctatgg caataactt 779 <210> 19 <211> 998 <212> DNA <213> Homo sapiens <400> 19 tgcctgttga tttatggaaa caattatgat tctgctggag aacttttcag ctgagaa ata 60 gtttgtagct acagtagaaa ggctcaagtt gcaccaggca gacaacagac atggaattct 120 tatatatcca gctgttagca acaaaacaaa agtcaaatag caaacagcgt cacagcaact 180 gaacttacta cgaactgttt ttatgaggat ttatcaacag agttatttaa ggaggaatcc 240 tgtgttgtta tcaggaacta aaaggataag gctaacaatt tggaaagagc aactactctt 300 tcttaaatca atctacaatt cacagatagg aagaggtcaa tgacctagga gtaacaatca 360 actcaagatt cattttcatt atgttattca tgaacacccg gagcactaca ctataatgca 420 caaatggata ctgacatgga tcctgccaac tttgctctac agatcatgct ttcacattat 480 ctgtctagtg ggtactatat ctttagcttg caatgacatg actccagagc aaatggctac 540 aaatgtgaac tgttccagcc ctgagcgaca cacaagaagt tatgattaca tggaaggagg 600 ggatataaga gtgagaagac tcttctgtcg aacacagtgg tacctgagga tcgataaaag 660 aggcaaagta aaagggaccc aagagatgaa gaataattac aatatcatgg aaatcgggac 720 agtggcagtt ggaattgtgg caatcaaagg ggtggaaagt gaattctatc ttgcaatgaa 780 caaggaagga aaactctatg caaagaaaga atgcaatgaa gattgtaact tcaaagaact 840 aattctggaa aaccattaca acacatatgc atcagctaaa tggacacaca acggagggga 900 aatgtttgtt gc cttaaatc aaaaggggat tcctgtaaga ggaaaaaaaa cgaagaaaga 960 acaaaaaaca gcccactttc ttcctatggc aataactt 998 <210> 20 <211> 669 <212> DNA <213> Homo sapiens <400> 20 ccgcgactgg tgctgaagtg tcggcgcgtg ccgggcgctc cgctgggacc cgggttgctc 60 gccctgagtc tcagctttct catctgtacg gttgggacaa gtacagtaac cctcgcccgt 120 caagacgggc cagggctgtg gcgagggtcc acgccttaga gcaggcacct atcttgtgca 180 gggccctgag acggggtctg actcagttcc tgcggggaac ttcaccagtg acccagtcag 240 tgcccttcag ttaaagacca ccaggagcac acttgctgga gtgcagtggc atgaccatgg 300 ctcactacag tcttgaactt tcatgctcaa gctatcctct gaccttagcc tcctgagtag 360 ctggaactac agatatcatg gaaatcagga cagtagcagt tgggattgtg gcaatcaaag 420 gggtggaaag tgaattctat cttgcaacga acgaggaagg aaaactctat gcaaagaagg 480 aatacaatga agattgtaac ttcaaagatc taattctgga aaaccattac aacacatatg 540 cagcagctaa atggacaaac aacggagggg aaatgtttgt ggccttaaat caaaagggga 600 ttcctgtaag aggaaaaaaa aaaaagaaag aacaaaaaac agcccacttt cttcctatgg 660 caataactt 669 <210> 21 <211> 467 <212> DNA <213> Homo sapiens <400> 21 aaaaaaaaaa ggcggccgct gaatcagtgc ccttcagtta aagaccacca ggagcacact 60 tcattgctgt tggaaaggct gatgccaatc aaaaccaatt tttccctaaa ggatgatctg 120 tcttctcatc attttgacag gatgtaacaa aacaaaggag tcttcaatgt tatatcatgg 180 aaatcaggac agtggcagtt cggattgtgg caatcaaagg ggtggaaagt gaattctatc 240 ttgcaatgaa cgaggaagga aaactctatg caaagaaaga atgcaatgaa gattgtaact 300 tcaaagaact aattctggaa aaccattaca acacatatgc agcagctaaa tggacacaca 360 atggagggga aatgtttgtt gccttaaatc aaaaggggat tcctgtaaga gnnaaaaaac 420 gaagaaagaa caaaaaacag cccactttct tcctatggca ataactt 467 <210> 22 <211> 640 <212> DNA <213> Homo sapiens <400> 22 ataatctcaa agtcattagc agaggtctat atttcagggt agctgtcaga agctttttat 60 ttttttcatg aaccttcttg aagaaaaaaa aaaaaaaaaa aaaaaaaaaa gcggcgccgc 120 tgaattctga acctgagtct cagctttctc atctgtacgg ttgggacaag tacagtaacc 180 ctcgcccgtc aagacgggcc agggctgtgg cgagggtcca cgccttagag caggcaccta 240 tcttgtgcag ggccctgaga tggggtctga cccagttcct gcggggaact tcaccagtga 300 cccagtcagt gcccttcagt taaagaccac caggagcaca ctta tatcat ggaaatcagg 360 acagtggcag ttcggattgt ggcaatcaaa ggggtggaaa gtgaattcta tcttgcaatg 420 aacgaggaag gaaaactcta tgcaaagaaa gaatgcaatg aagattgtaa cttcaaagaa 480 ctaattctgg aaaaccatta caacacatat gcagcagcta aatggacaca caatggaggg 540 gaaatgtttg ttgccttaaa tcaaaagggg attcctgtaa gaggaaaaaa aaacgaagaa 600 agaacaaaaa cagcccactt tcttcctatg gcaataactt 640 <210> 23 <211> 721 <212> DNA <213 > Homo sapiens <400> 23 ccatcctaat acgactcact atagggcttc gagcggccgc ccgggcaggt gacaattagt 60 aaatctgttt gaagtcaaag gatcttctaa gttgtagaag aaaaatggga gaaaattatg 120 taggctggag tcagattttg gagagctttg gatagtaaat aaaagaggtt tttgtttgct 180 tttgttttta atagagtata ccactgaaac ttttgaagca gaagagtaac ctttataaca 240 tatatcttat gaatacataa agggttaaag tcagaagggc tggaggcaaa ggtctagcta 300 agaaactata ataatagttg aggcacaaga aaatgaaggc ctggactaat gtgatggcaa 360 tggaaacaga agagaacggc tggatataca ttggtaatat agagaggaaa cataattgtt 420 tctgatatca tggaaatcag gacagtggca gttggaattg tggcaatcaa aggggtggaa 480 agtgaattct atcttgcaat gaacaaggaa g gaaaactct atgcaaagaa agaatgcaat 540 gaagattgta acttcaaaga actaattctg gaaaaccatt acaacacata tgcatcagct 600 aaatggacac acaacggagg ggaaatgttt gttgccttaa atcaaaaggg gattcctgta 660 agaggaaaaa aaacgaagaa agaacaaaaa acagcccact ttcttcctat ggcaataact 720 t 721 <210> 24 <211> 626 <212> DNA <213> Homo sapiens <400> 24 ccatcctaat acgactcact atagggctcg agcggccgcc cgggcaggtg taaccctcgc 60 ccgtcaagac gggccagggc tgtggcgagg gtccacgcct tagagcaggc acctatcttg 120 tgcagggccc tgagacgggg tctgactcag ttcctgcggg gaacttcacc agtgacccag 180 tcagtgccct tcagttaaag accaccagga gcacacttca ttgctgttgg aaaggctgat 240 gccaatcaaa accaattttt ccctaaagga tgatctgtct tctcatcatt ttgacaggat 300 gtaacaaaac aaaggagtct tcaatgttat atcatggaaa tcaggacagt agcagttggg 360 attgtggcaa tcaaaggggt ggaaagtgaa ttctatcttg caacgaacga ggaaggaaaa 420 ctctatgcaa agaaggaata caatgaagat tgtaacttca aagatctaat tctggaaaac 480 cattacaaca catatgcagc agctaaatgg acaaacaacg gaggggaaat gtttgtggcc 540 ttaaatcaaa aggggattcc tgtaagagga aaaaaaacan agaaagaaca aaaaaca gcc 600 cacttttctt cctatggcaa taactt 626 <210> 25 <211> 632 <212> DNA <213> Homo sapiens <400> 25 cctaatacga ctcactatag ggctcagcgn ccgcccgggc aggtgcgcac agtggtggcc 60 accgcgactg gtgctgaagt gtcggcgcgt gccgggcgct ccgctgggac ccgggttgct 120 ggccctgagt gtcagctttc tcatctgtac ggttgggaca agtacagtaa ccctcgcccg 180 tcaagacggg ccagggctgt ggcgagggtc cacgccttag agcaggcacc tatcttgtgc 240 agggccctga gatggggtct gactcagttc ctgcggggaa cttcaccagt gacccagtca 300 gtgcccttca gttaaagacc accaggagca cacttatatc atggaaatca ggacagtggc 360 agttcggatt gtggcaatca aaggggtgga aagtgaattc tatcttgcaa tgaacgagga 420 aggaaaactc tatgcaaaga aagaatgcaa tgaagattgt aacttcaaag aactaattct 480 ggaaaaccat tacaacacat atgcagcagc taaatggaca cacaatggag gggaaatgtt 540 tgttgcctta aatcaaaagg ggattcctgt aagaggaaaa aaaacgaaga aagaacaaaa 600 aacagcccac tttcttccta tggcaataac tt 632
【図1】KGF様cDNAクローンの分類を示す図である。図
中、同じ柄のボックスはほぼ同じ塩基配列を示す。右側
プロトタイプの表に示した数は得られたクローン数をエ
クソン2,3の塩基配列からプロトタイプ別に、上流配
列から構造的にそれぞれ分類。プロトタイプIII’につ
いては図2にて説明する。K1-79に代表されるクローン
はKGF。FIG. 1 shows the classification of KGF-like cDNA clones. In the figure, boxes with the same pattern show almost the same base sequence. The numbers shown in the table on the right prototype indicate the number of clones obtained by the prototype based on the nucleotide sequence of exons 2 and 3, and structurally based on the upstream sequence. The prototype III 'will be described with reference to FIG. Clone KGF represented by K1-79.
【図2】各プロトタイプのエクソン2の塩基配列を示す
図である。inv:第9染色体切断点近傍の約50kb中に存在
したKGF様遺伝子エクソン2の塩基配列。I,II,III,I
V:各プロトタイプのエクソン2塩基配列(3)。プロト
タイプIはKGFを示す。FIG. 2 shows the nucleotide sequence of exon 2 of each prototype. inv: Nucleotide sequence of exon 2 of the KGF-like gene present in about 50 kb near the breakpoint of chromosome 9. I, II, III, I
V: Exon 2 base sequence of each prototype (3). Prototype I indicates KGF.
【図3】KGF様mRNAの発現を示す図。上段:前進プライ
マー1〜7のいずれかとEx3-RにてヒトcDNA Mixから増
幅されるDNA断片をアガロースゲル電気泳動に供した。
下段:ヒト各臓器由来cDNAを鋳型に、前進プライマー1
とEx3-Rをプライマーに用いて増幅されるDNA断片をアガ
ロースゲルにて電気泳動を行った。FIG. 3 shows the expression of KGF-like mRNA. Upper: DNA fragment amplified from human cDNA Mix with any of forward primers 1 to 7 and Ex3-R was subjected to agarose gel electrophoresis.
Lower: Forward primer 1 using cDNA from human organs as template
A DNA fragment amplified using Ex3 and Ex3-R as primers was subjected to electrophoresis on an agarose gel.
【図4】monoclomosomal細胞に対するKGF様遺伝子のゲ
ノムPCRを示す図。レーン1−6:鋳型は各細胞株より
精製した染色体DNA、レーン7:鋳型は蒸留水。FIG. 4 is a diagram showing genomic PCR of a KGF-like gene for monoclomosomal cells. Lane 1-6: chromosomal DNA template was purified from each cell line, lane 7: template distilled water.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07K 14/47 C12N 1/15 C12N 1/15 1/19 1/19 1/21 1/21 15/00 ZNAA 5/10 5/00 A (72)発明者 礒西 成治 東京都杉並区成田西3−5−7 (72)発明者 岡本 愛光 東京都杉並区井草4−5−2 Fターム(参考) 4B024 AA01 AA11 BA80 CA04 CA20 DA02 DA06 DA12 GA11 HA11 HA17 4B065 AA01X AA26X AA57X AA58X AA72X AA88X AA90X AB01 AC14 BA02 CA24 CA44 CA46 4C084 AA13 NA14 ZA812 ZB262 4C086 AA01 AA02 EA16 MA01 MA04 NA14 ZA81 ZB26 4H045 AA10 AA20 BA10 CA40 EA20 EA50 FA74 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C07K 14/47 C12N 1/15 C12N 1/15 1/19 1/19 1/21 1/21 15/00 ZNAA 5/10 5/00 A (72) Inventor Seiji Isonishi 3-5-7 Narita Nishi, Suginami-ku, Tokyo (72) Inventor Aiko Okamoto 4-5-2 Igusa, Suginami-ku, Tokyo F-term (reference) 4B024 AA01 AA11 BA80 CA04 CA20 DA02 DA06 DA12 GA11 HA11 HA17 4B065 AA01X AA26X AA57X AA58X AA72X AA88X AA90X AB01 AC14 BA02 CA24 CA44 CA46 4C084 AA13 NA14 ZA812 ZB262 4C086 AA01 AA20 A14A01 AA04 AA01 AA04 AA01 AA04 AA01 MAA
Claims (12)
を特徴とするヒトKGF様遺伝子。1. A human KGF-like genes characterized in that it has a nucleotide sequence of SEQ ID NO: 9-25.
AがハイブリダイズするmRNAを発現する事を特徴とする
ヒトKGF様遺伝子。2. A cDN having the nucleotide sequence of SEQ ID NOS: 9 to 25.
A human KGF-like gene, wherein A expresses a hybridizing mRNA.
に示されるKGF様遺伝子。3. SEQ ID NOS: 9 to 25 involved in KGF-like action
The KGF-like gene shown in.
されるKGF様遺伝子。4. A KGF-like gene represented by SEQ ID NOS: 9 to 25 involved in cancer development.
示されるKGF様遺伝子。5. The KGF-like gene shown in SEQ ID NOS: 9 to 25, which is involved in recurrent miscarriage.
んでなるベクター。6. A vector comprising the nucleotide sequence according to claim 1 or 2.
ー、及びリポソームベクターからなる群から選択され
る、請求項6に記載のベクター。7. The vector according to claim 6, wherein the vector is selected from the group consisting of a plasmid vector, a virus vector, and a liposome vector.
って形質転換された宿主細胞。8. A host cell transformed by the vector according to claim 6 or 7.
ンク肺上皮細胞、リンパ細胞、繊維芽細胞、NIH/3T3細
胞、CHO細胞、血液系細胞、および腫瘍細胞からなる群
から選択されるものである、請求項8に記載の宿主細
胞。9. A cell selected from the group consisting of Escherichia coli, yeast, insect cells, COS cells, mink lung epithelial cells, lymph cells, fibroblasts, NIH / 3T3 cells, CHO cells, blood cells, and tumor cells. in it, the host cell of claim 8.
含んでなる悪性腫瘍遺伝子治療剤。10. A gene therapy agent for malignant tumor comprising the nucleotide sequence according to claim 1 or 2.
含んでなる反復流産遺伝子治療剤。11. An agent for recurrent miscarriage gene therapy comprising the nucleotide sequence according to claim 1 or 2.
タンパク質。12. A protein expressed from the gene according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001078738A JP2002272467A (en) | 2001-03-19 | 2001-03-19 | Base sequence of human kgf-like gene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001078738A JP2002272467A (en) | 2001-03-19 | 2001-03-19 | Base sequence of human kgf-like gene |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002272467A true JP2002272467A (en) | 2002-09-24 |
Family
ID=18935311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001078738A Pending JP2002272467A (en) | 2001-03-19 | 2001-03-19 | Base sequence of human kgf-like gene |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002272467A (en) |
-
2001
- 2001-03-19 JP JP2001078738A patent/JP2002272467A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4035600B2 (en) | Method for determining sensitivity to imatinib | |
JP2008301825A (en) | Mammalian gene involved in viral infection and tumor suppression | |
CN112159801B (en) | SlugCas9-HF protein, gene editing system containing SlugCas9-HF protein and application | |
WO2019113472A1 (en) | Compositions and methods for treating disorders of genomic imprinting | |
JP2002525081A (en) | Sequences characteristic of hypoxia-regulated gene transcription | |
JP2024063082A (en) | Compositions and methods for treatment of skin diseases | |
JP2024506645A (en) | Cure diseases by editing transcriptional regulatory genes | |
WO2004035535A2 (en) | Erythrocyte differentiation factor, gene encoding same, and methods of use thereof | |
CA2482907A1 (en) | Tissue specific genes and gene clusters | |
US7217524B2 (en) | Method for diagnosing aplasia of corpus callosum | |
JP2002272467A (en) | Base sequence of human kgf-like gene | |
WO2021252970A2 (en) | Genetic modification | |
van de Wetering et al. | Regulation and expression of the murine PMP22 gene | |
JP2001520012A (en) | Mammalian genes involved in viral infection and tumor suppression | |
EP3901262A1 (en) | Compositions for use in treating autosomal dominant best1-related retinopathies | |
JP4723133B2 (en) | Novel human BMCC1 gene | |
AU769710B2 (en) | Megsin promoter | |
JP2004534540A (en) | Genes and proteins expressed in the brain associated with bipolar disorder | |
Shepelev et al. | Human Antithrombin III Minigene with an Optimized Splicing Pattern | |
JP2002512022A (en) | Human nucleic acid sequence from normal pancreas | |
WO2023150702A2 (en) | Compositions and methods for treatment of connective tissue disorders | |
CN117377464A (en) | Compositions and methods for delivering nucleic acids | |
WO2001004302A1 (en) | Atopy gene | |
JP2003532407A (en) | Polynucleotides encoding polymorphic isoform PTHrP proteins, encoded proteins, and their therapeutic applications | |
CN118055780A (en) | BEST1 loss-of-function mutation and rescue strategy for gain-of-function mutation |