JP2002270173A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2002270173A
JP2002270173A JP2001065964A JP2001065964A JP2002270173A JP 2002270173 A JP2002270173 A JP 2002270173A JP 2001065964 A JP2001065964 A JP 2001065964A JP 2001065964 A JP2001065964 A JP 2001065964A JP 2002270173 A JP2002270173 A JP 2002270173A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
active material
electrode active
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001065964A
Other languages
Japanese (ja)
Inventor
Takahiro Shizuki
隆弘 志築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001065964A priority Critical patent/JP2002270173A/en
Publication of JP2002270173A publication Critical patent/JP2002270173A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery exhibiting high energy density and enhanced high rate discharge efficiency. SOLUTION: A lithium manganese composite oxide used as a positive electrode active material for this non-aqueous electrolyte secondary battery is expressed by a general formula, Lix Mn(3-x-y) My O4 (wherein 1<=x<=2, 0.01<=y<=0.1, and M is at least one of elements selected from Co, Ni, V, Fe, Ti, Cr, Cu, Ca, Al, In, Ga, B and Si), and is constituted by a sintered body of a primary particle of which average particle diameter is 0.1 μm or more and 1 μm or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極活物質にリチ
ウム・マンガン複合酸化物を使用した非水電解質二次電
池に関する。
The present invention relates to a non-aqueous electrolyte secondary battery using a lithium-manganese composite oxide as a positive electrode active material.

【0002】[0002]

【従来の技術】非水電解質二次電池は高エネルギー密度
であるという特徴を有しており、携帯電話等の電子機器
用電源から、さらには、電動車両用電源等に好適であ
る。特に近年、モーターとエンジンとを併用したハイブ
リッド電気自動車が注目を集めるようになり、この用途
のためのリチウム二次電池の開発が盛んに行われるよう
になってきている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery has a feature that it has a high energy density, and is suitable for a power supply for electronic equipment such as a cellular phone and a power supply for an electric vehicle. In particular, in recent years, hybrid electric vehicles using both a motor and an engine have attracted attention, and lithium secondary batteries for this purpose have been actively developed.

【0003】リチウム二次電池をハイブリッド電気自動
車用電池として実用化するに際しては、良好な高率放電
特性や大きな出力が要求される。そこで、電池の内部抵
抗を小さくして大きな出力を取り出すために、電極厚み
を薄くして電池内に収納する電極の面積をできるだけ大
きくしたり、正極活物質や負極材料の粒径を小さくする
ことで電極の比表面積を大きくして電池の高出力化を図
っていた。
When a lithium secondary battery is put into practical use as a battery for a hybrid electric vehicle, good high-rate discharge characteristics and a large output are required. Therefore, in order to reduce the internal resistance of the battery and obtain a large output, it is necessary to reduce the electrode thickness to increase the area of the electrode housed in the battery as much as possible and to reduce the particle size of the positive electrode active material and the negative electrode material. Thus, the specific surface area of the electrode was increased to increase the output of the battery.

【0004】[0004]

【発明が解決しようとする課題】電池において、大電流
で充放電するためには、活物質の粒子径を小さくして、
その表面積を大きくする必要がある。しかし、負極材料
よりも電子伝導性に劣る正極活物質の場合、活物質の粒
子径を小さくしていくと、正極合剤中における単位重量
当りの活物質の数が多くなるため、正極合剤中の導電性
を高めるためには多量の導電助材が必要になり、その分
だけ単位体積当りの活物質量が少なくなって、電池の容
量が小さくなるという問題が生じていた。
SUMMARY OF THE INVENTION In a battery, in order to charge and discharge with a large current, the particle size of the active material is reduced.
It is necessary to increase the surface area. However, in the case of a positive electrode active material having lower electron conductivity than the negative electrode material, if the particle size of the active material is reduced, the number of active materials per unit weight in the positive electrode mixture increases. In order to increase the conductivity inside, a large amount of a conductive auxiliary material is required, and the amount of the active material per unit volume is reduced by that much, which causes a problem that the capacity of the battery is reduced.

【0005】本発明は、このような問題を解決し、エネ
ルギー密度が高く、かつ高率放電特性に優れた非水電解
質二次電池を提供することを目的とする。
An object of the present invention is to solve such a problem and to provide a non-aqueous electrolyte secondary battery having a high energy density and excellent high-rate discharge characteristics.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、非水
電解質二次電池において、正極活物質として一般式Li
Mn(3−x−y)(ただし、式中、1≦x
≦2、0.01≦y≦0.1、MはCo、Ni、V、F
e、Ti、Cr、Cu、Ca、Al、In、Ga、Bお
よびSiからなる群から選ばれた少なくとも1種の元
素)で表わされるリチウム・マンガン複合酸化物を使用
し、この正極活物質が、平均粒子径が0.1μm以上、
1μm以下の一次粒子の焼結体からなることを特徴とす
る。
According to the first aspect of the present invention, there is provided a non-aqueous electrolyte secondary battery comprising a general formula Li as a positive electrode active material.
x Mn (3-xy) MyO 4 (where 1 ≦ x
≦ 2, 0.01 ≦ y ≦ 0.1, M is Co, Ni, V, F
e, at least one element selected from the group consisting of Ti, Cr, Cu, Ca, Al, In, Ga, B, and Si). , The average particle diameter is 0.1 μm or more,
It is made of a sintered body of primary particles of 1 μm or less.

【0007】請求項1の発明によれば、正極活物質にお
いて、一次粒子の焼結体からなる二次粒子の大きさを変
えずに、一次粒子径を小さくして比表面積を大きくする
ことにより、正極活物質の二次粒子間の接触点数は変わ
らないため、導電助材量を増やす必要性がなくなるた
め、電池の高出力化を図ることが可能となる。
According to the first aspect of the present invention, in the positive electrode active material, the primary particle diameter is reduced and the specific surface area is increased without changing the size of the secondary particles formed of the sintered particles of the primary particles. In addition, since the number of contact points between the secondary particles of the positive electrode active material does not change, it is not necessary to increase the amount of the conductive auxiliary material, so that the output of the battery can be increased.

【0008】請求項2の発明は、上記非水電解質二次電
池において、焼結体からなる二次粒子の平均粒子径が5
μm以上、20μm以下であることを特徴とする。
According to a second aspect of the present invention, in the above non-aqueous electrolyte secondary battery, the secondary particles formed of a sintered body have an average particle diameter of 5
It is not less than μm and not more than 20 μm.

【0009】請求項2の発明によれば、エネルギー密度
が高く、かつ高率放電特性に優れた非水電解質二次電池
を得ることができる。
According to the second aspect of the present invention, a non-aqueous electrolyte secondary battery having a high energy density and excellent high-rate discharge characteristics can be obtained.

【0010】[0010]

【発明の実施の形態】本発明は、非水電解質二次電池に
おいて、正極活物質として一般式LiMn
(3−x−y)(ただし、式中、1≦x≦2、
0.01≦y≦0.1、MはCo、Ni、V、Fe、T
i、Cr、Cu、Ca、Al、In、Ga、BおよびS
iからなる群から選ばれた少なくとも1種の元素)で表
わされるリチウム・マンガン複合酸化物を使用するもの
であり、この正極活物質が、平均粒子径が0.1μm以
上、1μm以下の一次粒子の焼結体からなること、ま
た、この焼結体からなる二次粒子の平均粒子径が5μm
以上、20μm以下であることを特徴とする。リチウム
・マンガン複合酸化物を表わす上記一般式中Mとして
は、上述の元素以外にも、遷移金属元素、アルカリ土類
元素なども使用することができる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-aqueous electrolyte secondary battery.
The general formula Li as the positive electrode active materialxMn
(3-xy)MyO4(Where 1 ≦ x ≦ 2,
0.01 ≦ y ≦ 0.1, M is Co, Ni, V, Fe, T
i, Cr, Cu, Ca, Al, In, Ga, B and S
at least one element selected from the group consisting of i)
Using lithium-manganese composite oxide
This positive electrode active material has an average particle diameter of 0.1 μm or less.
Above, consisting of a sintered body of primary particles of 1 μm or less,
In addition, the average particle diameter of the secondary particles made of this sintered body is 5 μm.
As described above, the thickness is not more than 20 μm. lithium
-As M in the above general formula representing a manganese composite oxide
Means transition metal elements, alkaline earth elements,
Elements and the like can also be used.

【0011】本発明のリチウム・マンガン複合酸化物の
作製方法の例はつぎに示すが、作製方法はこの例に限定
されるものではない。まず、電解二酸化マンガンと、リ
チウム源となる水酸化リチウムと、マンガンサイトの一
部を置換する元素を含む化合物とを、組成比に応じた割
合で、水溶液状態でビーズミルによって混合する。つぎ
に、この混合水溶液を噴霧状態とし、その状態で加熱乾
燥して、一次粒子を得る。その後、大気中高温下で焼結
して、結晶化を促進させ、二次粒子を得る。
An example of the method for producing the lithium-manganese composite oxide of the present invention will be described below, but the production method is not limited to this example. First, electrolytic manganese dioxide, lithium hydroxide serving as a lithium source, and a compound containing an element that partially replaces a manganese site are mixed by a bead mill in an aqueous state at a ratio according to a composition ratio. Next, the mixed aqueous solution is made into a spray state, and is heated and dried in that state to obtain primary particles. Thereafter, sintering is performed at a high temperature in the atmosphere to promote crystallization and obtain secondary particles.

【0012】この焼結の際、一次粒子径を0.1μm以
上、1μm以下の範囲となるように調整するには、焼結
温度を700℃〜850℃にするのが好ましい。なお、
この焼結工程においては、得られた二次粒子における一
次粒子の粒子径を0.1μmよりも小さい値にコントロ
ールすることは非常に困難である。このようにして得ら
れた二次粒子をさらに粉砕し、ふるいにかけて選別する
ことにより、望ましい二次粒子径のリチウム・マンガン
複合酸化物が得られる。二次粒子の平均粒子径は、活物
質間の電子伝導性を高めるよう、できるだけ多くの一次
粒子を凝集させた二次粒子とすることと、塗布工程の簡
便性を考慮すると、5μm〜20μmの範囲が好まし
い。
During the sintering, the sintering temperature is preferably set to 700 ° C. to 850 ° C. in order to adjust the primary particle diameter to be in the range of 0.1 μm to 1 μm. In addition,
In this sintering step, it is very difficult to control the particle diameter of the primary particles in the obtained secondary particles to a value smaller than 0.1 μm. The secondary particles thus obtained are further pulverized and sieved to select, whereby a lithium-manganese composite oxide having a desired secondary particle diameter is obtained. The average particle diameter of the secondary particles is 5 μm to 20 μm in consideration of the simplicity of the coating process, in which the secondary particles are made by aggregating as many primary particles as possible to enhance the electron conductivity between the active materials. A range is preferred.

【0013】ここで得られたリチウム・マンガン複合酸
化物の走査型電子顕微鏡(SEM)写真を図1に示す。
ここで一次粒子の平均粒子径はレーザー散乱式粒度分布
測定法で測定し、二次粒子の平均粒子径はSEM写真か
ら算出した。図1からわかるように、リチウム・マンガ
ン複合酸化物の一次粒子の平均粒子径は約0.3μm、
二次粒子の平均粒子径は約15μmであり、一次粒子お
よび二次粒子ともほぼ球形である。なお、粒子の形状は
球形に限らず、製造条件によっては、略球状、回転楕円
体状、直方体、立方体などもえることができる。
FIG. 1 shows a scanning electron microscope (SEM) photograph of the obtained lithium-manganese composite oxide.
Here, the average particle diameter of the primary particles was measured by a laser scattering particle size distribution measuring method, and the average particle diameter of the secondary particles was calculated from an SEM photograph. As can be seen from FIG. 1, the average particle size of the primary particles of the lithium-manganese composite oxide is about 0.3 μm,
The average particle diameter of the secondary particles is about 15 μm, and both the primary particles and the secondary particles are substantially spherical. The shape of the particles is not limited to a spherical shape, but may be a substantially spherical shape, a spheroidal shape, a rectangular parallelepiped, a cube, or the like, depending on manufacturing conditions.

【0014】本発明の非水電解質二次電池においては、
負極材料としては、炭素系材料、リチウム金属、Al、
Si、Pb、Sn、Zn、Cd等とリチウムとのリチウ
ム合金、あるいは酸化物材料等が使用される。炭素系材
料としては、例えば人造あるいは天然黒鉛、熱分解炭素
類、コークス類、ガラス状炭素類、有機高分子化合物の
焼成体、メソカーボンマイクロビーズ、活性炭、グラフ
ァイト、炭素繊維等が使用される。また酸化物として
は、酸化スズを主体とする化合物が使用される。これら
は、粉末の状態で用いられる。また、LiFe
WO、MoO等の遷移金属酸化物、Li(Li
N)等の窒化リチウムを用いてもよい。
In the non-aqueous electrolyte secondary battery of the present invention,
As the negative electrode material, a carbon-based material, lithium metal, Al,
A lithium alloy of lithium with Si, Pb, Sn, Zn, Cd, or the like, or an oxide material is used. As the carbon-based material, for example, artificial or natural graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, activated carbon, graphite, carbon fibers, and the like are used. As the oxide, a compound mainly composed of tin oxide is used. These are used in a powder state. LiFe 2 O 3 ,
Transition metal oxides such as WO 2 and MoO 2 , Li 5 (Li 3
N) or the like may be used.

【0015】本発明の非水電解質二次電池において、有
機電解液の溶媒としては、エチレンカーボネートやプロ
ピレンカーボネート等の環状炭酸エステル、ジメチルカ
ーボネートやジエチルカーボネートやメチルエチルカー
ボネート等の鎖状炭酸エステル、γ−ブチロラクトン、
スルホラン、ジメチルスルホキシド、アセトニトリル、
ジメチルホルムアミド、ジメチルアセトアミド、1,2
−ジメトキシエタン、1,2−ジエトキシエタン、テト
ラヒドロフラン、2−メチルテトラヒドロフラン、ジオ
キソラン、メチルアセテート等の極性溶媒、もしくはこ
れらの混合物を使用することができる。また、有機溶媒
に溶解するリチウム塩としては、LiPF、LiBF
、LiAsF、LiCFCO、LiCFSO
、LiN(SOCF、LiN(SOCF
CF、LiN(COCFおよびLiN(C
OCFCFなどの塩もしくはこれらの混合物で
もよい。また、隔離体としては、ポリエチレンやポリプ
ロピレン等の絶縁性のポリオレフィン微多孔膜や、高分
子固体電解質、高分子固体電解質に電解液を含有させた
ゲル状電解質等も使用できる。また、絶縁性の微多孔膜
と高分子固体電解質等を組み合わせて使用してもよい。
さらに、高分子固体電解質として有孔性高分子固体電解
質膜を使用する場合、高分子中に含有させる電解液と、
細孔中に含有させる電解液とが異なっていてもよい。
In the non-aqueous electrolyte secondary battery of the present invention, the solvent for the organic electrolytic solution includes cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, and γ. -Butyrolactone,
Sulfolane, dimethyl sulfoxide, acetonitrile,
Dimethylformamide, dimethylacetamide, 1,2
Polar solvents such as -dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, methyl acetate, or a mixture thereof can be used. Examples of the lithium salt dissolved in the organic solvent include LiPF 6 , LiBF
4, LiAsF 6, LiCF 3 CO 2, LiCF 3 SO
3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2)
CF 3 ) 2 , LiN (COCF 3 ) 2 and LiN (C
A salt such as OCF 2 CF 3 ) 2 or a mixture thereof may be used. Further, as the separator, an insulating polyolefin microporous membrane such as polyethylene or polypropylene, a polymer solid electrolyte, a gel electrolyte in which an electrolyte is contained in a polymer solid electrolyte, or the like can be used. Further, an insulating microporous film and a solid polymer electrolyte may be used in combination.
Further, when using a porous solid polymer electrolyte membrane as the solid polymer electrolyte, an electrolytic solution to be contained in the polymer,
The electrolyte to be contained in the pores may be different.

【0016】また、正極、セパレータ、負極からなる発
電要素の形状としては、巻回型や積層型を使用すること
ができ、また、電池の形状としては、角型、円筒型、長
円筒型など、あらゆる形状の電池を使用することができ
る。
The power generating element composed of the positive electrode, the separator and the negative electrode may be of a wound type or a laminated type, and the shape of the battery may be a square type, a cylindrical type, a long cylindrical type or the like. , Any shape battery can be used.

【0017】[0017]

【実施例】以下、本発明を好適な実施例に基づき詳述す
る。ここでは電池記号A〜Jの10種類の非水電解質二
次電池を作製し、それぞれの特性を比較した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on preferred embodiments. Here, ten types of non-aqueous electrolyte secondary batteries with battery symbols A to J were produced and their characteristics were compared.

【0018】各電池に共通に使用したものはつぎの通り
である。正極活物質としてはLi .1Mn1.805
Al0.095を使用した。正極板は、集電体とし
ての厚み0. 02mmのアルミニウム箔の両面に、正極活
物質と導電剤であるグラファイトおよび結着剤としての
PTFEを混合し、分散剤としての有機溶媒を加えてペ
ースト状にして塗布、乾燥、圧延を施したものである。
正極合剤の混合比は、電池1〜9では、正極活物質82
重量部とグラファイト10重量部およびPTFE8重量
部とし、電池10では正極活物質72重量部とグラファ
イト20重量部およびPTFE8重量部とした。ここで
使用した正極活物質の走査型電子顕微鏡(SEM)写真
は図1に示したのと同じである。また、正極活物質の比
表面積はBET多点法に基づき測定した。
The ones commonly used for the batteries are as follows. As the positive electrode active material, Li 1 . 1 Mn 1.805
Al 0.095 O 4 was used. The positive electrode plate is prepared by mixing a positive electrode active material, graphite as a conductive agent and PTFE as a binder on both surfaces of an aluminum foil having a thickness of 0.02 mm as a current collector, and adding an organic solvent as a dispersant. It is applied, dried, and rolled in a state.
In the batteries 1 to 9, the mixing ratio of the positive electrode mixture is
Parts by weight, 10 parts by weight of graphite and 8 parts by weight of PTFE, and in the battery 10, 72 parts by weight of the positive electrode active material, 20 parts by weight of graphite and 8 parts by weight of PTFE. The scanning electron microscope (SEM) photograph of the positive electrode active material used here is the same as that shown in FIG. The specific surface area of the positive electrode active material was measured based on the BET multipoint method.

【0019】負極板は、集電体としての厚み0.01m
mの銅箔の両面に、負極材料としてのリチウムをドープ
・脱ドープ可能な炭素材料92重量部と結着剤としての
ポリフッ化ビニリデン8重量部を混合し、分散剤として
の有機溶媒を加えてペースト状にして塗布、乾燥、圧延
した後、負極の端部にニッケル製の負極リードを超音波
溶接にて取り付けたものである。
The negative electrode plate has a thickness of 0.01 m as a current collector.
A mixture of 92 parts by weight of a carbon material capable of being doped with and dedoped with lithium as a negative electrode material and 8 parts by weight of polyvinylidene fluoride as a binder was added to both surfaces of a copper foil of m, and an organic solvent as a dispersant was added. After being formed into a paste, applied, dried, and rolled, a negative electrode lead made of nickel is attached to an end of the negative electrode by ultrasonic welding.

【0020】次に、正極板と負極板とを、真空中にて1
20℃で10時間乾燥し、セパレータを介して渦巻き状
に巻回した巻回型発電要素とし、この発電要素を円筒形
電池ケース内に収納した。
Next, the positive electrode plate and the negative electrode plate are
After drying at 20 ° C. for 10 hours, a spirally wound power generating element was wound through a separator, and the power generating element was housed in a cylindrical battery case.

【0021】図2に円筒形有機電解質二次電池の構造例
を示す。図2において、1は負極端子を兼ねる電池ケー
ス、2は正極板、3は負極板、4はセパレーター、5は
正極リード、6は負極リード、7は正極端子、8は安全
弁、9はPTC素子、10はガスケット、11は絶縁板
であり、正極板2とセパレーター4と負極板3とは巻回
されてケース内に収納されている。電解液としては、エ
チレンカーボネート(EC)とジエチルカーボネート
(DEC)との混合溶媒の中に六フッ化リン酸リチウム
(LiPF)を1モル/lの割合で溶解したものであ
る。電池容量は5Ahとした。
FIG. 2 shows a structural example of a cylindrical organic electrolyte secondary battery. 2, reference numeral 1 denotes a battery case also serving as a negative electrode terminal, 2 denotes a positive electrode plate, 3 denotes a negative electrode plate, 4 denotes a separator, 5 denotes a positive electrode lead, 6 denotes a negative electrode lead, 7 denotes a positive electrode terminal, 8 denotes a safety valve, and 9 denotes a PTC element. Reference numeral 10 denotes a gasket, 11 denotes an insulating plate, and the positive electrode plate 2, the separator 4, and the negative electrode plate 3 are wound and housed in a case. As the electrolytic solution, a solution prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) at a ratio of 1 mol / l in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) is used. The battery capacity was 5 Ah.

【0022】表1に、各電池に使用した正極活物質のデ
ータをまとめた。
Table 1 summarizes data on the positive electrode active materials used in each battery.

【0023】[0023]

【表1】 [Table 1]

【0024】次に、各電池について以下の測定をおこな
い、その結果を表2にまとめた。まず、室温下におい
て、1Cに相当する5Aの電流で、端子電圧が4.1V
になるまで定電流充電を行った後、さらに定電圧充電法
にもとづき3時間充電を行った。つづいて1Cに相当す
る5Aの電流で、端子電圧が2.75Vになるまで定電
流放電を行った。さらに、同様の条件で充電を行った
後、定電流放電時の電流を20Cに相当する100Aの
電流に変えてで放電を行った。この時の1Cおよび20
C放電時において得られた放電容量と、1C放電時の放
電容量に対する20C放電時の放電容量の比を高率/低
率容量比とした。さらに、各電池の、20C放電時の放
電曲線を図3に示した。
Next, the following measurements were performed for each battery, and the results are summarized in Table 2. First, at room temperature, a terminal voltage of 4.1 V was obtained at a current of 5 A corresponding to 1 C.
After constant-current charging was performed, the battery was further charged for 3 hours based on the constant-voltage charging method. Subsequently, a constant current discharge was performed at a current of 5 A corresponding to 1 C until the terminal voltage reached 2.75 V. Furthermore, after charging under the same conditions, discharging was performed by changing the current during constant current discharging to a current of 100 A corresponding to 20 C. 1C and 20 at this time
The ratio of the discharge capacity obtained at the time of C discharge and the discharge capacity at the time of 20C discharge to the discharge capacity at the time of 1C discharge was defined as a high rate / low rate capacity ratio. FIG. 3 shows a discharge curve of each battery at the time of discharging at 20C.

【0025】また、電池の出力特性を比較するため、満
充電状態(電池開路電圧4.1V)において、25℃に
て、5Aの電流で10秒、ついで20Aの電流で10
秒、さらに50Aの電流で10秒の放電を行い、各電流
値と10秒後の電池電圧をプロットして、それらの近似
直線から電池電圧が2.5Vとなる電流値を外挿、算出
し、各電池の出力値を求め、また、このときの近似直線
から各電池の内部抵抗を求め、その結果を表2に示し
た。なお、表2の値は、各電池とも10個づづについて
の測定値の平均値とした。
In order to compare the output characteristics of the batteries, in a fully charged state (battery open circuit voltage: 4.1 V), at 25 ° C., a current of 5 A was used for 10 seconds, and then a current of 20 A was used for 10 seconds.
Second, discharge for 10 seconds at a current of 50 A, and plot each current value and the battery voltage after 10 seconds, and extrapolate and calculate the current value at which the battery voltage becomes 2.5 V from their approximate straight lines. The output value of each battery was determined, and the internal resistance of each battery was determined from the approximate straight line at this time. The results are shown in Table 2. Note that the values in Table 2 were the average values of the measured values for every 10 batteries for each battery.

【0026】[0026]

【表2】 [Table 2]

【0027】表1、表2および図3から、つぎのような
ことが明らかとなった。電池A〜電池Eは、正極活物質
の二次粒子の平均粒子径は同じであるが、一次粒子の平
均粒子径を変化させたものである。なおこれらの正極活
物質においては、表1に示したように、一次粒子の平均
粒子径が小さいほど、BET比表面積は大きくなるとい
う関係をもつ。これらの電池の比較においては、高率/
低率容量比は、電池Aの97から電池Eの78まで、正
極活物質の一次粒子の平均粒子径が小さくなるにしたが
って大きくなった。いいかえると、正極活物質の比表面
積が大きいほど高率/低率容量比は大きくなっているこ
とがわかった。
From Tables 1 and 2, and FIG. 3, the following has become clear. In the batteries A to E, the average particle diameter of the secondary particles of the positive electrode active material was the same, but the average particle diameter of the primary particles was changed. As shown in Table 1, these positive electrode active materials have a relationship that the smaller the average particle diameter of the primary particles, the larger the BET specific surface area. In comparing these batteries, a high rate /
The low-rate capacity ratio increased from 97 for Battery A to 78 for Battery E as the average particle size of the primary particles of the positive electrode active material became smaller. In other words, it was found that the higher the specific surface area of the positive electrode active material, the higher the high ratio / low ratio capacity ratio.

【0028】すなわち、正極活物質の一次粒子の平均粒
子径を小さくした方が、電池の高率放電特性に有利であ
ることがわかった。なお、一次粒子の平均粒子径が0.
05μmのように、0.1μmよりも小さい値にコント
ロールすることは非常に困難であった。
That is, it was found that reducing the average particle diameter of the primary particles of the positive electrode active material was more advantageous for the high rate discharge characteristics of the battery. In addition, the average particle diameter of the primary particles is 0.1.
It was very difficult to control to a value smaller than 0.1 μm, such as 05 μm.

【0029】また、一次粒子の平均粒子径が1.5μm
である電池Eでは、高率/低率容量比は極端に小さくな
り、出力値も808Wと、他の電池に比べて劣ってい
た。
The average primary particle diameter is 1.5 μm.
In battery E, the high ratio / low ratio capacity ratio was extremely small, and the output value was 808 W, which was inferior to other batteries.

【0030】電池F、電池G、電池C、電池Hおよび電
池Iは、正極活物質の一次粒子の平均粒子径は同じであ
るが、二次粒子の平均粒子径を変化させたものである。
なおこれらの正極活物質においては、表1に示したよう
に、二次粒子の平均粒子径が小さいほど、BET比表面
積は大きくなるという関係をもつ。これらの電池の比較
においては、高率/低率容量比は、電池Fの76から電
池Cの92まで、正極活物質の二次粒子の平均粒子径が
大きくなるにしたがって大きくなった。
The batteries F, G, C, H and I have the same primary particle diameter of the primary particles of the positive electrode active material, but are different from the average particle diameter of the secondary particles.
In addition, in these positive electrode active materials, as shown in Table 1, the smaller the average particle diameter of the secondary particles, the larger the BET specific surface area. In the comparison of these batteries, the high ratio / low ratio capacity ratio increased from 76 of battery F to 92 of battery C as the average particle diameter of the secondary particles of the positive electrode active material increased.

【0031】一方、電池Hおよび電池Iでは、高率/低
率容量比は小さくなった。これは、ある程度二次粒子の
粒子径が大きくなりすぎると、比表面積が小さくなりす
ぎて、一次粒子の粒子径の効果が小さくなるからであ
る。
On the other hand, in the batteries H and I, the high ratio / low ratio capacity ratio was small. This is because if the particle size of the secondary particles is too large to a certain extent, the specific surface area becomes too small, and the effect of the particle size of the primary particles is reduced.

【0032】すなわち、正極活物質の二次粒子の平均粒
子径を大きくした方が、電池の高率放電特性に有利であ
ることがわかった。ただし、正極活物質を含む正極合剤
層を集電体に塗布する工程の作業性の簡便性を考えた場
合、二次粒子の平均粒子径は20μm以下とすることが
好ましい。
That is, it was found that increasing the average particle diameter of the secondary particles of the positive electrode active material was advantageous for the high rate discharge characteristics of the battery. However, considering the simplicity of the workability in the step of applying the positive electrode mixture layer containing the positive electrode active material to the current collector, the average particle diameter of the secondary particles is preferably 20 μm or less.

【0033】また、電池Fと電池Jでは、一次粒子も二
次粒子も同じ平均粒子径の正極活物質を用いたが、正極
合剤中の正極活物質と導電助剤量の混合比率が異なるも
のである。電池Fは電池Jに比べて、高率/低率容量比
が小さいことがわかった。しかし、電池Jのように、導
電助剤量を増やすと、1C放電容量は小さくなることが
わかった。これらのことから、正極活物質の二次粒子1
個当たりに凝集している1次粒子の数が少ない電池Fに
使用した正極活物質の場合、より多くの一次粒子が焼結
した、電池Bや電池Cに使用した正極活物質に比べて、
正極活物質の電子伝導性が低い結果、より多くの導電助
剤を正極合剤中に混合しなくてはならず、電池Jに使用
した正極活物質を使用した場合、高率放電特性を向上さ
せるには放電容量を犠牲にしなくてはならないというこ
とがわかった。
In the batteries F and J, the primary particles and the secondary particles used the positive electrode active material having the same average particle diameter, but the mixing ratio of the positive electrode active material and the amount of the conductive additive in the positive electrode mixture was different. Things. It was found that the battery F had a smaller high rate / low rate capacity ratio than the battery J. However, as in the case of the battery J, it was found that when the amount of the conductive additive was increased, the 1C discharge capacity was reduced. From these facts, the secondary particles 1 of the positive electrode active material 1
In the case of the positive electrode active material used for the battery F in which the number of primary particles aggregated per unit is small, more primary particles are sintered, compared with the positive electrode active material used for the battery B or the battery C,
As a result of the low electron conductivity of the positive electrode active material, more conductive assistants must be mixed into the positive electrode mixture, and when the positive electrode active material used in Battery J is used, the high-rate discharge characteristics are improved. It was found that the discharge capacity had to be sacrificed in order to achieve this.

【0034】これらの結果から、本発明になる、平均粒
子径が0.1μm以上、1μm以下の一次粒子の焼結体
からなるリチウム・マンガン複合酸化物、その中でも次
粒子の平均粒子径が5μm以上、20μm以下であるリ
チウム・マンガン複合酸化物を正極活物質とする非水電
解質二次電池においては、表2に示されるように、1C
放電容量が5.0Ah以上、高率/低率容量比が90%
以上、出力値が1000W以上、内部抵抗が4.0mΩ
以下という、優れた特性を示した。
From these results, according to the present invention, a lithium-manganese composite oxide comprising a sintered body of primary particles having an average particle diameter of 0.1 μm or more and 1 μm or less, among which the average particle diameter of the secondary particles is 5 μm As described above, in a nonaqueous electrolyte secondary battery using a lithium-manganese composite oxide having a size of 20 μm or less as a positive electrode active material, as shown in Table 2, 1 C
Discharge capacity is 5.0Ah or more, high rate / low rate capacity ratio is 90%
As described above, the output value is 1000 W or more, and the internal resistance is 4.0 mΩ.
The following excellent characteristics were exhibited.

【0035】[0035]

【発明の効果】本発明になる、平均粒子径が一定範囲の
一次粒子を焼結して得られるリチウム・マンガン複合酸
化物を正極活物質として使用することにより、簡単な製
造工程で、エネルギー密度が高く、かつ高率放電特性に
優れた非水電解質二次電池を提供することが可能とな
る。
According to the present invention, a lithium-manganese composite oxide obtained by sintering primary particles having an average particle diameter within a certain range is used as a positive electrode active material, so that energy density can be reduced in a simple manufacturing process. It is possible to provide a non-aqueous electrolyte secondary battery having a high discharge rate and excellent high-rate discharge characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】正極活物質AのSEM写真FIG. 1 is an SEM photograph of a positive electrode active material A.

【図2】円筒形非水電解質二次電池の構造例を示す図。FIG. 2 is a diagram showing a structural example of a cylindrical non-aqueous electrolyte secondary battery.

【図3】各電池の20C放電時の放電曲線を比較した
図。
FIG. 3 is a diagram comparing discharge curves at the time of 20C discharge of each battery.

【記号の簡単な説明】[Brief explanation of symbols]

1 電池ケース 2 正極板 3 負極板 4 セパレーター 5 正極リード 6 負極リード 7 正極端子 8 安全弁 9 PTC素子 10 ガスケット 11 絶縁板 DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode plate 3 Negative electrode plate 4 Separator 5 Positive electrode lead 6 Negative electrode lead 7 Positive electrode terminal 8 Safety valve 9 PTC element 10 Gasket 11 Insulating plate

フロントページの続き Fターム(参考) 5H029 AJ02 AJ03 AJ14 AK03 AL02 AL03 AL06 AL07 AL08 AL12 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ16 EJ01 EJ04 EJ12 HJ02 HJ05 5H050 AA02 AA08 AA19 BA16 BA17 CA09 CB02 CB03 CB07 CB08 CB09 CB12 EA09 EA24 FA17 HA02 HA05 Continued on the front page F-term (reference)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式LiMn(3−x−y)
(ただし、式中、1≦x≦2、0.01≦y≦0.
1、MはCo、Ni、V、Fe、Ti、Cr、Cu、C
a、Al、In、Ga、BおよびSiからなる群から選
ばれた少なくとも1種の元素)で表わされるリチウム・
マンガン複合酸化物を正極活物質とする非水電解質二次
電池において、前記正極活物質が、平均粒子径が0.1
μm以上、1μm以下の一次粒子の焼結体からなること
を特徴とする非水電解質二次電池。
1. The general formula Li x Mn (3-xy) MyO
4 (where 1 ≦ x ≦ 2, 0.01 ≦ y ≦ 0.
1, M is Co, Ni, V, Fe, Ti, Cr, Cu, C
a, at least one element selected from the group consisting of Al, In, Ga, B and Si).
In a nonaqueous electrolyte secondary battery using a manganese composite oxide as a positive electrode active material, the positive electrode active material has an average particle diameter of 0.1
A non-aqueous electrolyte secondary battery comprising a sintered body of primary particles of 1 μm or more and 1 μm or less.
【請求項2】 前記焼結体からなる二次粒子の平均粒子
径が5μm以上、20μm以下であることを特徴とする
請求項1記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the average particle diameter of the secondary particles made of the sintered body is 5 μm or more and 20 μm or less.
JP2001065964A 2001-03-09 2001-03-09 Non-aqueous electrolyte secondary battery Pending JP2002270173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001065964A JP2002270173A (en) 2001-03-09 2001-03-09 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001065964A JP2002270173A (en) 2001-03-09 2001-03-09 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2002270173A true JP2002270173A (en) 2002-09-20

Family

ID=18924533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001065964A Pending JP2002270173A (en) 2001-03-09 2001-03-09 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2002270173A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066926A1 (en) 2010-11-17 2012-05-24 日本碍子株式会社 Positive electrode for lithium secondary battery
WO2012066927A1 (en) 2010-11-17 2012-05-24 日本碍子株式会社 Positive electrode for lithium secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066926A1 (en) 2010-11-17 2012-05-24 日本碍子株式会社 Positive electrode for lithium secondary battery
WO2012066927A1 (en) 2010-11-17 2012-05-24 日本碍子株式会社 Positive electrode for lithium secondary battery
US8628881B2 (en) 2010-11-17 2014-01-14 Ngk Insulators, Ltd. Lithium secondary battery cathode
JPWO2012066927A1 (en) * 2010-11-17 2014-05-12 日本碍子株式会社 Positive electrode of lithium secondary battery
JPWO2012066926A1 (en) * 2010-11-17 2014-05-12 日本碍子株式会社 Positive electrode of lithium secondary battery
JP5824461B2 (en) * 2010-11-17 2015-11-25 日本碍子株式会社 Positive electrode of lithium secondary battery
JP5824460B2 (en) * 2010-11-17 2015-11-25 日本碍子株式会社 Positive electrode of lithium secondary battery
US9515347B2 (en) 2010-11-17 2016-12-06 Ngk Insulators, Ltd. Lithium secondary battery cathode

Similar Documents

Publication Publication Date Title
JP4985524B2 (en) Lithium secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP3794553B2 (en) Lithium secondary battery electrode and lithium secondary battery
US20150016024A1 (en) Cathode active material having core-shell structure and producing method thereof
JPH09153360A (en) Lithium secondary battery positive electrode and its manufacture, and lithium secondary battery
JP2004014405A (en) Non-aqueous electrolyte secondary battery
KR102227810B1 (en) Negative electrode slurry for lithium secondary battery, and preparing method thereof
CN109565029B (en) Method for manufacturing long-life electrode of secondary battery
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
WO2015146024A1 (en) Non-aqueous electrolyte secondary battery
JP2009212021A (en) Electrode for electrochemical element, nonaqueous secondary battery, and battery system
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP3734145B2 (en) Lithium secondary battery
JP6400364B2 (en) Cathode active material for non-aqueous secondary battery and method for producing the same
CN109983601B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5263223B2 (en) Nonaqueous electrolyte secondary battery
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5141356B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2006128135A (en) Active material for positive electrode and production method for positive electrode
JP2002304994A (en) Positive electrode active material and lithium ion secondary battery
JP2005005208A (en) Nonaqueous electrolyte secondary battery and method of manufacturing positive electrode for nonaqueous electrolyte secondary battery
JP4158212B2 (en) Method for producing lithium secondary battery and method for producing positive electrode active material for lithium secondary battery
JP2002270173A (en) Non-aqueous electrolyte secondary battery
WO2019150901A1 (en) Non-aqueous electrolyte secondary battery, electrolyte solution and method for producing non-aqueous electrolyte secondary battery
JP4296591B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213