JP2002269717A - Perpendicular magnetic recording medium and manufacturing method for perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium and manufacturing method for perpendicular magnetic recording medium

Info

Publication number
JP2002269717A
JP2002269717A JP2001068928A JP2001068928A JP2002269717A JP 2002269717 A JP2002269717 A JP 2002269717A JP 2001068928 A JP2001068928 A JP 2001068928A JP 2001068928 A JP2001068928 A JP 2001068928A JP 2002269717 A JP2002269717 A JP 2002269717A
Authority
JP
Japan
Prior art keywords
film
recording medium
magnetic
perpendicular magnetic
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001068928A
Other languages
Japanese (ja)
Inventor
Kazuya Yoshimoto
和也 吉本
Tatsuro Ishida
達朗 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001068928A priority Critical patent/JP2002269717A/en
Publication of JP2002269717A publication Critical patent/JP2002269717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the noise of a perpendicular magnetic recording medium formed by using a rare earth-transition metal amorphous magnetic alloy film as a perpendicularly magnetized film. SOLUTION: The perpendicular magnetic recording medium has a laminated structure having a substrate 2, the perpendicularly magnetized film 3 formed on the substrate 2 and a protective film 4 formed on the perpendicularly magnetized film 3. The perpendicularly magnetized film 3 has the magnetic alloy consisting essentially of a rare earth metal-transition metal alloy as a base material and is a rare earth-transition metal system granular thin film wherein the particles of a non-magnetic material are dispersed in the base material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンピュータ等の
記憶装置において磁気ディスク等として用いられる垂直
磁気記録媒体および垂直磁気記録媒体の製造方法に関す
るものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a perpendicular magnetic recording medium used as a magnetic disk or the like in a storage device such as a computer, and a method of manufacturing a perpendicular magnetic recording medium.

【0002】[0002]

【従来の技術】近年、ハードディスクドライブは、パー
ソナルコンピュータやワークステーションのみならずA
V機器等にも用いられるようになり、大容量化および小
型化が必要とされており、磁気ディスクは更なる高記録
密度化が要求されている。しかし、現在、広く普及して
いる長手磁気記録方式により高記録密度を実現しようと
すると、記録ビットの微細化に伴う記録磁化の熱揺らぎ
の問題や、記録ヘッドの記録能力を超えかねない高保磁
力化の問題が発生する。そこで、これらの問題を解決し
つつ、面記録密度を大幅に増大する手段として、垂直磁
気記録方式が検討されている。
2. Description of the Related Art In recent years, hard disk drives are used not only for personal computers and workstations but also for hard disk drives.
It has also been used for V equipment and the like, and is required to have a large capacity and a small size. Magnetic disks are required to have a higher recording density. However, in order to achieve a high recording density with the widely used longitudinal magnetic recording method, there is a problem of thermal fluctuation of recording magnetization due to miniaturization of recording bits and a high coercive force that may exceed the recording capability of the recording head. Problems arise. Therefore, a perpendicular magnetic recording system is being studied as a means for resolving these problems and greatly increasing the areal recording density.

【0003】垂直磁気記録方式を実現する垂直磁気記録
媒体の一つとして、高透磁率の軟磁性膜と高い垂直異方
性の垂直磁化膜からなる垂直2層膜が提案されている。
As one of the perpendicular magnetic recording media for realizing the perpendicular magnetic recording system, a perpendicular two-layer film comprising a soft magnetic film having a high magnetic permeability and a perpendicular magnetic film having a high perpendicular anisotropy has been proposed.

【0004】以下に、図4を参照にして、従来の垂直2
層媒体の構成を説明する。図4は、従来の垂直磁気記録
媒体の模式的基板断面図である。従来の垂直磁気記録媒
体100は、軟磁性膜102、垂直磁化膜103および
保護膜104を、順次、基板101上に形成してなるも
のである。例えば、軟磁性膜102にはパーマロイ(N
i−Fe)膜、垂直磁化膜103にはコバルト−クロム
(Co−Cr)系合金膜および保護膜104にはカーボ
ン(C)がそれぞれ用いられている。ここで、軟磁性膜
102は、記録ヘッドの一部として動作する。磁気ヘッ
ドの主磁極からの磁界は、軟磁性膜102と補助磁極を
通って、一つの閉磁路を構成する。このような構成にす
ることにより、媒体における垂直磁界を強くすることが
でき、記録感度を向上できる(日本応用磁気学会誌、V
ol.8,No.1,1984、P17)。
[0004] Hereinafter, referring to FIG.
The configuration of the layered medium will be described. FIG. 4 is a schematic substrate sectional view of a conventional perpendicular magnetic recording medium. A conventional perpendicular magnetic recording medium 100 is formed by sequentially forming a soft magnetic film 102, a perpendicular magnetization film 103, and a protective film 104 on a substrate 101. For example, the permalloy (N
A cobalt-chromium (Co-Cr) alloy film is used for the i-Fe) film and the perpendicular magnetization film 103, and carbon (C) is used for the protection film 104, respectively. Here, the soft magnetic film 102 operates as a part of the recording head. The magnetic field from the main magnetic pole of the magnetic head passes through the soft magnetic film 102 and the auxiliary magnetic pole to form one closed magnetic path. With such a configuration, the perpendicular magnetic field in the medium can be strengthened, and the recording sensitivity can be improved.
ol. 8, No. 1, 1984, p. 17).

【0005】ところで、垂直磁気記録方式においては、
垂直磁気記録媒体のDC消去(飽和残留磁化状態)での
ノイズが大きいという問題があり、記録媒体中に形成さ
れた逆磁区がこのノイズ源と考えられている。この逆磁
区に起因するノイズを低減するためには、逆磁区を小さ
くすること、および逆磁区の数を減らすことが必要であ
る。逆磁区の数を減らすことは、垂直磁気記録媒体の基
板面に対して垂直方向のM−H(磁化−磁界)ループに
おける角型比(飽和磁化に対する残留磁化の比)を大き
くすることに対応している。
[0005] In the perpendicular magnetic recording system,
There is a problem that noise is large in DC erasure (saturated remanent magnetization) of a perpendicular magnetic recording medium, and a reverse magnetic domain formed in the recording medium is considered as a noise source. In order to reduce the noise caused by the reverse magnetic domains, it is necessary to reduce the reverse magnetic domains and reduce the number of the reverse magnetic domains. Reducing the number of reverse magnetic domains corresponds to increasing the squareness ratio (the ratio of the residual magnetization to the saturation magnetization) in the MH (magnetization-magnetic field) loop perpendicular to the substrate surface of the perpendicular magnetic recording medium. are doing.

【0006】角型比が大きい垂直磁化膜として、光磁気
記録に用いられている希土類金属−遷移金属(RE−T
M)系アモルファス合金膜が知られている。アモルファ
ス構造であるため粒子の微細化に伴う熱揺らぎの問題が
少なく、また大きな垂直磁気異方性を持つため、垂直磁
気記録媒体としても注目を集めている。
As a perpendicular magnetization film having a large squareness ratio, a rare earth metal-transition metal (RE-T
M) -based amorphous alloy films are known. Since it has an amorphous structure, there is little problem of thermal fluctuation due to finer particles, and since it has a large perpendicular magnetic anisotropy, it has attracted attention as a perpendicular magnetic recording medium.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、Co−
Cr系合金の微細構造が強磁性領域と非磁性領域からな
る不均一構造であることから磁化反転の際の磁壁移動の
ピニングが可能であったのに対し、RE−TM系アモル
ファス合金膜は、膜全体が均一な強磁性体の連続膜であ
るため、磁壁のピニングサイトが存在せず、磁区が不安
定となる。
However, Co-
Since the microstructure of the Cr-based alloy is an inhomogeneous structure consisting of a ferromagnetic region and a non-magnetic region, pinning of domain wall motion during magnetization reversal was possible, whereas an RE-TM-based amorphous alloy film was Since the whole film is a continuous film of a uniform ferromagnetic material, there is no pinning site of the domain wall, and the magnetic domain becomes unstable.

【0008】以上のことから、RE−TM系アモルファ
ス合金膜においては、記録磁化遷移領域が不安定にな
り、記録密度とともに増加する遷移性ノイズが発生する
ため、高密度化を妨げるという問題点がある。
As described above, in the RE-TM-based amorphous alloy film, the recording magnetization transition region becomes unstable, and transition noise increases with the recording density. is there.

【0009】そこで、本発明の目的は、高角型比により
DCノイズを抑制するというRE−TM膜の利点を活か
し、かつ、遷移性ノイズも抑制し、高記録密度化を実現
する垂直磁気記録媒体および垂直磁気記録媒体の製造方
法を提供することにある。
Accordingly, an object of the present invention is to make use of the advantage of the RE-TM film that suppresses DC noise by a high squareness ratio, suppress transitional noise, and realize a high-density perpendicular magnetic recording medium. And a method of manufacturing a perpendicular magnetic recording medium.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明の垂直磁気記録媒体は、基板と、基板上に設
けられた垂直磁化膜と、垂直磁化膜上に設けられた保護
膜とを少なくとも有する垂直磁気記録媒体であり、垂直
磁化膜が、希土類金属−遷移金属合金を主成分とする磁
性合金と非磁性材料とからなるグラニュラー薄膜であっ
て、希土類金属−遷移金属合金を主成分とする磁性合金
がグラニュラー薄膜の母材であり、非磁性材料が母材中
に分散させる粒子であることを特徴としている。
In order to achieve the above object, a perpendicular magnetic recording medium according to the present invention comprises a substrate, a perpendicular magnetic film provided on the substrate, a protective film provided on the perpendicular magnetic film. Wherein the perpendicular magnetization film is a granular thin film composed of a magnetic alloy containing a rare earth metal-transition metal alloy as a main component and a nonmagnetic material, and a rare earth metal-transition metal alloy as a main component. The magnetic alloy is a base material of the granular thin film, and the nonmagnetic material is particles dispersed in the base material.

【0011】上記の構成によると、連続構造の磁性膜中
に分散させた非磁性材料を、磁壁のピニングサイトとす
ることができる。また、基本的にはアモルファス構造で
粒界が存在しないため、結晶粒径に依存する磁化遷移領
域の不規則なジグザグ構造を最小にすることができる。
このため、ノイズを低減することができる。
According to the above configuration, the nonmagnetic material dispersed in the continuous structure magnetic film can be used as the pinning site of the domain wall. In addition, since there is basically no grain boundary in an amorphous structure, an irregular zigzag structure in a magnetization transition region depending on a crystal grain size can be minimized.
For this reason, noise can be reduced.

【0012】また、本発明の垂直磁気記録媒体における
垂直磁化膜は、希土類金属として、Tb、Gd、Dyの
うち一つ以上を含み、遷移金属として、Fe、Coのう
ち一つ以上を含み、かつ、非磁性材料としては、Si−
O、Al−O、Zr−O、Mg−O、Si−N、Si−
C、Cのうち一つ以上を含むこと特徴とする。
The perpendicular magnetic film of the perpendicular magnetic recording medium of the present invention contains at least one of Tb, Gd, and Dy as a rare earth metal, and at least one of Fe and Co as a transition metal. In addition, as a non-magnetic material, Si-
O, Al-O, Zr-O, Mg-O, Si-N, Si-
It is characterized in that at least one of C and C is included.

【0013】また、本発明の垂直磁気記録媒体の製造方
法は、基板上に、もしくは基板上に設けられた下地膜上
に、非磁性材料を島状構造に形成する工程と、希土類金
属−遷移金属合金を主成分とする磁性合金薄膜を形成す
る工程とを繰り返して行うことを特徴としている。
Further, the method of manufacturing a perpendicular magnetic recording medium according to the present invention comprises a step of forming a non-magnetic material in an island structure on a substrate or a base film provided on the substrate; And a step of forming a magnetic alloy thin film containing a metal alloy as a main component.

【0014】この方法によると、希土類金属−遷移金属
系磁性合金薄膜中に、非磁性粒子を分散した垂直磁化膜
を形成することができる。
According to this method, a perpendicular magnetization film in which non-magnetic particles are dispersed can be formed in a rare earth metal-transition metal magnetic alloy thin film.

【0015】[0015]

【発明の実施の形態】以下に、添付図面を参照にして、
本発明の実施の形態について説明する。図1は、本発明
の実施の形態の垂直磁気記録媒体の構成の一例を示す基
板断面図である。本発明の垂直磁気記録媒体1は、基板
2上に、順次、希土類−遷移金属系グラニュラー垂直磁
化膜3および保護膜4を形成してなるものである。図2
に本発明の垂直磁気記録媒体における垂直磁化膜の微細
構造の模式図を示す。希土類金属−遷移金属系磁性合金
5中に、非磁性材料6の粒子が分散されている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
An embodiment of the present invention will be described. FIG. 1 is a cross-sectional view of a substrate showing an example of a configuration of a perpendicular magnetic recording medium according to an embodiment of the present invention. The perpendicular magnetic recording medium 1 of the present invention is obtained by forming a rare earth-transition metal based granular perpendicular magnetization film 3 and a protective film 4 on a substrate 2 in this order. FIG.
FIG. 3 is a schematic view of the fine structure of the perpendicular magnetization film in the perpendicular magnetic recording medium of the present invention. The particles of the non-magnetic material 6 are dispersed in the rare-earth metal-transition metal based magnetic alloy 5.

【0016】[0016]

【実施例】次に、本発明の具体例を説明する。Next, specific examples of the present invention will be described.

【0017】(実施例1)本実施例は、本発明に係る垂
直磁気記録媒体の実施例の一つである。図3は本実施例
の垂直磁気記録媒体の構成を示す基板断面図である。本
実施例の垂直磁気記録媒体7は、65mm径の基板8
と、基板8上に形成された膜厚500nmのNi−Fe
からなる軟磁性膜9と、軟磁性膜9上に形成されたTb
−Fe−CoとSiO2とからなる希土類−遷移金属系
グラニュラー垂直磁化膜10と、カーボンの保護膜11
とを有する積層構造として形成されている。
(Embodiment 1) This embodiment is one of the embodiments of the perpendicular magnetic recording medium according to the present invention. FIG. 3 is a cross-sectional view of the substrate showing the configuration of the perpendicular magnetic recording medium of this embodiment. The perpendicular magnetic recording medium 7 of the present embodiment includes a substrate 8 having a diameter of 65 mm.
And Ni-Fe with a thickness of 500 nm formed on the substrate 8
And a Tb formed on the soft magnetic film 9
A rare earth-transition metal-based granular perpendicular magnetization film 10 made of Fe—Co and SiO 2, and a carbon protective film 11
And is formed as a laminated structure having:

【0018】以下に、本実施例の垂直磁気記録媒体7を
作製する方法を説明する。まず、スパッタリング法によ
り、65mm径の基板8上に膜厚500nmのNi−F
e膜からなる軟磁性膜9を成膜した。次いで、軟磁性膜
9上に、Tb−Fe−CoおよびSiO2ターゲットを
用いた同時スパッタ法により、膜厚80nmのTb−F
e−CoとSiO2とからなる希土類−遷移金属系グラ
ニュラー垂直磁化膜10を室温において成膜した。Si
O2の体積分率は、ターゲットに印加する電力により制
御し、5%となるようにした。更に、希土類−遷移金属
系グラニュラー垂直磁化膜10上に膜厚8nmのカーボ
ンの保護膜11を成膜し、実施例1の垂直磁気記録媒体
を作製した。一方、Tb−Fe−Coターゲットのみを
用いてを膜厚80nmの垂直磁化膜を作製した垂直磁気
記録媒体を比較例とした。
Hereinafter, a method for manufacturing the perpendicular magnetic recording medium 7 of this embodiment will be described. First, a Ni-F film having a thickness of 500 nm is formed on a substrate 8 having a diameter of 65 mm by sputtering.
A soft magnetic film 9 made of an e film was formed. Next, an 80 nm-thick Tb-F film is formed on the soft magnetic film 9 by a simultaneous sputtering method using a Tb-Fe-Co and SiO2 target.
A rare earth-transition metal-based granular perpendicular magnetization film 10 made of e-Co and SiO2 was formed at room temperature. Si
The volume fraction of O2 was controlled by electric power applied to the target, and was set to 5%. Further, an 8 nm-thick carbon protective film 11 was formed on the rare earth-transition metal-based granular perpendicular magnetization film 10 to produce a perpendicular magnetic recording medium of Example 1. On the other hand, a perpendicular magnetic recording medium in which a perpendicular magnetic film having a thickness of 80 nm was formed using only the Tb-Fe-Co target was used as a comparative example.

【0019】(実施例2)本実施例は、本発明に係る垂
直磁気記録媒体の製造方法の実施例の一つである。基本
的な媒体構成は図3に示した実施例1の構成と同じであ
るが、希土類−遷移金属系グラニュラー垂直磁化膜10
の作製方法が異なる。
(Embodiment 2) This embodiment is one of embodiments of a method for manufacturing a perpendicular magnetic recording medium according to the present invention. The basic medium configuration is the same as that of the first embodiment shown in FIG. 3, except that the rare-earth / transition metal-based granular perpendicular magnetization film 10 is used.
Are different from each other.

【0020】以下に、本実施例の垂直記録媒体の製造方
法を説明する。まず、スパッタリング法により、65m
m径の基板2上に膜厚500nmのNi−Fe膜からな
る軟磁性膜9を成膜した。次いで、軟磁性膜9上に、S
iO2ターゲットを用いたスパッタ法によりSiO2を
成膜時間換算で1nm成膜した。この際、SiO2は連
続膜ではなく、島状構造であることをTEMにより確認
した。引き続きTb−Fe−Coターゲットを用いて、
膜厚10nmのTb−Fe−Co膜を成膜した。上記S
i2とTb−Fe−Coの成膜工程を8回繰り返し、S
iO2とTb−Fe−Coとからなる希土類−遷移金属
系グラニュラー垂直磁化膜10を形成した。SiO2の
体積分率は、5%となるようにした。更に、希土類−遷
移金属系グラニュラー垂直磁化膜10上に膜厚8nmの
カーボンの保護膜11を成膜し、実施例2の垂直磁気記
録媒体を作製した。
Hereinafter, a method for manufacturing the perpendicular recording medium of the present embodiment will be described. First, 65m
A soft magnetic film 9 made of a 500 nm thick Ni-Fe film was formed on a substrate 2 having a diameter of m. Next, on the soft magnetic film 9, S
By sputtering using an iO2 target, SiO2 was deposited to a thickness of 1 nm in terms of a deposition time. At this time, it was confirmed by TEM that SiO2 was not a continuous film but an island structure. Subsequently, using a Tb-Fe-Co target,
A Tb-Fe-Co film having a thickness of 10 nm was formed. The above S
The film formation process of i2 and Tb-Fe-Co was repeated eight times,
A rare earth-transition metal based granular perpendicular magnetization film 10 made of iO2 and Tb-Fe-Co was formed. The volume fraction of SiO2 was set to 5%. Further, an 8 nm-thick carbon protective film 11 was formed on the rare-earth / transition metal-based granular perpendicular magnetic film 10 to produce a perpendicular magnetic recording medium of Example 2.

【0021】本発明に係る垂直磁気記録媒体を評価する
ため、信号の記録には単磁極ヘッドを、信号の読み出し
にはMRヘッドを用いて、記録再生特性の測定を行っ
た。ここで、単磁極ヘッドのトラック幅は0.5μm、
主磁極膜厚は2μmであった。MRヘッドの再生トラッ
ク幅は0.3μm、シールド間距離は0.1μmであっ
た。また、測定は、周速度12.7m/sec、浮上量
20nm、およびノイズのバンド帯域45MHzの条件
下で行った。
In order to evaluate the perpendicular magnetic recording medium according to the present invention, recording / reproducing characteristics were measured using a single-pole head for recording signals and an MR head for reading signals. Here, the track width of the single pole head is 0.5 μm,
The main pole film thickness was 2 μm. The reproduction track width of the MR head was 0.3 μm, and the distance between the shields was 0.1 μm. The measurement was performed under the conditions of a peripheral speed of 12.7 m / sec, a flying height of 20 nm, and a noise band band of 45 MHz.

【0022】(表1)に、記録密度250kFRPIに
おける媒体S/N比および媒体ノイズを比較例を基準に
して示す。
Table 1 shows the medium S / N ratio and the medium noise at a recording density of 250 kFRPI based on a comparative example.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例1の媒体は、比較例の媒体に比べ
て、S/N比が1dB高く、ノイズが1dB低かった。
これは、磁性膜中の非磁性膜材料の割合が低いので、出
力に変化はないが、ピニング効果によりノイズが減少
し、S/N比が向上している。
The medium of Example 1 had a higher S / N ratio by 1 dB and a lower noise by 1 dB than the medium of the comparative example.
This is because the ratio of the non-magnetic film material in the magnetic film is low, so that the output does not change, but the noise is reduced by the pinning effect and the S / N ratio is improved.

【0025】実施例2の媒体は、比較例の媒体に比べ
て、S/N比が3dB高く、ノイズが3dB低かった。
これは、磁性膜中の非磁性膜材料の割合が低いので、出
力の低減が無いうえ、非磁性材料が島状構造粒子として
存在しているので、実施例1に比べて、磁壁が有効的に
ピニングされて、ノイズが減少し、S/N比が向上して
いる。
The medium of Example 2 had a higher S / N ratio by 3 dB and a lower noise by 3 dB than the medium of Comparative Example.
This is because there is no reduction in output because the ratio of the non-magnetic film material in the magnetic film is low, and since the non-magnetic material exists as island-shaped particles, the domain wall is more effective than in Example 1. , The noise is reduced and the S / N ratio is improved.

【0026】以上より、本発明の垂直磁気記録媒体およ
び垂直磁気記録媒体の製造方法を用いることにより、高
記録密度の実現が容易となる。
As described above, by using the perpendicular magnetic recording medium and the method for manufacturing the perpendicular magnetic recording medium of the present invention, it is easy to realize a high recording density.

【0027】なお、以上の実施の形態においては、希土
類−遷移金属系グラニュラー垂直磁化膜10中の希土類
−遷移金属合金は、Tb−Fe−Co合金のほかに、T
b−Fe、Tb−Co、Gd−Fe、Gd−Co、Gd
−Fe−Co、Dy−Fe、Dy−Co、Dy−Fe−
Coなどが利用できる。また、非磁性材料としては、S
iO2のほかに、Al−O、Zr−O、Mg−O、Si
−N、Si−C、Cなどが利用できる。
In the above embodiment, the rare earth-transition metal alloy in the rare earth-transition metal-based granular perpendicular magnetization film 10 is a Tb-Fe-Co alloy,
b-Fe, Tb-Co, Gd-Fe, Gd-Co, Gd
-Fe-Co, Dy-Fe, Dy-Co, Dy-Fe-
Co or the like can be used. Further, as a non-magnetic material, S
In addition to iO2, Al-O, Zr-O, Mg-O, Si
-N, Si-C, C and the like can be used.

【0028】また、本発明は、基板と垂直磁化膜との間
に軟磁性膜を設けた構成や、更に、基板と軟磁性膜との
間に軟磁性膜の磁壁を固着する薄膜を設けた構成におい
ても効果は変わらない。
Further, according to the present invention, a structure in which a soft magnetic film is provided between a substrate and a perpendicular magnetization film, and a thin film for fixing a domain wall of the soft magnetic film between the substrate and the soft magnetic film are provided. The effect does not change even in the configuration.

【0029】[0029]

【発明の効果】本発明の垂直磁気記録媒体によれば、連
続構造の磁性膜中に非磁性材料を分散させることによ
り、磁壁のピニングサイトとすることができ、ノイズが
低減できる。また、非磁性材料の割合を少なくできるの
で、出力の低下を抑えることができる。この効果によ
り、記録再生特性に優れた垂直磁気記録媒体を実現でき
る。
According to the perpendicular magnetic recording medium of the present invention, by dispersing a non-magnetic material in a magnetic film having a continuous structure, a pinning site of a domain wall can be formed and noise can be reduced. Further, since the ratio of the non-magnetic material can be reduced, a decrease in output can be suppressed. With this effect, a perpendicular magnetic recording medium having excellent recording and reproducing characteristics can be realized.

【0030】また、本発明の垂直磁気記録媒体の製造方
法によれば、少ない割合の非磁性材料を粒子状に磁性膜
中に分散できるので、出力の低下を抑え、かつ有効的な
磁壁のピニングを行える垂直磁化膜形成できる。
Further, according to the method of manufacturing a perpendicular magnetic recording medium of the present invention, a small proportion of non-magnetic material can be dispersed in the magnetic film in the form of particles. A perpendicular magnetization film can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の垂直磁気記録媒体の構成の一例を示す
断面図
FIG. 1 is a sectional view showing an example of the configuration of a perpendicular magnetic recording medium according to the present invention.

【図2】本発明の垂直磁気記録媒体における垂直磁化膜
の微細構造を示す模式図
FIG. 2 is a schematic view showing a fine structure of a perpendicular magnetization film in the perpendicular magnetic recording medium of the present invention.

【図3】本発明の垂直磁気記録媒体の構成の実施の形態
の一例を示す断面図
FIG. 3 is a sectional view showing an example of an embodiment of the configuration of the perpendicular magnetic recording medium of the present invention.

【図4】従来の垂直磁気記録媒体の構成を示す断面図FIG. 4 is a sectional view showing a configuration of a conventional perpendicular magnetic recording medium.

【符号の説明】[Explanation of symbols]

1 垂直磁気記録媒体 2 基板 3 希土類−遷移金属系グラニュラー垂直磁化膜 4 保護膜 5 希土類−遷移金属系磁性合金 6 非磁性材料 7 垂直磁気記録媒体 8 基板 9 軟磁性膜 10 希土類−遷移金属系グラニュラー垂直磁化膜 11 保護膜 100 垂直磁気記録媒体 101 基板 102 軟磁性膜 103 垂直磁化膜 104 保護膜 DESCRIPTION OF SYMBOLS 1 Perpendicular magnetic recording medium 2 Substrate 3 Rare earth-transition metal granular perpendicular magnetization film 4 Protective film 5 Rare earth-transition metal magnetic alloy 6 Non-magnetic material 7 Perpendicular magnetic recording medium 8 Substrate 9 Soft magnetic film 10 Rare earth-transition metal granular Perpendicular magnetic film 11 protective film 100 perpendicular magnetic recording medium 101 substrate 102 soft magnetic film 103 perpendicular magnetic film 104 protective film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板と、前記基板上に設けられた垂直磁
化膜と、前記垂直磁化膜上に設けられた保護膜とを少な
くとも有する垂直磁気記録媒体において、前記垂直磁化
膜が、希土類金属−遷移金属合金を主成分とする磁性合
金と、非磁性材料とからなるグラニュラー薄膜であっ
て、前記希土類金属−遷移金属合金を主成分とする磁性
合金がグラニュラー薄膜の母材であり、非磁性材料が母
材中に分散させる粒子であることを特徴とする垂直磁気
記録媒体。
1. A perpendicular magnetic recording medium having at least a substrate, a perpendicular magnetic film provided on the substrate, and a protective film provided on the perpendicular magnetic film, wherein the perpendicular magnetic film is made of a rare earth metal A magnetic thin film comprising a transition metal alloy-based magnetic alloy and a non-magnetic material, wherein the rare earth metal-transition metal alloy-based magnetic alloy is a base material of the granular thin film, and is a non-magnetic material. Is a particle dispersed in a base material.
【請求項2】 前記希土類金属がTb、Gd、Dyのう
ち一つ以上を含み、前記遷移金属がFe、Coのうち一
つ以上を含み、かつ、前記非磁性材料がSi−O、Al
−O、Zr−O、Mg−O、Si−N、Si−C、Cの
うち一つ以上を含むこと特徴とする請求項1記載の垂直
磁気記録媒体。
2. The rare earth metal includes one or more of Tb, Gd, and Dy, the transition metal includes one or more of Fe and Co, and the nonmagnetic material includes Si—O, Al
2. The perpendicular magnetic recording medium according to claim 1, comprising at least one of -O, Zr-O, Mg-O, Si-N, Si-C, and C.
【請求項3】 基板上に、もしくは前記基板上に設けら
れた下地膜上に、非磁性材料を島状構造に形成する工程
と、希土類金属−遷移金属合金を主成分とする磁性合金
薄膜を形成する工程とを繰り返して行うことを特徴とす
る垂直磁気記録媒体の製造方法。
3. A step of forming a non-magnetic material into an island structure on a substrate or a base film provided on the substrate, and forming a magnetic alloy thin film containing a rare earth metal-transition metal alloy as a main component. A method for manufacturing a perpendicular magnetic recording medium, wherein the step of forming is performed repeatedly.
JP2001068928A 2001-03-12 2001-03-12 Perpendicular magnetic recording medium and manufacturing method for perpendicular magnetic recording medium Pending JP2002269717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001068928A JP2002269717A (en) 2001-03-12 2001-03-12 Perpendicular magnetic recording medium and manufacturing method for perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001068928A JP2002269717A (en) 2001-03-12 2001-03-12 Perpendicular magnetic recording medium and manufacturing method for perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2002269717A true JP2002269717A (en) 2002-09-20

Family

ID=18927037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001068928A Pending JP2002269717A (en) 2001-03-12 2001-03-12 Perpendicular magnetic recording medium and manufacturing method for perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2002269717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003067909A (en) * 2001-08-24 2003-03-07 Fuji Electric Co Ltd Perpendicular magnetic recording medium
JP2003085725A (en) * 2001-09-13 2003-03-20 Fuji Electric Co Ltd Perpendicular magnetic recording medium and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003067909A (en) * 2001-08-24 2003-03-07 Fuji Electric Co Ltd Perpendicular magnetic recording medium
JP2003085725A (en) * 2001-09-13 2003-03-20 Fuji Electric Co Ltd Perpendicular magnetic recording medium and method of manufacturing the same
JP4534402B2 (en) * 2001-09-13 2010-09-01 富士電機デバイステクノロジー株式会社 Perpendicular magnetic recording medium and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7090934B2 (en) Perpendicular magnetic recording medium
JP3641611B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JP2007200548A (en) Perpendicular magnetic recording disk
JP3350512B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing device
US20040053078A1 (en) Magnetic recording medium and magnetic recording/reproducing apparatus
JP2005209290A (en) Thermomagnetic transfer type magnetic recording system and magnetic disk unit
JP2008226416A (en) Perpendicular magnetic recording medium and its manufacturing method
JP3990128B2 (en) Magnetic recording device
JP2003045015A (en) Perpendicular magnetic recording medium and its manufacturing method
JP2002216333A (en) Magnetic recording medium and magnetic recording machine
JP3947001B2 (en) Information recording medium and information storage device
JPS63166008A (en) Magnetic anisotropic recording medium
JP3749845B2 (en) Magnetic recording medium and magnetic recording apparatus
JP3274615B2 (en) Perpendicular magnetic recording medium and magnetic recording device using the same
JP2002269717A (en) Perpendicular magnetic recording medium and manufacturing method for perpendicular magnetic recording medium
JPWO2004019322A1 (en) Backed magnetic film
JP3102638B2 (en) Magnetic recording / reproducing device
JP4389381B2 (en) Magnetic recording medium and magnetic recording apparatus
JPWO2003100773A1 (en) Information recording medium and information storage device
JP2002269716A (en) Perpendicular magnetic recording medium
JP3019140B2 (en) Perpendicular magnetic recording media
JP2810457B2 (en) Perpendicular magnetic recording medium and its recording device
JP2002109714A (en) Information recording medium and information recording device
JPH0831639A (en) Vertical magnetic recording medium
JP2002092845A (en) Information recording medium and information recording device using the same