JP2002267698A - Current detector - Google Patents

Current detector

Info

Publication number
JP2002267698A
JP2002267698A JP2001067880A JP2001067880A JP2002267698A JP 2002267698 A JP2002267698 A JP 2002267698A JP 2001067880 A JP2001067880 A JP 2001067880A JP 2001067880 A JP2001067880 A JP 2001067880A JP 2002267698 A JP2002267698 A JP 2002267698A
Authority
JP
Japan
Prior art keywords
current
current detection
circuit
detection circuit
relay contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001067880A
Other languages
Japanese (ja)
Other versions
JP3668145B2 (en
Inventor
Masaki Yugo
政樹 湯郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001067880A priority Critical patent/JP3668145B2/en
Publication of JP2002267698A publication Critical patent/JP2002267698A/en
Application granted granted Critical
Publication of JP3668145B2 publication Critical patent/JP3668145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To exactly detect the load current of a battery even in a very small current rage without providing a special change-over switch. SOLUTION: In the current detector, the battery 1 is connected to a load circuit 17 by way of a contact of a main relay, and in parallel to the main relay contact 2, and also a pre-charge circuit 3 connecting in series a pre-charge relay contact 4 and a pre-charge resistor 5 is connected so that the load current flowing in the battery 1 is detected with the first current detection circuit 7. The current detector comprises a control circuit 9 controlling on/off of the pre-charge relay contact 4 and the main relay contact 2 and a second current detector circuit 8 detecting the load current from the voltage of the pre-charge resistor 5. The current detector detects the load current with the first current detector circuit 7 in the state of turning the main relay contact 2 'on', and detects the load current with the second current detector circuit 8 in the state of turning the main relay contact 2 'off' and the pre-charge relay contact 4 'off'.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車等のモ
ーター駆動電気機器のバッテリに流れる負荷電流を検出
する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting a load current flowing in a battery of a motor-driven electric device such as an electric vehicle.

【0002】[0002]

【従来の技術】自動車を走行させるバッテリは、残容量
を正確に演算することが大切である。残容量の検出に誤
差が発生すると、走行時間が長くなるにしたがって誤差
が累積される。累積誤差は、バッテリの実際の残容量と
演算した残容量とを違う残容量とし、バッテリを最適な
残容量範囲で使用するのが難しくなり、過充電したり過
放電させる原因となる。バッテリは、好ましい残容量の
範囲で充放電させて長寿命に使用できるが、過充電と過
放電によって著しく電気的な性能が低下して寿命が短く
なる。自動車用のバッテリは極めて高価であるために、
できるかぎり長い期間使用できることが大切である。
2. Description of the Related Art It is important to accurately calculate the remaining capacity of a battery for running an automobile. If an error occurs in the detection of the remaining capacity, the error is accumulated as the traveling time becomes longer. The accumulated error makes the actual remaining capacity of the battery and the calculated remaining capacity different from the remaining capacity, making it difficult to use the battery in an optimum remaining capacity range, causing overcharging and overdischarging. A battery can be used for a long life by charging and discharging within a preferable remaining capacity range. However, overcharging and overdischarging significantly reduce electrical performance and shorten the life. Because automotive batteries are extremely expensive,
It is important to be able to use it for as long as possible.

【0003】バッテリの残容量は、バッテリに流れる電
流を積算して演算される。充電効率と放電効率を考慮し
ながら、充電電流の積算値から放電電流の積算値を減算
して残容量は演算される。正確に残容量を演算するため
には、正確にバッテリ電流を検出する必要がある。とこ
ろで、バッテリに流れる負荷電流は、電流センサーで検
出される。電流センサーは、大電流を正確に検出できる
ように設計される。大電流の検出誤差が大きいと、残容
量の演算誤差が大きくなるからである。
[0003] The remaining capacity of a battery is calculated by integrating the current flowing through the battery. The remaining capacity is calculated by subtracting the integrated value of the discharging current from the integrated value of the charging current while considering the charging efficiency and the discharging efficiency. In order to accurately calculate the remaining capacity, it is necessary to accurately detect the battery current. By the way, the load current flowing through the battery is detected by a current sensor. Current sensors are designed to accurately detect large currents. This is because, when the detection error of the large current is large, the calculation error of the remaining capacity becomes large.

【0004】[0004]

【発明が解決しようとする課題】大電流を正確に検出で
きるようにしている電流センサーは、小電流を正確に検
出することが難しくなる。微小電流からフルスケールま
で正確に検出できるのが理想であるが、全ての測定範囲
で高精度に負荷電流を検出するのは極めて難しい。微小
電流の測定誤差も、残容量の演算に悪影響を与える。そ
れは、小さい負荷電流で使用される時間が極めて長いた
めに、時間とともに誤差が累積されるからである。
A current sensor which can accurately detect a large current has difficulty in accurately detecting a small current. Ideally, it is possible to accurately detect a small current to a full scale, but it is extremely difficult to detect a load current with high accuracy in all measurement ranges. The measurement error of the minute current also has an adverse effect on the calculation of the remaining capacity. This is because the error is accumulated with time because the time used with a small load current is extremely long.

【0005】この欠点を解消するために、小電流と大電
流で切り換えて電流を検出する装置が開発されている
(特開平10−307563号)。この装置は、図1に
示すように、大電流センサー20と微小電流センサー2
1を並列に接続して、負荷電流で切り換えている。この
装置は大電流センサーと微小センサーを切り換えるため
に専用の切換スイッチ22を設ける必要がある。この切
換スイッチ22は、数百Aもの大電流を流すと共に、極
めて高い信頼性が要求されるので極めて高価になる。と
くに、電流の大きさで頻繁に切り換えられるので、大電
流をスイッチングしながら極めて長寿命に設計する必要
がある。さらに、このスイッチが故障すると、電気自動
車が走行できなくなる欠点がある。さらに、電流の大き
さで切り換えるので、切り換えるときに瞬間的に負荷電
流を遮断して、モーターのスムーズな回転を阻害する欠
点もある。このことは、モーターでのスムーズな走行を
難しくして、走行感覚を悪化させる原因ともなる。
In order to solve this drawback, an apparatus has been developed which detects a current by switching between a small current and a large current (JP-A-10-307563). As shown in FIG. 1, this device includes a large current sensor 20 and a small current sensor 2.
1 are connected in parallel and switched by the load current. In this device, it is necessary to provide a dedicated switch 22 for switching between the large current sensor and the minute sensor. The changeover switch 22 requires a very large current of several hundred amperes and requires extremely high reliability, so that it is very expensive. In particular, since switching is frequently performed depending on the magnitude of the current, it is necessary to design a very long life while switching a large current. Further, when this switch fails, there is a disadvantage that the electric vehicle cannot run. Further, since the switching is performed according to the magnitude of the current, there is a disadvantage that the load current is momentarily interrupted when the switching is performed, and the smooth rotation of the motor is hindered. This makes smooth running with the motor difficult, and causes a deterioration in running feeling.

【0006】本発明は、このような欠点を解決すること
を目的に開発されたものである。本発明の重要な目的
は、専用の切換スイッチを設けることなく、バッテリの
負荷電流を微小電流範囲においても正確に検出できる電
流検出装置を提供することにある。
[0006] The present invention has been developed with a view to solving such a drawback. An important object of the present invention is to provide a current detection device capable of accurately detecting a load current of a battery even in a minute current range without providing a dedicated changeover switch.

【0007】[0007]

【課題を解決するための手段】本発明の電流検出装置
は、バッテリ1をメインリレーの接点を介して駆動用モ
ーターを含む負荷回路17に接続すると共に、このメイ
ンリレー接点2と並列に、プリチャージリレー接点4と
プリチャージ抵抗5を直列に接続しているプリチャージ
回路3を接続しているモーター駆動電気機器のバッテリ
1に流れる負荷電流を第1電流検出回路7で検出してい
る。電流検出装置は、プリチャージリレー接点4とメイ
ンリレー接点4とをオンオフに制御する制御回路9と、
プリチャージ抵抗5の両端の電圧を検出して負荷電流を
検出する第2電流検出回路8とを備える。この電流検出
装置は、メインリレー接点2をオンにする状態では、第
1電流検出回路7で負荷電流を検出し、メインリレー接
点2をオフにしてプリチャージリレー接点4をオンにす
る状態では、第2電流検出回路8で負荷電流を検出して
いる。
According to the current detecting device of the present invention, a battery 1 is connected to a load circuit 17 including a driving motor via a contact of a main relay, and a pre-charger is connected in parallel with the main relay contact 2. The first current detection circuit 7 detects a load current flowing through the battery 1 of the motor drive electric device connected to the precharge circuit 3 in which the charge relay contact 4 and the precharge resistor 5 are connected in series. A control circuit 9 for turning on and off the precharge relay contact 4 and the main relay contact 4;
A second current detecting circuit for detecting a load current by detecting a voltage between both ends of the precharge resistor; In the current detection device, when the main relay contact 2 is turned on, the first current detection circuit 7 detects a load current, and when the main relay contact 2 is turned off and the precharge relay contact 4 is turned on, The second current detection circuit 8 detects a load current.

【0008】第1電流検出回路7は、磁束を介して負荷
電流を検出する電流センサー10を設けて電流を検出で
きる。さらに、電流検出装置は、メインリレー接点2を
オフにしてプリチャージリレー接点4をオンする状態
で、第2電流検出回路8で検出した検出値で第1電流検
出回路7の検出値を補正することができる。
The first current detection circuit 7 can detect a current by providing a current sensor 10 for detecting a load current via a magnetic flux. Further, the current detection device corrects the detection value of the first current detection circuit 7 with the detection value detected by the second current detection circuit 8 in a state where the main relay contact 2 is turned off and the precharge relay contact 4 is turned on. be able to.

【0009】さらに、本発明の請求項4の電流検出装置
は、第1電流検出回路7で検出する電流値を補正する閉
ループ電流検出回路12を備える。この閉ループ電流検
出回路12は、電流検出抵抗13と、この電流検出抵抗
13の両端の電圧を検出して電流検出抵抗13に流れる
電流を検出する検出回路14と、電流検出抵抗13と直
列に接続しているスイッチング素子15とを備える。電
流検出抵抗13とスイッチング素子15は、バッテリ1
と電流センサー10とスイッチング素子15を含む閉ル
ープ回路を構成すると共に、スイッチング素子15をオ
ンにする状態で微小電流を流すように接続している。こ
の電流検出装置は、スイッチング素子15がオンの状態
で、閉ループ電流検出回路12で検出した電流値で第1
電流検出回路7の検出値を補正している。
Further, the current detecting device according to claim 4 of the present invention includes a closed loop current detecting circuit 12 for correcting a current value detected by the first current detecting circuit 7. The closed loop current detection circuit 12 is connected in series with the current detection resistor 13, a detection circuit 14 for detecting a voltage across the current detection resistor 13 to detect a current flowing through the current detection resistor 13, and a current detection resistor 13. And a switching element 15. The current detection resistor 13 and the switching element 15
And a closed loop circuit including the current sensor 10 and the switching element 15, and are connected so that a minute current flows while the switching element 15 is turned on. This current detection device uses the current value detected by the closed loop current detection circuit 12 when the switching element 15 is on,
The detection value of the current detection circuit 7 is corrected.

【0010】第1電流検出回路7は、磁束を介して負荷
電流を検出する電流センサー10を設けて電流を検出で
きる。バッテリ1は、複数の電池モジュール1Aを直列
に接続して、一部の電池モジュール1Aに閉ループ電流
検出回路12を接続することができる。閉ループ電流検
出回路12は、閉ループ電流検出回路12に接続してい
る電池モジュール1Aの電圧を検出する電圧検出回路1
6を備えることができる。
The first current detecting circuit 7 can detect a current by providing a current sensor 10 for detecting a load current via a magnetic flux. In the battery 1, a plurality of battery modules 1A are connected in series, and the closed loop current detection circuit 12 can be connected to some of the battery modules 1A. The closed loop current detection circuit 12 is a voltage detection circuit 1 that detects the voltage of the battery module 1A connected to the closed loop current detection circuit 12.
6 can be provided.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。ただし、以下に示す実施例は、本発明
の技術思想を具体化するための電流検出装置を例示する
ものであって、本発明は電流検出装置を以下のものに特
定しない。
Embodiments of the present invention will be described below with reference to the drawings. However, the following embodiments illustrate a current detection device for embodying the technical idea of the present invention, and the present invention does not specify the current detection device as follows.

【0012】さらに、この明細書は、特許請求の範囲を
理解しやすいように、実施例に示される部材に対応する
番号を、「特許請求の範囲の欄」、および「課題を解決
するための手段の欄」に示される部材に付記している。
ただ、特許請求の範囲に示される部材を、実施例の部材
に特定するものでは決してない。
Further, in this specification, in order to make it easier to understand the claims, the numbers corresponding to the members shown in the embodiments will be referred to as "claims" and "claims". In the column of “means”.
However, the members described in the claims are not limited to the members of the embodiments.

【0013】図2は、自動車の電流検出装置の回路図を
示すもので、この回路図に示す自動車は、モーターを駆
動して自動車を走行させるバッテリ1を、メインリレー
の接点を介して、車両駆動用モーターを含む負荷回路1
7に接続している。メインリレー接点2と並列にプリチ
ャージ回路3を接続している。プリチャージ回路3は、
プリチャージリレー接点4とプリチャージ抵抗5を直列
に接続したもので、負荷回路17に並列に接続している
大容量コンデンサー6を充電するための回路である。
FIG. 2 is a circuit diagram of a current detecting device for a vehicle. In the vehicle shown in this circuit diagram, a battery 1 for driving a motor by driving a motor is connected to a vehicle via a contact of a main relay. Load circuit 1 including drive motor
7 is connected. A precharge circuit 3 is connected in parallel with the main relay contact 2. The precharge circuit 3
This circuit connects the precharge relay contact 4 and the precharge resistor 5 in series, and is a circuit for charging the large-capacity capacitor 6 connected in parallel to the load circuit 17.

【0014】大容量コンデンサー6は、たとえば、静電
容量を数千μF〜数満μFと極めて大容量とするコンデ
ンサーで、常時充電された状態にある。短時間にモータ
ーに大電力が供給されるとき、たとえば自動車を急加速
するときに放電されて、瞬間的な出力を補う働きをす
る。したがって、大容量コンデンサー6を接続すること
により、瞬間最大出力を大きくできると共に、この状態
によるバッテリ1の瞬間最大電流を少なく制限して、バ
ッテリ1を保護することが可能となる。このため、電気
自動車にはほとんど例外なく大容量コンデンサー6を接
続している。
The large-capacity capacitor 6 is a capacitor having an extremely large capacitance of, for example, several thousand μF to several full μF, and is always charged. When a large amount of electric power is supplied to the motor in a short time, for example, when the vehicle is rapidly accelerated, the electric discharge is performed to make up for the momentary output. Therefore, by connecting the large-capacity capacitor 6, the instantaneous maximum output can be increased, and the instantaneous maximum current of the battery 1 in this state can be limited to a small value to protect the battery 1. For this reason, a large-capacity capacitor 6 is connected to the electric vehicle almost without exception.

【0015】大容量コンデンサー6を装備する自動車
は、メインリレー接点2をオンにした瞬間に極めて大き
な充電電流が流れる。完全に放電されたコンデンサーを
直接にバッテリ1に接続すると、接続した瞬間にはショ
ートに近い電流が流れるからである。この充電電流のピ
ークを制限するために、メインリレー接点2と並列にプ
リチャージ回路3を接続している。さらに、大容量コン
デンサー6は、自動車のイグニッションスイッチをオフ
にすると、放電抵抗で放電するように設計している。ユ
ーザーや作業者が誤って接触しても感電しないようにす
るためである。このため、イグニッションスイッチをオ
ンにする毎に、大容量コンデンサー6は大きな充電電流
で充電する必要がある。大容量コンデンサー6を制限し
た電流で充電するために、プリチャージ回路3を接続し
ている。
In an automobile equipped with a large-capacity capacitor 6, an extremely large charging current flows at the moment when the main relay contact 2 is turned on. This is because when a completely discharged capacitor is directly connected to the battery 1, a current almost short-circuit flows at the moment of connection. In order to limit the peak of the charging current, a precharge circuit 3 is connected in parallel with the main relay contact 2. Further, the large-capacity capacitor 6 is designed to be discharged by a discharge resistor when the ignition switch of the vehicle is turned off. This is to prevent an electric shock even if a user or an operator makes an accidental contact. Therefore, every time the ignition switch is turned on, the large-capacity capacitor 6 needs to be charged with a large charging current. The precharge circuit 3 is connected to charge the large-capacity capacitor 6 with a limited current.

【0016】さらに、図に示す装置は、電気自動車のバ
ッテリ1に流れる負荷電流を第1電流検出回路7で検出
すると共に、プリチャージリレー接点4とメインリレー
接点2とをオンオフに制御する制御回路9と、プリチャ
ージ抵抗5の両端の電圧を検出して負荷電流を検出する
第2電流検出回路8とを備える。
Further, the apparatus shown in the figure is a control circuit for detecting a load current flowing through the battery 1 of the electric vehicle by the first current detection circuit 7 and for controlling the precharge relay contact 4 and the main relay contact 2 to be on / off. 9 and a second current detection circuit 8 for detecting a voltage across both ends of the precharge resistor 5 to detect a load current.

【0017】第1電流検出回路7は、メインリレー接点
2をオンにする状態でバッテリ1に流れる負荷電流を検
出する。第1電流検出回路7は、負荷電流を電圧に変換
して出力するもので、たとえば、負荷電流が流れること
によってリード線の周囲に発生する磁束を検出するホー
ル素子を電流センサー10として内蔵しており、この電
流センサー10の信号を増幅するオペアンプを内蔵して
いる。電流センサー10の信号を増幅するアンプは外付
とすることもできる。
The first current detection circuit 7 detects a load current flowing through the battery 1 with the main relay contact 2 turned on. The first current detection circuit 7 converts a load current into a voltage and outputs the voltage. For example, the first current detection circuit 7 incorporates a Hall element for detecting a magnetic flux generated around a lead wire due to the flow of the load current as the current sensor 10. Further, an operational amplifier for amplifying the signal of the current sensor 10 is built in. An amplifier for amplifying the signal of the current sensor 10 can be provided externally.

【0018】さらに、図2に示す第1電流検出回路7
は、電流センサー10の出力を検出回路7Aに接続して
いる。検出回路7Aは、電流センサー10から出力され
る電圧を増幅するアンプを内蔵し、あるいは内蔵するこ
となく、電流センサー10の出力電圧であるアナログ信
号をデジタル信号に変換するA/Dコンバータを内蔵し
ており、負荷電流をデジタルの電圧信号に変換してマイ
コン11に出力する。第1電流検出回路7は、大電流が
流れる領域で正確に負荷電流を検出できるように調整さ
れる。
Further, the first current detection circuit 7 shown in FIG.
Connects the output of the current sensor 10 to the detection circuit 7A. The detection circuit 7A has a built-in amplifier for amplifying the voltage output from the current sensor 10, or a built-in A / D converter for converting an analog signal, which is the output voltage of the current sensor 10, into a digital signal without a built-in amplifier. The load current is converted into a digital voltage signal and output to the microcomputer 11. The first current detection circuit 7 is adjusted so that the load current can be accurately detected in a region where a large current flows.

【0019】第2電流検出回路8は、プリチャージ抵抗
5の両端に発生する電圧を検出して負荷電流を検出す
る。この第2電流検出回路8は、メインリレー接点2を
オフとして、プリチャージリレー接点4をオンにする状
態で負荷電流を検出する。この状態で、プリチャージ抵
抗5の両端に負荷電流に比例する電圧が発生するからで
ある。プリチャージ抵抗5の両端に発生する電圧(E)
は、負荷電流(I)とプリチャージ抵抗(R)の積、す
なわち電圧(E)=負荷電流(I)×プリチャージ抵抗
(R)の値になる。プリチャージ抵抗5は一定の抵抗値
であるから、第2電流検出回路8でプリチャージ抵抗5
の両端の電圧を検出して負荷電流を検出できる。第2電
流検出回路8は、検出した負荷電流に比例する電圧をデ
ジタル値に変換してマイコン11に入力する。
The second current detecting circuit 8 detects a voltage generated at both ends of the precharge resistor 5 to detect a load current. The second current detection circuit 8 detects a load current in a state where the main relay contact 2 is turned off and the precharge relay contact 4 is turned on. In this state, a voltage proportional to the load current is generated at both ends of the precharge resistor 5. Voltage (E) generated at both ends of the precharge resistor 5
Is the product of the load current (I) and the precharge resistance (R), that is, voltage (E) = load current (I) × precharge resistance (R). Since the precharge resistor 5 has a constant resistance value, the precharge resistor 5
, The load current can be detected. The second current detection circuit 8 converts a voltage proportional to the detected load current into a digital value and inputs the digital value to the microcomputer 11.

【0020】制御回路9は、マイコン11に制御され
て、メインリレーとプリチャージリレーをオンオフに制
御する。制御回路9は、イグニッションスイッチをオン
にしたときに、メインリレー接点2をオフ状態に保持す
る状態で、プリチャージリレー接点4をオンに切り換え
る。この状態で、プリチャージリレー接点4を介してバ
ッテリ1が大容量コンデンサー6を充電する。その後、
制御回路9は、負荷電流の大きさでメインリレーとプリ
チャージリレーをオンオフに制御する。負荷電流が大き
いときは、メインリレー接点2をオンにして、バッテリ
1から直接に負荷回路17に電力を供給する。制御回路
9は、メインリレー接点2をオンにするとき、プリチャ
ージリレー接点4をオンまたはオフとする。このとき、
プリチャージリレー接点4はオンオフいずれでもよい。
メインリレー接点2を介してプリチャージ回路3の両端
がショートされるからである。ただ、好ましくは、メイ
ンリレー接点2をオンにする状態でプリチャージリレー
接点4はオン状態とするのがよい。それは、負荷電流が
小さくなって、メインリレー接点2をオフに切り換える
とき、オン状態にあるプリチャージリレー接点4は切り
換える必要がないからである。また、メインリレー接点
2とプリチャージリレー接点4の両方をオン状態として
も、負荷電流はプリチャージリレー接点4を流れること
はなく、メインリレー接点2のみを流れて、プリチャー
ジ抵抗5による電力損失は発生しない。
The control circuit 9 is controlled by the microcomputer 11 to turn on and off the main relay and the precharge relay. When the ignition switch is turned on, the control circuit 9 turns on the precharge relay contact 4 while keeping the main relay contact 2 in the off state. In this state, the battery 1 charges the large-capacity capacitor 6 via the precharge relay contact 4. afterwards,
The control circuit 9 controls on / off of the main relay and the precharge relay according to the magnitude of the load current. When the load current is large, the main relay contact 2 is turned on, and power is directly supplied from the battery 1 to the load circuit 17. When turning on the main relay contact 2, the control circuit 9 turns the precharge relay contact 4 on or off. At this time,
The precharge relay contact 4 may be either on or off.
This is because both ends of the precharge circuit 3 are short-circuited via the main relay contact 2. However, preferably, the precharge relay contact 4 is turned on while the main relay contact 2 is turned on. This is because when the load current becomes small and the main relay contact 2 is switched off, the precharge relay contact 4 in the on state does not need to be switched. Also, even if both the main relay contact 2 and the precharge relay contact 4 are turned on, the load current does not flow through the precharge relay contact 4 but flows only through the main relay contact 2 and the power loss due to the precharge resistor 5 Does not occur.

【0021】負荷電流が小さいとき、(たとえば1A以
下のとき)、制御回路9は、プリチャージリレー接点4
をオンにする状態で、メインリレー接点2をオフに切り
換える。制御回路9は、負荷電流を第1電流検出回路7
で検出してメインリレー接点2を切り換える。ただ、エ
ンジンコントローラ18から入力される信号、すなわ
ち、アクセル信号でもって負荷電流がほぼ0付近である
ことを検出して、メインリレー接点2をオフに切り換え
ることもできる。アクセルを踏まない状態では、負荷電
流に電力を供給する必要がないので、負荷電流は小さく
なるからである。したがって、制御回路9は、第1電流
検出回路7が検出する負荷電流、あるいはエンジンコン
トローラ18から供給されるアクセル信号でもって、メ
インリレーとプリチャージリレーをオンオフに切り換え
ることができる。
When the load current is small (for example, when the load current is 1 A or less), the control circuit 9
Is turned on, the main relay contact 2 is turned off. The control circuit 9 outputs the load current to the first current detection circuit 7
To switch the main relay contact 2. However, it is also possible to switch off the main relay contact 2 by detecting that the load current is near 0 using the signal input from the engine controller 18, that is, the accelerator signal. This is because, when the accelerator is not depressed, it is not necessary to supply power to the load current, so that the load current becomes small. Therefore, the control circuit 9 can switch the main relay and the precharge relay on and off based on the load current detected by the first current detection circuit 7 or the accelerator signal supplied from the engine controller 18.

【0022】メインリレー接点2がオフになると、負荷
電流は、メインリレー接点2を通過しないでプリチャー
ジ回路3を通過して負荷回路17に供給される。したが
って、プリチャージ抵抗5の両端には、負荷電流に比例
した電圧が発生する。この電圧が第2電流検出回路8に
検出されて負荷電流が検出される。第2電流検出回路8
は、大電流を検出する必要がないので小電流を正確に検
出できる。
When the main relay contact 2 is turned off, the load current passes through the precharge circuit 3 without passing through the main relay contact 2 and is supplied to the load circuit 17. Therefore, a voltage proportional to the load current is generated at both ends of the precharge resistor 5. This voltage is detected by the second current detection circuit 8, and the load current is detected. Second current detection circuit 8
Since it is not necessary to detect a large current, a small current can be accurately detected.

【0023】さらに、第2電流検出回路8が検出した電
流値は、必ずしも第1電流検出回路7が検出した電流値
に一致しない。マイコン11は、第2電流検出回路8が
負荷電流を検出する小電流領域においては、第2電流検
出回路8で検出した検出値がより正確であるとする。し
たがって、第2電流検出回路8が負荷電流を検出する小
電流領域において、マイコン11は第2電流検出回路8
の検出電流で残容量を演算する。さらに、マイコン11
は、第2電流検出回路8の検出電流値で、第1電流検出
回路7の検出電流値を補正する。補正は、第1電流検出
回路7の検出値の0レベルを補正する。たとえば、第2
電流検出回路8が検出した検出電流が0Aであるとき、
第1電流検出回路7の検出電流が+30mAであるとす
るとき、第1電流検出回路7の検出電流値を−側に30
mAシフトするように補正する。
Further, the current value detected by the second current detection circuit 8 does not always match the current value detected by the first current detection circuit 7. The microcomputer 11 assumes that the detection value detected by the second current detection circuit 8 is more accurate in a small current region where the second current detection circuit 8 detects a load current. Therefore, in the small current region where the second current detection circuit 8 detects the load current, the microcomputer 11
Calculate the remaining capacity with the detected current. Furthermore, the microcomputer 11
Corrects the detection current value of the first current detection circuit 7 with the detection current value of the second current detection circuit 8. The correction corrects the 0 level of the detection value of the first current detection circuit 7. For example, the second
When the detection current detected by the current detection circuit 8 is 0 A,
Assuming that the detection current of the first current detection circuit 7 is +30 mA, the detection current value of the first current detection circuit 7
Correction is made so as to shift by mA.

【0024】負荷電流が大きくなって、メインリレー接
点2がオンになると、第2電流検出回路8は負荷電流を
検出できなくなる。この状態になると、マイコン11
は、第1電流検出回路7の検出電流を演算して残容量を
計算する。
When the load current increases and the main relay contact 2 is turned on, the second current detection circuit 8 cannot detect the load current. In this state, the microcomputer 11
Calculates the remaining capacity by calculating the detection current of the first current detection circuit 7.

【0025】さらに、図3に示す電流検出装置は、第1
電流検出回路7の検出電流を補正するために、閉ループ
電流検出回路12を備えている。閉ループ電流検出回路
12は、電流検出抵抗13と、この電流検出抵抗13の
両端の電圧を検出して電流検出抵抗13に流れる電流を
検出する検出回路14と、電流検出抵抗13と直列に接
続しているスイッチング素子15とを備える。電流検出
抵抗13とスイッチング素子15は互いに直列に接続さ
れる。さらに、閉ループ電流検出回路12は、複数の素
子を直列に接続して閉ループとなるように接続してい
る。この閉ループは、電流検出抵抗13とスイッチング
素子15とバッテリ1と電流センサー10とを含む。さ
らに、図の閉ループ電流検出回路12は、メインリレー
接点2も閉ループに含まれるように接続している。この
閉ループ電流検出回路12は、電流検出抵抗13に発生
する電圧を検出して、メインリレー接点2のオンオフ状
態も検出できる。メインリレー接点2がオフになると、
電流検出抵抗13の両端に電圧が発生しなくなるからで
ある。ただし、本発明の電流検出装置は、図3に示すよ
うに、必ずしも、メインリレー接点2を閉ループ内に接
続する必要はない。メインリレー接点は、閉ループ電流
検出回路の外部に接続することもできる。
Further, the current detecting device shown in FIG.
To correct the detection current of the current detection circuit 7, a closed loop current detection circuit 12 is provided. The closed loop current detection circuit 12 is connected in series with the current detection resistor 13, a detection circuit 14 that detects a voltage across the current detection resistor 13 to detect a current flowing through the current detection resistor 13, and a current detection resistor 13. Switching element 15. The current detection resistor 13 and the switching element 15 are connected in series with each other. Further, the closed loop current detection circuit 12 connects a plurality of elements in series to form a closed loop. This closed loop includes the current detection resistor 13, the switching element 15, the battery 1, and the current sensor 10. Further, the closed loop current detection circuit 12 in the figure is connected so that the main relay contact 2 is also included in the closed loop. The closed loop current detection circuit 12 detects the voltage generated at the current detection resistor 13 and can also detect the on / off state of the main relay contact 2. When the main relay contact 2 turns off,
This is because no voltage is generated at both ends of the current detection resistor 13. However, in the current detection device of the present invention, as shown in FIG. 3, it is not always necessary to connect the main relay contact 2 in a closed loop. The main relay contact can also be connected outside the closed loop current detection circuit.

【0026】スイッチング素子15はFETであるが、
トランジスター等の半導体スイッチング素子も使用でき
る。また、スイッチング素子15にはリレーも使用でき
る。スイッチング素子15は、マイコン11で制御され
る制御回路9でオンオフに切り換えられる。制御回路9
は、閉ループの微小電流を検出するときと、メインリレ
ー接点2のオンオフを検出するときに限って、スイッチ
ング素子15をオンにする。その他の時に、スイッチン
グ素子15はオフ状態に保持される。閉ループの微小電
流と、メインリレー接点2がオンであるかどうかは極め
て短い時間に検出できる。したがって、スイッチング素
子15がオンになる時間は極めて短い。したがって、閉
ループ電流検出回路12がこれを接続している特定の電
池モジュール1Aを放電する放電容量はわずかであって
無視できる。
The switching element 15 is an FET,
Semiconductor switching elements such as transistors can also be used. Further, a relay can be used for the switching element 15. The switching element 15 is turned on and off by a control circuit 9 controlled by the microcomputer 11. Control circuit 9
Turns on the switching element 15 only when detecting a small current in a closed loop and when detecting ON / OFF of the main relay contact 2. At other times, the switching element 15 is kept off. The very small current in the closed loop and whether the main relay contact 2 is on can be detected in a very short time. Therefore, the time during which the switching element 15 is turned on is extremely short. Therefore, the discharge capacity of the closed-loop current detection circuit 12 for discharging the specific battery module 1A connected thereto is small and negligible.

【0027】スイッチング素子15をオンするときに、
閉ループに流れる微小電流の大きさは、検出回路14が
電流検出抵抗13の両端の電圧を検出することで求めら
れるため、電流検出抵抗13の抵抗値で特定することが
できる。閉ループの微小電流は、電池モジュール1Aの
電圧に比例して大きくなり、電流検出抵抗13の抵抗値
に反比例して小さくなる。したがって、電流検出抵抗1
3の抵抗値を大きくすることによって、閉ループの微小
電流を小さくすることができる。閉ループ電流検出回路
12は、第1電流検出回路7の微小電流領域における誤
差を補正する。したがって、電流検出抵抗13の抵抗値
を大きくして、閉ループの微小電流を小さく、たとえ
ば、10mA〜1Aとする。いいかえると、この範囲の
微小電流となるように、電流検出抵抗13の抵抗値を特
定する。電流検出抵抗13の抵抗値を大きくできること
は、閉ループの微小電流を正確に検出することになる。
それは、電池モジュール1Aの内部抵抗とメインリレー
接点2の接触抵抗等が電流検出抵抗13の抵抗値に比較
して充分に小さくなって無視できるからである。
When the switching element 15 is turned on,
The magnitude of the minute current flowing through the closed loop is obtained by detecting the voltage across the current detection resistor 13 by the detection circuit 14, and thus can be specified by the resistance value of the current detection resistor 13. The small current in the closed loop increases in proportion to the voltage of the battery module 1A, and decreases in inverse proportion to the resistance value of the current detection resistor 13. Therefore, the current detection resistor 1
By increasing the resistance value of No. 3, the minute current in the closed loop can be reduced. The closed loop current detection circuit 12 corrects an error in the small current region of the first current detection circuit 7. Therefore, the resistance value of the current detection resistor 13 is increased, and the minute current in the closed loop is reduced, for example, 10 mA to 1 A. In other words, the resistance value of the current detection resistor 13 is specified so as to be a minute current in this range. The fact that the resistance value of the current detection resistor 13 can be increased means that a minute current in a closed loop is accurately detected.
This is because the internal resistance of the battery module 1A and the contact resistance of the main relay contact 2 are sufficiently smaller than the resistance value of the current detection resistor 13 and can be ignored.

【0028】電気自動車のバッテリ1は、複数の電池モ
ジュール1Aを直列に接続している。ところで、閉ルー
プの微小電流は、閉ループ電流検出回路12に供給され
る電圧によって変化する。図の装置は、ひとつの電池モ
ジュール1Aを閉ループ内に接続している。この閉ルー
プ電流検出回路12は、電池電圧を低くして微小電流を
小さくできる。また、スイッチング素子15に耐電圧の
低い安価なスイッチング素子を使用できる。ただ、本発
明の装置は、複数の電池モジュールを閉ループに含める
ように接続することもでき、また、バッテリの全体を閉
ループに含めるように接続することもできる。
The battery 1 of the electric vehicle has a plurality of battery modules 1A connected in series. By the way, the minute current in the closed loop changes according to the voltage supplied to the closed loop current detection circuit 12. In the illustrated device, one battery module 1A is connected in a closed loop. The closed loop current detection circuit 12 can reduce the minute current by lowering the battery voltage. Further, an inexpensive switching element having a low withstand voltage can be used as the switching element 15. However, the device of the present invention can be connected to include a plurality of battery modules in a closed loop, or can be connected to include the entire battery in a closed loop.

【0029】さらに、図の電流検出装置は、閉ループに
含まれる電池モジュール1Aの電圧を検出する電圧検出
回路16を備える。この電流検出装置は、閉ループ電流
検出回路12の供給電圧を正確に検出できるので、微小
電流をより正確に検出できる。閉ループの微小電流
(I)が、以下の式で計算されるからである。 微小電流(I)=電池モジュールの電圧(E)/電流検
出抵抗の抵抗値(R) この式において、電池モジュール1Aの電圧が正確に測
定され、電流検出抵抗13の抵抗地が正確であると、計
算される微小電流も正確になる。
Further, the current detecting device shown in the figure has a voltage detecting circuit 16 for detecting the voltage of the battery module 1A included in the closed loop. Since this current detection device can accurately detect the supply voltage of the closed loop current detection circuit 12, it can detect a minute current more accurately. This is because the small current (I) of the closed loop is calculated by the following equation. Weak current (I) = voltage of battery module (E) / resistance value of current detection resistor (R) In this equation, it is assumed that the voltage of battery module 1A is accurately measured and the resistance of current detection resistor 13 is accurate. Also, the calculated minute current becomes accurate.

【0030】閉ループ電流検出回路12は、スイッチン
グ素子15をオンにして、閉ループに微小電流を流して
その値を検出する。閉ループ電流検出回路12で検出し
て微小電流は、第1電流検出回路7が検出した電流値よ
りも正確であるとする。したがって、閉ループ電流検出
回路12で検出した電流値で、第1電流検出回路7の検
出電流値を補正する。
The closed loop current detection circuit 12 turns on the switching element 15 and applies a small current to the closed loop to detect the value. It is assumed that the minute current detected by the closed loop current detection circuit 12 is more accurate than the current value detected by the first current detection circuit 7. Therefore, the detected current value of the first current detection circuit 7 is corrected by the current value detected by the closed loop current detection circuit 12.

【0031】たとえば、閉ループ電流検出回路12が検
出した閉ループの微小電流が+50mAで、第1電流検
出回路7が検出した電流値が+30mAであるとすれ
ば、補正電流値はその差の+20mAとなる。マイコン
11は、閉ループ電流検出回路12の検出電流値と、第
1電流検出回路7の検出電流値の差から補正電流値を演
算する。マイコン11は、演算された補正電流値で、第
1電流検出回路7の検出電流を補正して、バッテリ1の
残容量を演算する。
For example, if the small current of the closed loop detected by the closed loop current detection circuit 12 is +50 mA and the current value detected by the first current detection circuit 7 is +30 mA, the correction current value becomes +20 mA of the difference. . The microcomputer 11 calculates a correction current value from a difference between a detection current value of the closed loop current detection circuit 12 and a detection current value of the first current detection circuit 7. The microcomputer 11 calculates the remaining capacity of the battery 1 by correcting the detection current of the first current detection circuit 7 with the calculated correction current value.

【0032】[0032]

【発明の効果】本発明の請求項1に記載している電流検
出装置は、専用の大電流の切換スイッチを設けることな
く、バッテリの負荷電流を微小電流範囲においても正確
に検出できる特長がある。それは、すでにモーター駆動
電気機器に搭載しているメインリレーと、大容量のコン
デンサーを充電するためのプリチャージ回路とを有効に
利用して、微小電流を正確に検出するからである。本発
明の電流検出装置は、メインリレー接点をオフとし、プ
リチャージリレー接点をオンとする状態で、プリチャー
ジ抵抗の電圧を検出して小電流を正確に検出する。小電
流は、プリチャージ抵抗の抵抗値とプリチャージ抵抗の
両端に発生する電圧から計算される。抵抗値は正確に特
定され、電圧も正確に検出できるので、小電流は極めて
正確に検出できる。したがって、本発明の電流検出装置
は、メインリレーとプリチャージ回路を利用して小電流
を正確に検出できるので、小電流の充放電を正確に演算
して残容量を実際のバッテリに近い状態で演算できる。
第1電流検出回路は、大電流を正確に検出できるように
設計しているので、第1電流検出回路を使用して、大電
流の充放電の残容量も正確に検出できる。したがって、
本発明の電流検出装置は、バッテリの残容量を正確に検
出することができるので、特に、内燃機関と併用するハ
イブリッド電気自動車に搭載されるバッテリの残容量の
検出に最適である。ハイブリッド電気自動車に使用され
るバッテリは、走行時に発電装置によって充電されるた
め、バッテリの残容量が満充電や完全放電されることが
少なく、残容量が常時40〜80%程度の領域で使用さ
れることが多い。このような使用状態では、残容量をリ
セットして誤差を補正することが困難なため、特に正確
に検出する必要があるからである。
The current detecting device according to the first aspect of the present invention has a feature that the load current of the battery can be accurately detected even in a minute current range without providing a dedicated large current changeover switch. . This is because a minute current is accurately detected by effectively utilizing a main relay already mounted on a motor-driven electric device and a precharge circuit for charging a large-capacity capacitor. The current detection device of the present invention accurately detects a small current by detecting the voltage of a precharge resistor in a state where a main relay contact is turned off and a precharge relay contact is turned on. The small current is calculated from the resistance value of the precharge resistor and the voltage generated across the precharge resistor. Since the resistance value is accurately specified and the voltage can be detected accurately, a small current can be detected very accurately. Therefore, the current detection device of the present invention can accurately detect a small current using the main relay and the precharge circuit, and can accurately calculate the charging and discharging of the small current to reduce the remaining capacity in a state close to the actual battery. Can calculate.
Since the first current detection circuit is designed to accurately detect a large current, the first current detection circuit can also be used to accurately detect the remaining charge / discharge capacity of a large current. Therefore,
Since the current detection device of the present invention can accurately detect the remaining capacity of a battery, it is particularly suitable for detecting the remaining capacity of a battery mounted on a hybrid electric vehicle used in combination with an internal combustion engine. Since the battery used in the hybrid electric vehicle is charged by the power generator during traveling, the remaining capacity of the battery is less likely to be fully charged or completely discharged, and is used in an area where the remaining capacity is always about 40 to 80%. Often. In such a use state, it is difficult to correct the error by resetting the remaining capacity, and therefore it is necessary to particularly accurately detect the error.

【0033】さらに、本発明の請求項4の電流検出装置
も、専用の大電流の切換スイッチを設けることなく、バ
ッテリの負荷電流を微小電流範囲においても正確に検出
できる特長がある。それは、第1電流検出回路の検出電
流値を補正するために、閉ループ電流検出回路を備える
からである。閉ループ電流検出回路は、電流検出抵抗
と、この電流検出抵抗の両端の電圧を検出して電流検出
抵抗に流れる電流を検出する検出回路と、電流検出抵抗
と直列に接続しているスイッチング素子とを備えてい
る。電流検出抵抗とスイッチング素子とバッテリを含む
閉ループ回路が形成される。閉ループ回路は、スイッチ
ング素子をオンにすると、微小電流が流れる。閉ループ
の微小電流は、電流検出抵抗の電圧として正確に検出さ
れる。正確に検出された閉ループの微小電流は、第1電
流検出回路の検出電流の補正する。したがって、大電流
を正確に検出できるように設計している第1電流検出回
路でもって、微小電流をも正確に検出できる。このこと
は、先述の請求項1の装置と同じように、バッテリの残
容量を正確に検出する、ハイブリッド電気自動車等のモ
ーター駆動電気機器にとって極めて大切な特長を実現す
る。
Further, the current detecting device according to claim 4 of the present invention also has a feature that the load current of the battery can be accurately detected even in a minute current range without providing a dedicated large current switch. This is because a closed loop current detection circuit is provided to correct the detection current value of the first current detection circuit. The closed loop current detection circuit includes a current detection resistor, a detection circuit that detects a voltage across the current detection resistor to detect a current flowing through the current detection resistor, and a switching element connected in series with the current detection resistor. Have. A closed loop circuit including a current detection resistor, a switching element, and a battery is formed. When the switching element is turned on, a small current flows in the closed loop circuit. The small current in the closed loop is accurately detected as the voltage of the current detection resistor. The minute current of the closed loop detected correctly corrects the detection current of the first current detection circuit. Therefore, even the minute current can be detected accurately by the first current detection circuit designed to detect the large current accurately. This realizes an extremely important feature for a motor-driven electric device such as a hybrid electric vehicle that accurately detects the remaining capacity of the battery, as in the above-described device of the first aspect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の電流検出装置の回路図FIG. 1 is a circuit diagram of a conventional current detection device.

【図2】本発明の実施例にかかる電流検出装置の回路図FIG. 2 is a circuit diagram of a current detection device according to an embodiment of the present invention.

【図3】本発明の他の実施例にかかる電流検出装置の回
路図
FIG. 3 is a circuit diagram of a current detection device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…バッテリ 1A…電池モジュール 2…メインリレー接点 3…プリチャージ回路 4…プリチャージリレー接点 5…プリチャージ抵抗 6…大容量コンデンサー 7…第1電流検出回路 7A…検出回路 8…第2電流検出回路 9…制御回路 10…電流センサー 11…マイコン 12…閉ループ電流検出回路 13…電流検出抵抗 14…検出回路 15…スイッチング素子 16…電圧検出回路 17…負荷回路 18…エンジンコントローラ 20…大電流センサー 21…微小電流センサー 22…切換スイッチ DESCRIPTION OF SYMBOLS 1 ... Battery 1A ... Battery module 2 ... Main relay contact 3 ... Precharge circuit 4 ... Precharge relay contact 5 ... Precharge resistor 6 ... Large capacity capacitor 7 ... 1st current detection circuit 7A ... Detection circuit 8 ... 2nd current detection Circuit 9 Control circuit 10 Current sensor 11 Microcomputer 12 Closed loop current detection circuit 13 Current detection resistor 14 Detection circuit 15 Switching element 16 Voltage detection circuit 17 Load circuit 18 Engine controller 20 Large current sensor 21 ... minute current sensor 22 ... changeover switch

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G016 CA03 CB13 CC01 CC02 CC07 CC12 CC16 CC27 CC28 CD06 CD10 CD13 CD14 2G035 AA01 AA04 AA15 AA17 AA21 AB03 AC02 AD03 AD10 AD13 AD26 AD28 AD45 AD47 AD54 AD65 AD66 5H030 AA06 AS08 FF42 5H115 PC06 PG04 PI16 PO06 PU01 PU08 PV09 TO12 TR19 TU01 TU04 TU15  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G016 CA03 CB13 CC01 CC02 CC07 CC12 CC16 CC27 CC28 CD06 CD10 CD13 CD14 2G035 AA01 AA04 AA15 AA17 AA21 AB03 AC02 AD03 AD10 AD13 AD26 AD28 AD45 AD47 AD54 AD65 AD66 5H030 AA06 AS08 FF42 5 PG04 PI16 PO06 PU01 PU08 PV09 TO12 TR19 TU01 TU04 TU15

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 バッテリ(1)をメインリレーの接点を介
して駆動用モーターを含む負荷回路(17)に接続してお
り、このメインリレー接点(2)と並列に、プリチャージ
リレー接点(4)とプリチャージ抵抗(5)を直列に接続して
いるプリチャージ回路(3)を接続しているモーター駆動
電気機器であって、このモーター駆動電気機器のバッテ
リ(1)に流れる負荷電流を第1電流検出回路(7)で検出す
るようにしてなる電流検出装置において、 プリチャージリレー接点(4)とメインリレー接点(2)とを
オンオフに制御する制御回路(9)と、プリチャージ抵抗
(5)の両端の電圧を検出して負荷電流を検出する第2電
流検出回路(8)とを備え、 メインリレー接点(2)をオンにする状態では第1電流検
出回路(7)で負荷電流を検出し、メインリレー接点(2)を
オフにしてプリチャージリレー接点(4)をオンにする状
態では第2電流検出回路(8)で負荷電流を検出するよう
にしてなる電流検出装置。
A battery (1) is connected to a load circuit (17) including a drive motor via a contact of a main relay, and a precharge relay contact (4) is connected in parallel with the main relay contact (2). ) And a precharge circuit (3) in which a precharge resistor (5) is connected in series, and a load current flowing through a battery (1) of the motor drive (1) In a current detection device configured to be detected by a current detection circuit (7), a control circuit (9) for turning on and off a precharge relay contact (4) and a main relay contact (2);
(5) a second current detecting circuit (8) for detecting a load current by detecting a voltage between both ends, and when the main relay contact (2) is turned on, the first current detecting circuit (7) A current detecting device for detecting a current, wherein a load current is detected by a second current detecting circuit (8) when the main relay contact (2) is turned off and the precharge relay contact (4) is turned on.
【請求項2】 第1電流検出回路(7)が磁束を介して負
荷電流を検出する電流センサー(10)を備える請求項1に
記載される電流検出装置。
2. The current detection device according to claim 1, wherein the first current detection circuit includes a current sensor for detecting a load current via a magnetic flux.
【請求項3】 メインリレー接点(2)をオフにしてプリ
チャージリレー接点(4)をオンする状態で、第2電流検
出回路(8)で検出した検出値で第1電流検出回路(7)の検
出値を補正する請求項1に記載される電流検出装置。
3. A first current detection circuit (7) using a detection value detected by a second current detection circuit (8) in a state where a main relay contact (2) is turned off and a precharge relay contact (4) is turned on. The current detection device according to claim 1, wherein the detected value is corrected.
【請求項4】 バッテリ(1)をメインリレーの接点を介
して駆動用モーターを含む負荷回路(17)に接続している
モーター駆動電気機器であって、このモーター駆動電気
機器のバッテリ(1)に流れる負荷電流を第1電流検出回
路(7)で検出するようにしてなる電流検出装置におい
て、 第1電流検出回路(7)で検出する電流値を補正する閉ル
ープ電流検出回路(12)を備え、この閉ループ電流検出回
路(12)は、電流検出抵抗(13)と、この電流検出抵抗(13)
の両端の電圧を検出して電流検出抵抗(13)に流れる電流
を検出する検出回路(14)と、電流検出抵抗(13)と直列に
接続しているスイッチング素子(15)とを備え、 電流検出抵抗(13)とスイッチング素子(15)は、バッテリ
(1)と電流検出抵抗(13)とスイッチング素子(15)を含む
閉ループ回路を構成すると共に、スイッチング素子(15)
をオンにする状態で微小電流を流すように接続してお
り、 スイッチング素子(15)がオンの状態で、閉ループ電流検
出回路(12)で検出した電流値で第1電流検出回路(7)の
検出値を補正するようにしてなることを特徴とする電流
検出装置。
4. A motor-driven electric device, wherein a battery (1) is connected to a load circuit (17) including a drive motor via a contact of a main relay, wherein the battery (1) of the motor-driven electric device is connected. A current detection device configured to detect a load current flowing through the first current detection circuit (7), comprising a closed loop current detection circuit (12) for correcting a current value detected by the first current detection circuit (7) The closed loop current detection circuit (12) includes a current detection resistor (13) and the current detection resistor (13).
And a switching element (15) connected in series with the current detection resistor (13) to detect a current flowing through the current detection resistor (13) by detecting a voltage between both ends of the current detection resistor (13). The detection resistor (13) and switching element (15)
(1) constitute a closed loop circuit including a current detection resistor (13) and a switching element (15), and a switching element (15)
When the switching element (15) is on, the first current detection circuit (7) is connected with the current value detected by the closed loop current detection circuit (12) when the switching element (15) is on. A current detection device configured to correct a detection value.
【請求項5】 第1電流検出回路(7)が磁束を介して負
荷電流を検出する電流センサー(10)を備える請求項4に
記載される電流検出装置。
5. The current detection device according to claim 4, wherein the first current detection circuit includes a current sensor for detecting a load current via a magnetic flux.
【請求項6】 バッテリ(1)が複数の電池モジュール(1
A)を直列に接続しており、閉ループ電流検出回路(12)が
一部の電池モジュール(1A)に接続している請求項4に記
載される電流検出装置。
6. A battery (1) comprising a plurality of battery modules (1).
The current detection device according to claim 4, wherein A) is connected in series, and the closed loop current detection circuit (12) is connected to some of the battery modules (1A).
【請求項7】 閉ループ電流検出回路(12)が、閉ループ
電流検出回路(12)に接続している電池モジュール(1A)の
電圧を検出する電圧検出回路(16)を備える請求項6に記
載される電流検出装置。
7. The closed loop current detection circuit (12) according to claim 6, further comprising a voltage detection circuit (16) for detecting a voltage of the battery module (1A) connected to the closed loop current detection circuit (12). Current detector.
JP2001067880A 2001-03-09 2001-03-09 Current detector Expired - Fee Related JP3668145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001067880A JP3668145B2 (en) 2001-03-09 2001-03-09 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001067880A JP3668145B2 (en) 2001-03-09 2001-03-09 Current detector

Publications (2)

Publication Number Publication Date
JP2002267698A true JP2002267698A (en) 2002-09-18
JP3668145B2 JP3668145B2 (en) 2005-07-06

Family

ID=18926147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001067880A Expired - Fee Related JP3668145B2 (en) 2001-03-09 2001-03-09 Current detector

Country Status (1)

Country Link
JP (1) JP3668145B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1882284A1 (en) * 2005-04-25 2008-01-30 LG Chem, Ltd. Battery pack management method for hev and ev
JP2009033882A (en) * 2007-07-27 2009-02-12 Sanyo Electric Co Ltd Power supply device for vehicle
JP2011217604A (en) * 2011-06-14 2011-10-27 Sanyo Electric Co Ltd Power supply device for vehicle
WO2012038161A1 (en) * 2010-09-23 2012-03-29 Sb Limotive Company Ltd. Method for checking the proper method of operation of a current sensor
KR101181176B1 (en) 2010-10-11 2012-09-18 현대자동차주식회사 Integrated junction box of low-voltage and high-voltage
KR20130096481A (en) * 2012-02-22 2013-08-30 에스케이이노베이션 주식회사 Relay sequential control apparatus and method thereof
WO2014030914A1 (en) * 2012-08-22 2014-02-27 에스케이이노베이션 주식회사 Power relay assembly for electric vehicle, and method for operating energy system for electric vehicle provided with the power relay assembly
WO2014045568A1 (en) * 2012-09-18 2014-03-27 三洋電機株式会社 Current detection circuit, and electric vehicle and power accumulation device provided with said current detection circuit
EP3115800A1 (en) * 2015-07-02 2017-01-11 Samsung SDI Co., Ltd. Method of measuring battery pack current
CN107276170A (en) * 2017-07-12 2017-10-20 合肥国轩高科动力能源有限公司 System and method for actively protecting battery of pure electric vehicle
CN108761329A (en) * 2018-08-25 2018-11-06 东莞市迅迪电子有限公司 A kind of list firewire switching load detection circuit and method
CN109490614A (en) * 2018-12-11 2019-03-19 哈尔滨工程大学 One kind being based on the adjustable digital galvanometer of STM32 range
EP3736578A3 (en) * 2011-09-12 2021-04-28 Analog Devices International Unlimited Company Current measurement
CN113972638A (en) * 2021-11-04 2022-01-25 江苏邦泰电气有限公司 Outdoor isolating switch with reserve power supply for offsetting instant impact current
JP2023510298A (en) * 2020-09-14 2023-03-13 エルジー エナジー ソリューション リミテッド Precharge resistance abnormality judgment method and battery system applying the same
EP4350936A1 (en) * 2022-10-04 2024-04-10 Storm Group B.V. A modular battery system and a method of operating thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101407735B1 (en) 2012-09-28 2014-06-27 한국단자공업 주식회사 Electric vehicle and method for detecting status of PRA pre-charge resistor in the same
DE102021204397A1 (en) * 2021-05-03 2022-11-03 Robert Bosch Gesellschaft mit beschränkter Haftung Method for checking the plausibility of a current measurement between an electrical energy storage system and an electrical consumer

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1882284A4 (en) * 2005-04-25 2009-11-25 Lg Chemical Ltd Battery pack management method for hev and ev
US7688023B2 (en) 2005-04-25 2010-03-30 Lg Chem, Ltd. Battery pack management method for HEV and EV
EP1882284A1 (en) * 2005-04-25 2008-01-30 LG Chem, Ltd. Battery pack management method for hev and ev
JP2009033882A (en) * 2007-07-27 2009-02-12 Sanyo Electric Co Ltd Power supply device for vehicle
US9372224B2 (en) 2010-09-23 2016-06-21 Robert Bosch Gmbh Method for checking the proper method of operating of a current sensor
WO2012038161A1 (en) * 2010-09-23 2012-03-29 Sb Limotive Company Ltd. Method for checking the proper method of operation of a current sensor
CN103180749A (en) * 2010-09-23 2013-06-26 罗伯特·博世有限公司 Method for checking proper method of operation of current sensor
DE102010041275B4 (en) * 2010-09-23 2019-11-28 Robert Bosch Gmbh Procedure for checking the proper functioning of a current sensor
KR101181176B1 (en) 2010-10-11 2012-09-18 현대자동차주식회사 Integrated junction box of low-voltage and high-voltage
US8427816B2 (en) 2010-10-11 2013-04-23 Hyundai Motor Company Low-voltage and high-voltage integrated junction box
JP2011217604A (en) * 2011-06-14 2011-10-27 Sanyo Electric Co Ltd Power supply device for vehicle
EP3736578A3 (en) * 2011-09-12 2021-04-28 Analog Devices International Unlimited Company Current measurement
KR20130096481A (en) * 2012-02-22 2013-08-30 에스케이이노베이션 주식회사 Relay sequential control apparatus and method thereof
KR20140025674A (en) * 2012-08-22 2014-03-05 에스케이이노베이션 주식회사 Power relay assembly for electric vehicle and the operation method thereof
WO2014030914A1 (en) * 2012-08-22 2014-02-27 에스케이이노베이션 주식회사 Power relay assembly for electric vehicle, and method for operating energy system for electric vehicle provided with the power relay assembly
KR102035033B1 (en) * 2012-08-22 2019-10-23 에스케이이노베이션 주식회사 Power Relay Assembly for Electric Vehicle and the Operation Method Thereof
WO2014045568A1 (en) * 2012-09-18 2014-03-27 三洋電機株式会社 Current detection circuit, and electric vehicle and power accumulation device provided with said current detection circuit
KR20170004499A (en) * 2015-07-02 2017-01-11 삼성에스디아이 주식회사 Method for Detecting Battery Pack Current
KR102436418B1 (en) 2015-07-02 2022-08-25 삼성에스디아이 주식회사 Method for Detecting Battery Pack Current
CN106324318A (en) * 2015-07-02 2017-01-11 三星Sdi株式会社 Method of measuring battery pack current
EP3115800A1 (en) * 2015-07-02 2017-01-11 Samsung SDI Co., Ltd. Method of measuring battery pack current
US10048322B2 (en) 2015-07-02 2018-08-14 Samsung Sdi Co., Ltd. Method of measuring battery pack current and correcting offsets of a current sensor
CN107276170A (en) * 2017-07-12 2017-10-20 合肥国轩高科动力能源有限公司 System and method for actively protecting battery of pure electric vehicle
CN108761329A (en) * 2018-08-25 2018-11-06 东莞市迅迪电子有限公司 A kind of list firewire switching load detection circuit and method
CN108761329B (en) * 2018-08-25 2023-11-03 东莞市迅迪电子有限公司 Single-live wire switch load detection circuit and method
CN109490614A (en) * 2018-12-11 2019-03-19 哈尔滨工程大学 One kind being based on the adjustable digital galvanometer of STM32 range
JP2023510298A (en) * 2020-09-14 2023-03-13 エルジー エナジー ソリューション リミテッド Precharge resistance abnormality judgment method and battery system applying the same
JP7359402B2 (en) 2020-09-14 2023-10-11 エルジー エナジー ソリューション リミテッド Precharge resistance abnormality determination method and battery system applying this method
CN113972638B (en) * 2021-11-04 2022-07-22 江苏邦泰电气有限公司 Outdoor isolating switch with reserve power supply for offsetting instant impact current
CN113972638A (en) * 2021-11-04 2022-01-25 江苏邦泰电气有限公司 Outdoor isolating switch with reserve power supply for offsetting instant impact current
EP4350936A1 (en) * 2022-10-04 2024-04-10 Storm Group B.V. A modular battery system and a method of operating thereof
NL2033222B1 (en) * 2022-10-04 2024-04-16 Storm Group B V A modular battery system and a method of operating thereof

Also Published As

Publication number Publication date
JP3668145B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
JP2002267698A (en) Current detector
JP5228403B2 (en) Power storage device
CA2069858C (en) Circuit for measuring battery current
US7573238B2 (en) Voltage detection device and electric vehicle including voltage detection device
JP5474454B2 (en) Battery system having current detection circuit and vehicle equipped with this battery system
JP4836725B2 (en) Electric vehicle current detection method
WO2007023849A1 (en) Voltage monitor and electric power storage using same
JP3178315B2 (en) Battery remaining capacity meter and remaining capacity calculation method
JP2008232645A (en) Electric current detection apparatus of power supply for vehicle
US20140015533A1 (en) Current sensor
US11073571B2 (en) Ground fault detection apparatus
JP2001186684A (en) Lithium ion battery charger
JP4983377B2 (en) Voltage detector for storage element
JP5251943B2 (en) Battery charge / discharge current detector
JP4719972B2 (en) Charge / discharge current measuring device
JP2000137062A (en) Method and device for detecting residual capacity of secondary battery
JP4776753B2 (en) Electric vehicle current detector
JP2010124582A (en) Energy storage device
JP2012002710A (en) Current detection device
JP2004120966A (en) Method for detecting current of electric automobile
JP3773800B2 (en) Current detection method for motor-driven electrical equipment
JP3691364B2 (en) Current detection device and battery device including current detection device
JP5219653B2 (en) Power supply
JP2007267559A (en) Charging method for secondary battery
JPH07191110A (en) Capacity display for secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees