JP2002267133A - Method and apparatus for incinerating waste - Google Patents

Method and apparatus for incinerating waste

Info

Publication number
JP2002267133A
JP2002267133A JP2001060551A JP2001060551A JP2002267133A JP 2002267133 A JP2002267133 A JP 2002267133A JP 2001060551 A JP2001060551 A JP 2001060551A JP 2001060551 A JP2001060551 A JP 2001060551A JP 2002267133 A JP2002267133 A JP 2002267133A
Authority
JP
Japan
Prior art keywords
oxygen concentration
combustion
waste
concentration
reducing atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001060551A
Other languages
Japanese (ja)
Inventor
Yasunori Aoki
康修 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001060551A priority Critical patent/JP2002267133A/en
Publication of JP2002267133A publication Critical patent/JP2002267133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To more efficiently obtain an effect of a re-burning method by suppressing the amount of a hydrocarbon fuel used which invites in rise a high cost. SOLUTION: A method for incinerating a waste comprises the step of switching a flow rate of a primary combustion air for burning an object 12 to be incinerated in a primary combustion chamber 1 by an air flow regulator 9 controlled by a timer 11. The method further comprises the step of increasing the flow rate of the primary air until a predetermined time elapses after charging. The method also comprises the step of reducing an air introducing amount after a predetermined time has elapsed. The method also comprises the steps of decreasing the air introducing amount as a whole, and reducing a residual oxygen amount. Thus, the amount of dioxins generated or the like can be decreased even when the amount of a city gas used to add from an adding gas nozzle 4 is not increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リバーニング運転
を行う廃棄物の焼却方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste incineration method and apparatus for performing reburning operation.

【0002】[0002]

【従来の技術】従来から、ごみなどの廃棄物等は、焼却
処理で可燃成分を除去し、残存する不燃成分のみを埋立
てなどで最終的に処理している。廃棄物等には、燃焼す
ると、窒素酸化物(NOx )やダイオキシン類などの有
害物質を発生するおそれがある物質も混在しているの
で、焼却処理ではこれらの有害物質の発生を低減する必
要がある。
2. Description of the Related Art Conventionally, wastes such as refuse are incinerated to remove combustible components, and only remaining incombustible components are finally treated by landfilling. Wastes contain substances that may generate harmful substances such as nitrogen oxides (NOx) and dioxins when burned. Therefore, it is necessary to reduce the generation of these harmful substances during incineration. is there.

【0003】焼却処理で発生する窒素酸化物やダイオキ
シン類などの有害物質は、燃焼排ガス中に含まれて排出
される。燃焼排ガス中の有害物質を低減する従来の手法
としては、焼却装置の燃焼ゾーン内に炭化水素系の燃料
を添加するリバーニング法が知られている。リバーニン
グ法は、第1次の燃焼ゾーンや煙道に天然ガス等の炭化
水素系燃料を流入させることによって、還元性雰囲気の
領域を作り出して窒素酸化物を還元した後、第2次の燃
焼ゾーンであるバーンアウトゾーンに2次空気を送込む
ことによって、一酸化炭素(CO)等の未燃物質を完全
燃焼させる2つの燃焼ゾーンを用いる燃焼技術である。
このとき、ダイオキシン類およびその前駆物質等の未燃
物質も同時に完全に酸化することができ、また空気比1
以下の燃焼過程で発生するOH、H、O、CH3 等のラ
ジカルとの反応によってもダイオキシン類の分解を図る
ことができる。
[0003] Harmful substances such as nitrogen oxides and dioxins generated in the incineration process are contained in the exhaust gas and discharged. As a conventional method for reducing harmful substances in combustion exhaust gas, a reburning method in which a hydrocarbon-based fuel is added into a combustion zone of an incinerator is known. In the reburning method, a hydrocarbon-based fuel such as natural gas is caused to flow into a primary combustion zone or a flue to create a region of a reducing atmosphere to reduce nitrogen oxides, and then to perform a secondary combustion. This is a combustion technique using two combustion zones for completely burning unburned substances such as carbon monoxide (CO) by sending secondary air to a burnout zone which is a zone.
At this time, unburned substances such as dioxins and their precursors can be completely oxidized at the same time, and an air ratio of 1
Dioxins can also be decomposed by reaction with radicals such as OH, H, O, and CH 3 generated in the following combustion process.

【0004】[0004]

【発明が解決しようとする課題】従来からのリバーニン
グ法では、燃焼ゾーン中の1次燃焼ガス中の酸素濃度に
応じて、添加する炭化水素系燃料の量が異なる。一般的
には、残存酸素濃度1%当り本来の燃焼熱量の5%程度
に相当する熱量以上の燃料が必要と言われている。この
燃料の量は、排ガス中の酸素がすべて燃焼に使われて残
存酸素濃度が0%となる量に相当する。
In the conventional reburning method, the amount of the hydrocarbon-based fuel to be added differs depending on the oxygen concentration in the primary combustion gas in the combustion zone. It is generally said that a fuel having a calorific value equal to or more than about 5% of the original calorific value per 1% of the residual oxygen concentration is required. The amount of this fuel corresponds to an amount at which the residual oxygen concentration becomes 0% when all the oxygen in the exhaust gas is used for combustion.

【0005】通常の焼却炉には、燃焼ガス中に6〜8%
程度の酸素が含まれている。したがって、理論上必要な
炭化水素系燃料は30〜40%程度必要となる。このた
め、効果的な還元領域を得る吹込みを行おうとすると、
処理コストの大幅な高騰を引き起すことになる。また、
完全燃焼のためには、炉出口での酸素濃度がある程度必
要であり、単純に燃焼空気比を小さくすることはできな
い。
In a typical incinerator, 6 to 8%
Contains about oxygen. Therefore, about 30 to 40% of theoretically necessary hydrocarbon fuel is required. For this reason, when trying to blow to obtain an effective reduction area,
This will cause a significant increase in processing costs. Also,
For complete combustion, the oxygen concentration at the furnace outlet is required to some extent, and the combustion air ratio cannot be simply reduced.

【0006】さらに、バッチ式焼却炉では、処理対象物
の投入時と通常燃焼時とで、大きく炉内の雰囲気が異な
る。投入からしばらくは激しく燃焼するために低酸素濃
度であるけれども、燃焼が進むに従って燃焼反応が緩慢
になり、酸素濃度が高くなる。このため、排ガス中の酸
素濃度が大幅に変化することになる。この結果、一時的
に残存酸素濃度が1%以下になることも多いけれども、
焼却処理の過程で10%を超えることもある。
[0006] Furthermore, in a batch incinerator, the atmosphere in the furnace differs greatly between the time of charging the object to be treated and the time of normal combustion. Although the oxygen concentration is low due to intense combustion for a while after the introduction, the combustion reaction becomes slow and the oxygen concentration increases as the combustion proceeds. Therefore, the oxygen concentration in the exhaust gas changes significantly. As a result, although the residual oxygen concentration often temporarily drops below 1%,
It may exceed 10% during the incineration process.

【0007】前述の通り、リバーニング法では残存酸素
濃度に比例して必要な炭化水素系燃料の量が異なるた
め、常時効果的な還元領域を得るためには、最も高い残
存酸素濃度を想定して、添加する炭化水素系燃料の量を
決めることになり、コスト高となり、低酸素濃度時には
無駄が多くなるという問題がある。
As described above, in the reburning method, the required amount of hydrocarbon fuel differs in proportion to the residual oxygen concentration. Therefore, in order to always obtain an effective reduction region, the highest residual oxygen concentration is assumed. Therefore, the amount of the hydrocarbon fuel to be added is determined, which causes a problem that the cost is increased and the waste is increased when the oxygen concentration is low.

【0008】本発明の目的は、このような問題を解決す
るため、処理コストの高騰を招く炭化水素系燃料の使用
量を抑え、より効率的にリバーニング法の効果を得るこ
とができる廃棄物の焼却方法および装置を提供すること
である。
[0008] An object of the present invention is to solve such a problem by suppressing the amount of use of a hydrocarbon-based fuel which causes an increase in processing cost, and more efficiently obtaining the effect of the reburning method. Incineration method and apparatus.

【0009】[0009]

【課題を解決するための手段】本発明は、ごみ等の廃棄
物を焼却する炉内で、第1次燃焼ゾーンでは、燃焼用1
次空気を供給して燃焼させた後で、炭化水素系燃料を添
加して還元性雰囲気を形成し、還元性雰囲気の後流とな
る第2次燃焼ゾーンでは、燃焼用2次空気を供給して未
燃成分を完全燃焼させて、2つの燃焼ゾーンでの燃焼に
よるリバーニング運転を行うための廃棄物の焼却方法に
おいて、該還元性雰囲気における平均残存酸素濃度を4
%以下で、予め定める上限値以下になるように、第1段
階で供給する燃焼用1次空気の供給量を段階的に減少さ
せて制御することを特徴とする廃棄物の焼却方法であ
る。
SUMMARY OF THE INVENTION The present invention is directed to a furnace for incinerating waste such as refuse, wherein a primary combustion zone is provided.
After supplying and burning the secondary air, a hydrocarbon-based fuel is added to form a reducing atmosphere, and in a secondary combustion zone downstream of the reducing atmosphere, secondary air for combustion is supplied. In an incineration method of waste for performing a reburning operation by burning in two combustion zones by completely burning unburned components, the average residual oxygen concentration in the reducing atmosphere is set to 4%.
% Or less, wherein the supply amount of the primary air for combustion supplied in the first stage is controlled in a stepwise manner so as to be less than or equal to a predetermined upper limit value.

【0010】本発明に従えば、2つの燃焼ゾーンで燃焼
を行うリバーニング運転で、炭化水素系燃料を添加して
還元性雰囲気を形成する際に、燃焼用1次空気の供給量
を段階的に減少させて制御し、炉内の残存酸素濃度を平
均で4%以下の低い水準で維持し、少ない炭化水素系燃
料で効率的にリバーニング法の効果を得ることができ
る。第1次燃焼ゾーンの燃焼では、多くの酸素を必要と
する焼却物投入時に充分な量の燃焼用1次空気を吹込む
ことによって、第1次燃焼ゾーン全体としての燃焼用1
次空気の吹込み量は少なくなるように調整しても、一酸
化炭素やダイオキシン類等の未燃物質の生成を抑えるこ
とができ、見かけの空気比を低く抑えても、焼却能力の
低下を招かないようにすることができる。
According to the present invention, in a reburning operation in which combustion is performed in two combustion zones, when a hydrocarbon-based fuel is added to form a reducing atmosphere, the supply amount of the primary air for combustion is gradually increased. The residual oxygen concentration in the furnace is maintained at a low level of 4% or less on average, and the effect of the reburning method can be efficiently obtained with a small amount of hydrocarbon fuel. In the combustion in the primary combustion zone, a sufficient amount of the primary air for combustion is blown when the incinerated material requiring a large amount of oxygen is injected, so that the combustion for the entire primary combustion zone is performed.
Even if the amount of secondary air blown is adjusted to be small, the generation of unburned substances such as carbon monoxide and dioxins can be suppressed. You can not be invited.

【0011】また本発明は、ごみ等の廃棄物を焼却する
炉内で、第1次燃焼ゾーンでは、燃焼用1次空気を供給
して燃焼させた後で、炭化水素系燃料を添加して還元性
雰囲気を形成し、還元性雰囲気の後流となる第2次燃焼
ゾーンでは、燃焼用2次空気を供給して未燃成分を完全
燃焼させて、2つの燃焼ゾーンでの燃焼によるリバーニ
ング運転を行うための廃棄物の焼却方法において、該還
元性雰囲気における平均残存酸素濃度を予め定める上限
値以下になるように、炭化水素系燃料の添加量を制御す
ることを特徴とする廃棄物の焼却方法である。
Further, according to the present invention, in a furnace for incinerating waste such as refuse, in a primary combustion zone, after supplying and burning primary air for combustion, hydrocarbon fuel is added. In the secondary combustion zone that forms a reducing atmosphere and is downstream of the reducing atmosphere, secondary air for combustion is supplied to completely burn unburned components, and reburning due to combustion in the two combustion zones. In the waste incineration method for performing the operation, the amount of the hydrocarbon-based fuel added is controlled such that the average residual oxygen concentration in the reducing atmosphere is equal to or less than a predetermined upper limit. It is an incineration method.

【0012】本発明に従えば、炭化水素系燃料の量を炉
内の残存酸素濃度に応じて制御し、使用量を抑えること
ができる。
According to the present invention, the amount of the hydrocarbon-based fuel can be controlled in accordance with the residual oxygen concentration in the furnace, and the amount of use can be suppressed.

【0013】また本発明で、前記平均残存酸素濃度は、
焼却すべき廃棄物の投入後の経過時間から推算する残存
酸素濃度に基づいて算出することを特徴とする。
In the present invention, the average residual oxygen concentration is
It is characterized in that it is calculated based on the residual oxygen concentration estimated from the elapsed time after the input of the waste to be incinerated.

【0014】本発明に従えば、残存酸素濃度を焼却すべ
き廃棄物の投入後の経過時間から推算するので、酸素濃
度を測定する必要はなく、低コストの焼却を行うことが
できる。また、燃焼ガス中の酸素濃度が変動しても、変
動を無視して低い酸素濃度を維持することができる。
According to the present invention, since the residual oxygen concentration is estimated from the elapsed time after the waste to be incinerated is introduced, it is not necessary to measure the oxygen concentration, and low-cost incineration can be performed. Further, even if the oxygen concentration in the combustion gas changes, the change can be ignored and the low oxygen concentration can be maintained.

【0015】また本発明で、前記平均残存酸素濃度は、
前記炉内の酸素濃度を測定して算出することを特徴とす
る。
In the present invention, the average residual oxygen concentration is
It is characterized in that the oxygen concentration in the furnace is measured and calculated.

【0016】本発明に従えば、残存酸素濃度を測定して
平均残存酸素濃度を算出するので、精度の高い制御を行
うことができる。
According to the present invention, since the average residual oxygen concentration is calculated by measuring the residual oxygen concentration, highly accurate control can be performed.

【0017】また本発明で、前記平均残存酸素濃度は、
前記炉内の一酸化炭素、二酸化炭素または窒素のうち、
少なくとも一つの濃度を測定し、予め求めておいた濃度
値と酸素濃度との相関関係に基づいて、測定した濃度値
から酸素濃度を推算し、酸素濃度の推算値から算出する
ことを特徴とする。
In the present invention, the average residual oxygen concentration is
Of the carbon monoxide, carbon dioxide or nitrogen in the furnace,
Measuring at least one concentration, estimating the oxygen concentration from the measured concentration value based on the correlation between the concentration value and the oxygen concentration determined in advance, and calculating from the estimated value of the oxygen concentration. .

【0018】本発明に従えば、酸素濃度を直接測定する
代りに、一酸化炭素、二酸化炭素または窒素のうち、少
なくとも一つの濃度を測定して、平均残存酸素濃度が低
くなるように制御することができる。
According to the present invention, instead of directly measuring the oxygen concentration, at least one of carbon monoxide, carbon dioxide and nitrogen is measured to control the average residual oxygen concentration to be low. Can be.

【0019】また本発明で、前記平均残存酸素濃度は、
前記炉内のガス温度を測定し、予め求めておいたガス温
度と酸素濃度との相関関係に基づいて、測定したガス温
度値から酸素濃度を推算し、酸素濃度の推算値から算出
することを特徴とする。
In the present invention, the average residual oxygen concentration is
The gas temperature in the furnace is measured, and the oxygen concentration is estimated from the measured gas temperature value based on the correlation between the gas temperature and the oxygen concentration determined in advance, and the oxygen concentration is calculated from the estimated value of the oxygen concentration. Features.

【0020】本発明に従えば、酸素濃度を直接測定する
代りに、炉内のガス温度を測定して、平均残存酸素濃度
が低くなるように制御することができる。
According to the present invention, instead of directly measuring the oxygen concentration, the gas temperature in the furnace can be measured to control the average residual oxygen concentration to be low.

【0021】さらに本発明は、ごみ等の廃棄物を焼却す
る炉内で、第1次燃焼ゾーンでは、燃焼用1次空気を供
給して燃焼させた後で、炭化水素系燃料を添加して還元
性雰囲気を形成し、還元性雰囲気の後流となる第2次燃
焼ゾーンでは、燃焼用2次空気を供給して未燃成分を完
全燃焼させて、2つの燃焼ゾーンでの燃焼によるリバー
ニング運転を行う、廃棄物の焼却装置において、予め、
焼却すべき廃棄物の投入後の経過時間と炉内の酸素濃度
との相関関係を設定しておく相関設定手段と、焼却すべ
き廃棄物の投入後の経過時間を計測するタイマと、タイ
マによって計測される経過時間に基づき、相関設定手段
に設定されている相関関係を参照して酸素を推算する濃
度推算手段と、濃度推算手段によって推算される酸素濃
度に基づいて、該還元性雰囲気における平均残存酸素濃
度を4%以下で、予め定める上限値以下になるように、
第1段階の燃焼に供給する燃焼用1次空気の供給量を段
階的に減少させて制御する制御手段とを含むことを特徴
とする廃棄物の焼却装置である。
Further, according to the present invention, in a furnace for incinerating waste such as refuse, primary air for combustion is supplied and burned in a primary combustion zone, and then hydrocarbon-based fuel is added. In the secondary combustion zone that forms a reducing atmosphere and is downstream of the reducing atmosphere, secondary air for combustion is supplied to completely burn unburned components, and reburning due to combustion in the two combustion zones. In operation, waste incinerator, in advance,
A correlation setting means for setting a correlation between the elapsed time after the input of the waste to be incinerated and the oxygen concentration in the furnace, a timer for measuring the elapsed time after the input of the waste to be incinerated, and a timer. A concentration estimating means for estimating oxygen by referring to the correlation set in the correlation setting means based on the measured elapsed time; and an average in the reducing atmosphere based on the oxygen concentration estimated by the concentration estimating means. In order to keep the residual oxygen concentration at 4% or less and below a predetermined upper limit,
Control means for controlling the supply amount of the primary air for combustion to be supplied to the first stage combustion by decreasing the supply amount in a stepwise manner.

【0022】本発明に従えば、廃棄物の焼却装置は、相
関設定手段と、タイマと、濃度推算手段と、制御手段と
を含み、リバーニング運転を行う。相関設定手段には、
焼却すべき廃棄物の投入後の経過時間と炉内の酸素濃度
との相関関係が予め設定され、制御手段は、濃度推算手
段がタイマによって計測される経過時間から推算する酸
素濃度に基づいて、平均残存酸素濃度が低くなるように
燃焼用1次空気を制御する。残存酸素濃度を焼却すべき
廃棄物の投入後の経過時間から推算するので、酸素濃度
を測定する必要はなく、低コストの焼却を行うことがで
きる。また、燃焼ガス中の酸素濃度が変動しても、変動
を無視して低い酸素濃度を維持することができる。
According to the present invention, the waste incineration apparatus includes a correlation setting unit, a timer, a concentration estimating unit, and a control unit, and performs a reburning operation. The correlation setting means includes:
The correlation between the elapsed time after the introduction of the waste to be incinerated and the oxygen concentration in the furnace is set in advance, and the control unit controls the concentration estimation unit based on the oxygen concentration estimated from the elapsed time measured by the timer. The primary air for combustion is controlled so that the average residual oxygen concentration becomes low. Since the residual oxygen concentration is estimated from the elapsed time after the input of the waste to be incinerated, it is not necessary to measure the oxygen concentration, and low-cost incineration can be performed. Further, even if the oxygen concentration in the combustion gas changes, the change can be ignored and the low oxygen concentration can be maintained.

【0023】[0023]

【発明の実施の形態】図1は、本発明の実施の一形態と
して、バッチ式でリバーニング運転を行う廃棄物の焼却
装置の概略的な構成を示す。本実施形態の焼却装置は、
1次燃焼室1と2次燃焼室2とを有し、1次燃焼室1と
2次燃焼室2との間は煙道3で繋がれている。1次燃焼
室1内には、ごみなどの廃棄物が被燃焼物として投入さ
れて、1次燃焼ゾーンが形成される。1次燃焼ゾーンの
排ガスは、2次燃焼室2で完全燃焼させられ、2次燃焼
ゾーンが形成される。1次燃焼ゾーンの後段、または煙
道3には、天然ガスを主成分とする都市ガス等の炭化水
素系燃料が添加ガスノズル4から添加される。炭化水素
系燃料を添加することによって、還元性雰囲気が形成さ
れ、窒素酸化物の低減を図ることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic configuration of a waste incinerator that performs a reburning operation in a batch system as an embodiment of the present invention. The incinerator of this embodiment is
It has a primary combustion chamber 1 and a secondary combustion chamber 2, and the primary combustion chamber 1 and the secondary combustion chamber 2 are connected by a flue 3. In the primary combustion chamber 1, waste such as refuse is charged as a substance to be burned to form a primary combustion zone. The exhaust gas in the primary combustion zone is completely burned in the secondary combustion chamber 2 to form a secondary combustion zone. A hydrocarbon-based fuel such as city gas containing natural gas as a main component is added to the latter stage of the primary combustion zone or the flue 3 from an additional gas nozzle 4. By adding a hydrocarbon-based fuel, a reducing atmosphere is formed and nitrogen oxides can be reduced.

【0024】1次燃焼室1および2次燃焼室2での燃焼
を助けるため、助燃バーナとして動作する1次燃焼バー
ナ5および2次燃焼バーナ6がそれぞれ設けられる。燃
焼用の空気は、送風機7から送込まれ、1次空気供給管
8を介して1次燃焼室1内に燃焼用1次空気として供給
される。本実施形態では、燃焼用1次空気の流量を、空
気流量調整器9で調整する。2次空気供給管10は、送
風機7からの燃焼用2次空気を2次燃焼室2に供給す
る。空気流量調整器9は、タイマ11によって燃焼用1
次空気の流量を調整する。タイマ11は、焼却処理対象
物12を投入する時点から一定時間が経過するまでは、
燃焼用1次空気の流量を多くし、その後は少なくする。
In order to assist combustion in the primary combustion chamber 1 and the secondary combustion chamber 2, a primary combustion burner 5 and a secondary combustion burner 6 which operate as auxiliary combustion burners are provided, respectively. The air for combustion is sent from the blower 7 and supplied into the primary combustion chamber 1 through the primary air supply pipe 8 as primary air for combustion. In the present embodiment, the flow rate of the primary air for combustion is adjusted by the air flow rate regulator 9. The secondary air supply pipe 10 supplies secondary air for combustion from the blower 7 to the secondary combustion chamber 2. The air flow controller 9 controls the combustion
Adjust the flow rate of the secondary air. The timer 11 is used until a certain time elapses from the time when the incineration object 12 is charged.
The flow rate of the primary air for combustion is increased and thereafter decreased.

【0025】図2は、本実施形態での流量制御と、制御
を行わない場合の酸素濃度推移との関係を示す。バッチ
式焼却炉においては、炉内の燃焼状態と焼却処理対象物
12の投入に関して密接な関連があることが判明してい
る。図2では、破線で酸素濃度推移の変化を示し、実線
で燃焼用1次空気の供給量の変化を示す。通常行われて
いるように、燃焼用1次空気の供給量が一定の状態で運
転を行うと、破線で示すように、投入直後には急激にガ
ス化・燃焼が行われるため、急激に酸素濃度が低下す
る。その後、時間の経過とともに、燃焼が緩慢になるた
め、酸素濃度が上昇する。本実施形態では、この酸素濃
度の変動を抑制し、平均残存酸素濃度を4%以下に抑
え、ダイオキシン低減を図っている。
FIG. 2 shows the relationship between the flow rate control in this embodiment and the change in oxygen concentration when control is not performed. In a batch incinerator, it has been found that there is a close relationship between the combustion state in the furnace and the charging of the incineration target 12. In FIG. 2, a broken line indicates a change in the change in the oxygen concentration, and a solid line indicates a change in the supply amount of the primary air for combustion. If the operation is performed in a state where the supply amount of the primary air for combustion is constant, as is usually performed, as shown by a broken line, gasification and combustion are performed rapidly immediately after introduction, so that oxygen is rapidly supplied. The concentration decreases. Thereafter, as time elapses, the combustion becomes slower, so that the oxygen concentration increases. In the present embodiment, the fluctuation of the oxygen concentration is suppressed, the average residual oxygen concentration is suppressed to 4% or less, and dioxin is reduced.

【0026】1回に投入する焼却処理対象物12の量と
投入間隔とは、焼却炉の焼却能力から算出することがで
きる。たとえば、30kg/hの焼却能力を有する焼却
炉に対して、30分毎に焼却処理対象物12を投入する
とすれば、1回の投入量は15kgとなり、5kgずつ
投入するならば投入間隔は10分おきとなる。いずれの
場合にも、時間当りの処理量は一定であり、時間間隔お
よび酸素濃度の上下限は異なっても、図2に示すような
酸素濃度変動の傾向は同じとなる。したがって、本実施
形態では、焼却炉の運転の実状に合わせて焼却処理対象
物12の投入量および投入間隔を決めることができる。
The amount of the incineration object 12 to be charged at one time and the charging interval can be calculated from the incineration capacity of the incinerator. For example, if an incinerator 12 having an incinerator having an incineration capacity of 30 kg / h is to be charged every 30 minutes, the amount to be charged once is 15 kg. Every minute. In any case, the processing amount per time is constant, and the tendency of the oxygen concentration fluctuation as shown in FIG. 2 is the same even if the time interval and the upper and lower limits of the oxygen concentration are different. Therefore, in the present embodiment, the charging amount and charging interval of the incineration object 12 can be determined according to the actual operation of the incinerator.

【0027】焼却能力は、算出方法が複数考えられてい
る。その一つである燃焼室負荷を用いて表すと、次の
(1)式のようになる。燃焼室負荷は、一般の焼却炉で
あれば、およそ1,046,500kJ/m3h(25
00,000kcal/m3h)である。焼却能力と1
回の投入量から求められる投入時間間隔を維持すれば、
異なる焼却対象物12に対しても同じ考え方を適用する
ことができる。
There are several methods for calculating the incineration capacity. Expressing using the combustion chamber load, one of which, is expressed by the following equation (1). The combustion chamber load is about 1,046,500 kJ / m 3 h (25
00,000 kcal / m 3 h). Incineration capacity and 1
If you maintain the time interval required from the input amount,
The same concept can be applied to different incineration objects 12.

【0028】[0028]

【数1】 (Equation 1)

【0029】以下、図1の実施形態の焼却装置を用いた
運転実験の結果を示す。 [実験1] 新聞紙1kg当り10gのPVDC(食品
包装材)を混入した焼却処理対象物12を作成し、焼却
能力20(kg/h)の焼却装置に、7.5分毎に2.
5kgの割合で投入し、燃焼させた。このとき、燃焼用
1次空気および燃焼用2次空気は、空気供給用の送風機
7から各燃焼室に送込まれる。燃焼用1次空気は、焼却
処理対象物12に対する空気比λ1=1.1とし、燃焼
用2次空気は焼却処理対象物12に対する空気比λ2
1.0で運転した。また1次燃焼バーナ5および2次燃
焼バーナ6には、ともに4m3/hの都市ガスを、空気
比1.15で燃焼するように供給して運転を行った。た
だし、添加ガスノズル4から都市ガスを添加してのリバ
ーニング運転は行わない。
Hereinafter, results of an operation experiment using the incinerator of the embodiment of FIG. 1 will be described. [Experiment 1] An incineration target 12 containing 10 g of PVDC (food packaging material) per 1 kg of newsprint was prepared, and placed in an incinerator having an incineration capacity of 20 (kg / h) every 7.5 minutes.
It was charged at a rate of 5 kg and burned. At this time, the primary air for combustion and the secondary air for combustion are sent into each combustion chamber from an air supply blower 7. The primary air for combustion has an air ratio λ 1 = 1.1 with respect to the incineration object 12, and the secondary air for combustion has an air ratio λ 2 = with respect to the incineration object 12.
Driving at 1.0. In addition, both the primary combustion burner 5 and the secondary combustion burner 6 were operated by supplying city gas of 4 m 3 / h so as to burn at an air ratio of 1.15. However, the reburning operation in which the city gas is added from the additional gas nozzle 4 is not performed.

【0030】排ガスは煙道3と2次燃焼室2の出口とで
サンプリングを行い、CO濃度と、O2濃度の計測を行
い、同時に燃焼室の温度測定も行った。2次燃焼室2の
出口では、ダイオキシン類の濃度の分析も行った。得ら
れた結果を次の表1に示す。ダイオキシン類の濃度は、
四塩化ジベンゾダイオキシン(TCDD)を基準に他の
異性体の毒性も考慮した毒性等量(TEQ)で、体積1
3当りの質量ng(ナノグラム)に換算して示す。
The exhaust gas was sampled at the flue 3 and at the outlet of the secondary combustion chamber 2 to measure the CO concentration and the O 2 concentration, and at the same time the temperature of the combustion chamber. At the outlet of the secondary combustion chamber 2, the analysis of the concentration of dioxins was also performed. The results obtained are shown in Table 1 below. The concentration of dioxins is
Toxic equivalent (TEQ) based on dibenzodioxin tetrachloride (TCDD), taking into account the toxicity of other isomers.
It is shown in terms of mass ng (nanogram) per m 3 .

【0031】[0031]

【表1】 [Table 1]

【0032】[実験2] 次に、実験1と他は同じ条件
の実験を、1次燃焼室1の後流側の都市ガス添加用の添
加ガスノズル4から、都市ガスを炉内に吹込むリバーニ
ング運転で行った。リバーニングは、従来技術に基づい
て行っている。都市ガスの添加量は、1次燃焼室のトー
タルインプットの約30%に相当する3m3/hとし
た。実験2の結果は、次の表2に示す。
[Experiment 2] Next, an experiment under the same conditions as in Experiment 1 was carried out by blowing a city gas into the furnace from an additional gas nozzle 4 for adding a city gas on the downstream side of the primary combustion chamber 1. The burning operation was performed. Reburning is performed based on the prior art. The added amount of city gas was 3 m 3 / h, which corresponds to about 30% of the total input of the primary combustion chamber. The results of Experiment 2 are shown in Table 2 below.

【0033】[0033]

【表2】 [Table 2]

【0034】[実験3] 次に実験2と他は同じ条件の
実験を、本発明を適用して、燃焼用1次空気の流量を図
2のように切換えて行った。燃焼用1次空気は、焼却処
理対象物12の投入時に空気比λ1a=1.2で運転して
から、投入から4分後に空気比λ1b=0.6になるよう
に増減させる制御を行った。実験3で得られた結果は、
次の表3に示す。
[Experiment 3] Next, an experiment was performed under the same conditions as in Experiment 2 by applying the present invention and changing the flow rate of the primary air for combustion as shown in FIG. The primary air for combustion is operated at an air ratio λ 1a = 1.2 when the incineration object 12 is charged, and then controlled to increase or decrease the air ratio λ 1b = 0.6 four minutes after the charging. went. The result obtained in Experiment 3 is
The results are shown in Table 3 below.

【0035】[0035]

【表3】 [Table 3]

【0036】第1次燃焼室での平均酸素濃度は、燃焼用
1次空気の流量制御によって、5.7%から3.6%に
低下したといえる。ダイオキシン類も11.4ngから
7.8ngに低下している。環境基準に従って、ダイオ
キシン類を10ng未満に抑えるためには、平均酸素濃
度を4%以下にすればよいことが判る。
It can be said that the average oxygen concentration in the primary combustion chamber was reduced from 5.7% to 3.6% by controlling the flow rate of the primary air for combustion. Dioxins also decreased from 11.4 ng to 7.8 ng. It can be seen that the average oxygen concentration should be 4% or less in order to keep dioxins below 10 ng in accordance with environmental standards.

【0037】また表2および表3から、リバーニング運
転を行う場合、2次燃焼室での平均酸素濃度は、平均一
酸化炭素濃度に対応していることが判る。一酸化炭素ば
かりではなく、二酸化炭素や窒素の濃度とも対応してい
ることが判明している。したがって、平均残存酸素濃度
は、炉内の一酸化炭素(CO)、二酸化炭素(C2O)
または窒素(N2)のうち、少なくとも一つの濃度を測
定し、予め求めておいた濃度値と酸素濃度との相関関係
に基づいて、測定した濃度値から酸素濃度を推算し、酸
素濃度の推算値から算出することもできる。さらに、炉
内のガス温度を測定し、予め求めておいたガス温度と酸
素濃度との相関関係に基づいて、測定したガス温度値か
ら酸素濃度を推算し、酸素濃度の推算値から平均残存酸
素濃度を算出することもできる。
From Tables 2 and 3, it can be seen that when performing the reburning operation, the average oxygen concentration in the secondary combustion chamber corresponds to the average carbon monoxide concentration. It has been found that it corresponds not only to carbon monoxide but also to concentrations of carbon dioxide and nitrogen. Therefore, the average remaining oxygen concentration, carbon monoxide in the furnace (CO), carbon dioxide (C 2 O)
Alternatively, at least one concentration of nitrogen (N 2 ) is measured, and the oxygen concentration is estimated from the measured concentration value based on the correlation between the concentration value and the oxygen concentration determined in advance, and the oxygen concentration is estimated. It can also be calculated from the value. Furthermore, the gas temperature in the furnace is measured, the oxygen concentration is estimated from the measured gas temperature value based on the correlation between the gas temperature and the oxygen concentration determined in advance, and the average residual oxygen is estimated from the estimated oxygen concentration value. The concentration can also be calculated.

【0038】図3は、本発明の実施の他の形態を示す。
図1に示す実施形態に対応する部分には、同一の参照符
を付し、重複する説明は省略する。本実施形態では、酸
素濃度計13を用い、煙道3でガス中の酸素濃度を測定
する。平均残存酸素濃度ができるだけ低下するように、
燃料流量調整器14によって、添加ガスノズル4から添
加する都市ガスの流量を調整する。都市ガスの流量は、
酸素濃度計13が検出する酸素濃度に対応して、酸素濃
度が大きいときには都市ガスの流量が多くなり、小さい
ときには少なくなるように調整され、全体として都市ガ
スの使用量低減を図ることができる。
FIG. 3 shows another embodiment of the present invention.
Components corresponding to those in the embodiment shown in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted. In the present embodiment, the oxygen concentration in the gas is measured in the flue 3 using the oximeter 13. In order to reduce the average residual oxygen concentration as much as possible,
The fuel flow rate adjuster 14 adjusts the flow rate of the city gas added from the addition gas nozzle 4. The flow rate of city gas is
According to the oxygen concentration detected by the oxygen concentration meter 13, the flow rate of the city gas is adjusted to increase when the oxygen concentration is high, and to decrease when the oxygen concentration is low, so that the usage amount of the city gas can be reduced as a whole.

【0039】以下、図3の実施形態の焼却装置を用いた
運転実験の結果を示す。 [実験4] 基本的に前述の実験3と同じ条件で、実験
3で燃焼用1次空気の流量を調整する代りに、添加ガス
ノズル4から添加する都市ガスの流量を調整した。この
都市ガス流量は、酸素濃度計13によって煙道3の残存
酸素濃度を監視し、煙道3での残存酸素濃度の瞬時値が
0.5%以下になるように制御した。ただし、瞬間的な
都市ガスの供給量は、最大でも3m3/hを超えないよ
うした。燃焼用1次空気および燃焼用2次空気は、焼却
処理対象物12に対する空気比で、それぞれλ1=1.
1およびλ2=1.0となるように運転した。実験結果
を次の表4に示す。
The results of an operation test using the incinerator of the embodiment shown in FIG. 3 are shown below. [Experiment 4] Under the same conditions as in Experiment 3 described above, instead of adjusting the flow rate of the primary air for combustion in Experiment 3, the flow rate of city gas added from the addition gas nozzle 4 was adjusted. The city gas flow rate was controlled by monitoring the residual oxygen concentration in the flue 3 with the oximeter 13 and controlling the instantaneous value of the residual oxygen concentration in the flue 3 to 0.5% or less. However, the supply amount of the instantaneous city gas, was not to exceed the 3m 3 / h at the most. The primary air for combustion and the secondary air for combustion are air ratios with respect to the incineration object 12, respectively, λ 1 = 1.
The operation was performed so that 1 and λ 2 = 1.0. The experimental results are shown in Table 4 below.

【0040】[0040]

【表4】 [Table 4]

【0041】実験1、実験2、実験3および実験4で添
加した都市ガスの使用量は、次の表5に示す。実験2と
実験3とでは、都市ガスの使用量は変らない。実験4で
は、都市ガスの使用量が低減されていることが判る。
The amounts of city gas used in Experiments 1, 2, 3, and 4 are shown in Table 5 below. The amount of city gas used does not change between Experiment 2 and Experiment 3. In Experiment 4, it can be seen that the usage of city gas is reduced.

【0042】[0042]

【表5】 [Table 5]

【0043】なお、図1の実施形態でも、図3のように
酸素濃度を測定して、燃焼用1次空気の流量を調整する
こともできる。また、図3の実施形態で、図1の実施形
態のように、酸素濃度を時間経過に従って推定し、焼却
処理対象物12の投入後の一定時間経過後に、都市ガス
の流量を切換えるようにすることもできる。残存酸素濃
度を焼却すべき廃棄物の投入後の経過時間から推算する
ので、酸素濃度を測定する必要はなく、低コストの焼却
を行うことができる。また、燃焼ガス中の酸素濃度が変
動しても、変動を無視して低い酸素濃度を維持すること
ができる。さらに、一酸化炭素、二酸化炭素、窒素など
の濃度値から酸素濃度を推算したり、温度から酸素濃度
を推算して、添加する都市ガスの流量を制御することも
できる。
In the embodiment of FIG. 1, it is also possible to adjust the flow rate of the primary air for combustion by measuring the oxygen concentration as shown in FIG. Further, in the embodiment of FIG. 3, as in the embodiment of FIG. 1, the oxygen concentration is estimated with the passage of time, and the flow rate of the city gas is switched after a lapse of a certain time after the incineration object 12 is charged. You can also. Since the residual oxygen concentration is estimated from the elapsed time after the input of the waste to be incinerated, it is not necessary to measure the oxygen concentration, and low-cost incineration can be performed. Further, even if the oxygen concentration in the combustion gas changes, the change can be ignored and the low oxygen concentration can be maintained. Furthermore, the flow rate of the added city gas can be controlled by estimating the oxygen concentration from the concentration values of carbon monoxide, carbon dioxide, nitrogen, and the like, and estimating the oxygen concentration from the temperature.

【0044】また本発明では、図1および図3の実施形
態を合わせて行うこともできる。すなわち、還元性雰囲
気における平均残存酸素濃度を4%以下とするため、2
つの燃焼ゾーンで燃焼を行うリバーニング運転で、炭化
水素系燃料を添加して還元性雰囲気を形成する際に、燃
焼用1次空気の供給量を段階的に減少させて制御し、炉
内の残存酸素濃度を平均で4%以下の低い水準で維持
し、少ない炭化水素系燃料で効率的にリバーニング法の
効果を得ることができる。第1次燃焼ゾーンでの燃焼で
は、多くの酸素を必要とする焼却物投入時に充分な量の
燃焼用1次空気を吹込むことによって、第1次燃焼ゾー
ン全体としての燃焼用1次空気の吹込み量は少なくなる
ように調整しても、一酸化炭素やダイオキシン類等の未
燃物質の生成を抑えることができ、見かけの空気比を低
く抑えても、焼却能力の低下を招かないようにすること
ができる。
In the present invention, the embodiments of FIGS. 1 and 3 can be combined. That is, to keep the average residual oxygen concentration in the reducing atmosphere at 4% or less,
In the reburning operation in which combustion is performed in two combustion zones, when a hydrocarbon-based fuel is added to form a reducing atmosphere, the supply amount of the primary air for combustion is controlled by gradually decreasing the supply amount. The residual oxygen concentration is maintained at a low level of 4% or less on average, and the effect of the reburning method can be efficiently obtained with a small amount of hydrocarbon fuel. In the combustion in the primary combustion zone, a sufficient amount of the primary air for combustion is blown at the time of incineration which requires a large amount of oxygen, so that the primary air for combustion as the whole primary combustion zone is blown. Even if the injection amount is adjusted to be small, generation of unburned substances such as carbon monoxide and dioxins can be suppressed, and even if the apparent air ratio is kept low, the incineration capacity does not decrease. Can be

【0045】さらに、表3から、平均O2濃度は4%未
満となるけれども、大型の焼却炉であれば、炉内の残存
酸素濃度の平均値を2%以下に抑えることが充分に可能
である。
Further, from Table 3, although the average O 2 concentration is less than 4%, it is sufficiently possible to suppress the average value of the residual oxygen concentration in the furnace to 2% or less in a large incinerator. is there.

【0046】[0046]

【発明の効果】以上のように本発明によれば、2つの燃
焼ゾーンで段階の燃焼を行うリバーニング運転で、炉内
の残存酸素濃度を平均で4%以下の低い水準で維持し、
少ない炭化水素系燃料で効率的に効果を得ることができ
る。第1次燃焼ゾーンでの燃焼では、多くの酸素を必要
とする焼却物投入時に充分な量の燃焼用1次空気を吹込
み、一酸化炭素やダイオキシン類等の未燃物質の生成を
抑えることができる。第1次燃焼ゾーン全体としての燃
焼用1次空気の吹込み量は少なくなるように調整して、
見かけの空気比を低く抑えても、焼却能力の低下を招か
ないようにすることができる。
As described above, according to the present invention, the residual oxygen concentration in the furnace is maintained at a low level of 4% or less on average in a reburning operation in which two stages of combustion are performed in two combustion zones.
The effect can be obtained efficiently with a small amount of hydrocarbon fuel. In the combustion in the primary combustion zone, a sufficient amount of primary air for combustion is blown when incinerated materials that require a large amount of oxygen are injected, and the generation of unburned substances such as carbon monoxide and dioxins is suppressed. Can be. The amount of the primary air for combustion as the whole primary combustion zone is adjusted so as to be small,
Even if the apparent air ratio is kept low, it is possible to prevent the incineration capacity from being lowered.

【0047】さらに本発明によれば、酸素濃度が低くな
るように炭化水素系燃料の添加量を制御して、使用量を
低減することができる。
Further, according to the present invention, the amount of the hydrocarbon-based fuel to be added can be controlled so as to lower the oxygen concentration, thereby reducing the amount of use.

【0048】また本発明によれば、残存酸素濃度を廃棄
物投入後の経過時間から推算し、酸素濃度を測定する必
要はなくなるので、低コストの焼却を行うことができ
る。
Further, according to the present invention, it is not necessary to measure the oxygen concentration by estimating the residual oxygen concentration from the elapsed time after the introduction of the waste, so that low-cost incineration can be performed.

【0049】また本発明によれば、残存酸素濃度を測定
して平均残存酸素濃度を算出するので、精度の高い制御
を行うことができる。
Further, according to the present invention, since the average residual oxygen concentration is calculated by measuring the residual oxygen concentration, highly accurate control can be performed.

【0050】また本発明によれば、炉内で一酸化炭素等
の他のガスの濃度を測定して、平均残存酸素濃度が低く
なるように制御することができる。
Further, according to the present invention, the concentration of another gas such as carbon monoxide can be measured in the furnace to control the average residual oxygen concentration to be low.

【0051】また本発明によれば、炉内のガス温度を測
定して、平均残存酸素濃度が低くなるように制御するこ
とができる。
Further, according to the present invention, it is possible to control the gas temperature in the furnace so as to reduce the average residual oxygen concentration.

【0052】さらに本発明によれば、ごみ等の廃棄物を
焼却する炉内で、2つの燃焼ゾーンでの燃焼によるリバ
ーニング運転を行うために、炭化水素系燃料を添加して
還元性雰囲気を形成する。相関設定手段には、焼却すべ
き廃棄物の投入後の経過時間と炉内の酸素濃度との相関
関係が予め設定され、制御手段は、濃度推算手段がタイ
マによって計測される経過時間から推算する酸素濃度に
基づいて、平均残存酸素濃度が低くなるように燃焼用1
次空気を段階的に減少させて制御する。残存酸素濃度を
焼却すべき廃棄物の投入後の経過時間から推算するの
で、酸素濃度を測定する必要はなく、低コストの焼却を
行うことができる。また、燃焼ガス中の酸素濃度が変動
しても、変動を無視して低い酸素濃度を維持することが
できる。
Further, according to the present invention, in order to perform a reburning operation by burning in two combustion zones in a furnace for incinerating waste such as refuse, a hydrocarbon-based fuel is added to reduce the reducing atmosphere. Form. In the correlation setting means, a correlation between the elapsed time after the introduction of the waste to be incinerated and the oxygen concentration in the furnace is set in advance, and the control means estimates the concentration estimation means from the elapsed time measured by the timer. On the basis of the oxygen concentration, combustion 1
The secondary air is controlled by gradually decreasing it. Since the residual oxygen concentration is estimated from the elapsed time after the input of the waste to be incinerated, it is not necessary to measure the oxygen concentration, and low-cost incineration can be performed. Further, even if the oxygen concentration in the combustion gas changes, the change can be ignored and the low oxygen concentration can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態である廃棄物の焼却装置
の概略的な構成を示す簡略化した正面断面図である。
FIG. 1 is a simplified front cross-sectional view showing a schematic configuration of a waste incinerator according to an embodiment of the present invention.

【図2】図1の焼却装置での燃焼用1次空気の流量調整
状態を示すタイムチャートである。
FIG. 2 is a time chart showing a state of adjusting a flow rate of primary air for combustion in the incinerator of FIG. 1;

【図3】本発明の実施の他の形態である廃棄物の焼却装
置の概略的な構成を示す簡略化した正面断面図である。
FIG. 3 is a simplified front sectional view showing a schematic configuration of a waste incinerator according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 1次燃焼室 2 2次燃焼室 3 煙道 4 添加ガスノズル 7 送風機 9 空気流量調整器 11 タイマ 12 焼却処理対象物 13 酸素濃度計 14 燃料流量調整器 DESCRIPTION OF SYMBOLS 1 Primary combustion chamber 2 Secondary combustion chamber 3 Flue 4 Additive gas nozzle 7 Blower 9 Air flow regulator 11 Timer 12 Incineration target 13 Oxygen concentration meter 14 Fuel flow regulator

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23G 5/44 ZAB F23G 5/44 ZABF Fターム(参考) 3K062 AA18 AB01 AC01 AC19 BA02 BB04 CB06 CB08 DA01 DA22 DA23 DA24 DA25 DB06 DB13 3K065 AA18 AA24 AB01 AC01 AC19 BA04 BA09 GA03 GA12 GA22 GA32 HA01 3K078 AA04 AA08 AA09 BA03 BA24 CA02 CA12 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F23G 5/44 ZAB F23G 5/44 ZABF F term (reference) 3K062 AA18 AB01 AC01 AC19 BA02 BB04 CB06 CB08 DA01 DA22 DA23 DA24 DA25 DB06 DB13 3K065 AA18 AA24 AB01 AC01 AC19 BA04 BA09 GA03 GA12 GA22 GA32 HA01 3K078 AA04 AA08 AA09 BA03 BA24 CA02 CA12

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ごみ等の廃棄物を焼却する炉内で、第1
次燃焼ゾーンでは、燃焼用1次空気を供給して燃焼させ
た後で、炭化水素系燃料を添加して還元性雰囲気を形成
し、還元性雰囲気の後流となる第2次燃焼ゾーンでは、
燃焼用2次空気を供給して未燃成分を完全燃焼させて、
2つの燃焼ゾーンでの燃焼によるリバーニング運転を行
うための廃棄物の焼却方法において、 該還元性雰囲気における平均残存酸素濃度を4%以下
で、予め定める上限値以下になるように、第1段階で供
給する燃焼用1次空気の供給量を段階的に減少させて制
御することを特徴とする廃棄物の焼却方法。
1. In a furnace for incinerating waste such as garbage, the first
In the secondary combustion zone, after supplying and burning the primary air for combustion, a hydrocarbon-based fuel is added to form a reducing atmosphere, and in the secondary combustion zone downstream of the reducing atmosphere,
Supplying secondary air for combustion to completely burn unburned components,
A waste incineration method for performing reburning operation by combustion in two combustion zones, wherein a first step is performed so that an average residual oxygen concentration in the reducing atmosphere is 4% or less and a predetermined upper limit or less. A waste incineration method, characterized in that the supply amount of the primary air for combustion supplied in the step (1) is reduced and controlled stepwise.
【請求項2】 ごみ等の廃棄物を焼却する炉内で、第1
次燃焼ゾーンでは、燃焼用1次空気を供給して燃焼させ
た後で、炭化水素系燃料を添加して還元性雰囲気を形成
し、還元性雰囲気の後流となる第2次燃焼ゾーンでは、
燃焼用2次空気を供給して未燃成分を完全燃焼させて、
2つの燃焼ゾーンでの燃焼によるリバーニング運転を行
うための廃棄物の焼却方法において、 該還元性雰囲気における平均残存酸素濃度を予め定める
上限値以下になるように、炭化水素系燃料の添加量を制
御することを特徴とする廃棄物の焼却方法。
2. In a furnace for incinerating waste such as refuse, the first
In the secondary combustion zone, after supplying and burning the primary air for combustion, a hydrocarbon-based fuel is added to form a reducing atmosphere, and in the secondary combustion zone downstream of the reducing atmosphere,
Supplying secondary air for combustion to completely burn unburned components,
In a waste incineration method for performing a reburning operation by burning in two combustion zones, the amount of the hydrocarbon-based fuel added is controlled so that the average residual oxygen concentration in the reducing atmosphere is equal to or less than a predetermined upper limit. A waste incineration method characterized by controlling.
【請求項3】 前記平均残存酸素濃度は、焼却すべき廃
棄物の投入後の経過時間から推算する残存酸素濃度に基
づいて算出することを特徴とする請求項1または2記載
の廃棄物の焼却方法。
3. The incineration of waste according to claim 1, wherein the average residual oxygen concentration is calculated based on a residual oxygen concentration estimated from an elapsed time after charging the waste to be incinerated. Method.
【請求項4】 前記平均残存酸素濃度は、前記炉内の酸
素濃度を測定して算出することを特徴とする請求項1ま
たは2記載の廃棄物の焼却方法。
4. The waste incineration method according to claim 1, wherein the average residual oxygen concentration is calculated by measuring an oxygen concentration in the furnace.
【請求項5】 前記平均残存酸素濃度は、前記炉内の一
酸化炭素、二酸化炭素または窒素のうち、少なくとも一
つの濃度を測定し、予め求めておいた濃度値と酸素濃度
との相関関係に基づいて、測定した濃度値から酸素濃度
を推算し、酸素濃度の推算値から算出することを特徴と
する請求項1または2記載の廃棄物の焼却方法。
5. The average residual oxygen concentration is obtained by measuring at least one concentration of carbon monoxide, carbon dioxide, or nitrogen in the furnace and obtaining a correlation between a concentration value obtained in advance and the oxygen concentration. The waste incineration method according to claim 1 or 2, wherein the oxygen concentration is estimated from the measured concentration value based on the measured oxygen concentration, and the oxygen concentration is calculated from the estimated oxygen concentration value.
【請求項6】 前記平均残存酸素濃度は、前記炉内のガ
ス温度を測定し、予め求めておいたガス温度と酸素濃度
との相関関係に基づいて、測定したガス温度値から酸素
濃度を推算し、酸素濃度の推算値から算出することを特
徴とする請求項1または2記載の廃棄物の焼却方法。
6. The average residual oxygen concentration is obtained by measuring the gas temperature in the furnace and estimating the oxygen concentration from the measured gas temperature value based on a correlation between the gas temperature and the oxygen concentration determined in advance. The method for incinerating waste according to claim 1 or 2, wherein the method is calculated from an estimated value of the oxygen concentration.
【請求項7】 ごみ等の廃棄物を焼却する炉内で、第1
次燃焼ゾーンでは、燃焼用1次空気を供給して燃焼させ
た後で、炭化水素系燃料を添加して還元性雰囲気を形成
し、還元性雰囲気の後流となる第2次燃焼ゾーンでは、
燃焼用2次空気を供給して未燃成分を完全燃焼させて、
2つの燃焼ゾーンでの燃焼によるリバーニング運転を行
う、廃棄物の焼却装置において、 予め、焼却すべき廃棄物の投入後の経過時間と炉内の酸
素濃度との相関関係を設定しておく相関設定手段と、 焼却すべき廃棄物の投入後の経過時間を計測するタイマ
と、 タイマによって計測される経過時間に基づき、相関設定
手段に設定されている相関関係を参照して酸素を推算す
る濃度推算手段と、 濃度推算手段によって推算される酸素濃度に基づいて、
該還元性雰囲気における平均残存酸素濃度を4%以下
で、予め定める上限値以下になるように、第1段階の燃
焼に供給する燃焼用1次空気の供給量を段階的に減少さ
せて制御する制御手段とを含むことを特徴とする廃棄物
の焼却装置。
7. In a furnace for incinerating waste such as refuse, the first
In the secondary combustion zone, after supplying and burning the primary air for combustion, a hydrocarbon-based fuel is added to form a reducing atmosphere, and in the secondary combustion zone downstream of the reducing atmosphere,
Supplying secondary air for combustion to completely burn unburned components,
In a waste incineration system that performs reburning operation by combustion in two combustion zones, a correlation is set in advance to set the correlation between the elapsed time after the input of the waste to be incinerated and the oxygen concentration in the furnace. Setting means, a timer for measuring the elapsed time after the input of waste to be incinerated, and a concentration for estimating oxygen by referring to the correlation set in the correlation setting means based on the elapsed time measured by the timer. Based on the estimation means and the oxygen concentration estimated by the concentration estimation means,
The supply amount of the primary combustion air supplied to the first-stage combustion is controlled by gradually decreasing the average residual oxygen concentration in the reducing atmosphere to 4% or less and to a predetermined upper limit or less. A waste incineration apparatus comprising a control means.
JP2001060551A 2001-03-05 2001-03-05 Method and apparatus for incinerating waste Pending JP2002267133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001060551A JP2002267133A (en) 2001-03-05 2001-03-05 Method and apparatus for incinerating waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001060551A JP2002267133A (en) 2001-03-05 2001-03-05 Method and apparatus for incinerating waste

Publications (1)

Publication Number Publication Date
JP2002267133A true JP2002267133A (en) 2002-09-18

Family

ID=18919954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060551A Pending JP2002267133A (en) 2001-03-05 2001-03-05 Method and apparatus for incinerating waste

Country Status (1)

Country Link
JP (1) JP2002267133A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840002B1 (en) * 2007-02-09 2008-06-20 제이코코넛 주식회사 Apparatus for burning refuse derived fuel
KR101176914B1 (en) 2009-11-16 2012-08-30 박동수 Wholly burning apparatus and boiler system using the same
JP2017203572A (en) * 2016-05-10 2017-11-16 アナログシステム有限会社 Incinerator having secondary combustion furnace
JP2018185141A (en) * 2018-07-25 2018-11-22 アナログシステム有限会社 Incinerator having secondary combustion furnace
KR20220049094A (en) 2020-10-13 2022-04-21 한국기계연구원 Method and apparatus for controlling NOx in incinerator by suppressing combustion variability
KR20230037194A (en) * 2021-09-09 2023-03-16 김정길 Carbonized combustion system of livestock excrement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840002B1 (en) * 2007-02-09 2008-06-20 제이코코넛 주식회사 Apparatus for burning refuse derived fuel
KR101176914B1 (en) 2009-11-16 2012-08-30 박동수 Wholly burning apparatus and boiler system using the same
JP2017203572A (en) * 2016-05-10 2017-11-16 アナログシステム有限会社 Incinerator having secondary combustion furnace
JP2018185141A (en) * 2018-07-25 2018-11-22 アナログシステム有限会社 Incinerator having secondary combustion furnace
KR20220049094A (en) 2020-10-13 2022-04-21 한국기계연구원 Method and apparatus for controlling NOx in incinerator by suppressing combustion variability
KR20230037194A (en) * 2021-09-09 2023-03-16 김정길 Carbonized combustion system of livestock excrement
KR102591019B1 (en) 2021-09-09 2023-10-17 김정길 Carbonized combustion system of livestock excrement

Similar Documents

Publication Publication Date Title
EP1726876A1 (en) Improved method of combusting solid waste
US4757771A (en) Method and apparatus for stable combustion in a fluidized bed incinerator
KR100193548B1 (en) Drying gasification incineration treatment method of waste
DE69600429D1 (en) Process for melting combustion ashes
EP0570949B1 (en) Dried sludge melting furnace
JP2002267133A (en) Method and apparatus for incinerating waste
JP2009250571A (en) Starting method of circulating fluidized bed furnace
DK1164331T3 (en) Waste incinerator with exhaust gas recirculation
JP5762714B2 (en) Dry distillation gasification incineration processing equipment
JP2002181320A (en) Waste gasification combustion system and method therefor
JP3598882B2 (en) Two-stream waste incinerator and its operation method
JPH08334218A (en) Dry-distillation incinerator
JP2002221308A (en) Combustion control method and waste treatment equipment
JP2003329228A (en) Waste incinerator
JP3014953B2 (en) Incinerator
KR20000045561A (en) Plasma melting method and device
JP2002195534A (en) Method and system for controlling combustion of refuse incinerator
JP2004169954A (en) Operation method for waste incinerator and waste incinerator
JP2000111022A (en) Method for removing dioxins in waste incinerator
JP2000257828A (en) Waste-incinerating method in fluidized bed incinerator and fluidized bed incinerator
KR200409441Y1 (en) batch type incinerator
JP3062415B2 (en) Furnace pressure control device of incineration ash melting furnace
JPH11351558A (en) Method and apparatus for controlling combustion of combustion furnace
JP2000297917A (en) Municipal refuse incinerating device and its operation method
JP2005345078A (en) Dry distillation gasification and incineration processing device