JP2002266952A - Driving transmission mechanism device - Google Patents

Driving transmission mechanism device

Info

Publication number
JP2002266952A
JP2002266952A JP2001066639A JP2001066639A JP2002266952A JP 2002266952 A JP2002266952 A JP 2002266952A JP 2001066639 A JP2001066639 A JP 2001066639A JP 2001066639 A JP2001066639 A JP 2001066639A JP 2002266952 A JP2002266952 A JP 2002266952A
Authority
JP
Japan
Prior art keywords
transmission mechanism
pin
driven gear
driven shaft
pin receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001066639A
Other languages
Japanese (ja)
Inventor
Yasunari Kawashima
康成 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001066639A priority Critical patent/JP2002266952A/en
Publication of JP2002266952A publication Critical patent/JP2002266952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gear Transmission (AREA)
  • Gears, Cams (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a driving transmission mechanism device capable of inhibiting a transmission of a load caused by a disturbance torque at a gear engagement frequency to a driven shaft, simply adjusting a rotation rigidity of a fastening part corresponding to the gear engagement frequency and simply setting a switching of the rotation rigidity required at the time of activation and at the time of constant speed. SOLUTION: Only a rotation direction is elastically deformed at the fastening part 3 of the driven shaft 2 and a driven gear 1 and the rotation rigidity K2 is adjusted so as to satisfy a relationship formula: fp>fz (provided that fz=(1/2π×(K2/J2)<1/2> ×2<1/2> ) when the rotation rigidity is defined as K2, an inertia moment of the driven shaft 2 is defined as J2 and the gear engagement frequency at the time of operation is defined as fp. The rotation rigidity K2 is adjusted by changing any one of a mounting position radius r of a pin-receiving part, a thickness t in the rotation direction, a pin receiving width b, an axial contact height L and a pin diameter dp. The pin-receiving part 4 is set such that it varies the contact points with a driven shaft pin 5 corresponding to a load torque.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、駆動軸と従動軸と
伝達機構からなる駆動伝達機構装置に関するものであ
り、詳しくは従動軸の定速度性に重点をおいた駆動伝達
機構装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive transmission mechanism device comprising a drive shaft, a driven shaft and a transmission mechanism, and more particularly to a drive transmission mechanism device emphasizing constant speed of a driven shaft. is there.

【0002】[0002]

【従来の技術】従来より、駆動伝達機構装置において従
動軸の回転を一定速度に保つための方法として、大きく
2つある。1つは、従動軸の慣性モーメント(J)を大
きくし、ギヤ噛合い周波数での外乱トルクやモータの変
動トルクに対して応答しない様にするイナーシャ効果と
呼ばれる方法であり、もう1つは弾性部材を伝達機構部
に介することで振動を遮断する方法である。いずれの方
法も固有振動数f(=1/2π×√(K/J))を小さ
くする方法で、前者は慣性モーメント(J)を大きく
し、後者は弾性部材の回転剛性(K)を小さくする方法
である。しかし、慣性モーメント(J)を大きくする方
法は駆動力の増加が必要となり、小型、低コストな装置
には不向きである。そこで、この問題を解決するため
に、特開平6−249321号公報や特開平6−294
453号公報及び特開平7−325445号公報では回
転剛性(K)を小さくする方法が提案されている。
2. Description of the Related Art Conventionally, there are roughly two methods for maintaining the rotation of a driven shaft at a constant speed in a drive transmission mechanism device. One is a method called an inertia effect that increases the moment of inertia (J) of the driven shaft so that it does not respond to disturbance torque at the gear meshing frequency or fluctuation torque of the motor. This is a method of intercepting vibration by passing a member through a transmission mechanism. In either method, the natural frequency f (= 1 / 2π × √ (K / J)) is reduced. The former increases the moment of inertia (J), and the latter decreases the rotational rigidity (K) of the elastic member. How to However, the method of increasing the moment of inertia (J) requires an increase in driving force, and is not suitable for a small-sized and low-cost device. Therefore, in order to solve this problem, Japanese Patent Application Laid-Open Nos. 6-249321 and 6-294.
No. 453 and JP-A-7-325445 propose a method of reducing the rotational rigidity (K).

【0003】特開平6−249321号公報及び特開平
6−294453号公報では、ギヤなどの伝達機構部の
中に弾性部材を組込み回転方向の振動を吸収させる方法
について提案されている。しかし、ギヤなどの伝達機構
部の中に弾性部材を組込むことで、回転方向以外の回転
剛性も低下してしまう。例えば、はす歯ギヤのようにス
ラスト力が伝達機構部であるギヤに加わると弾性部材が
逃げる方向に変形し、通常の噛合いができなくなる。こ
の歯の片当たり現象で振動増加が予測される。また、弾
性部材を半径方向に組み込んだ場合、ギヤ歯からみた中
心軸と従動軸中心の軸心誤差、いわゆるギヤ歯部の同軸
度も懸念される。
[0003] JP-A-6-249321 and JP-A-6-294453 propose a method of incorporating an elastic member in a transmission mechanism such as a gear to absorb vibration in the rotational direction. However, by incorporating an elastic member into a transmission mechanism such as a gear, rotational rigidity other than the rotational direction is also reduced. For example, when a thrust force is applied to a gear, which is a transmission mechanism, such as a helical gear, the elastic member is deformed in a direction in which it escapes, and normal meshing cannot be performed. An increase in vibration is predicted by this tooth skew phenomenon. Further, when the elastic member is incorporated in the radial direction, there is a concern about an axial center error between the center axis and the driven shaft center viewed from the gear teeth, that is, a so-called coaxiality of the gear teeth.

【0004】また、特開平7−325445号公報で
は、弾性部材を一体ではなく独立した部品として形成
し、組付け、振動を吸収させる方法について提案されて
いる。この技術によれば、独立させて組付けられるので
同軸度はクリアできるが、部品点数増加によるコストア
ップが問題となる。
Japanese Patent Application Laid-Open No. Hei 7-325445 proposes a method in which an elastic member is formed as an independent component instead of being integrated, assembled, and absorbs vibration. According to this technique, the coaxiality can be cleared because the components are assembled independently, but there is a problem of an increase in cost due to an increase in the number of parts.

【0005】[0005]

【発明が解決しようとする課題】上記問題点に鑑み、請
求項1に記載の本発明では、弾性部品等を追加すること
なく、高精度なギヤ歯の同軸度を保ち、ギヤ噛合い周波
数での外乱トルクを従動側に伝えない駆動伝達機構装置
を提供することを課題とする。また、請求項2から6に
記載の本発明では、ギヤ噛合い周波数に対応させて設定
する必要のある締結部分の回転剛性を簡単に調整できる
駆動伝達機構装置を提供することを課題とする。さら
に、請求項7に記載の本発明は、起動時の加速時に素早
い動作が行える駆動伝達機構装置を提供することを課題
とする。さらに、請求項8から請求項10に記載の本発
明は、起動時と一定速度時に必要な回転剛性の切替えを
簡単に設定できる駆動伝達機構装置を提供することを課
題とする。
SUMMARY OF THE INVENTION In view of the above problems, in the present invention according to the first aspect, the coaxiality of the gear teeth is maintained with high precision without adding an elastic part or the like, and the gear meshing frequency is reduced. It is an object of the present invention to provide a drive transmission mechanism device that does not transmit the disturbance torque to the driven side. Another object of the present invention is to provide a drive transmission mechanism device that can easily adjust the rotational rigidity of a fastening portion that needs to be set in accordance with the gear meshing frequency. A further object of the present invention is to provide a drive transmission mechanism device capable of performing a quick operation at the time of acceleration at the time of starting. A further object of the present invention is to provide a drive transmission mechanism device which can easily set the required switching of the rotational rigidity at the time of startup and at a constant speed.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の本発明は、モータ等の駆動源に連結
された駆動軸と、作業を行う従動軸と、従動軸に駆動力
を伝達する伝達機構部を有した駆動伝達機構装置におい
て、従動軸と従動ギヤの締結部で回転方向のみを弾性変
形するものとし、その回転剛性をK2、従動軸の慣性モ
ーメントをJ2、動作時のギヤ噛合い周波数fpとし
て、以下の関係式を満たすように従動ギヤ締結部回転剛
性K2を調整することを特徴とする駆動伝達機構装置と
する。 fp>fz ただし、fz=(1/2π×√(K2/J2))×√2
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention according to claim 1 provides a drive shaft connected to a drive source such as a motor, a driven shaft for performing work, and a drive shaft driven by a driven shaft. In a drive transmission mechanism device having a transmission mechanism for transmitting a force, it is assumed that only the rotational direction is elastically deformed at a fastening portion between the driven shaft and the driven gear, the rotational rigidity is K2, the inertia moment of the driven shaft is J2, and the operation is J2. The drive transmission mechanism device is characterized in that the driven gear engaging portion rotational rigidity K2 is adjusted so as to satisfy the following relational expression as the gear meshing frequency fp at the time. fp> fz where fz = (1 / 2π × √ (K2 / J2)) × √2

【0007】請求項2記載の本発明は、伝達機構部のギ
ヤを樹脂にて成形し、従動軸ピンと対応するギヤのピン
受け部からなる締結部で、ピン受け部の取り付け位置半
径を変えることで回転剛性を調整することを特徴とする
請求項1記載の駆動伝達機構装置とする。請求項3記載
の本発明は、伝達機構部のギヤを樹脂にて成形し、従動
軸ピンと対応するギヤのピン受け部からなる締結部で、
ピン受け部の回転方向の肉厚を変えることで回転剛性を
調整することを特徴とする請求項1記載の駆動伝達機構
装置とする。請求項4記載の本発明は、伝達機構部のギ
ヤを樹脂にて成形し、従動軸ピンと対応するギヤのピン
受け部からなる締結部で、ピン受け部の半径方向のピン
受け幅を変えることで回転剛性を調整することを特徴と
する請求項1記載の駆動伝達機構装置とする。請求項5
記載の本発明は、伝達機構部のギヤを樹脂にて成形し、
従動軸ピンと対応するギヤのピン受け部からなる締結部
で、ピン受け部の軸方向の接触高さを変えることで回転
剛性を調整することを特徴とする請求項1記載の駆動伝
達機構装置とする。請求項6記載の本発明は、従動軸と
従動ギヤの締結手段として従動軸ピンを用い、ピン径を
変えることで回転剛性を調整することを特徴とする請求
項1記載の駆動伝達機構装置とする。
According to a second aspect of the present invention, the gear of the transmission mechanism is formed of resin, and the radius of the mounting position of the pin receiving portion is changed at the fastening portion formed by the pin receiving portion of the gear corresponding to the driven shaft pin. The drive transmission mechanism device according to claim 1, wherein the rotational rigidity is adjusted by (1). According to the third aspect of the present invention, the gear of the transmission mechanism is formed of a resin, and the driven shaft pin is a fastening portion comprising a pin receiving portion of the gear corresponding to the driven shaft pin.
The drive transmission mechanism device according to claim 1, wherein the rotational rigidity is adjusted by changing the thickness of the pin receiving portion in the rotational direction. According to a fourth aspect of the present invention, the gear of the transmission mechanism is formed of resin, and the pin receiving portion of the pin receiving portion in the radial direction is changed at the fastening portion including the driven shaft pin and the corresponding pin receiving portion of the gear. The drive transmission mechanism device according to claim 1, wherein the rotational rigidity is adjusted by (1). Claim 5
In the invention described, the gear of the transmission mechanism is formed of resin,
The drive transmission mechanism device according to claim 1, wherein the rotational rigidity is adjusted by changing an axial contact height of the pin receiving portion at a fastening portion formed by a pin receiving portion of the gear corresponding to the driven shaft pin. I do. According to a sixth aspect of the present invention, there is provided the drive transmission mechanism device according to the first aspect, wherein a driven shaft pin is used as a fastening means for the driven shaft and the driven gear, and rotational rigidity is adjusted by changing a pin diameter. I do.

【0008】請求項7記載の本発明は、起動時の回転剛
性が一定速度時の回転剛性よりも大きく変化することを
特徴とする請求項1記載の駆動伝達機構装置とする。請
求項8記載の本発明は、従動軸ピンと対応するギヤのピ
ン受け部が2重構造の梁形状であることを特徴とする請
求項1又は7記載の駆動伝達機構装置とする。請求項9
記載の本発明は、従動軸ピンと対応するギヤのピン受け
部とが負荷トルクに応じて接触点数を変化することを特
徴とする請求項1又は7記載の駆動伝達機構装置とす
る。請求項10記載の本発明は、締結部において2つの
ピン受け部の間隔を変えてあることを特徴とする請求項
1又は7記載の駆動伝達機構装置とする。
According to a seventh aspect of the present invention, there is provided a drive transmission mechanism device according to the first aspect, wherein the rotational rigidity at the time of starting changes more than the rotational rigidity at a constant speed. According to an eighth aspect of the present invention, there is provided the drive transmission mechanism device according to the first or seventh aspect, wherein the pin receiving portion of the gear corresponding to the driven shaft pin has a double beam structure. Claim 9
According to the present invention, there is provided a drive transmission mechanism device according to claim 1 or 7, wherein the number of contact points between the driven shaft pin and the corresponding pin receiving portion of the gear changes according to the load torque. According to a tenth aspect of the present invention, there is provided the drive transmission mechanism device according to the first or seventh aspect, wherein an interval between the two pin receiving portions is changed in the fastening portion.

【0009】[0009]

【発明の実施の形態】以下より本発明の実施の形態を図
に基づいて説明する。 (第1の実施の形態)請求項1の実施の形態について説
明する。図1に振動モデルとその伝達特性の式を示す。
駆動軸側の駆動ギヤと従動軸側の従動ギヤ間には、ギヤ
の形状精度や噛合い歯数で変化するギヤ歯対剛性(K
1)によって発生される外乱トルクによる負荷が加わ
る。この力は、従動ギヤの歯部に加わり、従動ギヤと従
動軸とを締結する締結部の回転剛性(K2)を介して従
動軸へと伝達されていく。本発明ではこの外乱トルクの
負荷による影響を小さくするように締結部の回転剛性
(K2)の値を調整する。その方法として、従来のよう
に新たに弾性体部品を使用するのではなく、従動ギヤの
従動軸と締結する部分を利用する。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) The first embodiment of the present invention will be described. FIG. 1 shows a vibration model and equations for its transfer characteristics.
Between the drive gear on the drive shaft side and the driven gear on the driven shaft side, the gear teeth versus rigidity (K
The load due to the disturbance torque generated by 1) is applied. This force is applied to the teeth of the driven gear, and is transmitted to the driven shaft via the rotational rigidity (K2) of the fastening portion that connects the driven gear and the driven shaft. In the present invention, the value of the rotational rigidity (K2) of the fastening portion is adjusted so as to reduce the influence of the disturbance torque due to the load. As a method of this, instead of newly using an elastic body part as in the related art, a portion to be fastened to a driven shaft of a driven gear is used.

【0010】その説明図を図2に示す。従動ギヤ1に弾
性変形する凸形状のピン受け部4を設け、これを変形さ
せることで締結部の回転剛性K2の設定が可能となる。
図3はピン受け部4の変形を示す断面図である。図3
(a)の負荷なし状態ではピン受け部4は変形しない
が、負荷が加わると図3(b)に示すようにピン受け部
4がε変形する。この結果、従動軸2及び従動ギヤ1は
角度φ傾く。この時の負荷をTeとすると、締結部の回
転剛性K2は、K2=Te/φとなる。従動軸2と従動
ギヤ1の同軸度は、半径方向に弾性変形する部分がない
ので高精度に保つことができる。
FIG. 2 shows an explanatory diagram thereof. The driven gear 1 is provided with a pin receiving portion 4 having a convex shape which is elastically deformed, and by deforming the pin receiving portion 4, the rotational rigidity K2 of the fastening portion can be set.
FIG. 3 is a sectional view showing a deformation of the pin receiving portion 4. FIG.
3A, the pin receiving portion 4 is not deformed when there is no load, but when a load is applied, the pin receiving portion 4 is deformed by ε as shown in FIG. 3B. As a result, the driven shaft 2 and the driven gear 1 are inclined at an angle φ. Assuming that the load at this time is Te, the rotational rigidity K2 of the fastening portion is K2 = Te / φ. The coaxiality of the driven shaft 2 and the driven gear 1 can be maintained with high precision because there is no portion that is elastically deformed in the radial direction.

【0011】このK2を調整した結果を図4に示す。横
軸に周波数をとり、縦軸には外乱トルクに対する従動軸
変位で耐外乱特性である。このグラフで下側に行く程、
外乱トルクに強いことを示す。締結部の回転剛性がK2
=A(破線)の場合とK2=B(実線)の場合の伝達特
性をグラフに示す。K2=Bの場合が本発明による調整
結果である。請求項1に記載したfzの値と使用回転速
度での噛合い周波数fpの値とを比較すると、K2=A
のときはfp<fzであり、K2=Bのときはfp>f
zの関係になる。その結果、耐外乱特性がδ分向上した
ことがわかる。
FIG. 4 shows the result of adjusting K2. Frequency is plotted on the abscissa, and displacement on the driven shaft with respect to disturbance torque is the disturbance resistance characteristic on the ordinate. The further down in this graph,
Indicates that it is strong against disturbance torque. The rotational rigidity of the fastening part is K2
= A (broken line) and K2 = B (solid line) in the graph. The case of K2 = B is the adjustment result according to the present invention. Comparing the value of fz described in claim 1 with the value of the meshing frequency fp at the operating rotational speed, K2 = A
Fp <fz when K2 = B, and fp> f when K2 = B
z. As a result, it can be seen that the disturbance resistance was improved by δ.

【0012】(第2の実施の形態)請求項2の実施の形
態について説明する。図5はピン受け部4を示す図であ
る。負荷をTe、ピン受け部4の荷重をFe、ピン受け
部4の取り付け位置半径をr、ピン受け部4のピン受け
幅をb、ピン受け部4の肉厚をt、ピン受け部4の軸方
向高さをL、従動ギヤ1材料のヤング率をE、ピン受け
部4の変形量をε、従動ギヤ1と従動軸2間のねじれを
φ、締結部の回転剛性をK2とすると、材料力学のたわ
み式より、 ε=(4・L)/(E・b・t)・Fe また、ピン受け部が軸対象に4個所(接触は2個所)と
して、 Te=2・Fe・r また、負荷の釣り合いから、 Te=K2・φ また、従動軸ピン5の変形は小さいとして、 ε=φ・r これらからK2を求めると、 K2=(E・b・t・r)/(2・L) となる。ここで、ギヤ噛合い周波数fpに対応させて設
定する必要のある締結部の回転剛性K2を簡単に調整す
るための方法として、図5に示すように、ピン受け部の
取り付け位置半径rを調整する。rの位置は、ギヤ歯と
同様に金型に設定しておくことで、簡単に形成できる。
締結部の回転剛性K2はrの2乗に比例しているので、
幅広い範囲での調整が可能となる。
(Second Embodiment) A second embodiment will be described. FIG. 5 is a view showing the pin receiving section 4. The load is Te, the load of the pin receiving portion 4 is Fe, the radius of the mounting position of the pin receiving portion 4 is r, the pin receiving width of the pin receiving portion 4 is b, the thickness of the pin receiving portion 4 is t, and the pin receiving portion 4 has a thickness of t. Assuming that the axial height is L, the Young's modulus of the material of the driven gear 1 is E, the deformation of the pin receiving portion 4 is ε, the torsion between the driven gear 1 and the driven shaft 2 is φ, and the rotational rigidity of the fastening portion is K2. From the bending equation of the material mechanics, ε = (4 · L 3 ) / (E · b · t 3 ) · Fe Further, assuming that the pin receiving portion has four axially symmetrical points (two contact points), Te = 2 · Fe · r in addition, the balance of the load, also Te = K2 · φ, and the deformation of the driven shaft pin 5 is small, epsilon = phi · r When obtaining them from K2, K2 = (E · b · t 3 · r 2 ) / (2 · L 3 ). Here, as a method for easily adjusting the rotational rigidity K2 of the fastening portion which needs to be set corresponding to the gear meshing frequency fp, as shown in FIG. 5, the mounting position radius r of the pin receiving portion is adjusted. I do. The position of r can be easily formed by setting it in the mold similarly to the gear teeth.
Since the rotational rigidity K2 of the fastening portion is proportional to the square of r,
Adjustment in a wide range is possible.

【0013】(第3の実施の形態)請求項3の実施の形
態について説明する。ギヤ噛合い周波数fpに対応させ
て設定する必要のある締結部の回転剛性K2を簡単に調
整するための更なる方法として、図5において、ピン受
け部の肉厚tを調整する。この肉厚tは、ギヤ歯と同様
に金型に設定しておくことで、簡単に形成できる。締結
部の回転剛性K2はtの3乗に比例しているので、より
幅広い範囲での調整が可能となる。
(Third Embodiment) A third embodiment will be described. As a further method for easily adjusting the rotational rigidity K2 of the fastening portion which needs to be set in accordance with the gear meshing frequency fp, in FIG. 5, the thickness t of the pin receiving portion is adjusted. The thickness t can be easily formed by setting the thickness in a mold similarly to the gear teeth. Since the rotational rigidity K2 of the fastening portion is proportional to the third power of t, adjustment in a wider range is possible.

【0014】(第4の実施の形態)請求項4の実施の形
態について説明する。ギヤ噛合い周波数fpに対応させ
て設定する必要のある締結部の回転剛性K2を簡単に調
整するための更なる方法として、図5において、ピン受
け部のピン受け幅bを調整する。このピン受け幅bは、
ギヤ歯と同様に金型に設定しておくことで、簡単に形成
できる。締結部の回転剛性K2はbに比例しているの
で、狭い範囲での高精度な調整が可能となる。
(Fourth Embodiment) A fourth embodiment will be described. As a further method for easily adjusting the rotational rigidity K2 of the fastening portion which needs to be set in accordance with the gear meshing frequency fp, the pin receiving width b of the pin receiving portion is adjusted in FIG. This pin receiving width b is
It can be easily formed by setting it in a mold similarly to the gear teeth. Since the rotational rigidity K2 of the fastening portion is proportional to b, high-precision adjustment in a narrow range is possible.

【0015】(第5の実施の形態)請求項5の実施の形
態について説明する。ギヤ噛合い周波数fpに対応させ
て設定する必要のある締結部の回転剛性K2を簡単に調
整するための更なる方法として、図5において、ピン受
け軸方向接触高さLを調整する。この接触高さLは、ギ
ヤ歯と同様に金型に設定しておくことで、簡単に形成で
きる。締結部の回転剛性K2はLの3乗に反比例してい
るので、より幅広い範囲での調整が可能となる。
(Fifth Embodiment) A fifth embodiment will be described. As a further method for easily adjusting the rotational rigidity K2 of the fastening portion which needs to be set in accordance with the gear meshing frequency fp, in FIG. 5, the pin contact axial height L is adjusted. The contact height L can be easily formed by setting the contact height L in a mold similarly to the gear teeth. Since the rotational rigidity K2 of the fastening portion is inversely proportional to the third power of L, adjustment in a wider range is possible.

【0016】(第6の実施の形態)請求項6の実施の形
態について説明する。図6はピン受け部4を示す図であ
る。図6において、 負荷をTe、ピン受け部4の荷重
をFe、ピン受け部4の取り付け位置半径をr、片側ピ
ン長をLp、ピン径をdp、従動軸ピン5材料のヤング
率をEp、従動軸ピン5の変形量をεp、従動ギヤ1と
従動軸2間のねじれをφ、締結部の回転剛性をK2とす
ると、材料力学のたわみ式より、 εp=(64・Lp)/(3・Ep・π・dp)・
Fe また、ピン受けが軸対象に4個所(接触は2個所)とし
て、 Te=2・Fe・r また、負荷の釣り合いから、 Te=K2・φ また、ピン受け部の変形は小さいとして、 εp=φ・r これらからK2を求めると、 K2=(3・π・Ep・dp・r)/(32・Lp
) となる。ここで、ギヤ噛合い周波数fpに対応させて設
定する必要のある締結部の回転剛性K2を簡単に調整す
るための更なる方法として、図6に示すように、ピン径
dpを調整する。樹脂成形のピン受け部4が弾性変形し
ない構造にするため、金属である従動軸ピン5の直径を
小さくする。これにより従動軸ピン5が弾性変形し、締
結部の回転剛性K2の設定が可能となる。従動軸ピン5
は樹脂成形のピン受け部4に比べてもろくないため、衝
撃的な負荷が加わっても折れることなく変形することが
できる。
(Sixth Embodiment) A sixth embodiment will be described. FIG. 6 is a view showing the pin receiving section 4. In FIG. 6, the load is Te, the load of the pin receiving portion 4 is Fe, the mounting position radius of the pin receiving portion 4 is r, the length of one pin is Lp, the pin diameter is dp, and the Young's modulus of the material of the driven shaft pin 5 is Ep. Assuming that the amount of deformation of the driven shaft pin 5 is εp, the torsion between the driven gear 1 and the driven shaft 2 is φ, and the rotational rigidity of the fastening portion is K2, εp = (64 · Lp 3 ) / ( 3 ・ Ep ・ π ・ dp 4 ) ・
Fe In addition, assuming that the pin receiver has four locations on the axis (two contacts), Te = 2 · Fe · r Also, from the balance of the load, Te = K2 · φ Also, assuming that the deformation of the pin receiver is small, εp = Φ · r When K2 is obtained from these, K2 = (3 · π · Ep · dp 4 · r 2 ) / (32 · Lp
3 ) Here, as a further method for easily adjusting the rotational rigidity K2 of the fastening portion which needs to be set in accordance with the gear meshing frequency fp, as shown in FIG. 6, the pin diameter dp is adjusted. The diameter of the driven shaft pin 5 made of metal is reduced to make the resin receiving pin receiving portion 4 not elastically deform. As a result, the driven shaft pin 5 is elastically deformed, and the rotational rigidity K2 of the fastening portion can be set. Driven shaft pin 5
Is not brittle as compared with the resin-molded pin receiving portion 4, so that it can be deformed without breaking even when an impact load is applied.

【0017】(第7の実施の形態)請求項7の実施の形
態について説明する。図7は本発明における負荷と回転
剛性の関係を示すグラフである。従動軸が起動時の加速
時に対応して素早い動作を行えるようにするため、一定
速度時の回転剛性K2に対して、高負荷がかかる起動時
には回転剛性K2が大きくなる構造とする。図7に見ら
れるように、定常時である一定速度時の回転剛性K2と
起動時の回転剛性K2’とを設定することで、起動時で
の締結部のねじれによる従動軸の遅れは小さくすること
ができ、起動時間の短縮の効果がある。
(Seventh Embodiment) A seventh embodiment will be described. FIG. 7 is a graph showing the relationship between load and rotational rigidity in the present invention. In order to enable the driven shaft to perform a quick operation corresponding to the acceleration at the time of start-up, the rotational rigidity K2 at the time of a high-load start-up is larger than the rotational rigidity K2 at a constant speed. As can be seen from FIG. 7, by setting the rotational rigidity K2 at a constant speed, which is a steady state, and the rotational rigidity K2 'at the time of startup, the delay of the driven shaft due to the torsion of the fastening portion at the time of startup is reduced. It has the effect of shortening the startup time.

【0018】(第8の実施の形態)請求項8の実施の形
態について説明する。図8はピン受け部を示す斜視図で
ある。起動時と一定速度時に必要な回転剛性の切替えを
簡単に設定するための方法として、従動ギヤ受け部を2
重構造の梁形状とする。従動軸ピン5荷重が小さい定常
時ではA部の梁部分だけ変形する回転剛性K2である
が、起動時の高負荷が加わるとA部の梁が変形してB部
の梁まで届き、全体が変形する形になる。このときの回
転剛性がK2’になり、簡単な構造で回転剛性の可変を
設定することができる。
(Eighth Embodiment) An eighth embodiment will be described. FIG. 8 is a perspective view showing a pin receiving portion. As a method for easily setting the switching of the rotational rigidity required at the time of starting and at a constant speed, the driven gear receiving portion is provided with two
The beam structure will be heavy. The driven shaft pin 5 has a rotational rigidity K2 that deforms only the beam portion of the portion A in a steady state when the load is small, but when a high load is applied at the time of starting, the beam of the portion A is deformed and reaches the beam of the portion B. It will be deformed. The rotational rigidity at this time is K2 ', and the rotational rigidity can be set variable with a simple structure.

【0019】(第9の実施の形態)請求項9の実施の形
態について説明する。図9はピン受け部を示す斜視図で
ある。起動時と一定速度時に必要な回転剛性の切替えを
簡単に設定するための更なる方法として、外乱トルクに
応じてピン受け部4の接触点数が変化するようにする。
従動軸ピン5荷重が小さい定常時では従動軸ピン5側に
近く剛性の低いA部の梁部分がδpだけ接触する回転剛
性K2であるが、起動時の高負荷が加わるとA部の梁が
変形して従動軸ピン5はB部の梁とも接触する。このた
め、回転剛性はA部とB部を合わせた回転剛性K2’に
なる。このように、変化させたい回転剛性に対応したピ
ン受け部を設けておくことで、負荷に応じて接触点数が
変化するので、簡単な構造で回転剛性の可変を設定する
ことができる。
(Ninth Embodiment) A ninth embodiment will be described. FIG. 9 is a perspective view showing a pin receiving portion. As a further method for easily setting the switching of the rotational rigidity required at the time of starting and at a constant speed, the number of contact points of the pin receiving portion 4 is changed according to the disturbance torque.
When the load on the driven shaft pin 5 is small and steady, the beam portion of the portion A which is close to the driven shaft pin 5 and has low rigidity has a rotational rigidity K2 in which the beam portion A contacts by δp. The driven shaft pin 5 is deformed and also comes into contact with the beam in the portion B. For this reason, the rotational rigidity is the rotational rigidity K2 'obtained by combining the portions A and B. By providing the pin receiving portion corresponding to the rotational rigidity to be changed in this way, the number of contact points changes according to the load, so that the rotational rigidity can be varied with a simple structure.

【0020】(第10の実施の形態)請求項10の実施
の形態について説明する。図10はピン受け部の設定位
置を示す断面図である。起動時と一定速度時に必要な回
転剛性の切替えを簡単に設定するための更なる方法とし
て、2つあるピン受け部の間隔を変えて設定する。図1
0では一方の間隔をδu、もう一方の間隔をδdとして
いる。従動軸ピン5荷重が小さい定常時では間隔の狭い
δu側の従動軸ピン5だけピン受け部4に接触すること
になる。このとき、δd側の従動軸ピン5は接触してい
ないので、負荷はδu側の従動軸ピン5だけで支持され
る。また、このとき回転剛性はK2に相当する。高負荷
が加わる起動時にはδu側の変形が大きくなり、δd側
のピン受け部4にも接触するようになる。この状態が回
転剛性はK2’に相当する。このように、δuとδdの
大きさを設定することで、回転剛性の切替えが簡単に調
整することができる。
(Tenth Embodiment) The tenth embodiment will be described. FIG. 10 is a sectional view showing a set position of the pin receiving portion. As a further method for easily setting the switching of the rotational rigidity required at the time of startup and at a constant speed, the interval between the two pin receiving portions is changed and set. Figure 1
At 0, one interval is δu and the other interval is δd. In a steady state where the load of the driven shaft pin 5 is small, only the driven shaft pin 5 on the δu side with a small interval contacts the pin receiving portion 4. At this time, since the driven shaft pin 5 on the δd side is not in contact, the load is supported only by the driven shaft pin 5 on the δu side. At this time, the rotational rigidity corresponds to K2. At the time of startup when a high load is applied, the deformation on the δu side increases, and comes into contact with the pin receiver 4 on the δd side. In this state, the rotational rigidity corresponds to K2 '. In this way, by setting the magnitudes of δu and δd, the switching of the rotational rigidity can be easily adjusted.

【0021】[0021]

【発明の効果】以上説明したように、請求項1記載の本
発明によれば、弾性部品を追加することなく、高精度な
ギヤ歯の同軸度を保ち、駆動ギヤ噛合い周波数での外乱
トルクを従動ギヤ側に伝えない、高精度な駆動伝達機構
装置を提供することができる。また、請求項2から6記
載の本発明によれば、締結部の回転剛性を簡単に調整す
ることができ、駆動ギヤ噛合い周波数で発生する外乱ト
ルクの影響を従動ギヤ側に伝えない、高精度な駆動伝達
機構装置を提供することができる。更に、請求項7記載
の本発明によれば、起動時の回転剛性による遅れが小さ
くなり、素早い動作が可能な駆動伝達機構装置を提供す
ることができる。更に、請求項8から10記載の本発明
によれば、起動時と一定速度時に必要な回転剛性の切替
えが簡単に設定でき、駆動ギヤ噛合い周波数で発生する
外乱トルクの影響を抑え、且つ、起動時の回転剛性によ
る遅れが小さくなり、高精度な駆動伝達機構装置を提供
することができる。
As described above, according to the first aspect of the present invention, the coaxiality of the gear teeth can be maintained with high precision without adding any elastic parts, and the disturbance torque at the driving gear meshing frequency can be maintained. Is not transmitted to the driven gear side, and a highly accurate drive transmission mechanism device can be provided. Further, according to the present invention, the rotational rigidity of the fastening portion can be easily adjusted, and the influence of the disturbance torque generated at the driving gear meshing frequency is not transmitted to the driven gear side. An accurate drive transmission mechanism device can be provided. Further, according to the present invention, it is possible to provide a drive transmission mechanism device in which a delay due to rotational rigidity at the time of starting is reduced and a quick operation is possible. Further, according to the present invention as set forth in claims 8 to 10, it is possible to easily set the switching of the rotational rigidity required at the time of startup and at a constant speed, to suppress the influence of disturbance torque generated at the drive gear meshing frequency, and A delay due to rotational rigidity at the time of startup is reduced, and a highly accurate drive transmission mechanism device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従動ギヤに係る振動モデルとその伝達特性の式
を示す。
FIG. 1 shows a vibration model relating to a driven gear and equations for its transmission characteristics.

【図2】従動ギヤの概略構成図である。FIG. 2 is a schematic configuration diagram of a driven gear.

【図3】ピン受け部の変形を示す断面図である。FIG. 3 is a sectional view showing a deformation of a pin receiving portion.

【図4】回転剛性の調整結果を示すグラフである。FIG. 4 is a graph showing adjustment results of rotational rigidity.

【図5】本発明のピン受け部を示す斜視図である。FIG. 5 is a perspective view showing a pin receiving portion of the present invention.

【図6】本発明のピン受け部を示す斜視図である。FIG. 6 is a perspective view showing a pin receiving portion of the present invention.

【図7】負荷と回転剛性の関係を示すグラフである。FIG. 7 is a graph showing a relationship between load and rotational rigidity.

【図8】本発明のピン受け部の形状を示す斜視図であ
る。
FIG. 8 is a perspective view showing a shape of a pin receiving portion of the present invention.

【図9】本発明のピン受け部の設定位置を示す斜視図で
ある。
FIG. 9 is a perspective view showing a set position of a pin receiving portion of the present invention.

【図10】本発明のピン受け部の設定間隔を示す断面図
である。
FIG. 10 is a sectional view showing a set interval of a pin receiving portion of the present invention.

【符号の説明】[Explanation of symbols]

1 従動ギヤ 2 従動軸 3 締結部 4 ピン受け部 5 従動軸ピン DESCRIPTION OF REFERENCE NUMERALS 1 driven gear 2 driven shaft 3 fastening portion 4 pin receiving portion 5 driven shaft pin

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16F 15/133 F16H 55/06 F16H 55/06 55/14 55/14 F16F 15/12 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) F16F 15/133 F16H 55/06 F16H 55/06 55/14 55/14 F16F 15/12 Z

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 モータ等の駆動源に連結された駆動軸
と、作業を行う従動軸と、従動軸に駆動力を伝達する伝
達機構部としての従動ギヤを有した駆動伝達機構装置に
おいて、 従動軸と従動ギヤの締結部で回転方向のみを弾性変形す
るものとし、その回転剛性をK2、従動軸の慣性モーメ
ントをJ2、動作時のギヤ噛合い周波数fpとして、以
下の関係式を満たすように従動ギヤ締結部回転剛性K2
を調整する ことを特徴とする駆動伝達機構装置。 fp>fz ただし、fz=(1/2π×√(K2/J2))×√2
1. A drive transmission mechanism device comprising: a drive shaft connected to a drive source such as a motor; a driven shaft for performing an operation; and a driven gear as a transmission mechanism for transmitting a driving force to the driven shaft. Assuming that only the rotational direction is elastically deformed at the joint between the shaft and the driven gear, the rotational rigidity is K2, the inertia moment of the driven shaft is J2, and the gear meshing frequency fp during operation is as follows. Rotational rigidity of driven gear fastening part K2
A drive transmission mechanism device, characterized in that: fp> fz where fz = (1 / 2π × √ (K2 / J2)) × √2
【請求項2】 伝達機構部の従動ギヤを樹脂にて成形
し、従動軸ピンと対応する従動ギヤのピン受け部からな
る締結部で、ピン受け部の取り付け位置半径を変えるこ
とで回転剛性を調整する ことを特徴とする請求項1記
載の駆動伝達機構装置。
2. The driven gear of the transmission mechanism is formed of resin, and the rotational rigidity is adjusted by changing the mounting position radius of the pin receiver at a fastening portion comprising the driven shaft pin and the corresponding pin receiver of the driven gear. The drive transmission mechanism device according to claim 1, wherein:
【請求項3】 伝達機構部の従動ギヤを樹脂にて成形
し、従動軸ピンと対応する従動ギヤのピン受け部からな
る締結部で、ピン受け部の回転方向の肉厚を変えること
で回転剛性を調整する ことを特徴とする請求項1記載
の駆動伝達機構装置。
3. The driven gear of the transmission mechanism is formed of resin, and the rigidity is changed by changing the thickness of the pin receiver in the rotating direction at a fastening portion comprising a driven shaft pin and a corresponding pin receiving portion of the driven gear. The drive transmission mechanism device according to claim 1, wherein:
【請求項4】 伝達機構部の従動ギヤを樹脂にて成形
し、従動軸ピンと対応する従動ギヤのピン受け部からな
る締結部で、ピン受け部の半径方向のピン受け幅を変え
ることで回転剛性を調整する ことを特徴とする請求項
1記載の駆動伝達機構装置。
4. A driven gear of a transmission mechanism is formed of resin, and is rotated by changing a radial pin receiving width of the pin receiving portion at a fastening portion including a driven shaft pin and a pin receiving portion of the driven gear corresponding to the driven gear. The drive transmission mechanism device according to claim 1, wherein rigidity is adjusted.
【請求項5】 伝達機構部の従動ギヤを樹脂にて成形
し、従動軸ピンと対応する従動ギヤのピン受け部からな
る締結部分で、ピン受け部の軸方向の接触高さを変える
ことで回転剛性を調整する ことを特徴とする請求項1
記載の駆動伝達機構装置。
5. The driven gear of the transmission mechanism is formed of resin, and is rotated by changing the contact height in the axial direction of the pin receiving portion at a fastening portion formed of a driven shaft pin and a corresponding pin receiving portion of the driven gear. The rigidity is adjusted.
The drive transmission mechanism device as described in the above.
【請求項6】 伝達機構部の従動ギヤを樹脂にて成形
し、従動軸と従動ギヤの締結手段として従動軸ピンを用
い、ピン径を変えることで回転剛性を調整することを特
徴とする請求項1記載の駆動伝達機構装置。
6. The driven gear of the transmission mechanism is formed of resin, a driven shaft pin is used as a fastening means for the driven shaft and the driven gear, and rotational rigidity is adjusted by changing a pin diameter. Item 2. The drive transmission mechanism device according to Item 1.
【請求項7】 伝達機構部の従動ギヤを樹脂にて成形
し、起動時の回転剛性が一定速度時の回転剛性よりも大
きく変化する ことを特徴とする請求項1記載の駆動伝
達機構装置。
7. The drive transmission mechanism device according to claim 1, wherein the driven gear of the transmission mechanism section is formed of resin, and the rotational rigidity at the time of startup changes more than the rotational rigidity at a constant speed.
【請求項8】 従動軸ピンと対応する従動ギヤのピン受
け部が2重構造の梁形状である ことを特徴とする請求
項1又は7記載の駆動伝達機構装置。
8. The drive transmission mechanism device according to claim 1, wherein a pin receiving portion of the driven gear corresponding to the driven shaft pin has a double beam structure.
【請求項9】 従動軸ピンと対応する従動ギヤのピン受
け部とが負荷トルクに応じて接触点数を変化する こと
を特徴とする請求項1又は7記載の駆動伝達機構装置。
9. The drive transmission mechanism device according to claim 1, wherein the number of contact points between the driven shaft pin and the corresponding pin receiving portion of the driven gear changes according to the load torque.
【請求項10】 締結部において2つのピン受け部の間
隔を変えてある ことを特徴とする請求項1又は7記載
の駆動伝達機構装置。
10. The drive transmission mechanism device according to claim 1, wherein an interval between the two pin receiving portions is changed in the fastening portion.
JP2001066639A 2001-03-09 2001-03-09 Driving transmission mechanism device Pending JP2002266952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001066639A JP2002266952A (en) 2001-03-09 2001-03-09 Driving transmission mechanism device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001066639A JP2002266952A (en) 2001-03-09 2001-03-09 Driving transmission mechanism device

Publications (1)

Publication Number Publication Date
JP2002266952A true JP2002266952A (en) 2002-09-18

Family

ID=18925102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001066639A Pending JP2002266952A (en) 2001-03-09 2001-03-09 Driving transmission mechanism device

Country Status (1)

Country Link
JP (1) JP2002266952A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276772A (en) * 2001-03-19 2002-09-25 Polyplastics Co Designing method of gear having reduced rotation transmitting error, and gear designed by the method
US9046163B2 (en) 2013-06-11 2015-06-02 Ricoh Company, Ltd. Transmission device, driving assembly including the transmission device, and image forming apparatus including the driving assembly
US9261185B2 (en) 2011-01-24 2016-02-16 Ricoh Company, Ltd. Drive transmission mechanism and image forming apparatus including same
CN115842848A (en) * 2023-03-01 2023-03-24 成都远峰科技发展有限公司 Dynamic monitoring system based on industrial Internet of things and control method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276772A (en) * 2001-03-19 2002-09-25 Polyplastics Co Designing method of gear having reduced rotation transmitting error, and gear designed by the method
JP4618916B2 (en) * 2001-03-19 2011-01-26 ポリプラスチックス株式会社 Rotation transmission error reduction gear design method and gear designed by the method
US9261185B2 (en) 2011-01-24 2016-02-16 Ricoh Company, Ltd. Drive transmission mechanism and image forming apparatus including same
US9046163B2 (en) 2013-06-11 2015-06-02 Ricoh Company, Ltd. Transmission device, driving assembly including the transmission device, and image forming apparatus including the driving assembly
CN115842848A (en) * 2023-03-01 2023-03-24 成都远峰科技发展有限公司 Dynamic monitoring system based on industrial Internet of things and control method thereof

Similar Documents

Publication Publication Date Title
US7455149B2 (en) Worm reduction gear and electric power steering apparatus
EP1226375B1 (en) Gear mechanism of power transmitting system
EP2450262B1 (en) Electric power steering system
EP2428430A1 (en) Electric power steering system
KR100780114B1 (en) Pedal
JP2005172216A (en) Torsional vibration damper
JP2002372100A (en) Torque transmission device
JP2002266952A (en) Driving transmission mechanism device
GB2306620A (en) Torsional vibration damper
KR100394626B1 (en) Triple mass vibration damping flywheel for vehicles
US7438166B2 (en) Flywheel assembly
JP2002317646A (en) Alternator and vibration restraining mechanism for internal combustion engine
JP5222440B2 (en) Power transmission device
JP2007162758A (en) Speed reducing mechanism and stabilizer apparatus using the same
JP2010249175A (en) Centrifugal pendulum dynamic vibration absorber
EP1445486B1 (en) A hinge for a variable displacement compressor
US20070123359A1 (en) Shock absorbing structure of propeller shaft
JP2575615B2 (en) Damping gear
JP2007271076A (en) Steering device
JP2002317647A (en) Vibration restraining mechanism for internal combustion engine
JP3479952B2 (en) Engine gear train structure
KR100346477B1 (en) Plastic hub structure of damper pulley for vehicle
KR100643952B1 (en) noise reduction structure for a balance shaft module
JP2006038138A (en) Power transmission shaft construction
JP2005212559A (en) Electric power steering device