JP2002261546A - Piezoelectric oscillator - Google Patents

Piezoelectric oscillator

Info

Publication number
JP2002261546A
JP2002261546A JP2001140802A JP2001140802A JP2002261546A JP 2002261546 A JP2002261546 A JP 2002261546A JP 2001140802 A JP2001140802 A JP 2001140802A JP 2001140802 A JP2001140802 A JP 2001140802A JP 2002261546 A JP2002261546 A JP 2002261546A
Authority
JP
Japan
Prior art keywords
circuit
frequency
transistor
colpitts
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001140802A
Other languages
Japanese (ja)
Other versions
JP2002261546A5 (en
Inventor
Tomio Sato
富雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2001140802A priority Critical patent/JP2002261546A/en
Publication of JP2002261546A publication Critical patent/JP2002261546A/en
Publication of JP2002261546A5 publication Critical patent/JP2002261546A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a means of suppressing abnormal oscillations which occur at the side of frequency lower than the specified frequency of a Colpitts piezoelectric oscillator. SOLUTION: The Colpitts piezoelectric oscillator is composed of transistors, a piezoelectric vibrator, capacitances and resistors. A serial circuit composed of the piezoelectric vibrator and a capacitance C3 and a serial circuit composed of capacitances C1 and C2 are connected in parallel. A capacitance C0 is connected to the circuit in series, and the circuit is interposed between the base and the ground of the transistor. A resistor R1 is interposed between the emitter and the ground of the transistor, and the middle point of the capacitances C1 and C2 is connected to the emitter of the transistor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は圧電発振器に関し、
特に低周波側における異常発振を抑圧した圧電発振器に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric oscillator,
In particular, the present invention relates to a piezoelectric oscillator that suppresses abnormal oscillation on the low frequency side.

【0002】[0002]

【従来の技術】近年、圧電発振器は高い周波数安定度、
小型軽量、低価格等により電子機器のあらゆる分野で用
いられている。特に圧電素子として、ATカット水晶振
動子を用いた水晶発振器は周波数温度特性、エージング
特性が優れており、携帯電話機の基準発振器として利用
されている。図7に示す水晶発振回路は広く一般的に使
用されている従来のコルピッツ型水晶発振回路である。
周知のように、コルピッツ型発振回路はコレクタ−ベー
ス間に誘導性素子として水晶振動子を、ベース−エミッ
タ間及びコレクターエミッタ間にそれぞれ容量性素子を
接続して構成する発振回路である。実際のコルピッツ型
水晶発振器は図7(a)に示すような回路構成となって
おり、トランジスタTR1のコレクタ−ベース間の誘導
性素子として、ベース−接地間に水晶振動子Xと容量C
3(C3は発振周波数の微調整用)との直列接続素子が
挿入されている。これは電源Vccと接地GNDとは高
周波的には短絡されているため、コレクタ−ベース間に
水晶振動子を主とする誘導性素子が挿入されることにな
る。さらに、ベース−接地間に容量C1とC2との直列
接続素子を接続すると共に、エミッタ−アース間に抵抗
R1を挿入し、容量C1、C2の中点とエミッタとを接
続している。また、トランジスタTR1のベースにはベ
ース電流制御用の抵抗R2が接続された構成となってい
る。ここで、圧電振動子として水晶振動子が用いられる
のは、Q値が大きいこと、温度に対する周波数の安定度
に優れているからである。
2. Description of the Related Art In recent years, piezoelectric oscillators have high frequency stability,
Due to its small size, light weight, low price, etc., it is used in all fields of electronic equipment. Particularly, a crystal oscillator using an AT-cut crystal resonator as a piezoelectric element has excellent frequency temperature characteristics and aging characteristics, and is used as a reference oscillator of a mobile phone. The crystal oscillation circuit shown in FIG. 7 is a conventional Colpitts type crystal oscillation circuit which is widely and generally used.
As is well known, a Colpitts oscillation circuit is an oscillation circuit formed by connecting a crystal oscillator as an inductive element between a collector and a base and connecting a capacitive element between a base and an emitter and between a collector and an emitter. The actual Colpitts-type crystal oscillator has a circuit configuration as shown in FIG. 7A. As an inductive element between the collector and base of the transistor TR1, a crystal resonator X and a capacitor C are connected between the base and ground.
3 (C3 is for fine adjustment of the oscillation frequency) is inserted in series. Since the power supply Vcc and the ground GND are short-circuited in terms of high frequency, an inductive element mainly composed of a crystal oscillator is inserted between the collector and the base. Further, a series connection element of the capacitors C1 and C2 is connected between the base and the ground, and a resistor R1 is inserted between the emitter and the ground to connect the midpoint of the capacitors C1 and C2 to the emitter. The transistor TR1 has a configuration in which a base current controlling resistor R2 is connected to the base of the transistor TR1. Here, the crystal resonator is used as the piezoelectric resonator because the Q value is large and the frequency stability with respect to temperature is excellent.

【0003】図7(b)に示すコルピッツ型水晶発振器
は、破線αで示すコルピッツ型水晶発振回路に、破線β
で示すベース接地の増幅器(バッファー)がカスケード
接続された回路構成である。なお、抵抗R5、R6はト
ランジスタのブリーダ抵抗であり、容量C5、C6、C
7はパスコン、容量C4は出力用のコンデンサである。
[0003] A Colpitts crystal oscillator shown in FIG.
Is a circuit configuration in which amplifiers (buffers) with a common base are connected in cascade. The resistors R5 and R6 are bleeder resistors of the transistors, and the capacitors C5, C6, C
Reference numeral 7 denotes a bypass capacitor, and a capacitance C4 denotes an output capacitor.

【0004】このようなコルピッツ型水晶発振回路にお
いては、水晶振動子Xの両端(図7の場合は水晶振動子
と可変容量C3)から回路側をみた増幅度、所謂負性抵
抗R(Ω)は、容量C1、C2と周波数の自乗(ω2
とに逆比例し、コレクタ電流に比例することが知られて
いる。即ち、図8に示すように周波数の増加と共に負性
抵抗R(Ω)の絶対値は増大し、所定の周波数にてピー
ク値に達し、その後は周波数の増加につれて減少する。
図8の曲線は、図7(b)における抵抗R1を560Ω、
抵抗R2、R4、R6をそれぞれ10kΩ、抵抗R3、R
5をそれぞれ15 kΩ、100 Ω、容量C1、C2、C3を
それぞれ200pF、140 pF、20 pF、容量C4、C5、C
6、C7をそれぞれ0.1μF、トランジスタTR1、T
R2を2SC3732、電源電圧Vccを5Vdcと設定したときの
負性抵抗曲線である。また、図9に示す曲線は水晶振動
子Xから回路側をみたときの回路側の負荷容量曲線であ
る。周波数の増加と共に極小値に達した後、周波数の増
加につれて単調に増大している。
In such a Colpitts-type crystal oscillation circuit, the degree of amplification, that is, the so-called negative resistance R (Ω), as viewed from the circuit side from both ends of the crystal oscillator X (the crystal oscillator and the variable capacitor C3 in FIG. 7). Is the square of the capacitance C1, C2 and the frequency (ω 2 )
It is known to be inversely proportional to and to the collector current. That is, as shown in FIG. 8, as the frequency increases, the absolute value of the negative resistance R (Ω) increases, reaches a peak value at a predetermined frequency, and thereafter decreases as the frequency increases.
The curve in FIG. 8 indicates that the resistance R1 in FIG.
Each of the resistors R2, R4, and R6 is 10 kΩ, and the resistors R3 and R
5 is 15 kΩ, 100 Ω, respectively, capacitances C1, C2, C3 are 200pF, 140pF, 20pF, capacitances C4, C5, C
6 and C7 are each 0.1 μF, transistors TR1 and T
It is a negative resistance curve when R2 is set to 2SC3732 and the power supply voltage Vcc is set to 5 Vdc. The curve shown in FIG. 9 is a load capacitance curve on the circuit side when the circuit side is viewed from the crystal unit X. After reaching a local minimum with increasing frequency, it increases monotonically with increasing frequency.

【0005】ここで図8、9の曲線から図7(b)に示
す水晶発振器の発振周波数を約10MHzに設定する
と、図8より負性抵抗は約−400Ω、負荷容量は約60pF
となることが分かる。このように、発振周波数は回路側
の容量が大きく利得変動の少ない、負性抵抗がピークを
呈する値より高めの周波数に設定するのが一般的であ
る。
If the oscillation frequency of the crystal oscillator shown in FIG. 7B is set to about 10 MHz from the curves of FIGS. 8 and 9, the negative resistance is about -400Ω and the load capacitance is about 60 pF as shown in FIG.
It turns out that it becomes. As described above, the oscillation frequency is generally set to a frequency having a large capacitance on the circuit side and a small gain variation and a frequency higher than a value at which the negative resistance exhibits a peak.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
コルピッツ型水晶発振器においては、図8からも明らか
なように発振周波数の低周波側に負性抵抗の絶対値の大
きな、即ち利得の大きな周波数領域があり、発振回路に
組み込まれた水晶振動子に所定の共振周波数より低周波
側にスプリアスが存在すると、当該スプリアスにて発振
する虞があるという問題があった。本発明は上記問題を
解決するためになされたものであって、スプリアス振動
を抑圧した圧電発振器を提供することを目的とする。
However, in the conventional Colpitts-type crystal oscillator, as is apparent from FIG. 8, the frequency range where the absolute value of the negative resistance is large, that is, the gain is large, is located on the low frequency side of the oscillation frequency. However, if spurious components exist on the lower side of a predetermined resonance frequency in the crystal resonator incorporated in the oscillation circuit, there is a problem that oscillation may occur due to the spurious components. The present invention has been made to solve the above problem, and has as its object to provide a piezoelectric oscillator in which spurious vibration is suppressed.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る圧電発振器の請求項1記載の発明は、圧
電振動子と容量C3との直列接続回路と、容量C1とC
2との直列接続回路とを並列接続した回路に、容量C0
を直列接続した回路をトランジスタのベース−接地間に
挿入し、トランジスタのエミッタ−アース間に抵抗R1
を挿入すると共に、前記容量C1、C2の直列接続の中
点と前記トランジスタのエミッタとを接続したことを特
徴とする。請求項2記載の発明は請求項1の発明に加
え、前記容量C0と前記トランジスタのベースとの間に
第一の並列共振回路を挿入接続したことを特徴とする。
請求項3記載の発明は請求項1または請求項2の発明に
加え、前記抵抗R1にインダクタンスを直列接続し、該
直列回路と前記容量C2とを並列接続するよう構成した
第二の並列回路を備えたものであることを特徴とする。
請求項4記載の発明は請求項2または請求項3の発明に
加え、前記圧電振動子がSCカット水晶振動子であり、
前記第一の並列共振回路の並列共振周波数が前記圧電振
動子のBモード周波数にほぼ一致したものであることを
特徴とする。請求項5記載の発明は請求項3または請求
項4の発明に加え、前記圧電振動子がSCカット水晶振
動子であり、前記第二の並列共振回路の並列共振周波数
が前記圧電振動子のCモード周波数にほぼ一致したもの
であることを特徴とする請求項3または請求項4記載の
コルピッツ型圧電発振器。
According to a first aspect of the present invention, there is provided a piezoelectric oscillator according to the present invention, comprising: a series connection circuit of a piezoelectric vibrator and a capacitor C3;
2 in parallel with a circuit connected in series with a capacitor C0.
Is inserted between the base and the ground of the transistor, and the resistor R1 is connected between the emitter and the ground of the transistor.
And the midpoint of the series connection of the capacitors C1 and C2 and the emitter of the transistor are connected. According to a second aspect of the present invention, in addition to the first aspect, a first parallel resonance circuit is inserted and connected between the capacitor C0 and the base of the transistor.
According to a third aspect of the present invention, in addition to the first or second aspect, a second parallel circuit configured to connect an inductance to the resistor R1 in series and connect the series circuit and the capacitor C2 in parallel is provided. It is characterized by having.
According to a fourth aspect of the present invention, in addition to the second or third aspect, the piezoelectric vibrator is an SC-cut crystal vibrator,
The parallel resonance frequency of the first parallel resonance circuit is substantially equal to the B-mode frequency of the piezoelectric vibrator. According to a fifth aspect of the present invention, in addition to the third or fourth aspect, the piezoelectric vibrator is an SC-cut quartz crystal vibrator, and the parallel resonance frequency of the second parallel resonance circuit is the same as that of the piezoelectric vibrator. 5. The Colpitts type piezoelectric oscillator according to claim 3, wherein the oscillator substantially coincides with a mode frequency.

【0008】[0008]

【発明の実施の形態】以下本発明を図面に示した実施の
形態に基づいて詳細に説明する。図1(a)、(b)は
本発明に係る水晶発振器の回路構成例を示す図である。
図1(a)に示すコルピッツ型水晶発振器は、水晶振動
子Xと容量C3との直列接続回路と、容量C1とC2と
の直列接続回路とを並列接続した回路に、容量C0を直
列接続した回路をトランジスタTR1のベース−接地間
に挿入し、トランジスタTR1のエミッタ−アース間に
抵抗R1を挿入した上で、容量C1、C2の中点とトラ
ンジスタTR1のエミッタとを接続している。さらに、
トランジスタTR1のベースにはベース電流の制御用抵
抗R2が接続されている。また、図1(b)は本発明に
係る発振器の実用的な回路構成例を示す図であって、破
線αで示すコルピッツ型水晶発振回路に、破線βで示す
トランジスタTR2によるベース接地増幅器(バッファ
ー)がカスケード接続された回路構成となっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on an embodiment shown in the drawings. FIGS. 1A and 1B are diagrams showing an example of a circuit configuration of a crystal oscillator according to the present invention.
In the Colpitts type crystal oscillator shown in FIG. 1A, a capacitor C0 is connected in series to a circuit in which a series connection circuit of a crystal resonator X and a capacitor C3 and a series connection circuit of capacitors C1 and C2 are connected in parallel. The circuit is inserted between the base of the transistor TR1 and the ground, the resistor R1 is inserted between the emitter of the transistor TR1 and the ground, and the midpoint of the capacitors C1 and C2 is connected to the emitter of the transistor TR1. further,
A base current control resistor R2 is connected to the base of the transistor TR1. FIG. 1B is a diagram showing a practical circuit configuration example of the oscillator according to the present invention. In the Colpitts-type crystal oscillation circuit shown by a broken line α, a grounded base amplifier (buffer) including a transistor TR2 shown by a broken line β ) Has a cascade-connected circuit configuration.

【0009】本発明の特徴は、水晶振動子と容量C3と
から成る直列接続回路と、容量C1とC2とから成る直
列接続回路とを並列接続した回路に、容量C0を直列接
続した上でトランジスタTR1のベース−接地間に挿入
したことである。即ち、容量C0を付加したところに特
徴がある。本発明に係るコルピッツ型水晶発振回路にお
いて、水晶振動子Xの両端(図1の場合は水晶振動子と
可変容量C3)から回路側をみた増幅度、所謂負性抵抗
R(Ω)は、図2の曲線B、Cに示すように従来の回路
の曲線Aと比べれば、低い周波数側における負性抵抗の
絶対値が大幅に小さくなっていることが分かる。即ち、
周波数変化に対する負性抵抗の絶対値の変化が小さくな
っている。図2に示す負性抵抗曲線は、図1(b)の水
晶発振回路において、抵抗R1を560Ω、抵抗 R2、
R4、R6を10kΩ、抵抗R3、R5をそれぞれ15 k
Ω、100 Ω、容量C1、C2、C3をそれぞれ124pF、1
48pF、20 pF、容量C4、C5、C6、C7をそれぞれ
0.1μF、トランジスタTR1、TR2を2SC3732、電源
電圧Vccを5Vdcと設定し、容量C0をそれぞれ20 pF、
62 pFとしたときを曲線B、Cに示している。なお、曲
線Aは同じパラメータを用いた場合の従来のコルピッツ
型水晶発振器の負性抵抗の曲線である。曲線AとB、C
を比較すると低周波側の負性抵抗Rの絶対値のピークが
小さくなるので、その周波数における増幅度が小さくな
り、当該周波数にスプリアスが存在するとしても異常発
振現象が起こり難いことを示している。また、容量C0
の値を選択することにより負性抵抗曲線を自由に制御す
ることができることも明らかである。
A feature of the present invention is that a transistor in which a capacitor C0 is connected in series to a circuit in which a series connection circuit including a crystal unit and a capacitor C3 and a series connection circuit including capacitors C1 and C2 are connected in parallel. It is inserted between the base of TR1 and the ground. That is, the feature is that the capacitance C0 is added. In the Colpitts type crystal oscillation circuit according to the present invention, the amplification seen from both ends of the crystal unit X (the crystal unit and the variable capacitor C3 in FIG. 1), that is, the so-called negative resistance R (Ω) is shown in FIG. As shown in curves B and C of FIG. 2, it can be seen that the absolute value of the negative resistance on the lower frequency side is significantly smaller than the curve A of the conventional circuit. That is,
The change in the absolute value of the negative resistance with respect to the frequency change is small. The negative resistance curve shown in FIG. 2 indicates that in the crystal oscillation circuit shown in FIG.
R4 and R6 are 10 kΩ, and resistors R3 and R5 are each 15 kΩ.
Ω, 100 Ω, and capacitances C1, C2, and C3 are respectively 124 pF, 1
48pF, 20pF, capacitance C4, C5, C6, C7 respectively
0.1 μF, the transistors TR1 and TR2 are set to 2SC3732, the power supply voltage Vcc is set to 5 Vdc, the capacitance C0 is set to 20 pF,
Curves B and C show the case of 62 pF. Curve A is a curve of the negative resistance of the conventional Colpitts type crystal oscillator when the same parameters are used. Curves A and B, C
Compared with the above, the peak of the absolute value of the negative resistance R on the low frequency side becomes smaller, so that the amplification at that frequency becomes smaller, which indicates that the abnormal oscillation phenomenon is unlikely to occur even if spurious is present at the frequency. . Further, the capacitance C0
It is also clear that the negative resistance curve can be freely controlled by selecting the value of.

【0010】図3のB、Cに示す曲線は本発明に係るコ
ルピッツ型水晶発振器の水晶振動子Xから回路側をみた
ときの回路側の負荷容量曲線である。回路定数は図2の
場合と同じパラメータを用い、曲線B、Cはそれぞれ容
量C0として20pF、62pとした場合の曲線である。従
来のコルピッツ型水晶発振器の負荷容量曲線Aを比較の
ために重ね書きした。負荷容量曲線は従来のコルピッツ
型水晶発振器のそれに比べて、周波数増加につれて緩や
かな変化をしていることが判明した。このように負性抵
抗の周波数依存傾向が小さくなる理由は、容量C0を介
して発振用増幅回路(TR1)のベースに発振ループ信
号を入力しているので、周波数に依存して当該入力レベ
ルが変化する。即ち、容量C0のリアクタンスが周波数
上昇に伴って小さくなるので、周波数が低い領域での正
帰還量が小さくなるからであろう。さらに、上記作用に
よってトランジスタTR1のベース−エミッタ間の容量
Cbeの変化による影響を容量C0を付加することによ
り、低減している効果も推測できる。また、図3に示し
たように、周波数変動に対する負荷容量曲線の傾斜が小
さいことは、水晶発振器の周囲の変化、例えば温度変化
に対して発振周波数の変化が小さいこと、安定度が改善
されていることを表している。また、容量C0の値を選
択することにより負荷容量曲線を制御し、平坦に近づけ
ることが可能となった。
The curves shown in FIGS. 3B and 3C are load capacitance curves on the circuit side when the circuit side is viewed from the crystal resonator X of the Colpitts type crystal oscillator according to the present invention. Circuit constants use the same parameters as in FIG. 2, and curves B and C are curves when the capacitance C0 is 20 pF and 62 p, respectively. The load capacity curve A of the conventional Colpitts type crystal oscillator was overwritten for comparison. It has been found that the load capacity curve changes more gradually as the frequency increases, as compared with that of the conventional Colpitts type crystal oscillator. The reason that the frequency dependence of the negative resistance becomes smaller is that the oscillation loop signal is input to the base of the oscillation amplifier circuit (TR1) via the capacitor C0, and thus the input level depends on the frequency. Change. That is, since the reactance of the capacitor C0 decreases with an increase in the frequency, the amount of positive feedback in a low frequency region may decrease. Further, by adding the capacitance C0 to the effect of the change in the capacitance Cbe between the base and the emitter of the transistor TR1 by the above operation, an effect of reducing the effect can be estimated. As shown in FIG. 3, the small slope of the load capacitance curve with respect to the frequency fluctuation means that the change in the oscillation frequency is small with respect to the change around the crystal oscillator, for example, the temperature change, and the stability is improved. It represents that it is. In addition, it is possible to control the load capacity curve by selecting the value of the capacity C0, and to make the load capacity curve nearly flat.

【0011】図4に示す曲線Cは電源電圧Vcc変動に対
する本発明のコルピッツ型水晶発振器の周波数偏差を表
す図である。比較のために従来のコルピッツ型水晶発振
器の電源電圧Vcc−周波数偏差Aの曲線も併せて図示し
ている。電源電圧Vccが大きい方へ変化した場合には従
来のコルピッツ型水晶発振器よりも、本発明のコルピッ
ツ型水晶発振器の方が優れていることが分かる。
A curve C shown in FIG. 4 is a graph showing a frequency deviation of the Colpitts type crystal oscillator according to the present invention with respect to the fluctuation of the power supply voltage Vcc. For comparison, a curve of the power supply voltage Vcc-frequency deviation A of the conventional Colpitts type crystal oscillator is also shown. When the power supply voltage Vcc changes to a larger value, it can be seen that the Colpitts crystal oscillator of the present invention is superior to the conventional Colpitts crystal oscillator.

【0012】また、図1(a)、(b)の発振回路にお
いて、トランジスタTR1のベース−接地間に挿入され
た容量C1とC2との接続点と、トランジスタTR1の
エミッタとを接続する代わりに周波数選択回路、例えば
L、Cの同調回路あるいは反同調回路を挿入すれば、S
Cカット水晶振動子のBモード抑圧等に用いることが可
能となる。図5は、容量C0を付加し、且つ、LCの同
調回路あるいは反同調回路の効果を利用した本発明の他
の実施例の回路図を示すものである。即ち、同図に示す
水晶発振器1は、例えばSCカット水晶振動子Xを用い
た水晶発振器に於いて、Bモード抑圧を可能としたもの
である。同図(a)及び(b)に示す水晶発振器1の特
徴は、インダクタンスL1と容量C8との並列回路2を
介して容量C0とトランジスタTR1とを接続し、更
に、並列回路2の並列共振周波数がBモード周波数とほ
ぼ等しくなるよう構成したところにあり、同図(a)は
発振用トランジスタTR1にバイポーラトランジスタを
用いた場合の回路図であり、同図(b)は発振用トラン
ジスタTR1にFETを用いた場合の回路図を示すもの
である。このような構成の水晶発振器1によれば、Bモ
ード周波数に於いて、並列回路2が高インピーダンスと
なるのでトランジスタTR1へ供給されるBモード周波
数信号のレベルが抑圧され、負性抵抗が正極性又はその
絶対値が小さくなり、その結果、上述した容量C0によ
る機能に加え、更にBモード発振が抑圧されるので雑音
特性に優れたものとなる。更に、図6は本発明に基づく
水晶発振器の他の実施例を示すものである。同図に示し
た水晶発振器1の特徴は、図5に示す水晶発振器と同
様、容量C8とインダクタンスL1との並列共振回路2
を介して容量C0とトランジスタTR1のベースとを接
続し、更に、インダクタンスL2と抵抗R1との直列回
路と容量C2とを並列接続するよう構成したところにあ
り、同図(a)は発振用トランジスタTR1にバイポー
ラトランジスタを用いた場合であり、同図(b)は発振
用トランジスタTR1にFETを用いた場合の回路図を
示す。更に、SCカット水晶振動子XのBモード周波数
に並列共振周波数がほぼ一致するよう並列共振回路2を
設定する共に、SCカット水晶振動子XのCモード周波
数にインダクタンスL2と抵抗R1及び容量C2とから
成る並列共振回路3の並列共振周波数がほぼ一致するよ
う設定する。このような構成の水晶発振器1は、並列共
振回路2によりBモード発振が極圧されると共に、Cモ
ード周波数に於いて並列共振回路3のインピーダンスが
大きくなり、図1に示す水晶発振器に於いて容量C2を
小さくした場合に相当するのでCモード周波数に限定し
て大きな負性抵抗を得ることができる。。
In the oscillating circuits shown in FIGS. 1A and 1B, instead of connecting the connection point between the capacitors C1 and C2 inserted between the base and the ground of the transistor TR1 and the emitter of the transistor TR1. If a frequency selection circuit, for example, an L or C tuning circuit or an anti-tuning circuit is inserted, S
It can be used for B-mode suppression of a C-cut quartz resonator. FIG. 5 is a circuit diagram of another embodiment of the present invention in which a capacitance C0 is added and the effect of a tuning circuit or an anti-tuning circuit of LC is used. That is, the crystal oscillator 1 shown in FIG. 1 enables B mode suppression in a crystal oscillator using, for example, an SC-cut crystal resonator X. The features of the crystal oscillator 1 shown in FIGS. 6A and 6B are that the capacitor C0 and the transistor TR1 are connected via the parallel circuit 2 of the inductance L1 and the capacitor C8, and the parallel resonance frequency of the parallel circuit 2 (A) is a circuit diagram in the case where a bipolar transistor is used as the oscillation transistor TR1, and FIG. 2 (b) is a circuit diagram in which an FET is used as the oscillation transistor TR1. FIG. 3 is a circuit diagram in the case of using. According to the crystal oscillator 1 having such a configuration, the level of the B-mode frequency signal supplied to the transistor TR1 is suppressed because the parallel circuit 2 has a high impedance at the B-mode frequency, and the negative resistance has a positive polarity. Alternatively, the absolute value is reduced, and as a result, in addition to the function of the capacitor C0 described above, the B-mode oscillation is further suppressed, so that the noise characteristics are excellent. FIG. 6 shows another embodiment of the crystal oscillator according to the present invention. The characteristic of the crystal oscillator 1 shown in the figure is that, like the crystal oscillator shown in FIG. 5, a parallel resonance circuit 2 including a capacitor C8 and an inductance L1 is provided.
The capacitor C0 and the base of the transistor TR1 are connected via a capacitor C2, and a series circuit of an inductance L2 and a resistor R1 is connected in parallel with the capacitor C2. FIG. FIG. 4B shows a circuit diagram in which a bipolar transistor is used for TR1 and an FET is used for the oscillation transistor TR1. Further, the parallel resonance circuit 2 is set so that the parallel resonance frequency substantially matches the B mode frequency of the SC cut crystal resonator X, and the inductance L2, the resistance R1, and the capacitance C2 are set to the C mode frequency of the SC cut crystal resonator X. Are set so that the parallel resonance frequency of the parallel resonance circuit 3 composed of In the crystal oscillator 1 having such a configuration, the B-mode oscillation is extreme-pressured by the parallel resonance circuit 2 and the impedance of the parallel resonance circuit 3 increases at the C-mode frequency. Since this corresponds to the case where the capacitance C2 is reduced, a large negative resistance can be obtained only at the C-mode frequency. .

【0013】以上では圧電振動子として水晶振動子を用
いて説明したが、本発明はこれのみに限定することな
く、他の圧電振動子、例えばランガサイト振動子、セラ
ミック振動子等を用いて構成した圧電発振器にも適用で
きることは説明するまでもない。
In the above description, a quartz oscillator is used as the piezoelectric oscillator. However, the present invention is not limited to this, and the present invention is not limited to this, and may be configured using other piezoelectric oscillators such as a langasite oscillator and a ceramic oscillator. Needless to say, the present invention can be applied to the piezoelectric oscillator described above.

【0014】[0014]

【発明の効果】本発明は、以上説明したように構成した
ので、請求項1に記載の発明は所定の発振周波数より低
周波側において、スプリアスによる異常発振を抑圧でき
るという優れた効果を表す。請求項2に記載の発明は、
請求項1の特徴に加えて、より実用的な回路構成とした
コルピッツ型圧電発振器である。
As described above, the present invention has an excellent effect that abnormal oscillation due to spurious can be suppressed on the lower frequency side than a predetermined oscillation frequency. The invention described in claim 2 is
In addition to the features of claim 1, the present invention is a Colpitts type piezoelectric oscillator having a more practical circuit configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るコルピッツ型圧電発振器の回路構
成を示す図である。
FIG. 1 is a diagram showing a circuit configuration of a Colpitts type piezoelectric oscillator according to the present invention.

【図2】本発明に係るコルピッツ型圧電発振器の周波数
に対する負性抵抗曲線を示す図である。
FIG. 2 is a diagram showing a negative resistance curve with respect to frequency of the Colpitts type piezoelectric oscillator according to the present invention.

【図3】本発明に係るコルピッツ型圧電発振器の周波数
に対する負荷用容量曲線を示す図である。
FIG. 3 is a diagram showing a load capacitance curve with respect to a frequency of the Colpitts type piezoelectric oscillator according to the present invention.

【図4】本発明に係るコルピッツ型圧電発振器の電源電
圧変動に対する周波数変化を示す図である。
FIG. 4 is a diagram showing a frequency change with respect to a power supply voltage fluctuation of the Colpitts type piezoelectric oscillator according to the present invention.

【図5】(a)(b)本発明に係るコルピッツ型圧電発
振器の回路構成を示す図である。
5A and 5B are diagrams showing a circuit configuration of a Colpitts type piezoelectric oscillator according to the present invention.

【図6】(a)(b)本発明に係るコルピッツ型圧電発
振器の回路構成を示す図である。
6A and 6B are diagrams showing a circuit configuration of a Colpitts type piezoelectric oscillator according to the present invention.

【図7】従来のコルピッツ型圧電発振器の回路構成を示
す図である。
FIG. 7 is a diagram showing a circuit configuration of a conventional Colpitts type piezoelectric oscillator.

【図8】従来のコルピッツ型圧電発振器の周波数と負性
抵抗との関係を示す図である。
FIG. 8 is a diagram showing the relationship between the frequency and the negative resistance of a conventional Colpitts type piezoelectric oscillator.

【図9】従来のコルピッツ型圧電発振器の周波数と負荷
容量との関係を示す図である。
FIG. 9 is a diagram showing the relationship between the frequency and the load capacitance of a conventional Colpitts type piezoelectric oscillator.

【符号の説明】[Explanation of symbols]

TR1、TR2・・トランジスタ R1、R2、R3、R4、R5、R6・・抵抗 C0、C1、C2、C3、C4、C5、C6、C7、C
8・・容量 L1、L2インダクタンス X・・圧電振動子 Vcc・・電源電圧 GND・・接地 1水晶発振器、2、3並列共振回路
TR1, TR2 ··· Transistors R1, R2, R3, R4, R5, R6 ··· Resistors C0, C1, C2, C3, C4, C5, C6, C7, C
8. Capacitance L1, L2 inductance X Piezoelectric oscillator Vcc Power supply voltage GND Ground 1 Crystal oscillator, 2 or 3 parallel resonance circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧電振動子と容量C3との直列接続回路
と、容量C1とC2との直列接続回路とを並列接続した
回路に、容量C0を直列接続した回路をトランジスタの
ベース−接地間に挿入し、トランジスタのエミッタ−ア
ース間に抵抗R1を挿入すると共に、前記容量C1、C
2の直列接続の中点と前記トランジスタのエミッタとを
接続したことを特徴とするコルピッツ型圧電発振器。
1. A circuit in which a series connection circuit of a piezoelectric vibrator and a capacitor C3 and a series connection circuit of capacitors C1 and C2 are connected in parallel, and a circuit in which a capacitor C0 is connected in series is connected between the base of the transistor and the ground. A resistor R1 is inserted between the emitter of the transistor and the ground, and the capacitors C1, C
2. A Colpitts-type piezoelectric oscillator, wherein a midpoint of the series connection of No. 2 and an emitter of the transistor is connected.
【請求項2】前記容量C0と前記トランジスタのベース
との間に第一の並列共振回路を挿入接続したことを特徴
とする請求項1記載のコルピッツ型圧電発振器。
2. A Colpitts-type piezoelectric oscillator according to claim 1, wherein a first parallel resonance circuit is inserted and connected between said capacitor C0 and a base of said transistor.
【請求項3】前記抵抗R1にインダクタンスを直列接続
し、該直列回路と前記容量C2とを並列接続するよう構
成した第二の並列回路を備えたものであることを特徴と
する請求項1または請求項2記載のコルピッツ型圧電発
振器。
3. A circuit according to claim 1, further comprising a second parallel circuit configured to connect an inductance to said resistor R1 in series and to connect said series circuit and said capacitor C2 in parallel. The Colpitts type piezoelectric oscillator according to claim 2.
【請求項4】前記圧電振動子がSCカット水晶振動子で
あり、前記第一の並列共振回路の並列共振周波数が前記
圧電振動子のBモード周波数にほぼ一致したものである
ことを特徴とする請求項2または請求項3記載のコルピ
ッツ型圧電発振器。
4. The piezoelectric vibrator is an SC-cut quartz vibrator, and a parallel resonance frequency of the first parallel resonance circuit is substantially equal to a B mode frequency of the piezoelectric vibrator. The Colpitts type piezoelectric oscillator according to claim 2 or 3.
【請求項5】前記圧電振動子がSCカット水晶振動子で
あり、前記第二の並列共振回路の並列共振周波数が前記
圧電振動子のCモード周波数にほぼ一致したものである
ことを特徴とする請求項3または請求項4記載のコルピ
ッツ型圧電発振器。
5. The piezoelectric vibrator is an SC cut quartz crystal vibrator, and a parallel resonance frequency of the second parallel resonance circuit is substantially equal to a C mode frequency of the piezoelectric vibrator. The Colpitts type piezoelectric oscillator according to claim 3.
JP2001140802A 2000-12-25 2001-05-11 Piezoelectric oscillator Pending JP2002261546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001140802A JP2002261546A (en) 2000-12-25 2001-05-11 Piezoelectric oscillator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-393150 2000-12-25
JP2000393150 2000-12-25
JP2001140802A JP2002261546A (en) 2000-12-25 2001-05-11 Piezoelectric oscillator

Publications (2)

Publication Number Publication Date
JP2002261546A true JP2002261546A (en) 2002-09-13
JP2002261546A5 JP2002261546A5 (en) 2008-03-21

Family

ID=26606551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001140802A Pending JP2002261546A (en) 2000-12-25 2001-05-11 Piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JP2002261546A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352256B2 (en) 2005-06-07 2008-04-01 Nihon Dempa Kogya Co., Ltd. Crystal oscillation circuit
JP2013005007A (en) * 2011-06-13 2013-01-07 Seiko Epson Corp Oscillation circuit and oscillator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051247A (en) * 1973-08-20 1975-05-08
JPS586413U (en) * 1981-07-03 1983-01-17 株式会社東芝 crystal oscillation circuit
JPH0353015U (en) * 1989-09-29 1991-05-22
JPH0563443A (en) * 1991-08-31 1993-03-12 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JPH066134A (en) * 1992-06-19 1994-01-14 Asahi Denpa Kk Oscillation circuit having crystal vibrator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051247A (en) * 1973-08-20 1975-05-08
JPS586413U (en) * 1981-07-03 1983-01-17 株式会社東芝 crystal oscillation circuit
JPH0353015U (en) * 1989-09-29 1991-05-22
JPH0563443A (en) * 1991-08-31 1993-03-12 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JPH066134A (en) * 1992-06-19 1994-01-14 Asahi Denpa Kk Oscillation circuit having crystal vibrator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352256B2 (en) 2005-06-07 2008-04-01 Nihon Dempa Kogya Co., Ltd. Crystal oscillation circuit
JP2013005007A (en) * 2011-06-13 2013-01-07 Seiko Epson Corp Oscillation circuit and oscillator

Similar Documents

Publication Publication Date Title
JPH06196928A (en) Voltage control type oscillation circuit
US20020017959A1 (en) High frequency crystal oscillator
JP2000236218A (en) Oscillator and voltage-controlled oscillator
JP4892267B2 (en) Dual mode crystal oscillation circuit
JPH09153740A (en) Piezoelectric oscillator
EP1777808A1 (en) High frequency Colpitts oscillation circuit
JP2003332842A (en) Oscillator
US20120081187A1 (en) Oscillator
JP2002261546A (en) Piezoelectric oscillator
JP4499457B2 (en) Crystal oscillator
JPH1174727A (en) Voltage controlled oscillator
JP3322791B2 (en) Colpitts oscillation circuit
JP2007103985A (en) Crystal oscillator
JP2006114974A (en) Voltage-controlled piezoelectric oscillator capable of linear frequency control
JP2553281B2 (en) Oscillation circuit with crystal oscillator
US9077281B2 (en) Oscillator circuit
JPH1056330A (en) Voltage controlled piezoelectric oscillator
JPH0846427A (en) Voltage controlled crystal oscillator
JP2000082922A (en) Piezoelectric oscillator
JP3387278B2 (en) Temperature compensated piezoelectric oscillator
JP2006186949A (en) Pierce type oscillation circuit
JPH0520004Y2 (en)
JPH09162641A (en) Voltage control oscillator
JP3960013B2 (en) Piezoelectric oscillator
JP2005130209A (en) Piezoelectric oscillation circuit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914