JP2002260669A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002260669A
JP2002260669A JP2001053907A JP2001053907A JP2002260669A JP 2002260669 A JP2002260669 A JP 2002260669A JP 2001053907 A JP2001053907 A JP 2001053907A JP 2001053907 A JP2001053907 A JP 2001053907A JP 2002260669 A JP2002260669 A JP 2002260669A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
electrolyte secondary
amorphous silicon
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001053907A
Other languages
Japanese (ja)
Inventor
Hirofumi Fukuoka
宏文 福岡
Mikio Aramata
幹夫 荒又
Satoru Miyawaki
悟 宮脇
Susumu Ueno
進 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001053907A priority Critical patent/JP2002260669A/en
Publication of JP2002260669A publication Critical patent/JP2002260669A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery, having a high charge and discharge capacity and high energy density. SOLUTION: This nonaqueous electrolyte secondary battery is provided with an amorphous silicon vapor-deposited film on the collector surface of an negative electrode material, in a nonaqueous electrolyte secondary battery composed of a positive electrode material, the negative electrode material, electrolyte containing lithium salt, and a separator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオンを
吸蔵放出可能な物質を正負極活物質とし、リチウムイオ
ン導電性の非水電解質を用いる非水電解質二次電池に関
し、特に携帯型の電子機器、通信機器等に用いる二次電
池として好適な非水電解質二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte having lithium ion conductivity as a positive / negative electrode active material, and particularly to a portable electronic device. The present invention relates to a non-aqueous electrolyte secondary battery suitable as a secondary battery used for communication equipment and the like.

【0002】[0002]

【従来の技術】近年、携帯型の電子機器、通信機器等の
著しい発展に伴い、経済性及び機器の小型軽量化の観点
から、高エネルギー密度の二次電池が強く要望されてい
る。従来から、この種の二次電池の高容量化策として、
負極材にV、Si、B、Zr、Snなどの酸化物、及び
それらの複合酸化物を用いる方法(特開平5−1748
18号公報、特開平6−60867号公報等)や、溶融
急冷した金属酸化物を負極材として適用する方法(特開
平10−294112号公報)、負極材料として、珪素
を主成分にし、軽金属イオンをドープ及び脱ドープ可能
なものにする手法等が知られている。
2. Description of the Related Art In recent years, with the remarkable development of portable electronic devices, communication devices, and the like, a secondary battery having a high energy density has been strongly demanded from the viewpoint of economy and reduction in size and weight of the devices. Conventionally, as a measure to increase the capacity of this type of secondary battery,
A method using an oxide such as V, Si, B, Zr, Sn or a composite oxide thereof as a negative electrode material (JP-A-5-1748
No. 18, JP-A-6-60867, etc.) or a method in which a metal oxide melt-quenched and quenched is used as a negative electrode material (JP-A-10-294112). There are known techniques for making doping and undoping possible.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来法では、確かに充放電容量が高くなり、エネルギ
ー密度は向上するものの、市場の要求特性としては未だ
不十分であり、更なる充放電容量及びエネルギー密度の
向上が望まれている。
However, in the above-mentioned conventional method, although the charge / discharge capacity is certainly increased and the energy density is improved, the required characteristics in the market are still insufficient, and the charge / discharge capacity is further increased. In addition, improvement in energy density is desired.

【0004】本発明は、このような事情に鑑みてなされ
たものであり、充放電容量及びエネルギー密度の高い非
水電解質二次電池を提供することを目的とする。
The present invention has been made in view of such circumstances, and has as its object to provide a nonaqueous electrolyte secondary battery having a high charge / discharge capacity and high energy density.

【0005】[0005]

【課題を解決するための手段及び発明の実施の形態】本
発明者らは、上記目的を達成するために鋭意検討を行っ
た結果、アモルファス珪素を負極材に含有させること
で、充放電容量が驚異的に向上すること、この場合、そ
の手段として、負極材の集電体にアモルファス珪素膜を
蒸着することが効果的であることを見出して、本発明を
完成した。
Means for Solving the Problems and Embodiments of the Invention The present inventors have conducted intensive studies to achieve the above object, and as a result, by adding amorphous silicon to the negative electrode material, the charge / discharge capacity was reduced. The present inventors have found that it is surprisingly improved, and in this case, it is effective to deposit an amorphous silicon film on a current collector of a negative electrode material, and completed the present invention.

【0006】以下、本発明につき更に詳しく説明する
と、本発明に係る非水電解質二次電池は、正極材、負極
材、リチウム塩を含む非水電解質、及びセパレーターを
備えた非水電解質二次電池であって、前記負極材の集電
体表面には、アモルファス珪素膜が蒸着されていること
を特徴とする。
Hereinafter, the present invention will be described in more detail. A non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode material, a negative electrode material, a non-aqueous electrolyte containing a lithium salt, and a separator. Wherein an amorphous silicon film is deposited on the surface of the current collector of the negative electrode material.

【0007】ここで、負極材は、少なくとも集電体、結
着剤及び負極活性物質を備えたもので、本発明は、この
負極材の集電体表面にアモルファス珪素膜を蒸着させた
ものを使用する。
Here, the negative electrode material includes at least a current collector, a binder, and a negative electrode active material. The present invention relates to a negative electrode material obtained by depositing an amorphous silicon film on the current collector surface. use.

【0008】この場合、アモルファス珪素膜が蒸着され
る集電体としては、構成された電池において悪影響を及
ぼさない電子伝導体であれば特に限定はなく、例えば、
銅、ステンレス鋼、ニッケル、チタン、焼成炭素等を用
いることができる。集電体表面にアモルファス珪素膜を
蒸着させる方法についても、特に限定はなく、例えば、
モノシラン(SiH4)ガス等をグロー放電分解して蒸
着させる、いわゆるプラズマCVD法、アルゴンと水素
との混合ガス雰囲気下で、シリコンターゲットをスパッ
タして蒸着させる、いわゆるスパッタ法、水素雰囲気下
でシリコンを加熱蒸発、かつイオン化して蒸着させる、
いわゆるイオンプレーティング法等を採用できるが、後
述する装置を用いて行うプラズマCVD法を用いるのが
好適である。
[0008] In this case, the current collector on which the amorphous silicon film is deposited is not particularly limited as long as it is an electron conductor that does not adversely affect the constructed battery.
Copper, stainless steel, nickel, titanium, calcined carbon, and the like can be used. The method for depositing an amorphous silicon film on the current collector surface is also not particularly limited.
Monosilane (SiH 4 ) gas or the like is glow discharge-decomposed and deposited, so-called plasma CVD method. A silicon target is sputtered and deposited in a mixed gas atmosphere of argon and hydrogen. Is heated and evaporated, and ionized and deposited,
Although a so-called ion plating method or the like can be adopted, it is preferable to use a plasma CVD method using an apparatus described later.

【0009】なお、上記アモルファス珪素膜の厚さは、
0.5〜10μm、特に1〜5μmとすることが好まし
い。薄すぎると、本発明の目的が達成し難く、厚すぎる
と、アモルファス珪素膜が絶縁層となり、電池としての
機能を有さなくなる。
[0009] The thickness of the amorphous silicon film is
It is preferably 0.5 to 10 μm, particularly preferably 1 to 5 μm. If the thickness is too small, it is difficult to achieve the object of the present invention. If the thickness is too large, the amorphous silicon film becomes an insulating layer and has no function as a battery.

【0010】上記負極活性物質としては、導電性があ
り、使用する非水電解質に対する耐性を有するものであ
れば特に限定はなく、例えば、(1)グラファイト、ア
セチレンブラック、カーボン等の導電性炭素質材、
(2)金、銀、銅等の金属材料、(3)金メッキシリカ
微粒子、銀メッキシリカ微粒子、銅被覆アルミナ微粒子
等の導電性複合材料を用いることができる。特性、経済
性等を考慮すると、これらの中でも炭素質材料を用いる
ことが好ましい。
The negative electrode active material is not particularly limited as long as it is conductive and has resistance to the non-aqueous electrolyte used. For example, (1) a conductive carbonaceous material such as graphite, acetylene black, carbon, etc. Timber,
(2) Metallic materials such as gold, silver and copper, and (3) conductive composite materials such as gold-plated silica fine particles, silver-plated silica fine particles, and copper-coated alumina fine particles can be used. In consideration of characteristics, economy, and the like, it is preferable to use a carbonaceous material among them.

【0011】この場合、電極への軽金属の吸蔵能力(容
量)を高めるために、炭素質材料等に一般式SiO
x(0.8<x<1.9)で表される珪素酸化物を添加
することが好ましい。ここで、xの値が0.8以下であ
ると、実質的に金属珪素が過剰となるため、結晶質及び
/又はブロック状になり、活性珪素の含有量が少なくな
るおそれがある。一方、xの値が1.9以上であると、
実質的に二酸化珪素となるため、活性珪素の含有量が減
少して、問題が生じるおそれがある。より好ましくは
0.8<x<1.6、更に好ましくは0.9<x<1.
3である。
In this case, in order to increase the occlusion capacity (capacity) of the light metal in the electrode, the carbonaceous material or the like is made of a general formula
It is preferable to add a silicon oxide represented by x (0.8 <x <1.9). Here, when the value of x is 0.8 or less, the amount of metallic silicon is substantially excessive, so that the metallic silicon becomes crystalline and / or block-like, and the content of active silicon may decrease. On the other hand, when the value of x is 1.9 or more,
Since it is substantially silicon dioxide, the content of active silicon is reduced, which may cause a problem. More preferably 0.8 <x <1.6, even more preferably 0.9 <x <1.
3.

【0012】なお、珪素酸化物の添加量には、特に限定
はないが、珪素酸化物を添加した効果を十分に発揮させ
るためには、添加量を負極活物質中20〜80wt%、
特に40〜70wt%とすることが好ましい。20wt
%未満であると、酸化珪素を添加した効果が不十分とな
るおそれがある。一方、80wt%を超えると、導電材
料の添加割合が少なくなり、電子伝導性が低下するた
め、容量が低下するおそれがある。
The amount of the silicon oxide added is not particularly limited. However, in order to sufficiently exhibit the effect of the addition of the silicon oxide, the amount of the silicon oxide is preferably 20 to 80 wt% in the negative electrode active material.
In particular, the content is preferably set to 40 to 70 wt%. 20wt
%, The effect of adding silicon oxide may be insufficient. On the other hand, when the content exceeds 80 wt%, the proportion of the conductive material added is reduced, and the electron conductivity is reduced, so that the capacity may be reduced.

【0013】また、結着剤としては、結着作用を有し、
使用する非水電解質、正極、負極における電位に対する
耐性を有するものであれば、特に限定はなく、例えば、
ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン
等を採用することができる。
The binder has a binding action,
The nonaqueous electrolyte to be used, the positive electrode, as long as it has resistance to the potential at the negative electrode, there is no particular limitation,
Polyethylene, polypropylene, polyvinylidene fluoride, or the like can be used.

【0014】本発明に係る非水電解質二次電池に用いら
れる電解質としては、γ−ブチロラクトン、プロピレン
カーボネート、エチレンカーボネート、ジメチルカーボ
ネート、メチルフォルメート、1,2−ジメトキシエタ
ン、テトラヒドロフラン、ジオキソラン、ジメチルフォ
ルムアミド等の非水系の有機溶媒の単独又は混合溶媒中
に、支持電解質としてLiClO4、LiPF6、LiB
4、LiCF3SO3、LiC(SO2CF3)、LiN
(SO2CF3)等のリチウムイオン解離性塩を溶解した
有機非水系電解質、ポリエチレンオキシドやポリフォス
ルファゼン架橋体等の高分子にリチウム塩を固溶させた
高分子固体電解質、又はLi3N、LiNなどのような
無機固体電解質等のリチウムイオン導電性の非水電解質
を用いることができる。
As the electrolyte used in the nonaqueous electrolyte secondary battery according to the present invention, γ-butyrolactone, propylene carbonate, ethylene carbonate, dimethyl carbonate, methyl formate, 1,2-dimethoxyethane, tetrahydrofuran, dioxolan, dimethylform LiClO 4 , LiPF 6 , LiB as a supporting electrolyte in a single or mixed non-aqueous organic solvent such as amide
F 4 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ), LiN
An organic non-aqueous electrolyte in which a lithium ion dissociable salt such as (SO 2 CF 3 ) is dissolved, a polymer solid electrolyte in which a lithium salt is dissolved in a polymer such as polyethylene oxide or a crosslinked polyphospholazene, or Li 3 A lithium ion conductive non-aqueous electrolyte such as an inorganic solid electrolyte such as N or LiN can be used.

【0015】また、本発明の非水電解質二次電池に用い
るセパレーターの材質としては、電極の接触を防止する
と共に、非水電解質を保持し、リチウムイオンを通過で
きる機能を有するものであれば、特に限定はなく、例え
ば、多孔質フィルム、不織布、織布等を用いることがで
きる。また、セパレーターの厚さにも、特に限定はな
く、任意に設定することができるが、10〜200μm
が好ましく、特に20〜50μmが好ましい。
The material of the separator used in the non-aqueous electrolyte secondary battery of the present invention is not limited as long as it has a function of preventing contact of the electrodes, holding the non-aqueous electrolyte, and passing lithium ions. There is no particular limitation, and for example, a porous film, a nonwoven fabric, a woven fabric, or the like can be used. The thickness of the separator is not particularly limited and can be set arbitrarily.
Is preferred, and particularly preferably 20 to 50 μm.

【0016】次に、本発明の非水電解質二次電池におけ
る、負極材の集電体表面にアモルファス珪素膜を蒸着す
る装置及び方法について説明する。図1には、本発明の
一実施形態に係る蒸着装置1が示されている。この蒸着
装置1は、プラズマCVD法により、集電体にアモルフ
ァス珪素膜を蒸着させるものであり、反応室10を備え
ると共に、この反応室10の内部に、一対の電極11
A、11Bが設けられている。一対の電極11A、11
Bは、各電極11A、11B間でグロー放電を行えるよ
うに、放電用電源12に接続されている。ここで、放電
用電源12としては、直流又は交流のものを任意に選択
できる。
Next, an apparatus and method for depositing an amorphous silicon film on the surface of the current collector of the negative electrode material in the nonaqueous electrolyte secondary battery of the present invention will be described. FIG. 1 shows a vapor deposition apparatus 1 according to one embodiment of the present invention. This vapor deposition apparatus 1 is for vapor-depositing an amorphous silicon film on a current collector by a plasma CVD method, and includes a reaction chamber 10 and a pair of electrodes 11 inside the reaction chamber 10.
A and 11B are provided. A pair of electrodes 11A, 11
B is connected to a discharge power supply 12 so that glow discharge can be performed between the electrodes 11A and 11B. Here, a DC or AC power source can be arbitrarily selected as the discharge power source 12.

【0017】また、一方の電極11Bの一方の面上に
は、アモルファス珪素膜を析出させる蒸着受体13が載
置されると共に、他方の面側には、蒸着受体13を所定
温度まで加熱するためのヒーター14が設けられてい
る。
A deposition receiver 13 for depositing an amorphous silicon film is mounted on one surface of one electrode 11B, and the deposition receiver 13 is heated to a predetermined temperature on the other surface. A heater 14 is provided.

【0018】更に、反応室10には、ガス供給バルブ1
5が設けられたガス導入管16を介してSiH4系のガ
スを供給するガス供給源17が連結されると共に、ガス
供給源17と反対側には、排気バルブ18が設けられた
排気管19を介して真空ポンプ20が連結されている。
また、反応室10には、系内の減圧度を計測するため
の、真空計21が設けられている。
Further, the gas supply valve 1 is provided in the reaction chamber 10.
A gas supply source 17 for supplying a SiH 4 -based gas is connected via a gas introduction pipe 16 provided with a gas supply 5, and an exhaust pipe 19 provided with an exhaust valve 18 on the side opposite to the gas supply source 17. The vacuum pump 20 is connected via the.
Further, the reaction chamber 10 is provided with a vacuum gauge 21 for measuring the degree of reduced pressure in the system.

【0019】上述のような蒸着装置1を用い、プラズマ
CVD法によりアモルファス珪素膜を蒸着する手法は、
以下に示す手順で行う。まず、所定厚さの銅箔等からな
る蒸着受体13を一方の電極11B上に載置した後、ヒ
ーター14により100〜850℃の範囲の所定温度ま
で加熱する。続いて、排気バルブ18を全開にすると共
に、真空ポンプ20で反応室10内を1×10-5Tor
r以下まで減圧した後、排気バルブ18を全閉する。
A method for depositing an amorphous silicon film by a plasma CVD method using the above-described deposition apparatus 1 is as follows.
The procedure is as follows. First, a deposition receiver 13 made of a copper foil or the like having a predetermined thickness is placed on one electrode 11B, and then heated by a heater 14 to a predetermined temperature in a range of 100 to 850 ° C. Subsequently, the exhaust valve 18 is fully opened, and the inside of the reaction chamber 10 is set to 1 × 10 −5
After reducing the pressure to r or less, the exhaust valve 18 is fully closed.

【0020】その後、真空計21の圧力が所定圧力にな
るようにガス供給バルブ15を調整し、ガス供給源17
から反応室10内にSiH4ガスを供給する。圧力が安
定した後、電極11A、11Bに500〜5000V程
度の電圧を加え、グロー放電を開始する。放電開始から
所定時間経過後、放電を停止してアモルファス珪素の析
出を停止させ、所定膜厚のアモルファス珪素膜を蒸着受
体13上に形成させる。
Thereafter, the gas supply valve 15 is adjusted so that the pressure of the vacuum gauge 21 becomes a predetermined pressure.
To supply SiH 4 gas into the reaction chamber 10. After the pressure is stabilized, a voltage of about 500 to 5000 V is applied to the electrodes 11A and 11B to start glow discharge. After a lapse of a predetermined time from the start of the discharge, the discharge is stopped to stop the deposition of the amorphous silicon, and an amorphous silicon film having a predetermined thickness is formed on the deposition receiver 13.

【0021】また、上記負極活性物質に用いる珪素酸化
物は、例えば、少なくとも二酸化珪素粉末を含む混合原
料粉末を、不活性ガス雰囲気下又は減圧下、1100〜
1600℃、好ましくは1200〜1500℃の温度範
囲で加熱してSiOガスを発生させた後、このSiOガ
ス中に連続的又は間欠的に酸素ガスを供給して混合ガス
とし、この混合ガスを冷却した基体表面に析出させるこ
とにより得ることができる。
The silicon oxide used as the negative electrode active material is, for example, a mixed raw material powder containing at least silicon dioxide powder, which is prepared by mixing 1100 to 1100 in an inert gas atmosphere or under reduced pressure.
After heating in a temperature range of 1600 ° C., preferably 1200 to 1500 ° C. to generate SiO gas, oxygen gas is continuously or intermittently supplied into the SiO gas to form a mixed gas, and the mixed gas is cooled. It can be obtained by precipitating on the surface of a substrate that has been made.

【0022】ここで、二酸化珪素粉末を含む混合原料粉
末には、二酸化珪素と、これを還元する粉末との混合物
を用いる。具体的な還元粉末としては、例えば、金属珪
素、炭素含有粉末が挙げられる。これらのうちでも、反
応性向上及び収率向上という点を考慮すると、金属珪素
を用いるのが好適である。なお、金属珪素としては、特
に限定はないが、生成した酸化珪素粉末の純度向上とい
う点を考慮すると、半導体グレードSi、セラミックス
グレードSi、ケミカルグレードSiのような高純度の
ものを用いるのが好適である。また、上記二酸化珪素と
これを還元する粉末との混合割合は適宜選定されるが、
完全に還元がなされるように調合することが好ましい。
Here, a mixture of silicon dioxide and a powder for reducing the same is used as the mixed raw material powder containing the silicon dioxide powder. Specific examples of the reduced powder include metal silicon and carbon-containing powder. Among these, it is preferable to use metallic silicon in consideration of improvement in reactivity and improvement in yield. The metal silicon is not particularly limited, but it is preferable to use a high-purity metal such as semiconductor grade Si, ceramic grade Si, and chemical grade Si in consideration of improving the purity of the generated silicon oxide powder. It is. The mixing ratio of the silicon dioxide and the powder for reducing the silicon dioxide is appropriately selected,
It is preferable that the preparation is performed so that the reduction is completely performed.

【0023】原料粉末を加熱することにより発生したS
iOガスは、搬送管を通じて酸化珪素粉末を析出させる
析出室に供給することとなるが、この際、搬送管は、1
000〜1300℃、より好ましくは1100〜120
0℃に加熱保持することが望ましい。即ち、搬送管の温
度が1000℃未満では、SiOガスが搬送管内壁に析
出付着し、運転上支障をきたして、安定した連続運転が
不可能になるおそれがある。一方、1300℃を超える
温度に加熱しても、それ以上の効果が得られないばかり
か、電力コストの上昇を招く場合が生じる。
S generated by heating the raw material powder
The iO gas is supplied to the deposition chamber for depositing the silicon oxide powder through the transfer pipe.
000-1300 ° C, more preferably 1100-120
It is desirable to keep the temperature at 0 ° C. That is, when the temperature of the transfer pipe is lower than 1000 ° C., SiO gas is deposited and adhered to the inner wall of the transfer pipe, which may hinder the operation and may make stable continuous operation impossible. On the other hand, even when heating to a temperature exceeding 1300 ° C., not only no further effect can be obtained, but also an increase in power cost may occur.

【0024】また、析出室に搬送されたSiOガスに供
給する酸素ガスは、酸素ガスそのものとして供給しても
よく、酸素ガスを含む不活性ガスとして供給してもよ
い。酸素ガスを供給する際のガス流量及びガス供給時間
により、得られる酸化珪素粉末(SiOx)におけるx
値を調整することができる。なお、酸素ガス等の供給方
法には、特に限定はなく、目的に応じて連続的又は間欠
的な方法等、適宜選択することができる。また、SiO
ガスに酸素ガスを供給し、混合する温度は、800〜1
200℃、特に900〜1100℃であることが好まし
い。
The oxygen gas supplied to the SiO gas transported to the deposition chamber may be supplied as oxygen gas itself or may be supplied as an inert gas containing oxygen gas. The x in the obtained silicon oxide powder (SiO x ) depends on the gas flow rate and the gas supply time when the oxygen gas is supplied.
The value can be adjusted. The method for supplying oxygen gas or the like is not particularly limited, and a method such as a continuous or intermittent method can be appropriately selected depending on the purpose. In addition, SiO
The temperature at which oxygen gas is supplied to and mixed with the gas is 800 to 1
The temperature is preferably 200 ° C, particularly 900 to 1100 ° C.

【0025】上述のようにSiOガスに酸素ガスを供給
して得られる混合ガスを、前述の析出室内に配置され、
冷媒で冷却された基体表面上に析出させて、所定のx値
を有する酸化珪素粉末(SiOx)を得ることができ
る。この際、基体表面の温度としては、特に限定はない
が、200〜400℃であることが好ましい。
The mixed gas obtained by supplying the oxygen gas to the SiO gas as described above is placed in the above-mentioned deposition chamber,
To precipitate onto the cooled substrate surface by the refrigerant, it is possible to obtain a silicon oxide powder having a predetermined x values (SiO x). At this time, the temperature of the substrate surface is not particularly limited, but is preferably 200 to 400 ° C.

【0026】上述のように基体上に析出した酸化珪素粉
末は、かき取り等の適宜な手段により、回収する。ま
た、回収した酸化珪素粉末は、必要に応じて、ボールミ
ル等の適宜な手段で粉砕し、所望の粒径とすることがで
きる。
The silicon oxide powder deposited on the substrate as described above is collected by an appropriate means such as scraping. The recovered silicon oxide powder can be pulverized by a suitable means such as a ball mill, if necessary, to obtain a desired particle size.

【0027】[0027]

【実施例】以下、実施例及び比較例を挙げて、本発明を
より具体的に説明するが、本発明は、下記の実施例に限
定されるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.

【0028】[実施例1] [1]アモルファス珪素膜蒸着 図1に示す蒸着装置1において、蒸着受体13として厚
さ0.25mmの銅箔を使用し、この銅箔を電極11B
上に載置した後、ヒーター14で280℃に加熱した。
次に、排気バルブ18を全開にし、真空ポンプ20で吸
引して反応室10内を1×10-6Torrに減圧した
後、排気バルブ18を閉じた。続いて、真空計21の圧
力が0.5Torrになるようにガス供給バルブ15を
調整し、ガス供給源17から反応室10内にSiH4
スを供給した。圧力が安定した後、電極11A、11B
に850VDCの電圧を加え、グロー放電を開始した。
放電開始から15分経過後、放電を停止してアモルファ
ス珪素の析出を停止させた。得られたアモルファス珪素
蒸着銅箔におけるアモルファス珪素の膜厚は1.2μm
であった。
Example 1 [1] Amorphous Silicon Film Deposition In the vapor deposition apparatus 1 shown in FIG. 1, a copper foil having a thickness of 0.25 mm was used as a deposition receiver 13 and this copper foil was used as an electrode 11B.
After being placed on the top, it was heated to 280 ° C. by the heater 14.
Next, the exhaust valve 18 was fully opened, the pressure inside the reaction chamber 10 was reduced to 1 × 10 −6 Torr by suction with the vacuum pump 20, and then the exhaust valve 18 was closed. Subsequently, the gas supply valve 15 was adjusted so that the pressure of the vacuum gauge 21 became 0.5 Torr, and SiH 4 gas was supplied from the gas supply source 17 into the reaction chamber 10. After the pressure is stabilized, the electrodes 11A, 11B
Was applied, and glow discharge was started.
After a lapse of 15 minutes from the start of discharge, the discharge was stopped to stop the deposition of amorphous silicon. The thickness of the amorphous silicon in the obtained amorphous silicon vapor-deposited copper foil is 1.2 μm.
Met.

【0029】[2]電池作成 グラファイト100重量部、SiOx(x=1.05)
粉末100重量部、及び結着剤としてポリフッ化ビニリ
デン20重量部(N−メチルピロリドン溶媒)を混練し
て得られる混練物を、上述の方法で製造したアモルファ
ス珪素蒸着銅箔に塗布圧着した後、真空乾燥機にて12
0℃、12時間乾燥させ、負極を作製した。
[2] Preparation of Battery 100 parts by weight of graphite, SiO x (x = 1.05)
A kneaded product obtained by kneading 100 parts by weight of a powder and 20 parts by weight of polyvinylidene fluoride (N-methylpyrrolidone solvent) as a binder is applied to an amorphous silicon vapor-deposited copper foil produced by the above-described method, followed by press bonding. 12 with vacuum dryer
It dried at 0 degreeC and 12 hours, and produced the negative electrode.

【0030】この負極の対極に厚さ20μmのリチウム
箔を正極として配置し、非水電解質として六フッ化リン
リチウムをエチレンカーボネートと1,2−ジメトキシ
エタンの1/1混合液に1モル/Lの濃度で溶解させた
非水電解質溶液を用い、セパレーターに厚さ30μmの
ポリエチレン製微多孔質フィルムを用いた評価用リチウ
ムイオン二次電池を作製した。
A lithium foil having a thickness of 20 μm was arranged on the counter electrode of the negative electrode as a positive electrode, and lithium phosphate hexafluoride was used as a nonaqueous electrolyte at a concentration of 1 mol / L in a 1/1 mixed solution of ethylene carbonate and 1,2-dimethoxyethane. A lithium ion secondary battery for evaluation was prepared using a non-aqueous electrolyte solution dissolved at a concentration of 0.1 μm and a polyethylene microporous film having a thickness of 30 μm as a separator.

【0031】[3]充放電特性(容量)評価 上述のようにして得られたリチウムイオン二次電池を一
晩室温で放置した後、二次電池充放電試験装置((株)
ナガノ製)を用いて、以下のような充放電試験を行っ
た。試験前の開回路電圧は、4.0Vであった。次に定
電流0.1mAにて電圧が0.0Vになるまで電極にリ
チウムの吸蔵(充電)を行った後、定電流0.1mAに
て電圧が3.0Vになるまで、電極からリチウムイオン
の放出(放電)を行った。得られた結果を試料重量で割
った値を放電容量として求めたところ、2700mAh
/gと非常に高容量であった。
[3] Evaluation of Charge / Discharge Characteristics (Capacity) After the lithium ion secondary battery obtained as described above was allowed to stand overnight at room temperature, a secondary battery charge / discharge tester (Co., Ltd.)
The following charge / discharge test was carried out using Nagano Corporation. The open circuit voltage before the test was 4.0V. Next, lithium is inserted (charged) into the electrode at a constant current of 0.1 mA until the voltage becomes 0.0 V, and then lithium ions are charged from the electrode until the voltage becomes 3.0 V at a constant current of 0.1 mA. Was released (discharged). The value obtained by dividing the obtained result by the sample weight was determined as the discharge capacity, and was 2700 mAh.
/ G and a very high capacity.

【0032】[実施例2]実施例1で得られたアモルフ
ァス珪素蒸着銅箔を用いて電池を作製する際に、負極材
の構成材料としてSiOx(x=1.05)粉末を用い
なかった以外は、実施例1と同様にしてリチウムイオン
二次電池を作製した。得られた二次電池の放電容量を実
施例1と同様にして求めたところ、1700mAh/g
と高容量であった。
Example 2 When a battery was manufactured using the amorphous silicon vapor-deposited copper foil obtained in Example 1, no SiO x (x = 1.05) powder was used as a constituent material of the negative electrode material. Except for the above, a lithium ion secondary battery was manufactured in the same manner as in Example 1. When the discharge capacity of the obtained secondary battery was determined in the same manner as in Example 1, it was 1700 mAh / g.
And high capacity.

【0033】[実施例3]実施例1で得られたアモルフ
ァス珪素蒸着銅箔を用いて電池を作製する際に、負極材
の構成材料としてSiOx(x=1.55)粉末を10
0重量部用いた以外は、実施例1と同様にしてリチウム
イオン二次電池を作製した。得られた二次電池の放電容
量を実施例1と同様にして求めたところ、2250mA
h/gと高容量であった。
Example 3 When a battery was manufactured using the amorphous silicon vapor-deposited copper foil obtained in Example 1, SiO x (x = 1.55) powder was used as a constituent material of the negative electrode material.
A lithium ion secondary battery was produced in the same manner as in Example 1, except that 0 parts by weight was used. When the discharge capacity of the obtained secondary battery was determined in the same manner as in Example 1, it was 2250 mA.
h / g and high capacity.

【0034】[実施例4]実施例1で得られたアモルフ
ァス珪素蒸着銅箔を用いて電池を作製する際に、負極材
の構成材料であるSiOx(x=1.05)粉末を20
0重量部用いた以外は、実施例1と同様にしてリチウム
イオン二次電池を作製した。得られた二次電池の放電容
量を実施例1と同様にして求めたところ、1900mA
h/gと高容量であった。
Example 4 When a battery was produced using the amorphous silicon vapor-deposited copper foil obtained in Example 1, 20 parts of SiO x (x = 1.05) powder,
A lithium ion secondary battery was produced in the same manner as in Example 1, except that 0 parts by weight was used. When the discharge capacity of the obtained secondary battery was determined in the same manner as in Example 1, it was 1900 mA.
h / g and high capacity.

【0035】[実施例5]実施例1で得られたアモルフ
ァス珪素蒸着銅箔を用いて電池を作製する際に、負極材
の構成材料であるグラファイトを200重量部用いた以
外は、実施例1と同様にしてリチウムイオン二次電池を
作製した。得られた二次電池の放電容量を実施例1と同
様にして求めたところ、2000mAh/gと高容量で
あった。
Example 5 A battery was produced using the amorphous silicon vapor-deposited copper foil obtained in Example 1, except that 200 parts by weight of graphite, which was a constituent material of the negative electrode material, was used. In the same manner as in the above, a lithium ion secondary battery was produced. When the discharge capacity of the obtained secondary battery was determined in the same manner as in Example 1, the discharge capacity was as high as 2000 mAh / g.

【0036】[比較例1]アモルファス珪素膜を蒸着し
ない通常の銅箔を用いた以外は、実施例1と同様にして
リチウムイオン二次電池を作製した。得られた二次電池
の放電容量を実施例1と同様にして求めたところ、12
00mAh/gであった。
Comparative Example 1 A lithium ion secondary battery was manufactured in the same manner as in Example 1 except that a normal copper foil on which an amorphous silicon film was not deposited was used. The discharge capacity of the obtained secondary battery was determined in the same manner as in Example 1.
It was 00 mAh / g.

【0037】[比較例2]アモルファス珪素膜を蒸着し
ない通常の銅箔を用い、二次電池を作製する際に、負極
材の構成材料としてSiOx(x=1.05)粉末を用
いなかった以外は、実施例1と同様にしてリチウムイオ
ン二次電池を作製した。得られた二次電池の放電容量を
実施例1と同様にして求めたところ、360mAh/g
であった。
[Comparative Example 2] When a secondary battery was manufactured using a normal copper foil on which an amorphous silicon film was not deposited, no SiO x (x = 1.05) powder was used as a constituent material of the negative electrode material. Except for the above, a lithium ion secondary battery was manufactured in the same manner as in Example 1. When the discharge capacity of the obtained secondary battery was determined in the same manner as in Example 1, it was 360 mAh / g.
Met.

【0038】各実施例及び比較例におけるアモルファス
珪素蒸着膜の有無、負極材の構成材料、放電容量試験結
果を表1にまとめた。
Table 1 summarizes the presence or absence of an amorphous silicon vapor-deposited film, the constituent materials of the negative electrode material, and the discharge capacity test results in each of the examples and comparative examples.

【0039】[0039]

【表1】 [Table 1]

【0040】[参考例]原料として、二酸化珪素粉末
(BET比表面積:200m2/g)と、セラミックス
グレード用金属珪素粉末(BET比表面積:4m2
g)とを等量モルの割合で混合した混合原料粉末を用
い、酸化珪素SiOx粉末を得た。
[0040] As Reference Example material, silicon dioxide powder: a (BET specific surface area 200m 2 / g), a ceramic grade metal silicon powder (BET specific surface area: 4m 2 /
g) was mixed at an equimolar ratio to obtain a silicon oxide SiO x powder.

【0041】まず、上記混合原料粉末をマッフルの容積
が6000cm3の反応炉内に200g仕込んだ。続い
て、真空ポンプにより反応炉内を0.1Torr以下ま
で減圧した後、ヒーターに通電して1350℃の温度ま
で昇温し、この温度に保持した。一方、搬送管をヒータ
ーにて1100℃に加熱し、この温度に保持した。この
後、析出室内のヒーターに通電し、析出室内の温度を9
00℃とすると同時に、SUS製基体(表面積200c
2)の冷媒通路に水5.0NL/minを通過させ
た。
First, 200 g of the mixed raw material powder was charged into a reactor having a muffle volume of 6000 cm 3 . Subsequently, the pressure inside the reaction furnace was reduced to 0.1 Torr or less by a vacuum pump, and then the heater was energized to raise the temperature to 1350 ° C. and maintained at this temperature. On the other hand, the transport tube was heated to 1100 ° C. by a heater and kept at this temperature. Thereafter, the heater in the deposition chamber is energized, and the temperature in the deposition chamber is set to 9
At the same time as the temperature was set to 00 ° C., a SUS substrate (surface area 200 c
5.0 NL / min of water was passed through the m 2 ) refrigerant passage.

【0042】また、析出室内にガス導入管から、酸素ガ
スを20%含んだアルゴンガスを50cc/minで連
続的に供給した。なお、この条件下での基体の表面温度
は、約280℃である。上記条件にて、5時間運転を行
った結果、基体の表面には黒色塊状のSiOxが160
g析出していた。この塊状析出物を回収した後、ボール
ミルで5時間粉砕し、酸化珪素粉末を得た。得られた酸
化珪素粉末は、BET比表面積210m2/g、一般式
SiOx(x=1.22)で表せる非晶質粉末であっ
た。
Further, an argon gas containing 20% of oxygen gas was continuously supplied into the deposition chamber at 50 cc / min. The surface temperature of the substrate under these conditions is about 280 ° C. After operating for 5 hours under the above conditions, 160 g of black massive SiO x was found on the surface of the substrate.
g. After collecting this massive precipitate, it was pulverized with a ball mill for 5 hours to obtain a silicon oxide powder. The obtained silicon oxide powder was an amorphous powder having a BET specific surface area of 210 m 2 / g and represented by the general formula SiO x (x = 1.22).

【0043】また、析出室内の温度、基体内に流す水
量、20%の酸素含有アルゴンガス量を表2のように変
えた以外は、上記と同様にして、一般式SiOxで表さ
れる酸化珪素粉末を製造した。
The oxidation represented by the general formula SiO x was performed in the same manner as described above except that the temperature in the deposition chamber, the amount of water flowing into the substrate, and the amount of 20% oxygen-containing argon gas were changed as shown in Table 2. Silicon powder was produced.

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【発明の効果】以上に述べたように、本発明によれば、
アモルファス珪素膜を負極材の集電体表面に蒸着してい
ることから、充放電特性に優れた高容量のリチウムイオ
ン二次電池を提供することができ、その結果、リチウム
イオン二次電池を使用した機器の小型化、軽量化を図る
ことができる。
As described above, according to the present invention,
Since the amorphous silicon film is deposited on the current collector surface of the negative electrode material, a high-capacity lithium-ion secondary battery with excellent charge / discharge characteristics can be provided. As a result, a lithium-ion secondary battery is used. Device can be reduced in size and weight.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るアモルファス珪素膜
の蒸着装置を示す概略断面図である。
FIG. 1 is a schematic sectional view showing an apparatus for depositing an amorphous silicon film according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 蒸着装置 10 反応室 11A、11B 電極 12 放電用電源 13 蒸着受体 14 ヒーター 15 ガス供給バルブ 16 ガス導入管 17 ガス供給源 18 排気バルブ 19 排気管 20 真空ポンプ 21 真空計 DESCRIPTION OF SYMBOLS 1 Deposition apparatus 10 Reaction chamber 11A, 11B electrode 12 Power supply for discharge 13 Deposition receiver 14 Heater 15 Gas supply valve 16 Gas introduction pipe 17 Gas supply source 18 Exhaust valve 19 Exhaust pipe 20 Vacuum pump 21 Vacuum gauge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮脇 悟 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社群馬事業所内 (72)発明者 上野 進 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社群馬事業所内 Fターム(参考) 5H017 BB00 CC01 EE06 HH00 5H029 AJ03 AL06 AL18 AM03 AM04 AM05 AM07 CJ24 HJ02 5H050 AA08 BA17 CB07 DA03 DA09 EA10 EA12 EA24 GA24 HA02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Satoru Miyawaki 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Industry Co., Ltd. Gunma Office (72) Inventor Susumu Ueno 2-chome, Isobe, Annaka-shi, Gunma 13-1 Shin-Etsu Kagaku Kogyo Co., Ltd. Gunma Plant F-term (reference) 5H017 BB00 CC01 EE06 HH00 5H029 AJ03 AL06 AL18 AM03 AM04 AM05 AM07 CJ24 HJ02 5H050 AA08 BA17 CB07 DA03 DA09 EA10 EA12 EA24 GA24 HA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極材、負極材、リチウム塩を含む非水
電解質、及びセパレーターを備えた非水電解質二次電池
であって、 前記負極材の集電体表面には、アモルファス珪素膜が蒸
着されていることを特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode material, a negative electrode material, a non-aqueous electrolyte containing a lithium salt, and a separator, wherein an amorphous silicon film is deposited on a current collector surface of the negative electrode material. A non-aqueous electrolyte secondary battery characterized in that:
【請求項2】 前記負極材は、少なくとも集電体、結着
剤及び負極活性物質を含んで構成され、 この負極活性物質は、炭素質材料又は一般式SiO
x(0.8<x<1.9)で表される珪素酸化物を含有
させた炭素質材料であることを特徴とする請求項1記載
の非水電解質二次電池。
2. The negative electrode material includes at least a current collector, a binder, and a negative electrode active material. The negative electrode active material may be a carbonaceous material or a general formula SiO.
The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte secondary battery is a carbonaceous material containing a silicon oxide represented by x (0.8 <x <1.9).
JP2001053907A 2001-02-28 2001-02-28 Nonaqueous electrolyte secondary battery Pending JP2002260669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053907A JP2002260669A (en) 2001-02-28 2001-02-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001053907A JP2002260669A (en) 2001-02-28 2001-02-28 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2002260669A true JP2002260669A (en) 2002-09-13

Family

ID=18914322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053907A Pending JP2002260669A (en) 2001-02-28 2001-02-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2002260669A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349057A (en) * 2003-05-21 2004-12-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
EP1622215A1 (en) * 2003-04-28 2006-02-01 Sumitomo Titanium Corporation Negative electrode for lithium secondary cell, lithium secondary cell employing the negative electrode, film deposition material b used for forming negative electrode, and process for producing negative electrode
WO2006046353A1 (en) * 2004-10-25 2006-05-04 Sumitomo Titanium Corporation Method for producing negative electrode for lithium secondary battery
JP2006244813A (en) * 2005-03-02 2006-09-14 Nec Corp Negative electrode for secondary battery and secondary battery using it
JPWO2006106782A1 (en) * 2005-03-31 2008-09-11 松下電器産業株式会社 Lithium secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1622215A1 (en) * 2003-04-28 2006-02-01 Sumitomo Titanium Corporation Negative electrode for lithium secondary cell, lithium secondary cell employing the negative electrode, film deposition material b used for forming negative electrode, and process for producing negative electrode
EP1622215A4 (en) * 2003-04-28 2009-07-22 Osaka Titanium Technologies Co Negative electrode for lithium secondary cell, lithium secondary cell employing the negative electrode, film deposition material b used for forming negative electrode, and process for producing negative electrode
JP2004349057A (en) * 2003-05-21 2004-12-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP4632016B2 (en) * 2003-05-21 2011-02-16 株式会社Gsユアサ Non-aqueous electrolyte battery
WO2006046353A1 (en) * 2004-10-25 2006-05-04 Sumitomo Titanium Corporation Method for producing negative electrode for lithium secondary battery
JP2006244813A (en) * 2005-03-02 2006-09-14 Nec Corp Negative electrode for secondary battery and secondary battery using it
JPWO2006106782A1 (en) * 2005-03-31 2008-09-11 松下電器産業株式会社 Lithium secondary battery
JP4584307B2 (en) * 2005-03-31 2010-11-17 パナソニック株式会社 Lithium secondary battery

Similar Documents

Publication Publication Date Title
KR101439726B1 (en) Submicron sized silicon powder with low oxygen content
EP3382779B1 (en) Method for preparing anode active material for lithium secondary battery and lithium secondary battery to which method is applied
US6759160B2 (en) Silicon oxide powder and making method
US20110183208A1 (en) Negative-electrode active material for nonaqueous electrolyte secondary battery, and negative electrode and nonaqueous electrolyte secondary battery using the same
WO2015065095A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
CN108306009B (en) Silicon oxide-carbon composite negative electrode material, preparation method thereof and lithium ion battery
JP2003192327A (en) Method of and device for producing metallic element- doped silicon oxide powder
KR20150078059A (en) Anode material for rechargeable lithium battery, manufacturing method thereof, and rechargeable lithium battery comprising the same
CN112366299B (en) Preparation method of graphite-silicon-based lithium ion battery negative electrode material and product thereof
JP5737265B2 (en) Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
CN112875680B (en) Preparation method of flaky Fe-based alloy catalytic growth carbon nanotube array
TWI333705B (en)
TW201725772A (en) Method for producing negative electrode active material for lithium ion secondary batteries
JP6620812B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
WO2014061974A1 (en) Silicon oxide-carbon composite and method for preparing same
JP3340337B2 (en) Non-aqueous secondary battery and method for producing negative electrode active material
JP2002260669A (en) Nonaqueous electrolyte secondary battery
CN115663153B (en) Preparation method of metal doped silicon-based anode material, anode material and secondary battery
Zhang et al. Highly Stable Vanadium Oxide Cathodes Prepared by Plasma‐Enhanced Chemical Vapor Deposition
KR101104237B1 (en) Negative composition for Lithium secondary battery using lithium vanadium oxide and manufacturing method thereof
JP2019040806A (en) Negative electrode active material for lithium ion battery and manufacturing method thereof, negative electrode for lithium ion battery, and lithium ion battery
Liang et al. Synthesis and Electrochemical Characteristics of LiNi0. 5Mn1. 5O4 Coatings Prepared by Atmospheric Plasma Spray as Cathode Material for Lithium-Ion Batteries
CN113036091A (en) Carbon-coated ternary positive pole piece and preparation method and application thereof
CN114976023B (en) Conductor material, preparation method thereof, coated electrode material and battery
JP3935729B2 (en) Electrode for lithium secondary battery