JP2002258925A - Nc data outputting method - Google Patents

Nc data outputting method

Info

Publication number
JP2002258925A
JP2002258925A JP2001059074A JP2001059074A JP2002258925A JP 2002258925 A JP2002258925 A JP 2002258925A JP 2001059074 A JP2001059074 A JP 2001059074A JP 2001059074 A JP2001059074 A JP 2001059074A JP 2002258925 A JP2002258925 A JP 2002258925A
Authority
JP
Japan
Prior art keywords
moving direction
point
intersection
processing
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001059074A
Other languages
Japanese (ja)
Inventor
Takao Hasebe
孝男 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2001059074A priority Critical patent/JP2002258925A/en
Publication of JP2002258925A publication Critical patent/JP2002258925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To output highly precise NC data which are much more closer to the shape acquired from the calculated value of a working point coordinate. SOLUTION: An output error allowance (t) in the moving direction of a working point and an output error allowance (n) in a direction orthogonal to the moving direction are inputted, and the coordinate value of the working point and the moving direction of the working point are calculated. An intersection point on the minimum set unit mesh which is not more than the output error allowance (t) in the moving direction and the output error allowance (n) in the orthogonal direction is detected. An intersection coordinate value which is the closest to the calculated point of the working point coordinate value among the detected intersection points is outputted. When any intersection point which is not more than the allowance (n) is absent, an intersection point coordinate value which is not more than the allowance (t) with the minimum error in the orthogonal direction is outputted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工作機械等の加工
機用のNCデータを出力する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for outputting NC data for a processing machine such as a machine tool.

【0002】[0002]

【従来の技術】例えば金型加工機用のNCデータは、従
来、CAMシステムによって図3のフローチャートに示
すような方法で出力されていた。まず、ステップS11
で、加工形状を入力し、ステップS12で、工具形状、
加工方法、ピックフィード量、許容加工誤差量等の加工
条件を入力する。加工方法には、等高線加工、走査線加
工、面沿い加工等が含まれる。次に、ステップS13
で、入力された加工形状と加工条件とに基づき、加工形
状線又はそのオフセット形状線上の点である加工点の座
標値を計算する。
2. Description of the Related Art For example, NC data for a mold processing machine has conventionally been output by a CAM system in a method as shown in a flowchart of FIG. First, step S11
Then, the processing shape is input, and in step S12, the tool shape,
Processing conditions such as a processing method, a pick feed amount, and an allowable processing error amount are input. The processing method includes contour processing, scanning line processing, processing along a surface, and the like. Next, step S13
Then, based on the input processing shape and processing conditions, the coordinate value of the processing point which is a point on the processing shape line or its offset shape line is calculated.

【0003】そして、ステップS14で、最小設定単位
メッシュ上の交点のうち計算された加工点座標値に最も
近い交点の座標値をNC装置に出力する。こうすれば、
出力点を直線で結ぶ経路が工具の移動経路となる。な
お、最小設定単位メッシュとは、平面座標をNCデータ
の最小設定単位の間隔で区切ったものである。現在、最
小設定単位は1μmが一般的である。
In step S14, the coordinates of the intersection closest to the calculated machining point coordinate value among the intersections on the minimum setting unit mesh are output to the NC unit. This way,
The path connecting the output points with a straight line is the moving path of the tool. The minimum setting unit mesh is obtained by dividing plane coordinates at intervals of the minimum setting unit of the NC data. At present, the minimum setting unit is generally 1 μm.

【0004】[0004]

【発明が解決しようとする課題】ところが、近年、NC
工作機械の精度向上によって、NCデータの精度次第で
は最小設定単位に近い面粗度の加工が可能になってきて
おり、従来のNCデータ出力方法によると、許容加工誤
差量を最小設定単位に近づけた場合に、良好な面粗度が
得られないという問題点があった。この問題点を図4の
加工形態を例に以下に説明する。
However, in recent years, NC
Improvements in machine tool accuracy have enabled machining of surface roughness close to the minimum setting unit depending on the accuracy of the NC data. According to the conventional NC data output method, the permissible machining error amount approaches the minimum setting unit. In such a case, there is a problem that good surface roughness cannot be obtained. This problem will be described below with reference to the working mode shown in FIG.

【0005】図4は円筒状の加工面Sをボールエンドミ
ル等の工具TによりX軸方向に走査線加工する形態を例
示するものである。S0は加工面Sを工具Tの半径分オ
フセットしたオフセット面、YiはY軸に対し垂直な面
である。Liは垂直面Yiとオフセット面S0との交線
であり、工具中心の理想的な移動経路を示す。
FIG. 4 shows an example in which a cylindrical processing surface S is subjected to scanning line processing in the X-axis direction by a tool T such as a ball end mill. S0 is an offset surface obtained by offsetting the processing surface S by the radius of the tool T, and Yi is a surface perpendicular to the Y axis. Li is an intersection line between the vertical plane Yi and the offset plane S0, and indicates an ideal movement path of the tool center.

【0006】ここで、NC装置に出力するNCデータは
微小線分に分割された点群である。これらの点は、図5
に示すように、隣接する2点(Ci,j)及び(Ci,
j+1)を結ぶ線分上のどの位置においても、経路Li
との距離が入力された許容加工誤差量δ以下となるよう
に計算される。
Here, the NC data output to the NC device is a group of points divided into minute line segments. These points are illustrated in FIG.
, Two adjacent points (Ci, j) and (Ci, j)
j + 1) at any position on the line segment connecting
Is calculated so that the distance from the input is equal to or less than the allowable processing error amount δ.

【0007】この段階においては、図6に示すように、
X−Z平面上において経路Liに次の経路Li+1を重
ねて投影した場合、たとえ(Ci,j)と(Ci+1,
j)との位置がずれていたとしても、各経路上の点群を
結んだ折れ線は許容加工誤差量δより大きく離れること
はない。
At this stage, as shown in FIG.
When the next path Li + 1 is projected onto the path Li on the XZ plane, if (Ci, j) and (Ci + 1,
Even if the position is shifted from j), the polygonal line connecting the point groups on each path does not deviate more than the allowable processing error amount δ.

【0008】ところが、図7に示すように、計算値を四
捨五入等によりNCデータの最小設定単位に揃え、最小
設定単位メッシュ上の交点座標値を出力すると、場合に
よっては、出力点を結んだ折れ線が許容加工誤差量δよ
り大きく離れ、最大で(δ+最小設定単位×√2)の誤
差が発生する。
However, as shown in FIG. 7, when the calculated value is adjusted to the minimum setting unit of the NC data by rounding or the like and the intersection coordinate value on the minimum setting unit mesh is output, in some cases, a polygonal line connecting the output points may be obtained. Is larger than the allowable processing error amount δ, and an error of (δ + minimum setting unit × √2) occurs at the maximum.

【0009】図8は工具の移動経路に直交する面(図4
のY−Z平面)における加工面の面粗度を示すものであ
る。点群データに誤差がない場合は、(a)に示すよう
に、加工面の凹凸量hは工具半径Rとピックフィード量
Pとを用いて次式より近似的に求められる。 h=P2÷8R
FIG. 8 shows a plane orthogonal to the moving path of the tool (FIG. 4).
(The YZ plane of FIG. 3) shows the surface roughness of the processed surface. When there is no error in the point cloud data, as shown in (a), the unevenness amount h of the processed surface is approximately obtained from the following equation using the tool radius R and the pick feed amount P. h = P 2 ÷ 8R

【0010】これに対し、加工面と垂直な方向(Z軸方
向)に(P2÷2R)を超える誤差が発生すると、
(b)に示すように、加工面の凹凸量は4hとなり、高
い位置を移動する経路(中央の経路)は最終加工面に残
らないため、ピックフィードを細かくする目的が達成さ
れず、面粗度が低下する。
On the other hand, when an error exceeding (P 2 ÷ 2R) occurs in a direction (Z-axis direction) perpendicular to the processing surface,
As shown in (b), the unevenness amount of the processing surface is 4 h, and the path for moving at a high position (the center path) does not remain in the final processing surface, so that the purpose of making the pick feed fine is not achieved, and the surface roughness is not achieved. Degree decreases.

【0011】加工面の面粗度は、NCデータの精度以外
にも機械及び制御系の各種誤差の影響を受けるため、N
Cデータは可能な限り高い精度を求められる。しかしな
がら、従来方法によると、許容加工誤差量を最小設定単
位に近づけるほど、加工点座標値に最も近い座標値を出
力する方法による誤差の影響が大きくなるという問題が
あった。
The surface roughness of the machined surface is affected by various errors of the machine and the control system in addition to the accuracy of the NC data.
C data is required to have the highest possible accuracy. However, according to the conventional method, as the allowable processing error amount approaches the minimum setting unit, there is a problem that the influence of the error by the method of outputting the coordinate value closest to the processing point coordinate value increases.

【0012】そこで、本発明の課題は、加工点座標の計
算値により求められる形状により近い高精度のNCデー
タを出力できる方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method capable of outputting high-precision NC data which is closer to a shape obtained from a calculated value of a processing point coordinate.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
めに、請求項1の発明によるNCデータ出力方法は、加
工点の座標値と加工点の移動方向とを計算し、移動方向
と直交する方向における出力誤差の許容値を設定し、前
記許容値以下となる最小設定単位メッシュ上の交点のう
ち加工点に最も近い交点の座標値を求め、出力すること
を特徴とする。
In order to solve the above-mentioned problems, an NC data output method according to the first aspect of the present invention calculates a coordinate value of a machining point and a moving direction of the machining point, and calculates an orthogonal value to the moving direction. The method is characterized in that an allowable value of an output error in a direction to be set is set, and a coordinate value of an intersection closest to the processing point among intersections on the minimum setting unit mesh which is equal to or less than the allowable value is obtained and output.

【0014】請求項2の発明によるNCデータ出力方法
は、加工点の座標値と加工点の移動方向とを計算し、移
動方向における出力誤差の許容値と、移動方向と直交す
る方向における出力誤差の許容値とを設定し、加工点を
通り移動方向と同じ方向に延びる直線を求め、移動方向
における出力誤差の許容値以下となる最小設定単位メッ
シュ上の交点を求め、交点毎に直線との距離を算出し、
距離が移動方向と直交する方向における出力誤差の許容
値以下となる交点のうち加工点に最も近い交点の座標値
を出力することを特徴とする。
According to a second aspect of the present invention, there is provided an NC data output method, wherein a coordinate value of a processing point and a moving direction of the processing point are calculated, and an allowable value of an output error in the moving direction and an output error in a direction orthogonal to the moving direction are calculated. And a straight line extending in the same direction as the moving direction passing through the processing point is obtained, and an intersection on the minimum setting unit mesh which is equal to or less than an allowable value of the output error in the moving direction is obtained. Calculate the distance,
It is characterized by outputting the coordinate value of the intersection closest to the processing point among the intersections where the distance is equal to or less than the allowable value of the output error in the direction orthogonal to the moving direction.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は工作機械におけるNCデー
タの出力方法を示すフローチャートであり、図2は2次
元形状部の最小設定単位メッシュを用いて出力点を決定
する方法を例示する模式図である。ただし、本発明は2
次元形状部に限定されず、以下の方法を3次元形状部に
適用することも可能である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing a method of outputting NC data in a machine tool, and FIG. 2 is a schematic diagram illustrating a method of determining an output point using a minimum setting unit mesh of a two-dimensional shape portion. However, the present invention does not
The following method is not limited to the three-dimensional shape part, and can be applied to the three-dimensional shape part.

【0016】図1おいて、まず、ステップS1で加工形
状を入力し、ステップS2で加工条件を入力する。加工
条件には、工具形状、加工方法、ピックフィード量、許
容加工誤差量、移動方向の出力誤差許容値t、移動方向
に対し直交する方向の出力誤差許容値n等が含まれる。
加工方法には、等高線加工、走査線加工、面沿い加工等
が含まれる。
In FIG. 1, first, a processing shape is input in step S1, and processing conditions are input in step S2. The processing conditions include a tool shape, a processing method, a pick feed amount, an allowable processing error amount, an output error allowable value t in the moving direction, an output error allowable value n in a direction orthogonal to the moving direction, and the like.
The processing method includes contour processing, scanning line processing, processing along a surface, and the like.

【0017】次に、ステップS3で、加工形状線又はそ
のオフセット形状線上の点である加工点の座標値(x,
y)と、加工点の移動方向αとを計算し、これらの値を
メモリに記憶する。座標値及び移動方向は、入力された
加工形状と加工条件とに基づきCAMによって計算され
る。
Next, in step S3, a coordinate value (x, x) of a processing point which is a point on the processing shape line or its offset shape line.
y) and the moving direction α of the machining point are calculated, and these values are stored in the memory. The coordinate value and the moving direction are calculated by the CAM based on the input processing shape and processing conditions.

【0018】続いて、ステップS4で、移動方向の出力
誤差許容値t、及び移動方向に対し直交する方向の出力
誤差許容値n以下となる最小設定単位メッシュ上の交点
を検出する。そして、許容値t,n以下となる交点が複
数あれば、ステップS5で、そのうち加工点座標値の計
算点に最も近い交点の座標値を出力する。また、許容値
t,n以下となる交点がなければ、ステップS6で、移
動方向の出力誤差許容値t以下で移動方向に対し直交す
る方向の誤差が最も小さい交点の座標値を出力する。
Subsequently, in step S4, an intersection point on the minimum setting unit mesh which is equal to or smaller than the output error allowable value t in the moving direction and the output error allowable value n in the direction orthogonal to the moving direction is detected. If there are a plurality of intersections that are equal to or less than the allowable values t and n, in step S5, the coordinate value of the intersection closest to the calculation point of the machining point coordinate value is output. If there is no intersection that is less than or equal to the permissible value t, n, the coordinate value of the intersection at which the error in the direction orthogonal to the moving direction is smaller than the permissible output value t in the moving direction is output in step S6.

【0019】上記ステップS4〜S6の処理を図2に基
づいて詳述すると、最小設定単位メッシュMは、XY軸
共にNCデータの最小設定単位Ux,Uy(例えば、U
x,Uy=1μm)に等しい間隔で構成されている。こ
こにおいて、まず、座標値の計算点C(x,y)を通り
移動方向αと同じ方向に延びる直線Lの計算式 y=f
(x) を求める。次に、移動方向の誤差許容値tに含
まれかつ直線Lに最も近い交点P0,P1,P-1,P2,
P-2・・・Pi・・を指定する。
The processing of steps S4 to S6 will be described in detail with reference to FIG. 2. The minimum setting unit mesh M is the minimum setting unit Ux, Uy (for example, U
(x, Uy = 1 μm). Here, first, a calculation formula of a straight line L passing through the coordinate value calculation point C (x, y) and extending in the same direction as the moving direction α y = f
(X) is obtained. Next, the intersection points P0, P1, P-1, P2, P2,
P-2 ... Pi ... is specified.

【0020】P0は座標値の計算点C(x,y)に最も
近いメッシュM上の交点であり、計算点Cの四捨五入値
(x0,y0)で表わされる。P1はx0に対しX軸方向の
最小設定単位Uxだけ正方向に離れた位置x1で直線L
に最も近いメッシュM上の交点であり、x1における直
線L上の点の四捨五入値(x1、y1)で表わされる。y
1=f(x1)である。
P0 is an intersection on the mesh M closest to the calculation point C (x, y) of the coordinate value, and is represented by a rounded value (x0, y0) of the calculation point C. P1 is a straight line L at a position x1 away from x0 by the minimum setting unit Ux in the X-axis direction in the positive direction.
, And is represented by the rounded value (x1, y1) of the point on the straight line L at x1. y
1 = f (x1).

【0021】P-1はx0に対し最小設定単位Uxだけ負
方向に離れた位置x-1で直線Lに最も近いメッシュM上
の交点であり、x-1における直線L上の点の四捨五入値
(x-1、y-1)で表わされる。y-1=f(x-1)であ
る。以下、(x0,y0)から正負両方向へ誤差許容値t
だけ離れた範囲に含まれる各交点P2,P-2・・・Pi・
・も同様に定義される。
P-1 is an intersection point on the mesh M closest to the straight line L at a position x-1 that is separated from x0 by the minimum setting unit Ux in the negative direction, and the rounded value of the point on the straight line L at x-1 (X-1, y-1). y-1 = f (x-1). Hereinafter, the allowable error value t in both the positive and negative directions from (x0, y0)
Intersections P2, P-2 ... Pi.
Is defined similarly.

【0022】続いて、各交点P0,P1,P-1・・・毎に
直線Lとの距離D0,D1,D-1・・・を算出し、距離D
iが直交方向の誤差許容値n以下となる交点Piを検出す
る。そして、複数の交点Piを検出した場合には、その
うち計算点Cに最も近い交点Piの座標値を出力する。
また、誤差許容値n以下となる交点を検出しなかった場
合には、移動方向の出力誤差許容値t以下で直交方向の
誤差が最も小さい交点、つまり距離Diが最も短い交点
Piの座標値を出力する。なお、図示例の場合は、D-2
>n>D3>D-3であり、d-3>d3であるから、交点P
3の座標値(x3、y3)を出力する。
Then, the distances D0, D1, D-1,... To the straight line L are calculated for each of the intersections P0, P1, P-1,.
An intersection Pi where i is equal to or smaller than an error allowance n in the orthogonal direction is detected. When a plurality of intersections Pi are detected, the coordinate value of the intersection Pi closest to the calculation point C is output.
If no intersection that is less than or equal to the error allowable value n is not detected, the coordinate value of the intersection at which the error in the orthogonal direction is smaller than the output error allowable value t in the moving direction, that is, the intersection Pi at which the distance Di is the shortest is calculated. Output. In the illustrated example, D-2
>N>D3> D-3 and d-3> d3, the intersection P
The coordinate value (x3, y3) of 3 is output.

【0023】[0023]

【発明の効果】以上詳述したように、本発明のNCデー
タ出力方法によれば、移動方向の誤差許容値に含まれる
複数点のうちから誤差の少ない点を選択して出力するの
で、移動方向と直交する方向の誤差許容値を最小設定単
位以下に設定することもでき、それによって加工点座標
の計算値から求められる形状により近い高精度のNCデ
ータを出力できるという優れた効果を奏する。
As described in detail above, according to the NC data output method of the present invention, a point having a small error is selected and output from a plurality of points included in the error tolerance in the moving direction. The allowable error value in the direction orthogonal to the direction can be set to be equal to or less than the minimum setting unit, thereby providing an excellent effect that it is possible to output high-precision NC data closer to the shape obtained from the calculated values of the processing point coordinates.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施形態のNCデータ出力方法
を示すフローチャートである。
FIG. 1 is a flowchart illustrating an NC data output method according to an embodiment of the present invention.

【図2】最小設定単位メッシュを用いて出力点を決定す
る方法を示す模式図である。
FIG. 2 is a schematic diagram showing a method of determining an output point using a minimum setting unit mesh.

【図3】従来のNCデータ出力方法を示すフローチャー
トである。
FIG. 3 is a flowchart showing a conventional NC data output method.

【図4】加工形態を例示する斜視図である。FIG. 4 is a perspective view illustrating a processing mode.

【図5】許容加工誤差量を説明する模式図である。FIG. 5 is a schematic diagram illustrating an allowable processing error amount.

【図6】複数経路の加工誤差を説明する模式図である。FIG. 6 is a schematic diagram illustrating a processing error in a plurality of paths.

【図7】従来の問題点を指摘する模式図である。FIG. 7 is a schematic view showing a conventional problem.

【図8】加工面の面粗度を説明する模式図である。FIG. 8 is a schematic diagram illustrating a surface roughness of a processed surface.

【符号の説明】[Explanation of symbols]

t・・移動方向の誤差許容値、n・・直交方向の誤差許
容値、C・・座標値の計算点、M・・最小設定単位メッ
シュ、P・・メッシュ上の交点、L・・直線、D・・交
点と直線との距離。
t · · · error tolerance in the moving direction, n · · · error tolerance in the orthogonal direction, C · · · calculation point of coordinate value, M · · · minimum setting unit mesh, P · · · intersection on the mesh, L · · · straight line, D: The distance between the intersection and the straight line.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加工点の座標値と加工点の移動方向とを
計算し、移動方向と直交する方向における出力誤差の許
容値を設定し、前記許容値以下となる最小設定単位メッ
シュ上の交点のうち加工点に最も近い交点の座標値を求
め、出力することを特徴とするNCデータ出力方法。
1. A coordinate value of a processing point and a moving direction of the processing point are calculated, and an allowable value of an output error in a direction orthogonal to the moving direction is set. NC data output method, wherein a coordinate value of an intersection point closest to a processing point is obtained and output.
【請求項2】 加工点の座標値と加工点の移動方向とを
計算し、移動方向における出力誤差の許容値と、移動方
向と直交する方向における出力誤差の許容値とを設定
し、加工点を通り移動方向と同じ方向に延びる直線を求
め、移動方向における出力誤差の許容値以下となる最小
設定単位メッシュ上の交点を求め、交点毎に直線との距
離を算出し、距離が移動方向と直交する方向における出
力誤差の許容値以下となる交点のうち加工点に最も近い
交点の座標値を出力することを特徴とするNCデータ出
力方法。
And calculating a coordinate value of the processing point and a moving direction of the processing point, and setting an allowable value of an output error in the moving direction and an allowable value of an output error in a direction orthogonal to the moving direction. Is obtained, a straight line extending in the same direction as the moving direction is obtained, an intersection on the minimum setting unit mesh which is equal to or less than an allowable value of the output error in the moving direction is obtained, a distance from the straight line is calculated for each intersection, and the distance is determined as the moving direction. An NC data output method comprising: outputting a coordinate value of an intersection closest to a processing point among intersections which are equal to or less than an allowable value of an output error in an orthogonal direction.
JP2001059074A 2001-03-02 2001-03-02 Nc data outputting method Pending JP2002258925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001059074A JP2002258925A (en) 2001-03-02 2001-03-02 Nc data outputting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001059074A JP2002258925A (en) 2001-03-02 2001-03-02 Nc data outputting method

Publications (1)

Publication Number Publication Date
JP2002258925A true JP2002258925A (en) 2002-09-13

Family

ID=18918696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001059074A Pending JP2002258925A (en) 2001-03-02 2001-03-02 Nc data outputting method

Country Status (1)

Country Link
JP (1) JP2002258925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084189A (en) * 2015-10-29 2017-05-18 ブラザー工業株式会社 Control apparatus, machine tool, control method and computer program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084189A (en) * 2015-10-29 2017-05-18 ブラザー工業株式会社 Control apparatus, machine tool, control method and computer program

Similar Documents

Publication Publication Date Title
US6044309A (en) Three-dimensional machining method and recording medium stored with a three-dimensional machining control program
US9423785B2 (en) Tool trajectory display device having function for displaying inversion position of servo axis
JP5562430B2 (en) Tool path generation method and generation apparatus
EP2789431A2 (en) Control system and control method
JP5800888B2 (en) Numerical control device with smoothing function for operation by table format data
US9244456B2 (en) Tool path generation method and apparatus
CN106423657B (en) A kind of thermal spraying robot path planning method and system based on index curve
JPS63211405A (en) Numerical controller for high dynamic process
CN110703689A (en) Numerical control machine tool space error compensation method and system
CN113111404A (en) Fitting method for circular arc and straight line of small continuous spatial line segment
JP2002258925A (en) Nc data outputting method
JP2870922B2 (en) Numerically controlled feeder
JP2019197333A (en) Path correction method and control device of multiple spindle processing machine
EP0707252A1 (en) Three-dimensional machining method
TW201913251A (en) Work piece processing method and processing system thereof
JP2021179861A (en) Shape recognition device and shape recognition method
EP1061424B1 (en) Three-dimensional machining method
JPS62169210A (en) System for generating tool locus in nc data generating device
JP2995812B2 (en) Tool path generation method by numerical controller
WO2016199266A1 (en) Numerical value control device
JPH06344121A (en) Teaching method for robot
JP2707781B2 (en) 3D shape processing method
JP2520804B2 (en) Image processing method in optical measuring device
JP2771361B2 (en) Rough cutter path generation system
JP2000305613A (en) Machine tool correcting method for three-dimensional laser beam machine