JP2002257759A - Method and device for measuring of time-resolved electron spin resonance - Google Patents

Method and device for measuring of time-resolved electron spin resonance

Info

Publication number
JP2002257759A
JP2002257759A JP2001060848A JP2001060848A JP2002257759A JP 2002257759 A JP2002257759 A JP 2002257759A JP 2001060848 A JP2001060848 A JP 2001060848A JP 2001060848 A JP2001060848 A JP 2001060848A JP 2002257759 A JP2002257759 A JP 2002257759A
Authority
JP
Japan
Prior art keywords
signal
microwave
cavity
sample
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001060848A
Other languages
Japanese (ja)
Other versions
JP4671514B2 (en
Inventor
Kiminori Ushita
公規 丑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2001060848A priority Critical patent/JP4671514B2/en
Publication of JP2002257759A publication Critical patent/JP2002257759A/en
Application granted granted Critical
Publication of JP4671514B2 publication Critical patent/JP4671514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure only a weak time-resolved electron spin resonance(ESR) signal of several % or less of a dynamic dielectric constant variation signal by effectively removing transit dielectric constant variation caused by a dynamic carrier or others. SOLUTION: Two sets of sample chambers comprising a sample and a cavity resonator are used, one sample chamber (a main sample chamber) is placed inside a magnetic field, and the other sample chamber (a reference sample chamber) is placed outside the magnetic field. A time-resolved ESR signal is generated in only the main sample chamber and a dynamic carrier signal is generated in both of the main sample chamber and the reference sample chamber. A microwave divided from a single microwave source irradiates both sample chambers. By synthesizing the microwave signal passed through the sample chamber by shifting the phase of the microwave by 180 degrees, the microwave signal is effectively converted into a differential signal in a microwave level. Only the time-resolved ESR signal is mainly contained in the signal after being synthesized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、時間分解電子スピ
ン共鳴測定方法及び装置に関する。本発明は、半導体及
び光半導体の評価、光触媒物質及びその反応効率の評
価、光触媒物質の反応メカニズムの研究、磁性体の評
価、超撥水効果を示す物質の評価、化粧品素材の評価、
顔料等塗料物質の評価等に適用すると有効である。
The present invention relates to a method and an apparatus for measuring time-resolved electron spin resonance. The present invention evaluates semiconductors and optical semiconductors, evaluates photocatalytic substances and their reaction efficiencies, studies the reaction mechanism of photocatalytic substances, evaluates magnetic substances, evaluates substances exhibiting a super-water-repellent effect, evaluates cosmetic materials,
It is effective when applied to evaluation of paint substances such as pigments.

【0002】[0002]

【従来の技術】電子スピン共鳴(Electron Spin Resona
nce:ESR)、別名電子常磁性共鳴(Electron Parama
gnetic Resonance:EPR)は、フリーラジカル、磁性
体などの常磁性種、強磁性種を検出し、その電子状態や
構造の情報を得る分光学的測定方法であり、装置も市販
され、広く普及している。ESRの用途は、医科学、生
化学におけるフリーラジカル、活性酸素などの検出、光
励起により生成した短寿命化学種の検出、固体内に生じ
た欠陥の高感度検出、半導体の後続欠陥や不純物の検
出、有機及び無機磁性体の詳細な研究などに用いられて
いる。
2. Description of the Related Art Electron Spin Resona
nce: ESR, also known as electron paramagnetic resonance (Electron Parama)
Gnetic Resonance (EPR) is a spectroscopic measurement method that detects paramagnetic and ferromagnetic species, such as free radicals and magnetic substances, and obtains information on their electronic state and structure. ing. Applications of ESR include detection of free radicals and active oxygen in medical science and biochemistry, detection of short-lived species generated by photoexcitation, high-sensitivity detection of defects in solids, detection of subsequent defects and impurities in semiconductors It is used for detailed research on organic and inorganic magnetic materials.

【0003】ESRの原理は、試料を適当な強度(典型
的には100−1000mT)の磁場内に置き、適当な
周波数(典型的には数100MHzから数10GHz)
の電磁波を試料内で吸収させ、ゼーマン効果に由来する
電磁波吸収の磁場強度(磁束密度)に対する変動を記録
検出するものである。これによって検出されるものは、
物質内に生成した電子スピン(常磁性)種と総括できる
が、フリーラジカル、磁性体、固体における格子欠陥、
切断した化学結合(ダングリングボンド)を検出するこ
とが可能である。
[0003] The principle of ESR is that a sample is placed in a magnetic field of a suitable intensity (typically 100-1000 mT), and a proper frequency (typically several hundred MHz to several tens GHz).
Is absorbed in the sample, and the fluctuation of the electromagnetic wave absorption due to the Zeeman effect with respect to the magnetic field strength (magnetic flux density) is recorded and detected. What this detects is:
Electron spin (paramagnetic) species generated in a substance can be summarized, but free radicals, magnetic substances, lattice defects in solids,
It is possible to detect a broken chemical bond (dangling bond).

【0004】現在最も典型的なESR装置は基本的構成
要素として、マイクロ波源、測定用共振器、電磁石(磁
場を掃引する)、検出器、Q曲線観察装置などを備え
る。このうち、測定用共振器(典型的には空洞共振器、
ループギャップレゾネータなどを用いる)は、マイクロ
波の吸収を増幅する目的で用いられる。これに外部付加
回路として、たとえばS/Nを増大させる目的の必要に
応じて、磁場変調装置及び変調検波回路、自動周波数制
御回路、ホモダイン検波回路等が付加する。
[0004] At present, the most typical ESR apparatus includes, as basic components, a microwave source, a resonator for measurement, an electromagnet (for sweeping a magnetic field), a detector, a Q-curve observing apparatus, and the like. Among these, the measurement resonator (typically a cavity resonator,
A loop gap resonator or the like is used for the purpose of amplifying microwave absorption. As an external additional circuit, for example, a magnetic field modulation device and a modulation detection circuit, an automatic frequency control circuit, a homodyne detection circuit, and the like are added as needed for the purpose of increasing the S / N.

【0005】一方、このESR装置を用いた測定方法と
して時間分解ESR法がある。ここで「時間分解」と
は、瞬間的な励起を行なったのちに過渡的に存在するラ
ジカル種について時間を追ってその時点における信号を
測定するという意味である。上記の常磁性種の多くには
寿命の短いものが数多く存在するので、パルスレーザー
などを用いた励起により生成させた短寿命常磁性種が消
失しない間(数100nsから数ms程度の間)にスト
レージオシロスコープなどで高速に検出する方法であ
る。時間分解ESRは、パルス光で生じる短寿命の常磁
性物質を測定するのに有利な方法である。この場合、磁
場変調装置及び変調検波回路は使用することはできな
い。
On the other hand, there is a time-resolved ESR method as a measuring method using this ESR apparatus. Here, "time-resolved" means that a signal at that point in time is measured for a radical species that is transiently present after performing instantaneous excitation. Since many of the above paramagnetic species have many short lifetimes, while the short-lived paramagnetic species generated by excitation using a pulse laser or the like does not disappear (between several hundred ns and several ms). This is a method for high-speed detection with a storage oscilloscope or the like. Time-resolved ESR is an advantageous method for measuring short-lived paramagnetic substances generated by pulsed light. In this case, the magnetic field modulation device and the modulation detection circuit cannot be used.

【0006】原理的にESR装置で検出される信号は電
子スピン共鳴吸収ばかりでなく、試料の誘電率が変化し
た場合は、その変化も信号に含まれる。通常このうち、
磁場を掃引することによって検出される信号が電子スピ
ン共鳴吸収として理解される。時間分解ESRは、パル
ス光で生じる短寿命の常磁性物質からの信号を大きく増
幅して測定するが、同時に大きな誘電率変化が試料に生
じる場合(本明細書では、動的誘電率変化と呼ぶ)に
は、不必要なこの信号も同時に大きく増幅する欠点があ
る。動的誘電率変化は短寿命の常磁性種の前駆体である
動的キャリア(電子、ホール、ならびにその集合体)の
運動によって生じることが多いので、光触媒物質など実
際に測定対象となる重要な試料でこの問題が生じるケー
スが多い。酸化チタンなどに代表される光触媒物質は、
結晶状態や微粒子の大きさなど様々な固体状態のものが
作られており、それらによって触媒としての反応性に微
妙な違いが生じることが知られている。すなわち性能の
よい光触媒は反応性に富むことが条件である。また、こ
の中でも酸化チタンは、化粧品のUVケア製品の素材、
あるいは白色塗料の原料として重要な工業製品であり、
これらの用途に用いる場合は、安定であり、皮膚に有害
反応を起こさないように、反応性の低い方が適合してい
る。したがって、逆に表面ラジカルを消去する安定化剤
を吸着させて反応を抑制する方策も採られている。
In principle, the signal detected by the ESR apparatus includes not only the electron spin resonance absorption but also a change in the dielectric constant of the sample when the signal changes. Usually,
The signal detected by sweeping the magnetic field is understood as electron spin resonance absorption. The time-resolved ESR is measured by greatly amplifying a signal from a short-lived paramagnetic substance generated by pulsed light, and at the same time, when a large dielectric constant change occurs in a sample (referred to as a dynamic dielectric constant change in this specification). Has the disadvantage that this unwanted signal is also greatly amplified at the same time. Dynamic dielectric constant changes are often caused by the movement of dynamic carriers (electrons, holes, and their aggregates), which are precursors of short-lived paramagnetic species. This problem often occurs with samples. Photocatalytic substances represented by titanium oxide, etc.
Various solid states such as a crystalline state and the size of fine particles have been produced, and it is known that a slight difference is caused in the reactivity as a catalyst. That is, it is a condition that a photocatalyst having good performance has a high reactivity. Among them, titanium oxide is a material of UV care products for cosmetics,
Or it is an important industrial product as a raw material for white paint,
When used in these applications, those that are stable and have low reactivity are preferred so as not to cause adverse reactions to the skin. Therefore, conversely, a measure has been taken to suppress the reaction by adsorbing a stabilizer that eliminates surface radicals.

【0007】しかし、製法と表面ラジカルの反応性とを
直接結びつけ、よりよい性能の材料の製法を導くのに役
立つ検定方法の例は少ない。現在直接生成物を分析し
て、触媒としての性能を評価することの他、定常的な光
を照射して生じる表面ラジカルを、定常的なESRで検
出することが行われているが、長寿命のラジカルをとら
えることしかできない。また、スピントラップ法で表面
のラジカルを別の安定ラジカルに変換してESR検出す
ることも行われているが、これは間接的な方法であるた
めに得られる情報が限定される。反応に直接関係する短
寿命の表面ラジカルを評価方法とした方法の例は知られ
ていない。
[0007] However, there are few examples of assay methods that directly link the production method with the reactivity of surface radicals, and that help guide the production of better performing materials. At present, in addition to directly analyzing the product and evaluating the performance as a catalyst, surface radicals generated by irradiating steady light are detected by steady ESR. Can only capture radicals. In addition, ESR detection is also performed by converting a radical on the surface into another stable radical by a spin trap method. However, since this is an indirect method, information obtained is limited. An example of a method using short-lived surface radicals directly related to the reaction as an evaluation method is not known.

【0008】また、ESRは、切断した結合や不純物中
心がラジカル中心として検出される場合があるので、す
でにシリコンなどの半導体材料の欠陥測定に用いられて
いる。特にESRは検出感度が高いので、これらの欠陥
の検定方法に用いるための十分な感度を有する。さらに
シリコンなどでは結晶状態の検定に用いられ、結晶、多
結晶、アモルファス各状態の把握に用いられている。半
導体ウエハーをそのまま測定できる空洞共振器も市販さ
れている。
In addition, ESR is already used for measuring defects in semiconductor materials such as silicon, because a broken bond or an impurity center may be detected as a radical center. In particular, since ESR has high detection sensitivity, it has sufficient sensitivity to be used in a method for assaying these defects. Further, in silicon and the like, it is used for examining the crystalline state, and is used for grasping each state of crystal, polycrystal, and amorphous. A cavity resonator capable of directly measuring a semiconductor wafer is also commercially available.

【0009】[0009]

【発明が解決しようとする課題】光触媒、光半導体な
ど、時間分解ESRの測定対象になる重要な固体試料の
多くは、単寿命常磁性種が生じると同時に、動的キャリ
アなどを発生し、大きく誘電率が変化する特徴(動的誘
電率変化)を持つ。この誘電率変化の信号が時間分解E
SR信号と同程度か遙かに大きい信号強度を持って重な
ることが多く、これらの系では時間分解ESR測定を行
うことが不可能であった。本発明は、時間分解ESR測
定において、動的キャリアなどによる過渡的な誘電率変
化を効果的に除去し、動的誘電率変化信号の数%以下の
弱い時間分解ESR信号のみを精度よく測定する方法及
び装置を提供することを目的とする。
Many important solid samples to be measured for time-resolved ESR, such as photocatalysts and optical semiconductors, generate single-life paramagnetic species and generate dynamic carriers at the same time. It has the characteristic that the permittivity changes (dynamic permittivity change). The signal of the change in the dielectric constant is time-resolved E
In many cases, the signals overlap with the signal strength of the SR signal or much larger than that of the SR signal, and it is impossible to perform the time-resolved ESR measurement in these systems. According to the present invention, in a time-resolved ESR measurement, a transient dielectric constant change due to a dynamic carrier or the like is effectively removed, and only a weak time-resolved ESR signal of several percent or less of a dynamic dielectric constant change signal is accurately measured. It is an object to provide a method and an apparatus.

【0010】[0010]

【課題を解決するための手段】本発明の原理を、従来の
ESR測定の原理と比較して模式的に図1に示す。本発
明においては、試料及び空洞共振器からなる試料室を2
組用い、一方の試料室(主試料室)を磁場の中、もう一
方(参照試料室)を磁場の外におく。原理的に時間分解
ESR信号は主試料室のみに発生し、動的誘電率変化信
号は主試料室と参照試料室の両方に発生する。この両方
の試料室に単一のマイクロ波源から分割したマイクロ波
を照射する。そして試料室を通過した後のマイクロ波信
号を、マイクロ波の位相を180度ずらして合成しする
ことによってマイクロ波レベルで効果的に差信号に変換
する。合成した後の信号には主として時間分解ESR信
号のみが含まれる。
The principle of the present invention is schematically shown in FIG. 1 in comparison with the conventional principle of ESR measurement. In the present invention, the sample chamber including the sample and the cavity
One set of sample chambers (main sample chamber) is placed in a magnetic field, and the other (reference sample chamber) is placed outside the magnetic field. In principle, the time-resolved ESR signal is generated only in the main sample chamber, and the dynamic permittivity change signal is generated in both the main sample chamber and the reference sample chamber. The two sample chambers are irradiated with microwaves split from a single microwave source. Then, the microwave signal after passing through the sample chamber is synthesized by shifting the phase of the microwave by 180 degrees, thereby effectively converting it into a difference signal at a microwave level. The synthesized signal mainly contains only the time-resolved ESR signal.

【0011】すなわち従来の方法(図1下枠内)では、
得られる信号は{(ESR信号)+(誘電率変化信
号)}であるのに対し、本発明(図1上)では、(主試
料室から得られる信号)={(ESR信号)+(誘電率
変化信号)}、(参照試料室から得られる信号)=(誘
電率変化信号)であることに基づいて、測定信号とし
て、{(主試料室から得られる信号)−(参照試料室か
ら得られる信号)=(ESR信号)}を取り出すための
マイクロ波回路を構成するものである。
That is, in the conventional method (in the lower frame of FIG. 1),
The obtained signal is {(ESR signal) + (dielectric constant change signal)}, whereas in the present invention (upper in FIG. 1), (signal obtained from main sample chamber) = {(ESR signal) + (dielectric) Based on the fact that the rate change signal) 試 料, (the signal obtained from the reference sample chamber) = (the dielectric constant change signal), as the measurement signal, {(the signal obtained from the main sample chamber) − (the signal obtained from the reference sample chamber) Signal) = (ESR signal)}.

【0012】マイクロ波レベルでの合成の利点として
は、次の点を上げることができる。単一のマイクロ波源
から発生するマイクロ波を用いるので、通常のホモダイ
ン検波回路などを含んだ既製品のESR用マイクロ波ユ
ニットがそのまま利用可能である。また、マイクロ波レ
ベルで動的誘電率変化信号を消去するので、消去の後に
マイクロ波プリアンプを用いて信号精度を飽和すること
なく高めることも可能であり、さらに検出器のあとに用
いる電気的プリアンプの増幅率を上げて信号精度を上げ
ることも可能である。
The advantages of the synthesis at the microwave level are as follows. Since a microwave generated from a single microwave source is used, an off-the-shelf ESR microwave unit including a normal homodyne detection circuit or the like can be used as it is. In addition, since the dynamic permittivity change signal is erased at the microwave level, it is possible to use a microwave preamplifier after erasing to increase the signal accuracy without saturating, and to use an electrical preamplifier used after the detector. It is also possible to increase the signal amplification by increasing the amplification factor.

【0013】2つの試料室から生じた動的誘電率変化信
号を効果的に取り除くためには、2つの試料室の実験条
件をできるだけ等価にすることが望ましい。この場合、
以下のような調整及び配慮が必要である。 (1)試料量、試料管、温度調整用のデュワー瓶やクラ
イオスタットなどが等価な2本の測定試料を用意するこ
と。 (2)試料を含めた空洞共振器の共振マイクロ波周波数
をできるだけ一致させること。 (3)試料を含めた空洞共振器の共振率(Q値)をでき
るだけ一致させること。 (4)試料に導入するマイクロ波強度をできるだけ一致
させること。 (5)導入するレーザー光強度を調整すること。
In order to effectively remove the dynamic permittivity change signal generated from the two sample chambers, it is desirable to make the experimental conditions of the two sample chambers as equal as possible. in this case,
The following adjustments and considerations are required. (1) Prepare two measurement samples equivalent in sample amount, sample tube, dewar for temperature adjustment, cryostat, etc. (2) Match the resonant microwave frequencies of the cavity resonator including the sample as much as possible. (3) Match the resonance rates (Q values) of the cavity resonator including the sample as much as possible. (4) The microwave intensity to be introduced into the sample should be matched as much as possible. (5) Adjusting the intensity of the laser light to be introduced.

【0014】2つの試料室を等価にする具体的方法につ
いて説明する。2つの試料室には、まず試料量、試料
管、温度調整用のデュワー瓶やクライオスタットなどが
等価な2本の測定試料を装着する。このそれぞれの試料
室について、最初にマイクロ波応答曲線(Q−ディップ
と呼ばれる吸収曲線を示す)を通常のESR装置に装着
された装置を用いて測定する。共振周波数が異なってい
る場合、試料室に石英ロッド、テフロン(登録商標)管
などの誘電物質を挿入し、共振周波数を一致させる。次
に、反射してくるマイクロ波信号の位相を相対的に18
0度ずらして、さらに、照射マイクロ波の強度を調整し
て合成し、Q−ディップのない平坦な曲線を得るように
調整する。次にパルスレーザー(QスイッチパルスYA
Gレーザーあるいはエキシマーレーザー等が望ましい)
からのパルスレーザー光を試料に照射し、トランジェン
トオシロスコープなどで過渡的な信号を記録する。パル
スレーザー光の強度を調整することによって、動的誘電
率変化信号が合成により相殺され最も小さくなる条件に
設定する。
A specific method for making the two sample chambers equivalent will be described. First, two measurement samples equivalent to a sample amount, a sample tube, a dewar for temperature adjustment, a cryostat, and the like are mounted in the two sample chambers. For each of the sample chambers, a microwave response curve (showing an absorption curve called Q-dip) is first measured using a device mounted on a normal ESR device. If the resonance frequencies are different, a dielectric material such as a quartz rod or a Teflon (registered trademark) tube is inserted into the sample chamber to make the resonance frequencies match. Next, the phase of the reflected microwave signal is relatively set to 18
After shifting by 0 degrees, the intensity of the irradiated microwaves is further adjusted and combined so as to obtain a flat curve without Q-dip. Next, a pulse laser (Q switch pulse YA
G laser or excimer laser is desirable)
The sample is irradiated with the pulsed laser beam from the sample, and the transient signal is recorded with a transient oscilloscope or the like. By adjusting the intensity of the pulse laser beam, the condition is set such that the dynamic permittivity change signal is canceled out by the synthesis and becomes the smallest.

【0015】なお、通常測定試料室の共振周波数特性を
用いて行う、自動周波数調整(AFC)装置は、この方
法では2つの試料室からの反射マイクロ波のほとんどが
消去されるため、別途外部に調整用の空洞共振器を設け
た方が効果が高い。その場合、測定信号には調整用空洞
共振器の共振周波数と、測定用試料室の共振周波数のず
れによって発生する不要な変調信号が重なるので、かか
る時間分解ESR測定の間にAFCの変調を停止する回
路を付加することが望ましい。
In the automatic frequency control (AFC) device, which is usually performed using the resonance frequency characteristics of the sample chamber, most of the reflected microwaves from the two sample chambers are eliminated by this method. The effect is higher when the cavity resonator for adjustment is provided. In this case, the measurement signal overlaps the unnecessary modulation signal generated due to the difference between the resonance frequency of the adjustment cavity resonator and the resonance frequency of the measurement sample chamber. Therefore, the AFC modulation is stopped during the time-resolved ESR measurement. It is desirable to add a circuit that performs this.

【0016】本発明による時間分解ESR測定は、光触
媒物質や半導体物質を測定対象とすることができる。光
触媒物質の測定に当たっては、酸化チタンなどの光触媒
物質、あるいは反応物を吸着あるいは結合させた光触媒
物質を固体のまま測定に供する。場合によっては液体窒
素温度、液体ヘリウム温度などの低温において測定し、
中間体の寿命や緩和時間を測定可能な範囲に調整する。
光触媒として作用させることのできる波長(酸化チタン
においては350nmより短波長の近紫外光が好まし
い)のパルスレーザー光(最も望ましくはQスイッチY
AGレーザー、エキシマーレーザーなどを用いる)で励
起し、本発明の方法で測定する。時間分解ESRで同定
できるのは、光触媒物質の表面ラジカル、又は反応物が
表面で反応して生じたラジカルなどの短寿命の中間体で
あり、その生成量、寿命、反応プロセスを追跡すること
が可能である。すなわち、時間分解ESR信号の線形か
ら、ラジカル種の種類、切断された結合の位置、局在状
態を判定することができ、またそれらの時間変化から、
それらの寿命、化学反応過程を知ることができる。この
ことによって、光触媒物質としての性能を評価し、反応
しやすいものを選択することが可能である。一方、同じ
物質を化粧品の材料や、顔料として用いる場合は、反応
しにくいものを選択するとよい。
In the time-resolved ESR measurement according to the present invention, a photocatalytic substance or a semiconductor substance can be measured. In the measurement of the photocatalyst substance, a photocatalyst substance such as titanium oxide or a photocatalyst substance to which a reactant is adsorbed or bonded is used for measurement as a solid. In some cases, it is measured at low temperature such as liquid nitrogen temperature, liquid helium temperature, etc.
Adjust the lifetime and relaxation time of the intermediate to a measurable range.
Pulse laser light (most preferably Q switch Y) of a wavelength that can act as a photocatalyst (in the case of titanium oxide, near ultraviolet light having a wavelength shorter than 350 nm is preferable).
(Using an AG laser, an excimer laser, or the like) and the measurement is performed by the method of the present invention. Time-resolved ESR can identify short-lived intermediates, such as surface radicals of photocatalytic substances or radicals formed by reacting reactants on the surface. It is possible. That is, from the linearity of the time-resolved ESR signal, the type of radical species, the position of the broken bond, and the localization state can be determined.
You can know their lifespan and chemical reaction process. This makes it possible to evaluate the performance as a photocatalyst substance and select a substance that easily reacts. On the other hand, when the same substance is used as a cosmetic material or a pigment, it is preferable to select a substance that does not easily react.

【0017】ヒ素化ガリウム、シリコン、ゲルマニウ
ム、ヒ素化ガリウムインジウムなどの半導体物質の測定
に当たっては、バンド間励起が可能な十分短波長のパル
スレーザーを用いる。必要に応じて、中間体の緩和時間
と寿命を調整するために、液体窒素温度や液体ヘリウム
温度を用いる。光励起して生じたキャリアが欠陥準位に
とらえられ、発生した常磁性(孤立したスピン)を検出
することがこの測定により可能である。すなわち、欠陥
や不純物が存在すると、それらが孤立スピン種としてE
SR信号が現れる。固体内に欠陥が多く、結晶性が低い
方が孤立スピンの発生量が大きいので、固体の結晶性、
欠陥量、を評価することができる。もともと光励起しな
い基底状態でも同様の高感度測定が可能であるが、本発
明による方法に比較すると欠陥量が小さく、相対的に感
度が低い。本発明の方法では通常の基底状態測定では見
られない、バンドギャップ間に存在するトラップ準位に
とらえられた孤立スピン種が新たな測定対象となるの
で、孤立スピン種の増大により測定感度が向上し、なお
かつ光励起によってキャリアなどが発生した半導体の作
動状態における欠陥の影響を把握することができる利点
がある。
In measuring semiconductor materials such as gallium arsenide, silicon, germanium, and gallium indium arsenide, a pulse laser having a sufficiently short wavelength capable of inter-band excitation is used. If necessary, liquid nitrogen temperature or liquid helium temperature is used to adjust the relaxation time and life of the intermediate. Carriers generated by photoexcitation are captured at defect levels, and the generated paramagnetism (isolated spin) can be detected by this measurement. That is, when defects and impurities are present, they become E
The SR signal appears. Since the solid has many defects and low crystallinity generates a large amount of isolated spins, the solid crystallinity,
The defect amount can be evaluated. The same high-sensitivity measurement is possible even in the ground state that is not originally photoexcited, but the amount of defects is small and the sensitivity is relatively low as compared with the method according to the present invention. In the method of the present invention, the isolated spin species captured by the trap level existing between the band gaps, which is not seen in the ordinary ground state measurement, becomes a new measurement target, so that the measurement sensitivity is improved by increasing the isolated spin species. In addition, there is an advantage that the influence of a defect in the operating state of the semiconductor in which carriers and the like are generated by optical excitation can be grasped.

【0018】以上に基づく本発明の時間分解電子スピン
共鳴測定方法及び時間分解電子スピン共鳴装置は以下の
通りである。 (1)磁場中に配置された第1の空洞共振器に挿入され
た第1の試料と磁場外に配置された第2の空洞共振器に
挿入された前記第1の試料と同等の第2の試料にマイク
ロ波を照射しながら同時にパルス光を照射するステップ
と、前記第1の空洞共振器から反射されて帰還する第1
のマイクロ波信号と前記第2の空洞共振器から反射され
て帰還する第2のマイクロ波信号との差を取るステップ
とを含み、試料の誘電率変化による動的な信号変化を消
去して電子スピン共鳴信号のみを取り出すことを特徴と
する時間分解電子スピン共鳴測定方法。
The time-resolved electron spin resonance measuring method and the time-resolved electron spin resonance apparatus of the present invention based on the above are as follows. (1) A first sample inserted into a first cavity resonator arranged in a magnetic field and a second sample equivalent to the first sample inserted into a second cavity resonator arranged outside the magnetic field Simultaneously irradiating the sample with pulsed light while irradiating the sample with microwaves; and a first method of reflecting and returning from the first cavity resonator.
Taking the difference between the microwave signal of the sample and the second microwave signal reflected and returned from the second cavity resonator. A time-resolved electron spin resonance measurement method, wherein only a spin resonance signal is extracted.

【0019】(2)(1)記載の時間分解電子スピン共
鳴方法において、前記第1の空洞共振器から反射されて
帰還する第1のマイクロ波信号と前記第2の空洞共振器
から反射されて帰還する第2のマイクロ波信号との差を
取るステップは、前記第1のマイクロ波信号と前記第2
のマイクロ波信号とを位相を180度ずらして合成する
ことで差を取ることを特徴とする時間分解電子スピン共
鳴方法。
(2) In the time-resolved electron spin resonance method according to (1), the first microwave signal reflected from the first cavity resonator and fed back and the first microwave signal reflected from the second cavity resonator are reflected. Taking the difference between the returning second microwave signal and the second microwave signal;
A time-resolved electron spin resonance method characterized in that a difference is obtained by synthesizing the microwave signal and the microwave signal with a phase shift of 180 degrees.

【0020】(3)同等の試料が挿入されている2つの
空洞共振器の共鳴周波数が一致するように空洞共振器を
調整するステップと、前記2つの空洞共振器からの反射
マイクロ波信号の位相を相対的に180度ずらせるステ
ップと、前記2つの空洞共振器からの反射マイクロ波を
合成した合成信号がほぼゼロになるように2つの空洞共
振器に導入するマイクロ波の相対強度を調整するステッ
プと、前記2つの空洞共振器内の試料に同時にパルス光
を照射したとき前記合成信号がほぼゼロになるように2
つの空洞共振器内の試料に照射するパルス光の強度比を
調整するステップと、前記2つの空洞共振器の一方にの
み磁場を印加した状態で2つの空洞共振器内の試料に同
時にパルス光を照射し前記合成信号を検出信号として時
間分解電子スピン共鳴信号を検出するステップとを含む
ことを特徴とする時間分解電子スピン共鳴測定方法。
(3) Adjusting the cavity resonators so that the resonance frequencies of the two cavity resonators into which the same sample is inserted coincide with each other, and the phases of the reflected microwave signals from the two cavity resonators And the relative intensity of the microwaves introduced into the two cavity resonators is adjusted so that the combined signal obtained by combining the reflected microwaves from the two cavity resonators becomes substantially zero. Step 2) irradiating the sample in the two cavity resonators simultaneously with the pulsed light so that the combined signal becomes substantially zero.
Adjusting the intensity ratio of the pulse light applied to the sample in the two cavity resonators, and simultaneously applying the pulse light to the sample in the two cavity resonators while applying a magnetic field to only one of the two cavity resonators. Irradiating and using said synthesized signal as a detection signal to detect a time-resolved electron spin resonance signal.

【0021】(4)磁場発生装置と、マイクロ波源と、
前記磁場発生装置の発生する磁場中に位置し試料が挿入
される第1の空洞共振器と、前記磁場発生装置の発生す
る磁場外に位置し試料が挿入される第2の空洞共振器
と、前記マイクロ波源から発生されたマイクロ波を前記
第1及び第2の空洞共振器に導く第1のマイクロ波回路
と、前記第1及び第2の空洞共振器から反射されてきた
マイクロ波を合成する第2のマイクロ波回路と、前記第
2のマイクロ波回路で合成されたマイクロ波を検出する
検出器と、前記第1の空洞共振器と第2の空洞共振器に
導かれるマイクロ波の相対的な位相を調整するための前
記第1のマイクロ波回路に設けられた移相器及び/又は
前記第1及び第2の空洞共振器から反射されてきたマイ
クロ波の相対的な位相を調整するための前記第2のマイ
クロ波回路に設けられた移相器と、前記第1の空洞共振
器と第2の空洞共振器に導かれるマイクロ波の相対的な
強度を調整するための前記第1のマイクロ波回路に設け
られた減衰器と、パルス光源と、前記パルス光源からの
パルス光を分割して前記第1の空洞共振器内の試料と第
2の空洞共振器内の試料に同時に照射するための光分割
手段とを備えることを特徴とする時間分解電子スピン共
鳴装置。この装置によると、2つの空洞共振器から反射
され帰還するマイクロ波信号を差を取ることにより、試
料の誘電率変化による動的な信号変化を消去し、電子ス
ピン共鳴信号のみを取り出すことができる。
(4) A magnetic field generator, a microwave source,
A first cavity resonator located in a magnetic field generated by the magnetic field generator and into which a sample is inserted; a second cavity resonator located outside the magnetic field generated by the magnetic field generator and into which a sample is inserted; A first microwave circuit for guiding microwaves generated from the microwave source to the first and second cavity resonators and a microwave reflected from the first and second cavity resonators are combined. A second microwave circuit, a detector for detecting the microwave combined by the second microwave circuit, and a relative position of the microwave guided to the first cavity resonator and the microwave guided to the second cavity resonator. To adjust the relative phase of the microwave reflected from the phase shifter and / or the first and second cavity resonators provided in the first microwave circuit for adjusting the phase. Provided in the second microwave circuit of A phase shifter, and an attenuator provided in the first microwave circuit for adjusting a relative intensity of microwaves guided to the first cavity resonator and the second cavity resonator; A pulse light source; and light splitting means for splitting the pulse light from the pulse light source and simultaneously irradiating the sample in the first cavity resonator and the sample in the second cavity resonator. Time-resolved electron spin resonance apparatus. According to this apparatus, by taking the difference between the microwave signals reflected and returned from the two cavity resonators, the dynamic signal change due to the change in the dielectric constant of the sample can be eliminated, and only the electron spin resonance signal can be extracted. .

【0022】(5)(4)記載の時間分解電子スピン共
鳴装置において、前記光分割手段は前記第1の空洞共振
器内の試料に照射される光強度と第2の空洞共振器内の
試料に照射される光強度の比を調整するための手段を有
することを特徴とする時間分解電子スピン共鳴装置。本
発明によると、光触媒、光半導体などの動的誘電率変化
の大きい機能性材料ならびにそれを含む試料における時
間分解ESR測定が可能になる。この時間分解ESR法
は光触媒の反応性に直接関係ある短寿命ラジカルの測定
方法であるので、本発明は、光触媒物質の検定に最も効
果的な検定法をも提供する。
(5) In the time-resolved electron spin resonance apparatus according to (4), the light splitting means is configured to irradiate the sample with the light intensity applied to the sample in the first cavity resonator and the sample in the second cavity resonator. 1. A time-resolved electron spin resonance apparatus comprising means for adjusting a ratio of light intensity applied to a substrate. According to the present invention, it becomes possible to perform time-resolved ESR measurement on a functional material such as a photocatalyst and an optical semiconductor having a large dynamic dielectric constant change and a sample containing the same. Since the time-resolved ESR method is a method for measuring short-lived radicals directly related to the reactivity of the photocatalyst, the present invention also provides the most effective assay method for assaying photocatalytic substances.

【0023】[0023]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図2に、本発明によるESR装置
のマイクロ波回路の例を示す。既製のESR測定装置の
マイクロ波ユニット(マイクロ波源と検出器を兼ねる)
10に付加する形で、分波回路20と外部AFC装置3
0を装着した。マイクロ波ユニット10のマイクロ波出
口から出たマイクロ波を分波回路20のサーキュレータ
C0において2つに分割し、サーキュレータC1,C2
から2台の空洞共振器CV1,CV2に導き、その反射
波を再びサーキュレータC0において合成する。2つの
空洞共振器の一方CV1にのみ電磁石により外部磁場を
印加する。その2経路の間に減衰器AT1,AT2、移
相器PS1,PS2、シャッタSH1,SH2を設け、
マイクロ波の位相と強度を2つの経路で独立に調整でき
るようにしている。また単行管D1,D2によって余計
なマイクロ波反射波を除く。合成した信号は、サーキュ
レータC0を通じて再びマイクロ波ユニット10のマイ
クロ波入り口に戻す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows an example of a microwave circuit of the ESR device according to the present invention. Microwave unit of ready-made ESR measuring device (combines microwave source and detector)
10, the demultiplexing circuit 20 and the external AFC device 3
0 was attached. The microwave output from the microwave outlet of the microwave unit 10 is divided into two in the circulator C0 of the branching circuit 20, and the circulators C1, C2
To the two cavity resonators CV1 and CV2, and the reflected waves are synthesized again in the circulator C0. An external magnetic field is applied by an electromagnet to only one of the two cavity resonators CV1. Attenuators AT1, AT2, phase shifters PS1, PS2, and shutters SH1, SH2 are provided between the two paths.
The phase and intensity of the microwave can be adjusted independently through two paths. Further, unnecessary microwave reflected waves are removed by the single tubes D1 and D2. The synthesized signal is returned to the microwave inlet of the microwave unit 10 again through the circulator C0.

【0024】この回路構成によると、既製のマイクロ波
ユニット10内にホモダイン検波回路が装備されている
場合でも、そのままそのマイクロ波ユニットを利用でき
る。また、必要に応じて検出器の前にマイクロ波を増幅
するプリアンプを設置することも可能である。調整を行
うためのQ−カーブ測定用オシロスコープ40は、ES
R測定装置に予め装備されているものを用いた。2つの
空洞共振器CV1,CV2内の試料S1,S2にパルス
レーザ50から励起レーザーパルス光を照射する。磁場
掃引装置60で外部磁場を変化させながら、パルスレー
ザーからのトリガ信号に同期した信号を、トランジェン
トオシロスコープ70に記録、積算し、信号処理装置8
0によりデータ処理して蓄積した。信号処理装置80と
してはパーソナルコンピュータを用いた。
According to this circuit configuration, even when a homodyne detection circuit is provided in the ready-made microwave unit 10, the microwave unit can be used as it is. Further, a preamplifier for amplifying microwaves can be provided in front of the detector as needed. The Q-curve measurement oscilloscope 40 for performing the adjustment is ES
What was previously equipped in the R measuring device was used. The sample lasers S1 and S2 in the two cavity resonators CV1 and CV2 are irradiated with excitation laser pulse light from the pulse laser 50. While changing the external magnetic field with the magnetic field sweeping device 60, a signal synchronized with the trigger signal from the pulse laser is recorded and integrated on the transient oscilloscope 70, and the signal processing device 8
0 and the data was processed and accumulated. A personal computer was used as the signal processing device 80.

【0025】次に、2つの試料室を等価にする調整方法
について、図3に示した空洞共振器の共鳴曲線の変化を
参照して説明する。なお、以下の操作のうち(1)と
(2)は通常のESR装置でも行う操作である。(3)
〜(7)が本発明で新たに加える操作である。なお、以
下の(1)〜(7)の操作は空洞共振器CV1及び試料
S1に磁場を印加しない状態で行うのが望ましい。 (1)空洞共振器CV1,CV2に試料S1,S2を装
着した状態で、スイッチSH1,SH2によりマイクロ
波の回路を適宜開閉し、Q−カーブ測定用オシロスコー
プ40により試料室の共鳴曲線をそれぞれ独立に測定す
る。 (2)ESR信号がないときに、それぞれの試料室から
の反射が0となるようにそれぞれの空洞共振器を調整す
る。 (3)2つの試料室の共鳴周波数を一致させる。このと
き、空洞共振器内に石英棒などの誘電体を適当な長さ挿
入するなどする(共鳴周波数調整:図3の[A])。
Next, an adjustment method for making the two sample chambers equivalent will be described with reference to a change in the resonance curve of the cavity resonator shown in FIG. In addition, (1) and (2) of the following operations are operations performed by a normal ESR device. (3)
(7) are operations newly added in the present invention. Note that the following operations (1) to (7) are desirably performed without applying a magnetic field to the cavity resonator CV1 and the sample S1. (1) With the samples S1 and S2 mounted on the cavity resonators CV1 and CV2, the microwave circuits are appropriately opened and closed by the switches SH1 and SH2, and the resonance curves of the sample chamber are independently controlled by the oscilloscope 40 for Q-curve measurement. To be measured. (2) Adjust each cavity so that the reflection from each sample chamber becomes zero when there is no ESR signal. (3) Match the resonance frequencies of the two sample chambers. At this time, a dielectric such as a quartz rod is inserted into the cavity resonator for an appropriate length (resonance frequency adjustment: [A] in FIG. 3).

【0026】(4)2つの試料室から反射され帰還する
信号について相対的に180度位相をずらせる。ホモダ
イン回路が装備されている場合は、そのRef信号を基
準にして、主試料室からの信号を0度、参照試料室から
の信号を180度ずらせる(位相を反転させる:図3の
[B])。 (5)さらに、減衰器AT1,AT2により2つの試料
室に導入するマイクロ波の強度を調整して、2つの信号
が相殺するようにする(マイクロ波パワー調整:図3の
[C])。 (6)外部AFC回路30の周波数を試料室の共鳴周波
数に合わせる。 (7)パルスレーザ50から試料S1,S2にレーザー
光を照射し、キャリア信号を観察する。双方の信号が独
立に最大になるように、光路を調整する。さらにキャリ
ア信号が相殺されて最小になるように光の強度比を調整
する。
(4) The signals reflected from the two sample chambers and returned are shifted by 180 degrees in phase. When a homodyne circuit is provided, the signal from the main sample chamber is shifted by 0 degrees and the signal from the reference sample chamber is shifted by 180 degrees with respect to the Ref signal (inverting the phase: [B in FIG. ]). (5) Further, the intensities of the microwaves introduced into the two sample chambers are adjusted by the attenuators AT1 and AT2 so that the two signals cancel each other (microwave power adjustment: [C] in FIG. 3). (6) Adjust the frequency of the external AFC circuit 30 to the resonance frequency of the sample chamber. (7) The samples S1 and S2 are irradiated with laser light from the pulse laser 50 to observe carrier signals. The optical path is adjusted so that both signals are maximized independently. Further, the light intensity ratio is adjusted so that the carrier signal is canceled and minimized.

【0027】図4は、2つの試料室に送る励起光パルス
強度を調整するレーザー光分配光学系の概略図である。
回転ステージRSに装着した1/2波長板HWPを回転
させることによってレーザー光の線偏光方向を回転さ
せ、偏光プリズムPを通過せしめることにより、2つに
分配したレーザービームの強度について、連続的に光量
比を調整することができる。これを3枚のミラーM1〜
M3を用いて主試料室と参照試料室に分配する。
FIG. 4 is a schematic diagram of a laser light distribution optical system for adjusting the intensity of the excitation light pulse sent to the two sample chambers.
By rotating the half-wave plate HWP mounted on the rotary stage RS to rotate the linear polarization direction of the laser light and passing the polarized light through the polarizing prism P, the intensity of the laser beam divided into two is continuously measured. The light amount ratio can be adjusted. The three mirrors M1
The sample is distributed to the main sample chamber and the reference sample chamber using M3.

【0028】図5に、酸化チタン(Degussa社製P25)の
室温での動的誘電率変化を消去した結果を示す。図4に
示した1/2波長板HWPを回転させることによって光
量を調整する。主試料室に生じる動的誘電率変化信号は
正の信号、参照試料室に生じる動的誘電率変化信号は負
の信号として記録された。光の強度の調節のみにより1
00%主試料室で生じる動的誘電率変化信号(線A)と
100%参照試料室で生じる動的誘電率変化信号(線
B)の強度を等しくすると、線Cに示すようにほぼ動的
誘電率変化信号を消去することができる。光の分配比率
のみに信号強度が依存するとすると、理論的に信号のピ
ーク値は任意の回転角θに対して次式で表される。
FIG. 5 shows the result of eliminating the dynamic dielectric constant change of titanium oxide (P25 manufactured by Degussa) at room temperature. The amount of light is adjusted by rotating the half-wave plate HWP shown in FIG. The dynamic permittivity change signal generated in the main sample chamber was recorded as a positive signal, and the dynamic permittivity change signal generated in the reference sample chamber was recorded as a negative signal. Only by adjusting the light intensity
When the intensity of the dynamic permittivity change signal (line A) generated in the 00% main sample chamber and the intensity of the dynamic permittivity change signal (line B) generated in the 100% reference sample chamber are equal, almost dynamic as shown in line C is obtained. The dielectric constant change signal can be erased. Assuming that the signal intensity depends only on the light distribution ratio, the signal peak value is theoretically expressed by the following equation with respect to an arbitrary rotation angle θ.

【0029】[0029]

【数1】 (Equation 1)

【0030】ただし、IMainは主試料室の信号強度、I
Refは参照試料室の信号強度、I0は全レーザーエネルギ
ーである。信号強度の変化はこの式によく一致した。し
たがって、HWPの回転角を調整することにより必ず動
的誘電率変化信号を消去できることが理論的に証明され
る。実験の結果、わずかな線形のずれによる残留信号が
みられるものの、動的誘電率変化信号を単一試料室の場
合に比べて常に5%以下にすることができることがわか
った。
Here, I Main is the signal intensity of the main sample chamber, I Main
Ref is the signal intensity of the reference sample chamber and I 0 is the total laser energy. The change in signal strength was in good agreement with this equation. Therefore, it is theoretically proved that the dynamic permittivity change signal can always be eliminated by adjusting the rotation angle of the HWP. As a result of the experiment, it was found that although a residual signal due to a slight linear shift was observed, the dynamic permittivity change signal could always be reduced to 5% or less as compared with the case of a single sample chamber.

【0031】次に、試料に酸化チタン粉末を用い、ナノ
秒YAGレーザーからの10Hzのレーザーパルスで繰
り返し励起し、得られる信号の時間変化をトランジェン
トオシロスコープで記録した。外部磁場が約320mT
から約340mTまでの201点を測定点として、各点
あたり200回の測定を10Hzにて行い、レーザー励
起後50マイクロ秒までの時間分解信号をオシロスコー
プ上で積算した。この結果から、励起後9マイクロ秒で
見られる信号を磁場の変化についてプロットした時間分
解ESRスペクトルを図6に示す。
Next, using a titanium oxide powder as a sample, the sample was repeatedly excited by a laser pulse of 10 Hz from a nanosecond YAG laser, and the time change of the obtained signal was recorded by a transient oscilloscope. External magnetic field is about 320mT
The measurement was performed 200 times for each point at 10 Hz using 201 points from to about 340 mT as measurement points, and time-resolved signals up to 50 microseconds after laser excitation were integrated on an oscilloscope. From this result, FIG. 6 shows a time-resolved ESR spectrum in which a signal observed at 9 microseconds after excitation is plotted with respect to a change in magnetic field.

【0032】図6において、縦軸上向きはマイクロ波の
発光、下向きはマイクロ波の吸収を示す。この発光ない
しは吸収のピークが現れることは、目的とした表面ラジ
カル、ないしは表面付近に生成したラジカル種が励起後
9マイクロ秒に時間分解電子スピン共鳴信号を与え、こ
れらの何らかのラジカル種の存在することが示される。
この測定における信号の全ふれ幅は、図5の動的誘電率
変化信号の最大振幅の約1%であり、この程度の微弱な
時間分解ESR信号の測定が新たに可能となった。一
方、吸収、発光の区別は関与する化学反応のメカニズム
に関する情報を与える。この測定及びその解析によって
光触媒物質の表面における化学反応の短寿命な中間体を
検出、定量できるので、光触媒物質の機能に直接関係の
ある評価が可能になる。
In FIG. 6, the upward direction on the vertical axis indicates microwave emission, and the downward direction indicates microwave absorption. The appearance of this emission or absorption peak means that the target surface radical or the radical species generated near the surface gives a time-resolved electron spin resonance signal 9 μs after excitation, and the presence of any of these radical species Is shown.
The total amplitude of the signal in this measurement is about 1% of the maximum amplitude of the dynamic permittivity change signal in FIG. 5, and measurement of such a weak time-resolved ESR signal is newly enabled. On the other hand, the distinction between absorption and emission gives information on the mechanism of the involved chemical reaction. This measurement and its analysis enable detection and quantification of short-lived intermediates of the chemical reaction on the surface of the photocatalytic substance, thereby enabling an evaluation directly related to the function of the photocatalytic substance.

【0033】本発明により実現するのは、まず第1に、
酸化チタンに代表される光触媒物質について、その反応
性に対する直接の評価である。結晶や粉末の製造プロセ
スにおいて、その触媒能の直接評価に用い、数値として
検定できる方法を提供できる。この方法は同じ物質を用
いた顔料物質の安定性、化粧品担体の安全性の評価方法
として転用することができる。この評価方法は、性能の
よい材料の開発及び処理方法に直接結びつけることがで
きる。第2に、半導体物質について、基底状態には存在
しない短寿命の格子欠陥(主としてバンドギャップの間
に存在するトラップ準位)を新たに生成し、測定を行な
うことが可能となる。これにより固体の格子欠陥量、結
晶状態の評価を行うことができる。
First of all, the present invention realizes:
This is a direct evaluation of the reactivity of a photocatalytic substance represented by titanium oxide. In the process of producing crystals and powders, a method can be provided which can be used as a numerical value and used for direct evaluation of its catalytic ability. This method can be diverted as a method for evaluating the stability of a pigment substance and the safety of a cosmetic carrier using the same substance. This evaluation method can be directly linked to the development and processing of high-performance materials. Second, it is possible to newly generate a short-lived lattice defect (mainly a trap level existing between band gaps) which is not present in the ground state and measure the semiconductor substance. Thereby, the amount of lattice defects and the crystal state of the solid can be evaluated.

【0034】[0034]

【発明の効果】本発明によると、動的キャリアなどによ
る過渡的な誘電率変化を効果的に除去して、光触媒、光
半導体などの動的誘電率変化の大きい機能性材料の時間
分解ESR測定が可能になる。
According to the present invention, a time-resolved ESR measurement of a functional material having a large dynamic dielectric constant change, such as a photocatalyst or an optical semiconductor, by effectively removing a transient dielectric constant change due to dynamic carriers or the like. Becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理図を示す図。FIG. 1 is a diagram showing a principle diagram of the present invention.

【図2】本発明によるESR装置のマイクロ波回路の例
を示す図。
FIG. 2 is a diagram showing an example of a microwave circuit of the ESR device according to the present invention.

【図3】2つの試料室を等価にする調整方法についての
説明図。
FIG. 3 is an explanatory diagram of an adjustment method for making two sample chambers equivalent.

【図4】2つの試料室に送る励起光パルス強度を調整す
るレーザー光分配光学系の概略図。
FIG. 4 is a schematic diagram of a laser light distribution optical system that adjusts the intensity of an excitation light pulse sent to two sample chambers.

【図5】動的誘電率変化信号の除去状況を示す図。FIG. 5 is a diagram showing a removal state of a dynamic permittivity change signal.

【図6】時間分解ESR信号の測定例を示す図。FIG. 6 is a diagram showing a measurement example of a time-resolved ESR signal.

【符号の説明】[Explanation of symbols]

10:マイクロ波ユニット、20:分波回路、30:外
部AFC装置、40:Qカーブ測定用オシロスコープ、
50:パルスレーザ、60:磁場掃引装置、70:トラ
ンジェントオシロスコープ、80:信号処理装置、C0
〜C2:サーキュレータ、PS1,PS2:フェーズシ
フタ(移相器)、AT1,AT24:アッテネータ(減
衰器)、SH1,SH2:シャッタ、D1,D2:単行
管、CV1,CV2:キャビティ(空洞共振器)、S
1,S2:試料、HWP:1/2波長板、RS:回転ス
テージ、P:偏光プリズム、M1〜M3:ミラー
10: microwave unit, 20: demultiplexing circuit, 30: external AFC device, 40: oscilloscope for Q curve measurement,
50: pulse laser, 60: magnetic field sweeping device, 70: transient oscilloscope, 80: signal processing device, C0
C2: circulator, PS1, PS2: phase shifter (phase shifter), AT1, AT24: attenuator (attenuator), SH1, SH2: shutter, D1, D2: single-row tube, CV1, CV2: cavity (cavity resonator) , S
1, S2: sample, HWP: 波長 wavelength plate, RS: rotary stage, P: polarizing prism, M1 to M3: mirror

Claims (5)

【特許請求の範囲】[The claims] 【請求項1】 磁場中に配置された第1の空洞共振器に
挿入された第1の試料と磁場外に配置された第2の空洞
共振器に挿入された前記第1の試料と同等の第2の試料
にマイクロ波を照射しながら同時にパルス光を照射する
ステップと、 前記第1の空洞共振器から反射されて帰還する第1のマ
イクロ波信号と前記第2の空洞共振器から反射されて帰
還する第2のマイクロ波信号との差を取るステップとを
含み、 試料の誘電率変化による動的な信号変化を消去して電子
スピン共鳴信号のみを取り出すことを特徴とする時間分
解電子スピン共鳴測定方法。
A first sample inserted into a first cavity placed in a magnetic field and a first sample inserted into a second cavity placed outside the magnetic field; Irradiating the second sample with pulsed light while simultaneously irradiating the microwave; and a first microwave signal reflected from the first cavity resonator and returned, and reflected from the second cavity resonator. Taking the difference from the second microwave signal to be fed back, and removing only the electron spin resonance signal by eliminating the dynamic signal change due to the change in the dielectric constant of the sample. Resonance measurement method.
【請求項2】 請求項1記載の時間分解電子スピン共鳴
方法において、前記第1の空洞共振器から反射されて帰
還する第1のマイクロ波信号と前記第2の空洞共振器か
ら反射されて帰還する第2のマイクロ波信号との差を取
るステップは、前記第1のマイクロ波信号と前記第2の
マイクロ波信号とを位相を180度ずらして合成するこ
とで差を取ることを特徴とする時間分解電子スピン共鳴
方法。
2. The time-resolved electron spin resonance method according to claim 1, wherein the first microwave signal is reflected from the first cavity and returns, and the first microwave signal is reflected from the second cavity and returned. The step of obtaining a difference between the first microwave signal and the second microwave signal is performed by synthesizing the first microwave signal and the second microwave signal by shifting the phase by 180 degrees, thereby obtaining a difference. Time-resolved electron spin resonance method.
【請求項3】 同等の試料が挿入されている2つの空洞
共振器の共鳴周波数が一致するように空洞共振器を調整
するステップと、 前記2つの空洞共振器からの反射マイクロ波信号の位相
を相対的に180度ずらせるステップと、 前記2つの空洞共振器からの反射マイクロ波を合成した
合成信号がほぼゼロになるように2つの空洞共振器に導
入するマイクロ波の相対強度を調整するステップと、 前記2つの空洞共振器内の試料に同時にパルス光を照射
したとき前記合成信号がほぼゼロになるように2つの空
洞共振器内の試料に照射するパルス光の強度比を調整す
るステップと、 前記2つの空洞共振器の一方にのみ磁場を印加した状態
で2つの空洞共振器内の試料に同時にパルス光を照射し
前記合成信号を検出信号として時間分解電子スピン共鳴
信号を検出するステップとを含むことを特徴とする時間
分解電子スピン共鳴測定方法。
3. Adjusting the cavity resonators so that the resonance frequencies of the two cavity resonators into which equivalent samples are inserted coincide with each other; and adjusting the phases of the reflected microwave signals from the two cavity resonators. A step of relatively shifting by 180 degrees; and a step of adjusting the relative intensity of the microwaves introduced into the two cavity resonators so that a combined signal obtained by combining the reflected microwaves from the two cavity resonators becomes substantially zero. Adjusting the intensity ratio of the pulsed light applied to the samples in the two cavity resonators so that the combined signal becomes substantially zero when the sample in the two cavity resonators is simultaneously irradiated with the pulsed light. In a state where a magnetic field is applied to only one of the two cavity resonators, the sample in the two cavity resonators is simultaneously irradiated with pulsed light, and the synthesized signal is used as a detection signal to detect time-resolved electron spins. Time-resolved electron spin resonance measurement method which comprises the steps of detecting a signal.
【請求項4】 磁場発生装置と、 マイクロ波源と、 前記磁場発生装置の発生する磁場中に位置し試料が挿入
される第1の空洞共振器と、 前記磁場発生装置の発生する磁場外に位置し試料が挿入
される第2の空洞共振器と、 前記マイクロ波源から発生されたマイクロ波を前記第1
及び第2の空洞共振器に導く第1のマイクロ波回路と、 前記第1及び第2の空洞共振器から反射されてきたマイ
クロ波を合成する第2のマイクロ波回路と、 前記第2のマイクロ波回路で合成されたマイクロ波を検
出する検出器と、 前記第1の空洞共振器と第2の空洞共振器に導かれるマ
イクロ波の相対的な位相を調整するための前記第1のマ
イクロ波回路に設けられた移相器及び/又は前記第1及
び第2の空洞共振器から反射されてきたマイクロ波の相
対的な位相を調整するための前記第2のマイクロ波回路
に設けられた移相器と、 前記第1の空洞共振器と第2の空洞共振器に導かれるマ
イクロ波の相対的な強度を調整するための前記第1のマ
イクロ波回路に設けられた減衰器と、 パルス光源と、 前記パルス光源からのパルス光を分割して前記第1の空
洞共振器内の試料と第2の空洞共振器内の試料に同時に
照射するための光分割手段とを備えることを特徴とする
時間分解電子スピン共鳴装置。
4. A magnetic field generator, a microwave source, a first cavity resonator which is located in a magnetic field generated by the magnetic field generator and into which a sample is inserted, and located outside the magnetic field generated by the magnetic field generator. A second cavity into which a sample is inserted, and a microwave generated from the microwave source,
A first microwave circuit leading to the second cavity resonator; a second microwave circuit combining microwaves reflected from the first and second cavity resonators; and the second microwave circuit. A detector for detecting microwaves combined by a wave circuit; and a first microwave for adjusting a relative phase of microwaves guided to the first cavity resonator and the second cavity resonator. A phase shifter provided in the circuit and / or a shifter provided in the second microwave circuit for adjusting the relative phase of microwaves reflected from the first and second cavity resonators. A phaser; an attenuator provided in the first microwave circuit for adjusting a relative intensity of microwaves guided to the first cavity resonator and the second cavity resonator; And dividing the pulse light from the pulse light source Time-resolved electron spin resonance apparatus, comprising a beam splitting means for simultaneously irradiating the sample of the first cavity and the sample in the resonator second cavity.
【請求項5】 請求項4記載の時間分解電子スピン共鳴
装置において、前記光分割手段は前記第1の空洞共振器
内の試料に照射される光強度と第2の空洞共振器内の試
料に照射される光強度の比を調整するための手段を有す
ることを特徴とする時間分解電子スピン共鳴装置。
5. The time-resolved electron spin resonance apparatus according to claim 4, wherein said light splitting means controls the light intensity applied to the sample in said first cavity resonator and the light intensity applied to the sample in said second cavity resonator. A time-resolved electron spin resonance apparatus comprising means for adjusting a ratio of irradiation light intensity.
JP2001060848A 2001-03-05 2001-03-05 Time-resolved electron spin resonance measurement method and apparatus Expired - Fee Related JP4671514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001060848A JP4671514B2 (en) 2001-03-05 2001-03-05 Time-resolved electron spin resonance measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001060848A JP4671514B2 (en) 2001-03-05 2001-03-05 Time-resolved electron spin resonance measurement method and apparatus

Publications (2)

Publication Number Publication Date
JP2002257759A true JP2002257759A (en) 2002-09-11
JP4671514B2 JP4671514B2 (en) 2011-04-20

Family

ID=18920220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060848A Expired - Fee Related JP4671514B2 (en) 2001-03-05 2001-03-05 Time-resolved electron spin resonance measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP4671514B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046960A (en) * 2005-08-08 2007-02-22 Dainippon Printing Co Ltd Measuring method of concentration of electron spin
WO2010041393A1 (en) 2008-10-06 2010-04-15 国立大学法人 筑波大学 Electron spin measurement device and measurement method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367555A (en) * 1986-09-09 1988-03-26 Mitsubishi Electric Corp Time division type electron spin resonator
JPS6459046A (en) * 1987-08-06 1989-03-06 Bruker Analytische Messtechnik Electronic spin resonance type spectrometer
JPH05107327A (en) * 1991-10-17 1993-04-27 Hitachi Ltd Method for measuring electron spin resonance
JPH10104181A (en) * 1996-09-27 1998-04-24 Yamagata Pref Gov Technopolis Zaidan Method for measuring electron spin resonance and device for measuring electron spin resonance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367555A (en) * 1986-09-09 1988-03-26 Mitsubishi Electric Corp Time division type electron spin resonator
JPS6459046A (en) * 1987-08-06 1989-03-06 Bruker Analytische Messtechnik Electronic spin resonance type spectrometer
JPH05107327A (en) * 1991-10-17 1993-04-27 Hitachi Ltd Method for measuring electron spin resonance
JPH10104181A (en) * 1996-09-27 1998-04-24 Yamagata Pref Gov Technopolis Zaidan Method for measuring electron spin resonance and device for measuring electron spin resonance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046960A (en) * 2005-08-08 2007-02-22 Dainippon Printing Co Ltd Measuring method of concentration of electron spin
WO2010041393A1 (en) 2008-10-06 2010-04-15 国立大学法人 筑波大学 Electron spin measurement device and measurement method
KR20110079713A (en) 2008-10-06 2011-07-07 고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠 Electorn spin measurement device and measurement method
US8779766B2 (en) 2008-10-06 2014-07-15 University Of Tsukuba Electron spin measurement device and measurement method

Also Published As

Publication number Publication date
JP4671514B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
US5294289A (en) Detection of interfaces with atomic resolution during material processing by optical second harmonic generation
US7704923B2 (en) High throughput screening of catalysts using spin resonance
CN111474158B (en) Two-dimensional spectral imaging system and two-dimensional imaging method
Jahn et al. Rapid capture of large amplitude motions in 2, 6-difluorophenol: High-resolution fast-passage FT-MW technique
Asher Ultraviolet raman spectrometry
Veber et al. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras
Raston et al. Infrared-induced reaction of Cl atoms trapped in solid parahydrogen
Heid et al. Two‐dimensional probing of ground‐state vibrational dynamics in porphyrin molecules by fs‐CARS
JP4671514B2 (en) Time-resolved electron spin resonance measurement method and apparatus
Coppens What can time-resolved diffraction tell us about transient species?: excited-state structure determination at atomic resolution
JP2022553161A (en) Processes, devices and systems for measuring measured variables
US11193825B2 (en) Short pulsewidth high repetition rate nanosecond transient absorption spectrometer
WO2002075291A1 (en) Method and instrument for optically measuring constant of optical property of dielectric substance, and manufacturing system incorporating the device
Briois et al. New insights for materials science characterisation using different complementary techniques combined with x-ray absorption spectroscopy
RU2395448C1 (en) Method for determination of nanoparticles dimensions and device for measurement of electron paramagnet resonance spectrum
JP5298264B2 (en) Heterodyne beat probe scanning probe tunneling microscope and method for measuring minute signal superimposed on tunneling current by this
Cook et al. Gas phase EPR of vibrationally excited O2
JP3268872B2 (en) Secondary electron spectrometer
Poole Jr et al. Short time domain and double resonance techniques in electron spin resonance spectroscopy
CN115032224B (en) Pulsed high field magnetic resonance system
Agulto et al. Absorption Properties of Calcium Oxalate in the Far-Infrared Region for Phase Identification in Kidney Stones
US20230153676A1 (en) Chemically tunable optically addressable moleculr-spin qubit and associated methods
Minguzzi et al. Optoacoustic detection of Doppler-free two-photon resonances in the v2 bands of NH3
JP2702047B2 (en) Time-resolved fluorescence excitation spectrum analyzer
JP4534045B2 (en) Heterodyne beat probe scanning probe tunneling microscope and method for measuring minute signal superimposed on tunneling current by this

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees